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Editorial on the Research Topic

Unveiling the tumor microenvironment by machine learning to develop
new immunotherapeutic strategies
A total of 35 paper are included in this series. We selected eight as representative ones:

Yang et al. reported pancreatic ductal adenocarcinoma (PDAC) with a high 7-

methylguanosine (m7G) score were characterized by increased immune cell infiltration,

increased genomic instability, higher response rate to combined immune checkpoint

inhibitors (ICIs), and overall poor survival. Their findings indicate that the m7G score is

associated with tumor invasiveness, immune cell infiltration, ICI treatment response, and

overall patients’ survival. They also identified FN1 and ITGB1 as core genes in the

m7Gscore model, which affect immune cell infiltration and genomic instability not only

in pancreatic cancer but also in pan-cancer. FN1 and ITGB1 can inhibit immune T cell

activation by upregulation of macrophages and neutrophils, thereby leading to immune

escape of pancreatic cancer cells and reducing the response rate of ICI treatment.

Wang H. et al. reported that most of the 23 m6A regulators were significantly

differentially expressed in the Esophageal cancer (ESCA) tissues. LASSO regression

analysis was used to perform a prognostic risk model that included seven m6A-related

regulators (FMR1, RBMX, IGFBP1, IGFBP2, ALKBH5, RBM15B, and METTL14).

Moreover, they found that this risk model was significantly correlated with biological

functions, including base metabolism, DNA repair, and mismatch repair. A nomogram was

constructed to predict the prognosis of patients with ESCA. The results of bioinformatics

analysis were further validated in human ESCA and normal tissues by qRT-PCR.

Cheng et al. applied an unsupervised cluster analysis based on Cyclin-dependent kinase

inhibitor 2A (CDKN2A)-correlated genes unveiled three subtypes, namely cold-immune

subtype, IFN-g activated subtype and FTL-dominant subtype. Subsequent analyses

depicting hallmarks of tumor microenvironment (TME) among three subtypes suggested

strong association between triple-negative breast cancer (TNBC) and CDKN2A. Given the

fact that the most clinically heterogeneous TNBC always displayed the most severe
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outcomes and lacked relevant drug targets, they further explored

the potential of immunotherapy for TNBC by interfering CDKN2A

and constructed the CDKN2A-derived prognostic model for TNBC

patients by Lasso-Cox. The 21-gene–based prognostic model

showed high accuracy and was verified in external independent

validation cohort. Moreover, they proposed three drugs for TNBC

patients based on our model via targeting epidermal growth

factor receptor.

Wang W. et al. identified two subclusters based on cuproptosis-

related signature (CRGs) in glioma. Patients in cluster2 had better

clinical outcomes. The cuproptosis-signature was constructed based

on CuproptosisScore. Patients with higher CuproptosisScore had

higher WHO grades and worse prognosis, while patients with lower

grades were more likely to develop IDH mutations or MGMT

methylation. Univariate and Multivariate Cox regression analysis

demonstrated CuproptosisScore was an independent prognostic

factor. The accuracy of the signature in prognostic prediction was

further confirmed in 11 external validation datasets. In groups with

high-CuproptosisScore, PIK3CA, MUC16, NF1, TTN, TP53,

PTEN, and EGFR showed high mutation frequency. IDH1,

TP53, ATRX, CIC, and FUBP1 demonstrated high mutation

frequency in low-CuproptosisScore group. The level of immune

infiltration increased as CuproptosisScore increased. SubMap

analysis revealed patients with high-CuproptosisScore may

respond to anti-PD-1 therapy. The IC50 values of Bexarotene,

Bicalutamide, Bortezomib, and Cytarabine were lower in

the high-CuproptosisScore group than those in the low-

CuproptosisScore group.

Xia et al. showed the high- Necroptosis-Related Gene

Prognostic Score (NRGPS) group had significantly lower the

overall survival (OS) than the low-NRGPS group in gastric

cancer. Cox regression analyses showed that NRGPS was an

independent prognostic variable. Tumor-mutation-burden
Frontiers in Immunology 026
(TMB), tumor microenvironment (TME), microsatellite instability

(MSI), and Tumor Immune Dysfunction and Exclusion (TIDE)

scoring were used as predictors of the immunotherapy response.

The high-NRGPS group was characterized by a cancer-friendly

immune microenvironment, a high TIDE score, and a low TMB, a

low MSI all of which consistently demonstrated that the problems

observed in the high-NRGPS group are associated with immune

escape in gastric cancer GC.

Wang X. et al. detected Differentially expressed genes (DEGs)

by the Wilcoxon test based on the TCGA-LGG dataset and the

weighted gene co-expression network analysis (WGCNA) was

implemented to identify the significant module associated with

the expression level of FNDC3B. Furthermore, they investigated the

correlation between FNDC3B with cancer immune infiltrates using

TISIDB, ESTIMATE, and CIBERSORTx. Higher FNDC3B

expression displayed a remarkably worse overall survival and the

expression level of FNDC3B was an independent prognostic

indicator for patients with glioma. Based on TCGA LGG dataset,

a co-expression network was established and the hub genes were

identified. FNDC3B expression was positively correlated to the

tumor-infiltrating lymphocytes and immune infiltration score,

and high FNDC3B expression was accompanied by the increased

expression of B7-H3, PD-L1, TIM-3, PD-1, and CTLA-4. Moreover,

expression of FNDC3B was significantly associated with infiltrating

levels of several types of immune cells and most of their gene

markers in glioma.

Xiao et al. applied the large-scale machine learning to find that

SOX family can be divided into two distinct clusters in gliomas, with

significant immune characteristics and genomic profiles. Among

them, SOX10 was identified as an excellent immune regulator of

macrophage in gliomas. High expression of SOX10 is related to

shorter OS in LGG, HGG, and pan-cancer groups, but benefited

from the immunotherapy. Single-cell sequencing proved SOX10 is
FIGURE 1

The schematic flow of machine learning model application in tumor or non-tumor diseases.
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high in neurons, M1 macrophages, and neural stem cells.

Macrophages are found to be elevated in the SOX10 high

expression group. SOX10 has a positive correlation with

macrophage cytokine production and negative regulation of

macrophages’ chemotaxis and migration.

Lu et al. created a cuproptosis-related lncRNA prognostic model

based on the cuproptosis-related lncRNA score (CLS) by performing

lasso regression. They identified ten cuproptosis-related genes and 13

correlated prognostic lncRNAs were collected for model

construction. CLS was positively or negatively correlated with

cancer-related pathways. In addition, cell cycle and immune related

pathways were enriched. By performing tumor microenvironment

(TME) analysis, they determined that T-cells were activated. High

CLS had more tumor characteristics and may lead to higher

invasiveness and treatment resistance. Three genes (TP53, CSMD1

and RB1) were found in high CLS samples with more mutational

frequency. More amplification and deletion were detected in high

CLS samples. In clinical application, a CLS-based nomogram was

constructed. 5-Fluorouracil, gemcitabine and doxorubicin had better

sensitivity in patients with high CLS. However, patients with low CLS

had better immunotherapeutic sensitivity.

In summary, one study involved the single cell RNA-seq and the

other study applied the digital spatial profiling. Other most studies

were using the TCGA bulk-RNA seq data. The schematic flow can

be summarized as follows (Figure 1): The authors first clustered the

samples into two or three clusters based on the geneset or single

gene medium expression. Then they established the diagnostic or

prognosis models with machine learning methods and verified them

in some cases with external datasets. At last, they compared the

proliferation and invasiveness status, immune response with

CIBERSORT, survival status and TMB, grades between or among

these clusters. The future point would be adopting more advanced

machine learning models, deep neural networks, transfer learning
Frontiers in Immunology 037
to deal with a big population data and compare the predictive ability

of these machine learning methods.
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The interplay between long non-coding RNAs (lncRNAs) and the Notch

pathway involves a variety of malignancies. However, Notch-derived lncRNAs

and their latent clinical significance remain elusive in colorectal cancer (CRC).

In this study, we introduced a framework that could screen Notch-derived

lncRNAs (named “NLncer”) and ultimately identified 24 NLncers. To further

explore the clinical significance of these NLncers, we performed LASSO and

Cox regression in TCGA-CRC cohort (n = 584) and then retained six lncRNAs

tightly associated with prognosis. The final model (termed “NLncS”) was

subsequently tested in GSE38832 (n = 122), GSE39582 (n = 573), and an in-

house clinical cohort (n = 115). Ultimately, our NLncS model could serve as an

independent risk factor and afford a robust performance for assessing the

prognosis of CRC patients. Additionally, patients with high NLncS risk scores

were characterized by upregulation of immune pathways, strong

immunogenicity, abundant CD8 + T-cell infiltration, and potentially higher

response rates to CTLA4 blockers, which turned out to be suitable for

immunotherapy. Aiming at globally observing the characteristics of high-risk

patients, somatic mutation and methylation modification analysis provide us

with evidence at the genomic and transcriptomic levels. To facilitate the clinical

transformability, we mined deeply into the sensitive compounds targeting

high-risk individuals and identified dasatinib as a candidate agent for patients

with a high Notch risk score. In conclusion, our NLncS model is a promising

biomarker for optimizing the clinical management of CRC patients.

KEYWORDS

colorectal cancer, LncRNA, notch, prognosis, immunotherapy, tumor

microenvironment
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Introduction

As one of the primary causes in tumor-related death,

colorectal cancer (CRC) ranks the third most common

malignant neoplasm worldwide (1, 2). CRC is often diagnosed

at an advanced stage, accompanied by high postoperative

recurrence and metastasis rate, which seriously threatens the

health of the public. The survival of CRC patients was subjected

to a series of clinical difficulties such as unresectable surgery,

chemotherapy resistance, and radiotherapy side effects (3, 4).

Notably, immunotherapy has shown spectacular achievements

in the oncology treatment field (5, 6). However, with the rapid

development, limitations of immunotherapy emerged. As proof,

immunotherapy brings the desired curative effect when applied

to the suitable patient subgroups (7, 8). To address this plight,

researchers need to precisely identify individuals suitable

for immunotherapy.

The Notch pathway, a signal transduction system ubiquitous

in cellular organisms, determines the cell fate and function (9).

Studies widely validated that the Notch pathway is involved in

diversified aspects of oncology, including carcinogenesis,

metastasis, stemness, metabolism, apoptosis, and angiogenesis

(10–15). NOTCH3 expression is closely associated with

malignant phenotypes of CRC, including higher grade, the

existence of lymph nodes, and distant metastasis (10).

Additionally, several Notch signaling receptors could serve as

therapeutic targets for breast cancer (16). Moreover,

accumulating evidence has shown that the Notch pathway

influences the immune system, both innate and adaptive, via

dendritic cells and T cells (17, 18).

For decades, the identification of abundant long non-

coding RNAs (lncRNAs) >200 bp has brought out their

characterization as profound components in tumor biology.

LncRNA molecules were commonly present in tumors as a

double-edged sword of driving tumor development or

inhibiting progression (19–22). Previous studies have

confirmed that lncRNA could govern key ligands in the

Notch pathway to achieve tumor control, such as breast

cancer, renal cell cancer, and gastric cancer (23–25).

Nevertheless, the comprehensive landscape of the Notch

pathway-related lncRNA in CRC remains elusive, and we

hope to endue Notch pathways with a novel character and

clinical application through functional lncRNA analysis.

Herein, we constructed an integrated frame capable of

identifying Notch-derived lncRNA drivers (termed “NLncer”).

We characterized the prognostic value of the Notch-related

lncRNA signature (NLncS) for CRC patients and distinguished

high-risk subgroups that are suitable for immunotherapy. For

verification, two independent cohorts and a clinical in-house

dataset were enrolled. Subsequently, we probed the methylation

levels of distinct individuals in order to find genome-level drivers

that contribute to differences in outcomes. Further, based on cell
Frontiers in Immunology 02
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line expression profiles and drug sensitivity results (CTRP and

PRISM) and Connectivity Map (CMap) analysis, we recommend

the anticancer drug dasatinib as a latent treatment for a CRC

high-risk subgroup.
Materials and methods

Public dataset collection and procession

The workflow of this research is depicted in Figure 1. A total

of 1,279 CRC patients from three independent public cohorts

were obtained from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov) and Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo), including TCGA-CRC,

GSE39582, and GSE38832 (Supplementary Table 1). We

transformed the RNA-seq raw read count of TCGA-CRC to

transcripts per kilobase million (TPM). The GEO datasets were

collected from the Affymetrix® Human Genome U133 Plus 2.0

Array (GPL570 platform) and processed by the robust

multiarray averaging (RMA) algorithm with the Affy package.

We obtained 19,526 protein-coding genes and 15,299 lncRNAs

from TCGA database based on GENCODE (Homo sapiens

GRCh38, https://www.gencodegenes.org/). All probes were

mapped to the human genome (Hg38), and 3,439 lncRNAs

were acquired by reannotating the probe sets of the GPL570

array (26). Given the batch effect, we combined the colonic

adenocarcinoma (COAD) and rectum adenocarcinoma (READ)

data into TCGA-CRC queues after ComBat algorithm-based

processing. LncRNAs with an empty expression in more than

half of the sample size in each cohort were excluded. Detailed

baselines for three independent queues are pooled in

Supplementary Table 1.
NLncer: screening the potential LncRNA
drivers of the Notch pathway

Aiming at discovering potential Notch-associated lncRNA

drivers, we developed a comprehensive pipeline by referring to

previous findings (27, 28). In brief, we arranged the mRNAs in

descending order to the pertinence of particular lncRNA adjusted

for tumor purity. The fgsea R package was used to determine

whether Notch pathway-related genes were enriched. Next, the

Notch enrichment score (NES) of all lncRNAs was measured, and

those with significant NES were identified as Nlncers. LncRNA i

and mRNA k in n samples were termed as Lnc(i) = (lnc1, lnc2,…,

lncn) and M(k) = (m1, m2,…, mn) in the expression matrix,

respectively. The tumor purity of n patients was quantified via

the ESTIMATE R package and termed as p1, p2,…, pn. The first-

order partial correlation coefficients (PCCs) of lncRNA i and

mRNA k were determined by performing the following operation:
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Rlncm, Rlncp, and Rmp were named as the Pearson correlation

coefficients of lncRNA i and mRNA k, lncRNA i and tumor

purity p, and mRNA k and tumor purity p, respectively. Then, P

(ik), the P-value of PCC(ik), was calculated:
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pnorm is defined as the normal distribution function, and n

is the sample size. The Notch index (NI) was measured:

NI ikð Þ =   −ln P ikð Þ  �   sign PCC ikð Þð Þð Þ
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sign is a method that could realize the symbolic separation of

functions. All mRNAs were sequenced according to descending

NI, and further gene set concentration analysis (GSEA) was

performed. The adjusted P-values and concentration scores (ES)

of lncRNA i were evaluated by the fgsea R package and

combined into a NES:

NES ið Þ = 1 − 2Pið Þ �   sign ESið Þ
Thereby, the NES was calculated to range from -1 to 1.

Referring to previous findings (27, 28), lncRNAs with false

discovery rate (FDR) <0.05 and NES absolute value >0.995

were filtrated as Notch-derived lncRNAs.
Signature generation

Given the comparability between disparate cohorts, lncRNA

expression in three cohorts was converted to z-score before

Notch-related lncRNA signatures (NLncS) were generated.

According to the expression profile of Notch-derived

lncRNAs, univariate Cox regression was calculated among

TCGA-CRC, GSE39582, and GSE38832. Aware that the rigor

of multiple test corrections and the small sample size may screen

out some latent lncRNAs associated with survival, lncRNAs with

unadjusted P < 0.15 and the same hazard ratio (HR) direction

were adopted to construct the NLncS in combination with

LASSO regression (29). The optimal lambda was obtained

when the partial likelihood deviation achieved the minimum

by adopting the 10-fold cross-validation algorithm. The

lncRNAs with non-zero coefficients were involved in fitting

signatures. The NLncS equation was computed with the

following LASSO model weighting coefficient:

NLncS   score =o
n

i=1
Expressioni  �  Coefficienti

n refers to the total of significant lncRNAs, Expressioni
stands for the lncRNA i expression, and Coefficienti replaced

the matching regression coefficient.
Clinical specimens and information
collection

The ethics committee of the First Affiliated Hospital of

Zhengzhou University provided consent to the study. One

hundred fifteen pairs of CRC primary and normal tissues

surgically resected in the First Affiliated Hospital of

Zhengzhou University were included. The patient selection

criteria were as follows: 1) no preoperative treatment, such as

radiotherapy, chemotherapy, or targeted therapy was received;

2) no complication of any other tumors; 3) no autoimmune

disease. Supplementary Table 1 provides the record of the

baseline data. Fresh specimens were obtained and frozen in
Frontiers in Immunology 04
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liquid nitrogen at -80°C for preservation. The clinical stage was

in accordance with NCCN (2019) guidelines. Each individual

signed informed consent. The relevant ethical review number is

2019-KY-423.
Quantitative real-time PCR

Tissue RNA was extracted by RNAiso Plus (Takara,

China) reagent, and the quality was evaluated by NanoDrop

One C (Waltham, USA). Complementary DNA (cDNA) was

obtained by fol lowing the protocol of the Reverse

Transcription Kit (Takara Bio, Japan). Then, quantitative

real-time polymerase chain reaction (qRT-PCR) was

performed using SYBR Assay I Low ROX (Eurogentec, USA)

and SYBR® Green PCR Master Mix (Yeason, China). Each test

was repeated three times. The expression level was quantized

by 2-DDCt mode. GAPDH serves as an internal reference for

normalization. The reader is referred to Supplementary Table

2 for primer sequence information.
Functional enrichment

For distinguishing the differences of distinct NLncS scores,

the GSEA tool and clusterProfiler package were used to analyze

the biological pathways of Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) (30). To get a

standardized concentration, we chose the permutation to 1,000.

Gene sets with adjusted P-value <0.05 were selected

as significant.
Immune infiltration assessment

We adopted the MCPcounter package to explore immune

cell type, stromal cell, and immune checkpoint (ICPs, recruited

B7-CD28 family, TNF superfamily, and others, Supplementary

Table 5) abundance in CRC tissues (31). The correlation

between these immune components and the NLncS model was

further compared.
The mutation landscape and copy
number variation of CRC

Somatic mutation and copy number variation (CNV) data

were downloaded from TCGA-CRC portal and cBioportal

website, respectively. The TCGAbiolinks R package was

performed to get the raw mutation file. Mutations in different

patient subpopulations were analyzed and visualized based on

the maftools and ComplexHeatmap R package. CNV waterfall

maps of the first 10 amplification (AMP) and homozygous
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deletion (Homdel) chromosome fragments were visualized by

the ComplexHeatmap package.
Estimation of methylation drivers

The raw methylat ion data were obtained from

HumanMethylation450 array TCGA-CRC. The global

methylation level (GML) of each TCGA-CRC sample was

quantified based on the average beta value of a particular

probe (32). The MethylMix package was adopted for

integration of methylation and mRNA expression data.

Methylation drivers, genes that were considerably inversely

correlated with expression, were used to investigate the

association with NLncS.
Evaluation of response to
immunotherapy

Combining the immunophenoscore (IPS), tumor immune

dysfunction and exclusion (TIDE, http://tide.dfci.harvard.edu/),

and subclass mapping (SubMap) algorithms predicts

responsiveness to immunotherapy (33–35). TIDE is an

algorithm that integrates T-cell features to characterize

immune evasion situations. The IPS Z-score was computed by

assessing the scores of four immunophenotypes (antigenic

presentation, effector cell, inhibitory cell, and ICP) (36). The

higher IPS foreboded stronger immunogenicity of individuals.

SubMap was adopted to judge the degree of similarity. The

Bonferroni-corrected P was applied to indicate similarity, and

the magnitude of the P-value is negatively correlated

with similarity.
Prediction of therapeutic agents

The Cancer Therapeutics Response Portal datasets (CTRP)

and PRISM databases store cancer cell line (CCL) sensitivity data

with over 481 and 1448 compounds, respectively. In addition,

both data provide the area under the curve (AUC) of dose–

response as a measure of drug sensitivity. A lower AUC predicts

stronger drug responsiveness. After filtering out compounds

with ≥20% missing AUC values, the K-nearest neighbor (k-

NN) imputation method was employed to interpolate missing

variables for the remaining compounds.
Alternative compounds that target with
high-risk groups

CMap (https://portals.broadinstitute.org/cmap/), a public

online tool developed from the Broad Institute, was used to
Frontiers in Immunology 05
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determine which drugs may have an effect on high-risk samples

(37). Differential expression genes (DEGs) were obtained via the

limma package. Subsequently, the top 150 upregulated and 150

downregulated genes were selected for CMap analysis. Each

ranked list in CMap datasets was compared with DEGs to

specify where the DEGs appeared, thus yielding a score of

-100 to 100. Then the enrichment score was re-ranked; the top

is strongly and positively correlated with the high risk, and the

bottom is the opposite.
Statistical analysis

All work was performed in R software (4.1.0). Pearson’s chi-

square test was used for categorical variables. Continuous

variables were compared adapting the Wilcoxon rank-sum test

or Student’s t test. Spearman analysis was used to analyze the

correlation between groups. The glmnet package was adopted to

fit LASSO regression. Cox regression and Kaplan–Meier (K-M)

analysis were computed based on the survival package. The

optimal cutoff value was chosen by the survminer package.

Survival ROC and AUC were quantified via the timeROC

package. P < 0.05 of two tails was judged statistically significant.
Results

The Notch pathway was significantly
enriched and correlated with clinical
features of CRC

For decades, the functional impact of the Notch pathway-

based interplay with lncRNAs for neoplastic diseases has

gradually become the focus of researchers’ attention. In this

context, we proposed whether a Notch pathway-derived global

lncRNA signature could improve the outcomes and treatment

efficacy and seek potential drugs for CRC patients. To address

the question, we initially validated the Notch index of CRC

primary and normal tissues in TCGA-CRC (for training dataset)

cohort. Accordingly, the Notch signaling pathway was

upregulated in tumor tissues (Figure 2A). Further, we utilized

single-sample GSEA (ssGSEA) to evaluate the index of Notch

pathway features for each sample. K-M analysis showed that the

high Notch index predicted the adverse overall survival (OS, log-

rank P = 0.0001) and relapse-free survival (RFS, log-rank P =

0.0003) of patients (Figures 2B, C). In addition, correlation

analysis between the Notch index and clinical features showed

that a high Notch index tended to be associated with a high

clinical stage (such as AJCC stage, T, N, and M stage) and

microsatellite stability (all P < 0.05, Figures 2D-H). Notably, the

establishment of consensus molecular subtypes (CMSs) provides

the most reliable classification system for CRC to date (38). We

further explored the underlying link between the Notch index
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and CMS1–4 and found that CMS4 (mesenchymal subtype) had

the highest Notch index (P < 0.001, Figure 2I). The CMS4

subtype prominently manifested an upregulation of epithelial–

mesenchymal transition, angiogenesis, and lowest survival.

Collectively, the above support that the Notch pathway has

profound predictive value in CRC.
Nlncer to NLncS: Identifying Notch-
derived LncRNA and generating a
signature with the LASSO algorithm

For better consistency, we retained a total of 3,390 lncRNA

molecules with relevant data in the three cohorts. Based on our

previously developed framework of “TGFmitor” and the
Frontiers in Immunology 06
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recognition of an immune-related lncRNA signature, similarly,

we screened and obtained 24 candidate lncRNAs stably

associated with the Notch pathway (27, 39, 40). According to

the expression profiles of these 24 lncRNAs, we constructed the

LASSO model via a 10-fold cross-validation. When the optimal

lambda of 0.032 was selected, eight key lncRNA molecules with

non-zero coefficients were identified (Figure 3A). Subsequently,

after multivariate Cox regression, six lncRNAs stably associated

with OS were used to construct the model, namely, LINC00638,

ALMS1-IT1, MRGPRG-AS1, LINC00308, LINC01963, and

LINC00513 (Figure 3B). Finally, a continuous risk score of the

NLncS model was computed through a linear combination of

regression coefficient-weighted expression values of the six

lncRNAs. Next, we distinguish the high- and low-risk samples

according to the median value. In TCGA-CRC, GSE38832, and
A B

C D E

F G IH

FIGURE 2

The potential biological significance of the Notch pathway in CRC. (A) Single-sample GSEA (ssGSEA) enrichment analysis of the Notch pathway
in TCGA-CRC. (B, C) Kaplan–Meier curves of OS (B) and RFS (C) according to the Notch index (Notin) in TCGA-CRC. (D-H) Correlation between
Notin and clinical features, such as AJCC stage (D), T stage (E), N stage (F), M stage (G), and microsatellite instability (MSI) state (H) of TCGA-
CRC. (I) Correlation between Notin and classical consensus molecular subtypes (CMSs).
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GSE39582, the high-risk group presented a prominently worse

prognosis than the low-risk group (all Log-rank P <0.0001,

Figures 3C, D, F). After incorporating available clinical

characteristics including age, sex, stage (T, N, M, and AJCC),

and microsatellite instability (MSI) state, multivariate Cox

regression showed that NLncS were still statistically significant.

This suggests that NLncS can be used as an independent

prognostic factor for CRC (all P < 0.001, Figures 3E, G,

Supplementary Figure 1A). We detected the recognition of

NLncS and calculated the AUC at 1, 3, and 5 years of TCGA-

CRC (0.780, 0.780, and 0.806), GSE38832 (0.701, 0.762, and

0.768), and GSE39582 (0.701, 0.762, and 0.768). We compared

the NLncS model with three other lncRNA signatures. It was

found that our NLncS model had the highest C-index and was

significantly better than the other three lncRNA prediction

models (*P < 0.05, ****P < 0.0001, Supplementary Figure 3,

Supplementary Table 4) (41–43). Therefore, NLncS possessed

the ability of robust prediction in CRC patients.
Clinical in-house cohort for NLncS
validation via qRT-PCR

To further explore the potential for clinical translational

applications of NLncS, we examined the expression of lncRNAs

via qRT-PCR and calculated risk scores in a clinical in-house

cohort. The results are plotted in Figure 4. Patients with high-

risk scores had lower OS (Figure 4A) and disease-free survival

(DFS, Figure 4B), which validates the prognostic predictive

power of the model (P < 0.0001 for both). After inclusion of

clinical and pathological features, multivariate analysis showed

that risk score was an independent indicator in both OS

(Figure 4C, P < 0.001) and DFS (Figure 4D, P = 0.006). What

is more, the AUC calculation of the model showed that the 1-, 3-,

and 5-year AUC values were 0.703, 0.916, and 0.837 for OS and

0.674, 0.911, and 0.770 for DFS (Figures 4E, F), respectively,

showing good predictive power.
Immune-related mechanisms were
upregulated in the high-risk group,
showing potential immunologic
properties

Further, we performed GSEA to explore the potential

biological mechanisms that may cause differences on two

groups. We found a significant enrichment of signaling

pathways in the high-risk group such as immunity (humoral

and cellular immunity) and regulation of cellular differentiation

(Figures 5A, C), for instance, B-cell receptor and chemokine

signaling, T-cell activation and phagocytosis, and cellular

differentiation-related pathways such as the MAPK pathway.

However, the downregulation of energy metabolism and redox
Frontiers in Immunology 07
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reactions was predominantly related with the low-risk group,

including glycolysis, tricarboxylic acid cycle (TCA cycle), aerobic

respiration, and oxidative phosphorylation (Figures 5B, D).

Hence, it is manifest that immune-related roles may be

influencing factors contributing to NLncS predicting differences.
Tumor immune microenvironment
landscape and immune checkpoint
profiles of NLncS

Since immune-related pathways differ among subgroups of

NLncS, we expanded our analysis of the tumor immune

microenvironment (TIME) landscape consisting of nine immune

cell types and 27 immune checkpoints to further distinguish

immune features. The scenario is depicted in Figure 5E.

Moreover, CD8+ T cells, macrophages, endothelial cells, and

cancer-associated fibroblasts (CAFs) were significantly enriched

in the high-risk group (Supplementary Figure 1B). Specifically,

HHLA2 was overexpressed in the low-risk group, while ICOSLG,

PDCD1, PDCD1LG2, VTCN1, CD40, TNFRSF9, TNFSF14,

ENTPD1, HAVCR2, and LAG3 were considerably overexpressed

in the high-risk group (Figure 5F). Thus viewed, both at the level of

pathway enrichment, cell infiltration, and molecular expression,

the high- and low-risk groups showed more or less imparities.
Somatic mutation landscape, CNVs, and
latent methylation driver in CRC

Previously, it has been reported that tumors with a high

mutation load were more likely to respond to clinical strategies

based on immune checkpoint blockers (44–47). Indeed, based

on the immunological background of NLncS, we next estimated

the effects of somatic mutation on NLncS for seeking clinical

benefit. Figure 6A depicts the mutational landscape of NLncS.

APC and TP53 ranked first and second with 79% and 61%

mutation frequencies, respectively, which supported that high

mutation rates of APC and TP53 might be responsible for giving

rise to CRC (Figure 6A). Given that CNV dominatingly

consisted of amplification (AMP) and homozygous deletion

(HOMDEL), we sequenced the genes by frequency of AMP

and HOMDEL (Figure 6B). The results revealed that in the high-

risk group, TTPAL, RAE1, R3HDML, PABPC1L, LINC01620,

and LINC01430 were visibly amplified; dramatically deletions

were RBFOX1, WWOX, and MACROD2. Interestingly, there

was merely a slight difference in HOMDEL of the low-risk

group. Visible amplifications were TTLL9, TM9SF4, POFUT1,

PDRG1, MYLK2, and FOXS1.

Considering that the methylation modifications could alter the

biological function of RNA molecules at the epigenetic stage, we

performed a global methylation overview of CRC (48, 49). With the

help of the MethylMix R package and Wilcox test, we found six
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FIGURE 3

Construction and validation of NLncS. (A) Determination of the optimal lambda was obtained when the partial likelihood deviance reached the
minimum value. (B) Univariate Cox regression was further performed to generate the key lncRNAs with non-zero coefficients and predictive
values. LASSO coefficient profiles of the candidate lncRNAs for NLncS construction. (C, D, F) Kaplan–Meier curves of OS according to NLncS in
TCGA-CRC (C), GSE38832 (D), and GSE39582 (F). (E, G) Multivariable Cox regression analysis of NLncS in TCGA-CRC (E) and GSE39582 (G).
(H-J) Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in TCGA-CRC (H), GSE38832 (I), and GSE39582 (J).
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FIGURE 4

Validation of NLncS via qRT-PCR. (A, B) Kaplan–Meier curves of OS (A) and DFS (B) based on NLncS. (C, D) Multivariable Cox regression analysis
of OS (C) and DFS (D). (E, F) Time-dependent ROC analysis for predicting OS (E) and DFS (F) at 1, 3, and 5 years.
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FIGURE 5

Functional enrichment analysis and immune infiltration analysis were performed in high- and low-risk groups. (A, B) The top five KEGG-enriched
pathways and immune landscapes in the high- and low-risk groups. (C, D) The top five GO-enriched pathways and immune landscapes in the
high- and low-risk groups. (E) The heatmaps of eight immune cell and 27 immune checkpoint profiles in the high- and low-risk groups. (F) The
relative expression of 27 immune checkpoints in the high- and low-risk groups. (ns, none significance, P> 0.05; *P< 0.05; **P< 0.01; ***P<
0.001).
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methylation driver genes whose methylation levels were

significantly negatively correlated with expression in two groups,

including CES3, FAM127B, MAP9, PARVB, RLN2, and ZNF548.

Strikingly, the growing NLncS fraction was accompanied by
Frontiers in Immunology 11
18
increased methylation levels of CES3 and RLN2 but decreased

expression levels (Supplementary Figure 2; Figures 6C, D). This

suggested that CES3 and RLN2 might play an antitumor role as

protective factors in the high-risk group, while methylation
A

B

C
D

FIGURE 6

The Landscapes of frequently mutated genes (FMGs) and methylation level in two groups of NLncS. (A) The oncoplot depicts the discrepancies
in FMGs of CRC among the three cohorts. (B) The top 10 genes were amplified and homozygously deleted in the high- and low-risk groups.
(C, D) The expression and methylation level of the methylation drivers in CRC. (*P< 0.05; **P< 0.01; *** P< 0.001).
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modification silenced the corresponding mRNA fragments

resulting in CES3 and RLN2 reduced expression levels.

Collectively, this suggested that the influence of mutational

burden, CNV, and methylation level on NLncS scores was likely

non-redundant.
Deducing response to immunotherapy

As we all predicted, immunogenicity predicts stimulation to the

immune system (50). As an evaluation tool of tumor

immunogenicity, IPS was adopted to indirectly judge the local

immune activation status of the sample. Scores were calculated for

four different immunophenotypes (antigen presentation, effector

cells, suppressor cells, checkpoints). The Z-score was the integration

of the four. As expected, we found a significantly high Z-score in

high-risk patients, indicating greater immunogenicity (P <0.0001,

Figure 7A). Guided by the TIDE network tool, the response rate to

immunotherapy (50.7%) of the high-risk group was markedly

higher (P = 0.001, Figure 7B). Further, according to the SubMap

method, we compared the similarity in mRNA expression patterns

between two groups of CRC patients and 47 patients who

responded (R) or did not respond (NR) to immunotherapy. The

result showed that high-risk patients were closer to those who

responded to immunotherapy (Bonferroni corrected P = 0.032,

Figure 7C). These results strongly indicate that high-risk individuals

could benefit from immunotherapy.
Exploring insidious therapeutic agents
for high-risk CRC individuals

Herein, referring to the workflow of Yang et al., we mined

optional drugs for high-risk patients following the framework

shown in Figure 7D (51). In order to obtain robust therapeutic

drugs, we used two databases that store gene expression profile

data and drug sensitivity data for CCLs, CTRP, and PRISM. After

removing drugs with >20% missing values, we obtained 266 and

1285 compounds from CTRP and PRISM, respectively. We

selected ridge regression to predict the drug response for each

patient and calculated the AUC for each compound, with a lower

AUC suggesting increased sensitivity. Then, we evaluated the

appropriate drug in terms of the difference in response and

correlation analysis (Figures 7E, F). For the difference analysis,

we set a strict threshold Log2 FC >0.01 (CTRP) and Log2 FC >0.05

(PRISM), respectively, to identify compounds with lower AUC

values, which may act as potential clinical therapies for high-risk

individuals. We employed coefficients of r <−0.2 (CTRP) and r <

−0.1 (PRISM) to constrain compounds that are more closely

related to the NLncS score. In Figures 7E, F, a total of six

compounds from CTRP and four compounds from PRISM were

finally determined (all P < 0.05). Further, to more deeply explain

the functional links between compounds and RNA molecules as
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well as disease states, we performed the CMap analysis to explore

available drugs (37, 52). Surprisingly, we found that dasatinib,

widely used as a first-line antineoplastic agent for leukemia, had a

high negative correlation, indicating that it probably to exerts

therapeutic effects for high-risk score patients (Figure 7G).
Discussion

As early as 1917, Morgan and colleagues first discovered the

Notch gene in mutant flies, and then the Notch signaling

pathway was gradually reported (53). Notch signaling is a

classical pathway for tumorigenesis and disease progression by

accommodating cell proliferation and differentiation, among

others (54). Multiple Notch receptors exhibit oncogenic or

tumor-suppressive effects in various cells (55). Many clinical

trials have also assessed the anticancer efficacy of Notch

inhibitors (56). Notably, the interplay of lncRNA molecules

with Notch pathway-related molecules regulates a variety of

malignant phenotypes of tumors (23–25). Therefore, this study

is based on the lncRNA profiles from Notch signaling and aims

to establish a model with the ability to predict prognosis and

immune response and assist in the screening of sensitive drugs.

The symptoms of CRC are insidious and often lead to the

majority of patients presenting at an advanced stage, which

contributed to an unfavorable outcome (57). Presently, with the

arrival of the era of individualized treatment, the stratification

and refined management system for clinical patients urgently

need to be improved, and CRC patients are no exception.

However, current clinical measures are immature, which is

reflected in the inaccuracy of disease prognosis evaluation.

Single biomarkers are also increasingly unable to meet the

needs of practical applications, and more and more attention has

been paid to synthesizing multiple data types to form

appropriate scoring rules (58). We developed an evaluation

system consisting of six key lncRNA molecules by LASSO

algorithm and Cox regression analysis to perform a risk score

that can be continuously quantified in CRC patients. The model

showed good prognostic evaluation ability in three public

cohorts and one clinical cohort, which can accurately

distinguish the high-risk group to facilitate the layer

management for clinical patients. This was also initially

validated in an internal cohort of 115 clinical individuals.

Consistently, how to evaluate the efficacy of ICP therapy is a

problem faced by the majority of oncologists (59–61). On the one

hand, “magic drugs” will bring a resurrection effect to some

patients, but on the other hand, improper use is likely to cause

various side effects (62). Given this, we considered whether the

NLncS scoring model could reflect the difference in immune

response among distinct patients. We found that there was a

significant difference in the pathways enriched. The high-risk

group was primarily enriched in cellular or molecular pathways

involved in immune processes, including B-cell receptor,
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chemokine pathways, T-cell activation, and phagocytosis

pathways. The low-risk group was primarily downregulated

among metabolic aspects (glycolysis, TCA cycle, and oxidative

phosphorylation, etc.). Further, immune landscape and immune

infiltration analysis suggested visible differences and abundance.
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Meanwhile, analyses of mutation and methylation levels showed

that differences at the genome level were not redundant.

Growing studies have discussed two environments before

immune escape occurs in the tumor: 1) ineffective infiltration of

a large number of inactive T cells (63); 2) destruction of T cells
A B

C

E
G

F

D

FIGURE 7

Efficacy evaluation of immunotherapy and potential drug screen for CRC patients. (A) The IPS z-score of the two groups. (B) The predicted
efficacy of the two groups to immunotherapy in TCGA cohorts via TIDE method. (C) SubMap analysis of the two groups and 47 pretreated
patients with comprehensive immunotherapy annotations in TCGA cohort. For SubMap analysis, a smaller P-value implied a higher similarity of
paired expression profiles. (D) The framework of exploring insidious drugs for high-risk patients. (E, F) The candidate drugs screened by CTRP
and PRISM datasets. The correlation analysis of drugs and high-risk groups in CTRP (E left) and PRISM (F left). The differential drug response
between high- and low-risk groups in CTRP (E right) and PRISM (F right). (G) CMap analysis identified dasatinib as a potential compound able to
target the high-risk patient. (*P< 0.05; **P< 0.01; ***P< 0.001).
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infiltrating the tumor by immunosuppressive molecules (64).

Remarkably, Peng Jiang et al. raised a novel computational

architecture, TIDE score, to synthesize these two environments

(33). The project involved 189 studies with 33,197 specimens and

was thought to be an alternative to a single predictor to analyze the

efficacy of immune checkpoint suppression. As predicted, we

found that the response rate to immunotherapy in high-risk

(50.7%) patients was significantly better than that in low-risk

(37.0%) patients (P = 0.001). An additional result of SubMap

reported that the high-risk group appeared to be more sensitive to

CTLA4-blocker-based therapy. These results validate our

conjecture that the high-risk group is suitable for immunotherapy.

Dasatinib, as a first-line strategy for metastatic non-small cell

lung cancer, can also be widely used as an adjuvant therapy for

patients with pancreatic cancer, imatinib-resistant chronic

myelogenous leukemia, etc. (65, 66). It is gratifying that we found

that dasatinib is an excellent alternative drug for high-risk patients

after drug sensitivity prediction and CMap analysis, which not only

shows good sensitivity but also reflects powerful targeting ability.

However, there is no evidence that dasatinib could be used as a first-

line drug in CRC patients yet. Follow-up basic experimental and

clinical studies are still needed before dasatinib is adopted to CRC

patients. Nonetheless, we argued that dasatinib would possess a

bright prospect in improving the prognosis of CRC patients.

Collectively, this study integrally delineated Notch-derived

lncRNAs through a “NLncer” workflow and further constructed

a systematic scoring system (termed “NLncS”) for accurately and

stably evaluating prognosis and immune efficacy in CRC. This

work may contribute to interpret patient characteristics and

directed therapy. In addition, dasatinib might get a preferential

seat in the first line in CRC treatment.
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An integrated model of acinar to
ductal metaplasia-related N7-
methyladenosine regulators
predicts prognosis and
immunotherapy in pancreatic
carcinoma based on digital
spatial profiling

Hao Yang1†, Julia Messina-Pacheco2†,
Andrea Liliam Gomez Corredor2, Alex Gregorieff2, Jun-li Liu3,
Ali Nehme4,5, Hamed S. Najafabadi4,5, Yasser Riazalhosseini4,5,
Bo Gao6* and Zu-hua Gao7*

1Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2Department of Pathology, McGill University and the Research Institute of McGill
University Health Centre, Montreal, QC, Canada, 3MeDic Program, The Research Institute of McGill
University Health Centre, & Division of Endocrinology and Metabolism, Department of Medicine,
McGill University, Montreal, QC, Canada, 4Department of Human Genetics, McGill University,
Montreal, QC, Canada, 5McGill University Genome Centre, Montreal, QC, Canada, 6Department of
General Surgery, Peking University People’s Hospital, Beijing, China, 7Department of Pathology and
Laboratory Medicine, British Columbia (BC) Cancer Research Center, University of British Columbia,
Vancouver, BC, Canada
Acinar-to-ductalmetaplasia (ADM) is a recently recognized, yet less well-studied,

precursor lesion of pancreatic ductal adenocarcinoma (PDAC) developed in the

setting of chronic pancreatitis. Through digital spatial mRNA profiling, we

compared ADM and adjacent PDAC tissues from patient samples to unveil the

bridging genes during the malignant transformation of pancreatitis. By

comparing the bridging genes with the 7-methylguanosine (m7G)-seq dataset,

we screened 19 m7G methylation genes for a subsequent large sample analysis.

We constructed the “m7G score” model based on the RNA-seq data for

pancreatic cancer in The Cancer Genome Atlas (TCGA) database and The

Gene Expression Omnibus (GEO) database. Tumors with a high m7G score

were characterized by increased immune cell infiltration, increased genomic

instability, higher response rate to combined immune checkpoint inhibitors

(ICIs), and overall poor survival. These findings indicate that the m7G score is

associated with tumor invasiveness, immune cell infiltration, ICI treatment

response, and overall patients’ survival. We also identified FN1 and ITGB1 as

core genes in the m7Gscore model, which affect immune cell infiltration and
frontiersin.org01
24

https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.961457/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.961457&domain=pdf&date_stamp=2022-07-28
mailto:zuhua.gao@ubc.ca
mailto:bo.gao@bjmu.edu.cn
https://doi.org/10.3389/fimmu.2022.961457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.961457
https://www.frontiersin.org/journals/immunology


Yang et al. 10.3389/fimmu.2022.961457

Frontiers in Immunology
genomic instability not only in pancreatic cancer but also in pan-cancer. FN1 and

ITGB1 can inhibit immune T cell activition by upregulation of macrophages and

neutrophils, thereby leading to immune escape of pancreatic cancer cells and

reducing the response rate of ICI treatment.
KEYWORDS

acinar to ductal metaplasia, N7-methyladenosine, pancreatic carcinoma, prognosis,
immunotherapy, digital spatial profiling
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most

important histological subtype of pancreatic cancer, accounting

for approximately 90% of all pancreatic cancers. The 5-year survival

rate of PDAC is less than 5%, and the median survival time after

diagnosis is less than 6 months (1). The poor prognosis of PDAC

has been attributed to multiple factors including late diagnosis, the

lack of sensitive and specific biomarkers to detect PDAC, and the

lack of effective measures to prevent its development and interrupt

its progression (2). Studies have shown that in pancreatitis,

pancreatic acinar cells lose their morphology and characteristics,

undergo cell transdifferentiation and acquire ductal morphology

and characteristics. This process is called acinar to ductal metaplasia

(ADM) (3). ADM developed in the setting of acute pancreatitis is

usually transient and reversible. However, persistent ADM in the

setting of chronic or recurrent pancreatitis may progress to

pancreatic intraepithelial neoplasias (PanIN) and eventually to

invasive tumor (4, 5) (6, 7). Studies have found that when ADM

occurs, a variety of signaling pathways in acinar cells are activated

(Notch, Wnt, PI3K/AKT, etc.), which inhibits the transcription of

specific genes in acinar cells (e.g. Mist1, Cpa1, Amy2a, etc), while

duct cell genes (e,g, Krt19, Sox9, etc.) are upregulated (8, 9).

Previous reports have demonstrated that suppression of

transdifferentiation signals in these cells blocks subsequent PanIN

and PDAC (10). Therefore, elucidating the key bridging molecules

in the malignant process of ADM-related PDAC can not only help

us find a novel mechanisms of PDAC pathogenesis, but also

provide us with new therapeutic and preventive strategies

against PDAC.

Epitranscriptomics provides insights into the biological and

pathological roles of different RNA modifications. An emerging

type of RNA methylation, 7-methylguanosine (m7G)

modification, has been a research hotspot over the past two

years. Studies have shown that m7G modification is one of the

most common forms of base modification in post-

transcriptional regulation (11), and is widely distributed in the

5’ cap region of tRNA, rRNA, and eukaryotic mRNA (12). m7G

methylation was found to play an important role in the
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development of a variety of cancers, including colon and lung

cancer (13, 14). m7G-related epigenetic regulation can also affect

the tumor immune microenvironment and the efficacy of

immunotherapy (15). The m7g modification process is

regulated by a collection of key genes including mettl1, mettl3,

Cdk1, etc. (14, 16) However, the role of m7g modification and its

underlying regulatory genes in the malignant progression of

PDAC is still unclear.

In this study, we compared ADM and adjacent PDAC tissues

from pancreatic cancer patients and identified high and low-

expressed bridging genes during the malignant transformation

of pancreatitis through digital spatial mRNA profiling (DSP)

(17). There was a high degree of overlap between these bridging

genes and the m7G methylation genes. After comparing the

bridging genes with the m7G-seq dataset, we selected 21 m7G

methylation genes for subsequent bioinformatics analysis. Based

on these 21 m7G methylated genes, we constructed a model, the

m7Gscore, and used it to classify potential molecules that are

associated with different patterns of immune infiltration and

genomic instability in PDAC. We also evaluated whether m7G

score and m7G target genes could be used to predict patients’

response to immune checkpoint inhibitors (ICIs). As the core

genes of m7G score model, FN1 and ITGB1 are highly expressed

not only in the stroma and epithelial cells of ADM and PDAC,

but also in pan-cancer. FN1 and ITGB1 also affect Overall

survival rate, immune cell infiltration, tumor mutation burden

and microsatellite instability in pan-cancer. Finally, we

concluded that FN1 and ITGB1 can also up-regulate

macrophages and neutrophils and inhibit immune T cell

activition in pancreatic cancer, leading to immune escape and

reducing the response rate of ICIs treatment.

Materials and methods

Sample collection

The experimental design and analysis are shown in the flow

chart (Figure 1A). With the approval of the institutional ethics

review board of the McGill University Health Center, a total of 8
frontiersin.org
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sets of PDAC tissue samples were obtained from 8 patients with a

history of chronic pancreatitis who underwent surgical resection

in McGill University Health Centre. In each case, formalin fixed

paraffin embedded (FFPE) tissue blocks that contain normal acini,

ADM tissue and PDAC on the same tissue section were selected.

The clinical features of the eight patients are shown in Table 1.

None of the patients with pancreatic cancer received any pre-

operative treatments, including radiotherapy, chemotherapy, or

biological treatments. All specimens were histopathologically

diagnosed by two pathologists according to the WHO

diagnostic criteria for PDAC (18).
NanoString Technologies’ digital spatial
mRNA profiling

We selected several regions of interest (ROIs) from each PDAC

sample, including normal, ADM and PDAC ROIs. NanoString

Technologies’ newly developed GeoMx™ digital spatial profiling

(DSP) technology allows for morphology-driven, high-plex spatial

analysis of FFPE samples (17). Using the GeoMx Cancer

Transcriptome Atlas, a panel of RNA probes designed for

comprehensive profiling of the tumor, tumor microenvironment,

and tumor immune status with 1833 RNA targets, we directly

analyzed the in situ RNA expression of a total of 48 ROIs from 8

PDAC samples. Briefly, RNA probes coupled to unique

photocleavable oligonucleotide tags are hybridized to slide-

mounted FFPE tissue sections. Slides are then stained and

visualized, and the oligonucleotides are then released from ROIs

via UV exposure. The oligonucleotides are collected separately and

quantified. Counts are then mapped back to each tissue location,

yielding high quality, spatially resolved differential gene expression

profiles. The flowchart of DSP technology was shown in Figure 1B.
Histology, immunohistochemistry and
immunofluorescence

Formalin fixed tissue was processed, embedded in paraffin, and

cut into 5 µm sections. Hematoxylin and Eosin (H&E) (Thermo

Fisher Scientific, 7221, 7111) staining was performed according to

the clinical laboratory standard. Two areas of normal acini, ADM

and PDAC from each case were selected for the construction of a

tissue microarray. Immunohistochemical (IHC) staining was

performed using antibodies against Fibronectin 1 (FN1, 1:1000,

Cell Signaling Technologies 26836) and integrin b 1(ITGB1, 1:1000,
Cell Signaling Technologies 34971). Tissue sections were

deparaffinized in xylene and rehydrated in graded ethanol.

Antigen retrieval was performed by heating sections in boiling

sodium citrate buffer (Sigma-Aldrich, C-9999) for 20 minutes. After

blocking with 3% hydrogen peroxide and bovine serum albumin

(BSA), the tissues were incubated with the primary antibody at 4°C

overnight. After washing, the tissues were incubated with
Frontiers in Immunology 03
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corresponding horseradish peroxidase (HRP)-conjugated

secondary antibodies. The color was developed using

diaminobenzidine (DAB) substrate (Sigma-Aldrich, D-7304) and

slides were counterstained with hematoxylin. Images of three

random areas from each section were captured at 400x, 500x, and

600x magnification for evaluation. Immunofluorescence staining

was performed using primary antibodies against cytokeratin-19

(CK19; 1:500, DSHB, TROMAII), alpha-smooth muscle actin

(SMA, 1:2000, Sigma-Aldrich A2547), FN1 (1:200), and ITGB1

(1:200). Corresponding Alexa Fluor dyes were used for fluorescent

detection. DAPI was used for nuclear counter staining. Images were

captured on the Zeiss LSM780 laser scanning confocal microscope.
Data retrieval and processing

We obtained the m1A dataset (1655 regulator genes) and m5C

dataset (34 regulator genes) through the RMBase database (https://

rna.sysu.edu.cn/rmbase June 2021) (19, 20). We acquired the m6A

dataset (417 regulator genes) through the M6A2Target database

(https://m6a2target.canceromics.org June 2021) (21). We obtained

the m7G-seq dataset (2795 regulator genes) through the m7GHub

database (https://www.xjtlu.edu.cn/biologicalsciences/m7ghub June

2021) (22). We intersected each group of methylated genes with the

bridging genes to identify the proportion of each methylated gene in

the bridging gene set. The bridging genes and the m7G-seq dataset

were intersected to obtain 54 m7G methylation genes. Through the

Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.

gov/: accessed June 2021), we obtained the raw mRNA matrix data

of PDAC in fragments per kilobase million (FPKM) format and the

copy number data for pancreatic cancer. The raw data of the mRNA

matrix were processed to remove duplicate samples. We also

obtained the clinical data of pancreatic cancer patients through the

TCGA database. To reduce statistical error, patients with survival

times less than or equal to 90 days were excluded from the data. We

downloaded the GSE21501 dataset from the Gene Expression

Omnibus (GEO) database to obtain the mRNA matrix and

clinical data of pancreatic cancer. The FPKM matrix of pancreatic

cancer was converted to the TPM format and then merged with the

GEO matrix, and some missing genes were removed through batch

correction to expand the sample size for subsequent analysis.

Similarly, patients with survival times less than or equal to 90 days

were excluded from the GEO database. We download pan-cancer

rawmRNAmatrix data, clinical data and copy number data through

UCSC database (Xena.ucsc.edu/December 2021). The

clinicopathological characteristics of the pancreatic cancer patients

in the TCGA database and the GEO database are shown in Table 2.
Cluster analysis

To investigate whether m7G methylation gene expression is

associated with pancreatic cancer, we used the “Consensus
frontiersin.org
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FIGURE 1

Digital spatial profiling of pancreatic cancer FFPE samples from patients with a history of chronic pancreatitis and ADM. (A) Flowchart of the
study. (B) Schematic overview of the DSP workflow. (C) Representative HE staining and IHC images from each group. (D) Heatmap of the 1826
detected genes. Cluster analysis indicated the clusters marked in different colors. (E) PCA analysis of tissues, slides and patients.
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ClusterPlus”package inRtoclassifypancreaticcancerdata.Whenthe

clustering indexkisbetween2and9,k=3 isdeterminedas theoptimal

number of subtypes. When k=3, the intergroup correlation is weak,

while the intragroup correlation is strong.We calculated the survival

curves of different clusters of pancreatic cancer using the Kaplan–

Meiermethod and plotted themusing the “survminer” package. The

relationshipbetween theexpressionof them7Ggeneaccording to the

pancreatic cancer classification and the clinical data of patients was

shownwithaheatmap.TheDEGs in the threeclustersofPDACwere

identified by using the VennDiagram package R language. Then

intersected the DEGs, we obtained 907 intergenes. Using the single-

sample gene set enrichment analysis (ssGSEA) algorithm, we

obtained the scores of immune cells in different clusters of

pancreatic cancers, and the scores were plotted as box plots using

the “GSEABase” and “GSVA” packages in R. The Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathwayfilesweredownloadedfromtheGSEAwebsite(https://www.

gsea-msigdb.org June 2021). Then, the enriched functional pathways

in the pancreatic cancer classifications were plotted into a heat map

using the “GSEABase” and “GSVA” packages in R.
Frontiers in Immunology 05
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Principal component analysis

We obtained the principal component analysis (PCA) scores

for intergenes in the three m7G clusters of PDAC. PCA maps of

different clusters of pancreatic cancer were then plotted using the

“limma” and “ggplot2” packages in R. The m7G score of each

sample was obtained via a PCA analysis of DEGs in the three

m7G clusters (23). Based on the m7G score, we divided all the

pancreatic cancer samples into high and low m7G score groups.

A Sankey diagram was used to show the relationship among the

three clusters of pancreatic cancer, the two m7G score types of

pancreatic cancer and the overall survival rate. We analyzed the

correlation between m7G scores and immune cells by using the

ssGSEA algorithm. We analyzed the relationship between m7G

clusters, m7G score, and tumor mutation load using the

“ggpubr” and “reshape2” packages in R. Using the “limma”

package, the expression levels of UBQLN4 in the high and low

m7G score groups were displayed using box plots. We also used

the “survival” and “survminer” packages to analyze the

combined survival rate of the high tumor mutation burden
TABLE 1 Patient characteristics.

CASE No. Age Sex Grade Stage

CASE 1 67 M G2 pT3N1

CASE 2 80 M G2 pT3N1

CASE 3 86 M G2 pT2N0

CASE 4 66 F G2 pT2N0

CASE 5 83 M G2 pT2N1

CASE 6 67 F G1 pT1cN0

CASE 7 83 F G1-G3 pT3N1

CASE 8 66 M G3 pT2N
frontie
TABLE 2 Baseline characteristics of patients from TCGA and GEO database.

Clinical features Total patients (317) TCGA (185) GSE21501 (132)

Number Percentage (%) Number Percentage (%) Number Percentage (%)

Fustat

Alive 121 38.2 85 45.9 36 27.3

Dead 166 52.3 100 54.1 66 50.0

Unknown 30 9.5 0 0 30 22.7

Stage T

1-2 49 15.5 31 16.7 18 13.6

3-4 232 73.2 152 82.2 80 60.6

Unknown 36 11.3 2 1.1 34 25.8

Stage N

N0 78 24.6 50 27.0 28 21.2

N1 203 64.1 130 70.3 73 55.3

Unknown 36 11.3 5 2.7 31 23.5
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group, the low tumor mutation burden group, the high m7G

score group, and the low m7G score group. Through the

“maftools” package, we calculated the gene frequencies of the

high and low m7G score groups, and selected the top 20 genes

with the highest mutation frequency to draw a waterfall chart.

The “plyr” and “ggpubr” packages were used to plot different

clinical traits in the high and low m7G score groups as

histograms and box plots. TCGA database data is used to

draw NOMO diagram and ROC curve by using “rms”

package, “regplot” package and “timeROC” R packages. The

time gradient of ROC was 1,2 and 3 year. TIDE signature was an

algorithm for calculating T cell dysfunction and rejection in

various tumors. TIDE score was not only consistent with

immune escape characteristics, but also can predict the effect

of immune checkpoint treatment in patients with tumor (24).

We downloaded pancreatic cancer-related TIDE score,

Exclusion score and Dysfunction score data from TIDE

database (http://tide.dfci.arvard.edu/ June 2021). We then

analyzed the difference of the scores between the high- and

low- m7G score groups.

The immune checkpoint treatment scoring data for pancreatic

cancer were downloaded from The Cancer Immunome Database

(TCIA) (https://tcia.at/ June 2021). We then analyzed the treatment

of ctla4 and pd1 immune checkpoints in pancreatic cancer

according to m7G scores.
Protein-protein interaction (PPI)
networks and transcription factor
regulatory networks

Through the STRING website (https://string-db.org/cgi/

input.pl June 2021), the protein-protein interaction networks

of the m7G methylation genes were constructed. The TSV

format files of the m7G PPI networks were also downloaded.

Based on the TSV files, we plotted histograms to visualize the

core genes of the m7G PPI networks. From the DAVID website

(https://david.ncifcrf.gov June 2021), we obtained the

transcription factors associated with m7G methylation. We

constructed a transcription factor regulatory networks map of

the m7G methylation genes using Cytoscape software.
Statistical analysis

The copy number variation frequency of the m7G

methylation gene was obtained by calculating the increases

and reductions in the number of gene copies in the TCGA

samples. The “RCircos” package in R was used to plot the circle

diagram of gene copy number. Cox analysis and coexpression

analysis were used to map the prognostic gene network.
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Results

Bridging the gap between ADM and
PDAC: Bridging genes identified by DSP

The experimental design and analysis are shown in

Figure 1A. In order to identify the genes that bridge the gap

between ADM and PDAC, we collected 8 samples from PDAC

patients and selected 6 regions of interest (ROIs) from each

sample, including 2 normal, 2 ADM and 2 PDAC ROIs. The

results of hematoxylin and Eosin(H&E) staining and

immunohistochemistry (IHC) showed that the selection of the

ROIs of Normal, ADM and PDAC were correct. Microscopic

examination of the PDAC samples showed histological evidence

of conversion from normal pancreatic tissue to ADM and PDAC

(Figure 1C). GeoMx™ digital spatial profiling (DSP) analysis of

paired ADM and PDAC tissues (ADM vs Normal ∩ PDAC vs

ADM) identified a total of 224 trend genes, among which 75

genes showed gradually increasing expression, and 149 genes

showed gradually decreased expression. The gene expression

heatmap is shown in Figure 1D. ADM samples 1.1.3 and 1.1.4

appeared in the cluster of PDAC samples, so they were removed

from the study queue (Figure 1E). There was no confounding

effect between the remaining patients and samples.
High expression of m7G methylation
genes in pancreatic cancer

The proportions of m1A, m5C, m6A and m7G related

regulators in bridging genes were 14.28%, 0.04%, 5.80% and

24.10%, respectively. Since m7G-related regulators account for a

high proportion of bridging genes, we conducted more in-depth

study on this type of methylation in PDAC (Figure 2A). The

intersection of the 224 bridging genes and the 2795 m7G

methylation genes yielded 54 bridging m7G methylation genes

expressed in pancreatic cancer (Figure 2B). The 54 bridging m7G

methylation genes in the TCGA dataset were subjected to univariate

Cox analysis, and 21 prognostic-related bridging m7G genes were

obtained (Figure 2C). The frequency of copy number variations in

the 21 m7G methylation genes was observed with a histogram

(Figure 2D). In most of the bridging m7G methylation genes, the

frequency of copy number increases was higher than the frequency

of deletions. Among these genes, the LY6E methylation gene had

the most significant frequency of copy number increases. The

MAP2K2 and OAZ1 methylation genes had the most significant

frequency of copy number deletion. The gene copy number circle

diagram shows that the m7G methylation genes were mainly

concentrated on human chromosomes 8, 10, and 19 (Figure 2E).

After merging the TCGA and GEO datasets, we obtained a total of

19 m7G methylation genes by removing some of the missing genes

through batch correction. A co-expression analysis of the m7G
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methylation genes was performed, and a prognostic network was

plotted (Figure 2F). As illustrated in the figure, the vast majority of

the m7G genes regulate one another and form a functional

ensemble that jointly affects the progression of pancreatic cancer.
Three clusters of PDAC based on
bridging m7G methylation genes

Through a cluster analysis of the bridging m7G methylation

genes, we divided all the samples into three clusters (Figures 2G–

I). The survival analysis of the three clusters of pancreatic cancer

showed that cluster 2 had the lowest overall survival rate, while

cluster 3 had the highest survival rate (Figure 2J). This indicates

that the degree of malignancy of cluster 2 was relatively high,

and the degree of malignancy of cluster 3 was relatively low. On

the heat map (Figure 2L), the expression of most m7G

methylation genes was significantly increased in cluster 2 and

significantly decreased in cluster 3. Figure 4K shows that of the

23 types of immune cells, there were statistically significant

differences in the expression of 20 types of immune cells among

the three clusters of pancreatic cancer. These results indicate that

bridging m7G methylation genes can regulate immune cell

infiltration in pancreatic cancer. We performed GO and

KEGG enrichment analyses between three clusters of

pancreatic cancer (Figures S1A–F). Cluster 2 has the highest

degree of malignancy, and its enrichment pathways are mainly

concentrated in cell differentiation pathways, tumor

microenvironment pathways and carcinogenic pathways,

including regulation of cell morphogenesis involved in

differentiation, ECM receptor interaction, pancreatic cancer,

P53 signaling pathway and so on. The degree of malignancy of

cluster 1 is weaker than that of cluster 2, and its pathways mainly

focus on metabolism and tumor-related pathways, such as

integrin mediated signaling pathway, movement in host

environment and pathways in cancer. Cluster 3 has the lowest

degree of malignancy. Moreover, 907 genes (intergenes) were

overlapped among the three clusters of pancreatic cancer (Figure

S1G). GO and KEGG analysis results showed that the intergenes

were mainly enriched in ECM-receptor interaction, focal

adhesion and Wnt signaling pathway (Figures S1H–K).
Risk stratification of PDAC based on PCA
analysis and m7G scores

Through the PCA analysis of all the samples (Figure 3A), we

found that there was basically no overlap in m7G scores among

the three clusters of pancreatic cancer, and there was a good

correlation within the clusters. This indicates that our m7G

classification is very accurate. Figure 3B shows that the m7G

score was the highest for cluster 2 and lowest for cluster 3. In

addition, the m7G scores of the three clusters were significantly
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different. Through the PCA analysis, we obtained m7G scores

and divided all the pancreatic cancer samples into high and low

m7G score groups. We conducted ROC analysis on the

m7Gscore model and found that its 1, 2, and 3-year AUC

areas were all greater than 0.6 (Figure S1L). Sankey diagram

showed that most of the cases in cluster 2 with the highest degree

of malignancy belong to the high m7G score group, most of the

cases in cluster 1 belong to the low m7G score group, and all the

cases in cluster 3 with the lowest degree of malignancy belong to

the low m7G score group (Figure 3C). Moreover, the survival

rate of the high m7G score group was significantly lower than

that of the low m7G score group (Figure 3D). This indicates that

a high m7G score is associated with high risk, while a low m7G

score often reflects a low risk. This is consistent with the results

of previous studies. Cluster 2 pancreatic cancer has a high m7G

score and low survival rate, while cluster 3 has a low m7G score

and a high survival rate.
m7G score is associated with immune
cell infiltration and tumor mutation
burden

We performed a correlation analysis for m7G score and

immune cell infiltration (Figure 3E). Among the 23 types of

immune cells, the expression of 20 types of immune cells was

statistically significantly associated with the m7G score: 18 types

were positively correlated with the m7G score, and 2 types were

negatively correlated with the m7G score. We also analyzed the

relationship between m7G score and immune cell infiltration

through multiple softwares. Multiple software results showed

that m7G score was closely related to a variety of inflammatory

related immune cells, including macrophage, neutrophil and

cancer associated fibroblast (Figure 3F). Figure 3G shows that

the expression level of UBQLN4 in the high m7G score group

was significantly higher than that in the low m7G score group,

indicating that the higher the m7G score was, the greater the

genomic instability (25). Figure 3H shows that the m7G score

was positively correlated with tumor mutation burden, with

cluster 2 having the highest tumor mutation burden and cluster

3 having the lowest tumor mutation burden. The waterfall chart

shows that the gene mutation frequency of the high m7G score

group was significantly higher than that of the low m7G score

group (Figure 3I, J). The genes with the highest mutation

frequency in the high and low m7G score groups were KRAS,

TP53, CDKN2A and SMAD4 (26, 27). Figure 3K shows that the

survival rate of the high tumor mutation burden group was

significantly higher than that of the low tumor mutation burden

group. We also performed a joint analysis of the high and low

tumor mutation burden groups and the high and low m7G score

groups (Figure 3L), and the results showed significant differences

(p<0.001), indicating that both the tumor mutation burden and

m7G scores were correlated with patient prognosis.
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FIGURE 2

Classification of PDAC based on m7G methylation related bridging genes. (A) The proportion of four common methylation type genes in
bridging genes. m7G methylation genes have the highest proportion. (B) Intersection of the bridging genes and the m7G methylation genes.
(C) Univariate Cox analysis of the m7G methylation genes. (D) Diagram of the frequency of copy number variations in the m7G methylation
genes. (E) Copy number circle diagram for the m7G methylation genes. (F) Prognostic network of the m7G methylation genes. (G–I)
Classification of pancreatic cancers based on m7G methylation related bridging genes. Changes in the length and inclination of the CDF curve
for k=2–9. Area under the cumulative distribution function curve for k=2–9. Division of the pancreatic cancer samples into three clusters. (J)
Kaplan–Meier survival curves of the three clusters. (K) Immune cell infiltration of the three clusters. *p<0.05; **p<0.01; ***p<0.001; ns, no
significance. (L) Heat map of pancreatic cancer classification, m7G methylation genes, and clinicopathological characteristics.
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FIGURE 3

Immune cell infiltration and genomic instability in the m7G score. (A) PCA of the m7G methylation genes. (B) The m7G scores for the three
clusters of pancreatic cancers. (C) The Sankey plots revealed the correlation results of m7G clusters, m7G scores and the future state of
patients. (D) Kaplan–Meier survival curves of the high m7G score group and the low m7G score group. (E) Spearman correlation analysis of the
relationship between m7G scores and immune cell types *p<0.05. (F) Correlation of m7G score and immune cell infiltration through multiple
software. (G) UBQLN4 expression in the high m7G score group and the low m7G score group. (H) Correlation analysis of the relationship
between m7G scores and tumor mutation burden among the three clusters of PDAC. (I, J) Waterfall plot of gene mutation frequencies for low
and high m7G score groups. (K) Kaplan–Meier survival curves of the high tumor mutation burden group and the low tumor mutation burden
group. (L) Combined survival analysis results for the high and low tumor mutation burden groups and the high and low m7G score groups.
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m7G score is associated the clinical
behavior of PDAC

We ana l y z e d t h e p a t i e n t s ’ m7G sco r e s and

clinicopathological characteristics, including survival, T stage,

and N stage. Figures 4A–C shows that a high m7G score was

closely associated with a poor prognosis, local tumor invasion,

and lymph node metastasis. This indicates that from the

perspective of clinical pathological characteristics, a high m7G

score represents a higher degree of malignancy. We scored

various clinicopathological features and m7G scores and drew

a NOMO map to predict the prognosis of patients. If the total

score reaches 753, the probability that the patient’s survival time

was less than 1, 2, and 3 years is 0.0842%, 0.278%, and 0.327%,

respectively (Figure 4D). Among multiple indicators, only the

m7G score was statistically significant. The ROC curve results

showed that the 1, 2, and 3-year AUC areas of the NOMOmodel

were 0.713, 0.834, and 0.847, respectively (Figure 4E).
m7G score predicts tumor response to
immune checkpoint inhibitor treatment

The results of TIDE signatures showed that the immune evasion

mechanism of the high m7G score group was mainly immune

rejection, and the immune evasion mechanism of the low m7G

score groupwasmainly immune dysfunction. TheTIDE score of the

low m7G score group was significantly higher than that of the high

m7G score group. (Figures 5A–C) The resul t s of

immunosuppressant monotherapy and combination therapy

analysis showed that tumors with low m7G scores had a higher

rate of response to single immune checkpoint treatment (ICI).

Although the efficacy of PD-1 and CTLA-4 as single immune

checkpoint treatment was lower in patients with high m7G scores

than in those with low m7G scores, the efficacy of two-drug

combination immune checkpoint therapy in patients with high

m7G scores was higher than that of the low m7G score group

(Figure 5D). The observation was in agreement with the results of

most drug clinical trials, in which combination immune checkpoint

therapy had better efficacy than monotherapy for advanced

pancreatic cancer. We also conducted drug sensitivity analysis in

patients with high and low m7G score groups, so as to predict

potential effective drugs for pancreatic cancer patients (Figure 5E). A

total of 9 drugs were screened for patients with highm7G score, and

25 drugs were selected for patients with low m7G score (Figure S2).
FN1 and ITGB1 were the core genes
regulating m7G methylation

We obtained 6 m7G target genes by taking the overlapping

genes between clusters intergenes, m7G genes, and bridging
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genes (Figure 6A). By constructing a PPI network (Figures 6B,

C), we found that the m7G methylation genes were closely

related to each other and could interact with one another to form

a functional ensemble and jointly regulate the occurrence and

development of tumors. Among these, FN1 and ITGB1 were the

core genes in the PPI network and play a leading role in

regulation. M7G score was positively correlated with the

expression of 6 m7G target genes (Figure 6D). The expression

levels of six m7G target genes in the high m7G score group were

significantly higher than those in the low m7G score group

(Figure 6E). M7G target genes and m7Gscore were closely

correlated with multiple immune checkpoint genes

(Figure 6F). Through GSVA analysis, it was found that m7G

target genes and m7Gscore were closely related to multiple

carcinogenic pathways (Figures 6G, H).
IHC and immunofluorescence results for
FN1 and ITGB1

To validate the RNA results at protein level, we performed

IHC and immunofluorescence analysis of the core genes (FN1,

ITGB1) in the m7G methylation model (Figures 7A, B).

Compared with the negative staining in normal pancreas acini,

FN1 showed strong expression in the stroma of ADM and

PDAC (Figure 7A), whereas ITGB1 showed strong expression

in the epithelial cells of both ADM and PDAC (Figure 7B). The

ADM epithelium was further validated by co-staining with the

ductal marker CK19 and SMA highlighted activated stromal

myofibroblasts and smooth muscle in vessel walls.
Analysis of FN1 in pan-cancer

Figure 8A shows the expression of FN1 in 33 cancers, among

which FN1 most expressed in THCA. Figures 8B–E shows that

FN1 can affect overall survival、disease free survival disease

specific survival and progression free survival of patients in a

variety of cancers (including PAAD). Moreover, FN1 can affect

immune cell infiltration in pan-cancer (Figure 8F). FN1 is closely

associated with tumor mutation burden and microsatellite

instability in a variety of tumors (Figures 8G, H). We further

analyzed the role of FN1 in the immune microenvironment of

pancreatic cancer. Based on the ESTIMATE analysis, we found

that the estimate score, stromal score and immune score of FN1

high-expression group were significantly higher than those of

FN1 low-expression group (Figure 8I). FN1 is also closely

associated with multiple immunotherapy pathways and

classical process of the cancer immunity cycle (Figure 8J).

Using CIBERSORT algorithm, we calculated the correlation

between FN1 and immune cells (Figure S3A). The results

showed that FN1 was positively correlated with macrophages
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and neutrophils, and negatively correlated with various immune

T cells (Figure 8K). Figure 8L showed that the response rate of

PD1 and CTLA4 treatment in FN1 low-expression group was

significantly higher than that in FN1 high-expression group,
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which was consistent with the results of m7G score model on the

response rate of ICIs. We also calculated the response possibility

of FN1 to immunotherapy by TIDE algorithm, and the results

showed that the response of FN1 low-expression group was
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C

FIGURE 4

The relationship between m7G scores and prognosis in PDAC. (A) Survival in the high and low m7G score groups. (B) T staging of the high and
low m7G score groups. (C) N staging of the high and low m7G score groups. (D) NOMO map associated with m7G score and clinical
information. (E) Area under the curve (AUC) for time-dependent receiver operating characteristic curves demonstrating the prognostic
performance of the NOMO model.
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FIGURE 5

Immune checkpoint treatment and drug sensitivity. (A–C) TIDE score, Exclusion score and Dysfunction score of high and low m7G score
groups. **p<0.01; ***p<0.001 (D) Immune checkpoint treatment in the high and low m7G score groups. (E) Drug sensitivity in the high and low
m7G score groups.
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FIGURE 6

Network of m7G target genes in the m7G score model *p<0.05; **p<0.01; ***p<0.001. (A) Venn diagram of cluster intergenes, bridging genes
and m7G target genes. (B) Core genes of the PPI network of m7G methylation genes. (C) PPI network of the m7G methylation genes. (D)
Correlation analysis of m7Gscore and m7G target gene. (E) Expression of m7G target genes in high and low m7G groups. (F) Correlation analysis
of m7G target genes and m7G score with immune checkpoint related genes. (G, H) GSVA analysis of m7G target genes and m7Gscore.
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significantly higher than that of FN1 high-expression group

(Figure 8M). Furthermore, the expression of TIDE score,

exclusion score and MSI expr sig in the FN1 high-expression

group was higher than that in low-expression group (Figure 8N).

We analyzed the correlation of checkpoint genes between the

high and low expressed FN1 groups, the result showed that

multiple checkpoint genes were found to be highly expressed in

the high-expression FN1 group (Figure S3B). These results were

consistent with the results of m7G score model, suggesting that

FN1 may cause immunotherapy resistance in pancreatic cancer

patients through immune evasion.
Analysis of ITGB1 in pan-cancer

Figure 9A shows the expression of ITGB1 in 33 cancers,

among which ITGB1 expressed highest in CHOL and PAAD.

Figures 9B–E shows that ITGB1 can affect overall survival、

disease free survival disease specific survival and progression

free survival of patients in a variety of cancers (including

PAAD). Moreover, ITGB1 can affect immune cell infiltration in

pan-cancer (Figure 9F). ITGB1 is closely associated with tumor

mutation burden and microsatellite instability in a variety of

tumors (Figures 9G, H). ITGB1 can also affect the immune

microenvironment in pancreatic cancer (Figure 9I). Based on

the ESTIMATE analysis, we found that the estimate score, stromal

score and immune score of ITGB1 high-expression group were

significantly higher than those of ITGB1 low-expression group.

ITGB1 is also closely associated with multiple immunotherapy

pathways and classical process of the cancer immunity cycle

(Figure 9J). Using CIBERSORT algorithm, we calculated the

correlation between ITGB1 and immune cells (Figure S3C). The

results showed that ITGB1 was positively correlated with

macrophages and neutrophils, and negatively correlated with

various immune T cells (Figure 9K). Figure 9L showed that the

response rate of CTLA4 treatment in ITGB1 low-expression

group was significantly higher than that of ITGB1 high-

expression group, while there was no significant statistical

difference to PD1 treatment between ITGB1 high- and low-

expression group. We also calculated the response possibility of

ITGB1 to immunotherapy by TIDE algorithm, and the results

showed that the response of ITGB1 low-expression group was

significantly higher than that of ITGB1 high-expression group

(Figure 9M). In addition, the expression of TIDE score, exclusion

score and MSI expr sig in the ITGB1 high-expression group was

higher than that in low-expression group (Figure 9N). We

analyzed the correlation of checkpoint genes between the high

and low expressed ITGB1 groups, the result showed that multiple

checkpoint genes were found to be highly expressed in the high-

expression ITGB1 group (Figure S3D).
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Discussion

Although ADM is a benign and reversible process in the

setting of acute pancreatitis, long-term pancreas inflammatory

stimulation can lock metaplastic cells into a duct-like state.

Persistent ADM has been proven to be a precursor lesion for

the development of PDAC (28, 29). Pancreatic cancer develops

through a series of genetic events triggered by different driver

gene mutations. These differences in the mutated driver genes

lead to differences in the molecular phenotypes and biological

behaviors of pancreatic cancer, ultimately resulting in different

clinical outcomes (30). Studies have shown that the progression

from ADM to PDAC is driven by complex malignant bridging

genes and pathways (31). It is still unclear whether these

bridging genes can continue to play a malignant driving role

and how they function after the occurrence of PDAC. As a

newly-developed spatial genomics technology, DSP can

accurately detect the in situ expression of RNAs and proteins

in both ADM and PDAC areas simultaneously. This technology

avoids contaminat ion during the process of laser

microdissection and RNA preparation (32). In this study, we

collected tissues from 8 PDAC patients with a history of chronic

pancreatitis, and with histological manifestation of the

malignant progression from ADM to PDAC on the same

tissue section. Analysis using DSP technology on these human

PDAC tissue samples identified 224 bridging genes in the

progression from ADM to PDAC. Among these 224 genes,

there was a significantly a higher degree of overlap with the

m7G methylation genes. Therefore, we speculated that the

development of pancreatic cancer might be closely related to

the m7G methylation genes.

Cluster analysis is a powerful tool that can classify tumors into

subtypes based on their genomic similarities and differences in

association with patients’ clinical parameters and outcome data. It

can also facilitate comparative study of different subtypes and

discovery of new tumor subtypes (33). Cluster 2 had the lowest

overall survival rate, and Cluster3 had the highest overall survival

rate. The expression of most m7G methylation genes in Cluster2

was significantly higher than that in cluster 3. Some classic

oncopathways have also been significantly activated in Cluster2,

such as TGF-beta, ERBB, Wnt and so on. These results suggest that

m7G regulators may affect the malignant progression of pancreatic

cancer through a variety of cancer pathways.

Malignant progression of tumor-related diseases is often

accompanied by changes in cell morphology, such as ADM

and epithelial to mesenchymal transition (34). Roland et al.

found that PDAC is a process characterized by the extreme

involvement of the ECM, and the changes in the ECM-receptor

interaction pathway in PDAC are consistent with ECM

remodeling (35). Functional analysis showed the most
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malignant Cluster2 was closely related to differentiation-related

pathways, such as regulation of cell morphogenesis involved in

differentiation. In this study, we found that several ECM and

tumor microenvironment pathways were activated in cluster 2,

such as ECM receptor interaction and cell substrate junction.

PDAC is characterized histologically by the presence of

abundant desmoplastic stroma containing very small number of

infiltrating lymphocytes, indicating an overall immunosuppressive

microenvironment (36). It is well known that the degree of immune

cell infiltration is closely related to the efficacy of immunotherapy

and the prognosis of cancer patients. Studies have found that

immune cell infiltration was regulated by a variety of epigenetic

factors, including m6a and m5c methylation (37). But as a newer
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type of methylation, there are few immune-related studies on m7G

methylation. The results of this study suggest that m7Gmethylation

regulators may affect immune cell infiltration, which further affect

the immunotherapy response and patient’s prognosis.

In this study, the PCA algorithm showed that m7G scores were

negatively correlated with the overall survival rate. The Sankey chart

showed that most of the cases in Cluster2 with the worst prognosis

belong to the high m7G score group. These results support the

notion that m7G regulators play an important role in the malignant

progression of pancreatic cancer.

Through the TIDE score, we can intuitively understand the

immune escape mechanism of the high and low m7G score

groups. Studies have shown that in some tumors, although the
A

B

FIGURE 7

The expression of FN1 and ITGB1 in normal tissue, ADM tissue and PDAC tissue. (A) The expression of FN1 was gradually increased by IHC and
immunofluorescence. Its expression location was mainly in the intercellular substance. (B) The expression of ITGB1 was gradually increased by
IHC and immunofluorescence. Its expression location was mainly inside the cancer cell.
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FIGURE 8

Analysis of FN1 in cancers. *p<0.05; **p<0.01; ***p<0.001. (A) Expression of FN1 in 33 cancers. (B) Overall survival of FN1 in pan-cancer. (C) Disease free
survival of FN1 in pan-cancer. (D) Disease special survival of FN1 in pan-cancer. (E) Progression free survival of FN1 in pan-cancer. (F) Co-expression
analysis of FN1 and immune cells in pan-cancer. (G) Tumor mutation burden of FN1 in pan-cancer. (H) Microsatellite instability of FN1 in pan-cancer. (H)
(I) ESTIMATE analysis of FN1 high- and low-expression group. (J) Correlation between FN1, immunotherapy pathway and cancer immunity cycle. (K)
Correlation analysis between FN1 and CIBERSORT immune cells. (L) Response rate of ICIs in FN1 high- and low-expression group. (M) Response of
immunotherapy treatment in FN1 high- and low-expression group. (N) TIDE analysis of FN1 high- and low-expression group.
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FIGURE 9

Analysis of ITGB1 in cancers *p<0.05; **p<0.01; ***p<0.001. (A) Expression of ITGB1 in 33 cancers. (B) Overall survival of ITGB1 in pan-cancer.
(C) Disease free survival of ITGB1 in pan-cancer. (D) Disease special survival of ITGB1 in pan-cancer. (E) Progression free survival of ITGB1 in
pan-cancer. (F) Co-expression analysis of ITGB1 and immune cells in pan-cancer. (G) Tumor mutation burden of ITGB1 in pan-cancer. (H)
Microsatellite instability of ITGB1 in pan-cancer. (I) ESTIMATE analysis of ITGB1 high- and low-expression group. (J) Correlation between ITGB1,
immunotherapy pathway and cancer immunity cycle. (K) Correlation analysis between ITGB1 and CIBERSORT immune cells. (L) Response rate
of ICIs in ITGB1 high- and low-expression group. (M) Response of immunotherapy treatment in ITGB1 high- and low-expression group. (N)
TIDE analysis of ITGB1 high- and low-expression group.
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degree of cytotoxic T cell infiltration is high, these T cells are

often in a state of dysfunct ion. In other tumors ,

immunosuppressive factors can eliminate T cells infiltrating

the tumor tissue (38). The TIDE score results showed that the

immune escape mechanism of the low m7G score group was

mainly by dysfunction, while the high m7G score group was

mainly by immune exclusion.

In a phase I clinical trial of 207 patients with different

types of advanced cancer who received ICI monotherapy,

Brahmer et al. found that drug efficacy was relatively poor in

patients with advanced pancreatic cancer (39). Another

randomized phase II trial of 65 patients with metastatic

pancreatic cancer who failed first-line treatment with 5-FU

or gemcitabine showed that the disease control rate of the

combined drug treatment was significantly better than that of

the monotherapy (40). We performed immune checkpoint

assessments of the different m7G scores groups. The results

showed that tumors with low m7G scores had a higher rate of

response to ICI monotherapy. ICI monotherapy had poor

efficacy in the high m7G score group, although the efficacy of

combination therapy was relatively good, which is consistent

with the results of multiple clinical studies. Studies have

shown that the tumor microenvironment contributes to ICI

resistance. A nonimmunogenic tumor microenvironment

could potentially inhibit the immune response and prevent

the accumulation of immune lymphocytes in tumor tissues

(41), thereby affecting the efficacy of ICI treatment and

leading to the development of drug resistance. On the other

hand, long-term pancreatic cancer survivors have high-

quality neoantigens in the tumor microenvironment.

Therefore, it is conceivable that targeting these neoantigens

may improve the effectiveness of ICIs in the treatment of

pancreatic cancer (42).

We constructed a PPI network for the 6 m7G target genes.

In the PPI network, the core genes were FN1 and ITGB1. FN1

is a glycoprotein that is mainly involved in the processes of

cell adhesion and migration. Studies have reported that FN1

expression is upregulated in a variety of tumors and is

negatively correlated with patients ’ prognosis. FN1

overexpression can be used as a molecular marker for the

invasive phenotype of PDAC (43). Tsukamoto et al. found

that alcohol consumption could induce pancreatitis in mice,

increase FN1 expression and promote PDAC carcinogenesis

(44). In a TGF-b treatment-induced PDAC model, Yuzuru et

al. found that upregulation of FN1 was a hallmark of the

ductal growth of PDAC (45). It has been shown that stromal

cells are capable of inducing epithelial-mesenchymal

transformation, an event that is closely associated with the

progression of inflammation to tumors (46).Margareta et al.

demonstrated that FN1 functions in epithelial misplacement

(AEM) and adenomas with early carcinoma (AEC)

transformation in colon cancer (47), suggesting that FN1
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plays a role in the inflammatory transformation of cells to

colon cancer. Proteomics study showed that abundant FN1 is

present in extracellular vesicles (EVs) of PDAC and that high

expression of FN1 reduces the sensitivity of PDAC to

gemcitabine treatment (48). A member of the integrin

family, ITGB1 was also reported to play an important role

in PDAC carcinogenesis and biological behavior. ITGB1

signaling has been shown to promote the proliferation and

metastatic ability of pancreatic carcinoma in situ in mice by

stimulating the production of inflammatory cytokines (49).

ITGB1 also influences the malignant progression of

epithelioid-like ovarian cancer by regulating the production

of the inflammatory factors IL-6, TGF-b1 and SDF-1 (50). A

study by Oklahoma University suggested that ZIP4 could

increase the resistance of pancreatic cancer patients to

gemcitabine by upregulating the expression of ITGB1,

which was associated with a poor prognosis (51). Another

study from MD Anderson Cancer Center showed that GAL3

regulates the production of inflammatory cytokines in

ITGB1. Inhibition of this pathway can reduce the growth

and metastasis of pancreatic cancer in mice (49). These

literature data and our PPI analysis results all suggest that

the group of FN1 and ITGB1 genes interact with one another

and exert their functions as a coordinated network. In this

study, both immunohistochemical and immunofluorescence

analysis showed that (1) FN1 protein was highly expressed in

the stroma of ADM and PDAC lesions, and (2) ITGB1 protein

was highly expressed in the epithelium of ADM and PDAC.

This result suggests that increased expression of FN1 and

ITGB1 is associated with the metaplastic transdifferentiation

of normal pancreatic acinar cells to ductal cells through ADM

and eventually, the development of PDAC.

FN1 and ITGB1 not only play a role in pancreatic cancer, but

also be closely associated with overall survival, immune cell

infiltration, tumor mutation burden and microsatellite

instability in pan-cancer. This suggests that m7G score model

and m7G target genes may be independent prognostic factors for

a variety of tumors. The expression of FN1 and ITGB1 was

positively correlated with macrophages and neutrophils, and

negatively correlated with immune-related T cells. Studies have

shown that tumor-associated macrophages (TAM) play an

important role in tumor immune evasion (52). Various

mediators in the tumor microenvironment mediate the

recruitment of myeloid-derived suppressor cells (MDSC) and

monocytes, and polarize macrophages through different

signaling pathways, thereby promoting the formation of the

immunosuppressive myeloid microenvironment. Meanwhile,

tumor-associated neutrophils (TAN) are also an important

part of the immunosuppressive myeloid microenvironment

(53). Neutrophils in tumor microenvironment can inhibit the

immune function of T cells, which leads to the failure of ICIs

treatment (54). Both CTLA4 and PD1 ICIs treatment can
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activate immune checkpoint molecules expressed on the surface

of T cells, thereby reactivating T cells to play anti-tumor role (55,

56). When T cells are depleted, tumors are more likely to form

immunosuppressive microenvironments that help tumor cells

evade immune surveillance (57). Moreover, the higher

expression levels of FN1 and ITGB1, the lower response rate

of patients to ICIs treatment. TIDE score, exclusion score and

MSI score in high-expression group were also significantly

higher than those in low-expression group. This also indicates

that the high-expression group is more prone to immune

evasion. Therefore, we conclude that FN1 and ITGB1 can lead

to immune evasion in pancreatic cancer and reduce the response

rate of ICIs by up-regulating the activity of macrophages and

neutrophils, and down-regulating expression of immune T cells.

In summary, we used spatial genomics technology DSP to

identify the bridging genes in the transition from normal

parenchyma to ADM to PDAC. We found that these

bridging genes highly overlapped with m7G methylation

genes. The integrated model of ADM-Related m7G

regulators was able to predict genomic instability, immune

checkpoint treatment effectiveness, and overall survival in

patients with pancreatic cancer. Once validated in large

clinical trials, m7G score could be used to classify PDAC into

different groups with different patterns of immune infiltration,

genomic instability, and ICI response rate. M7G target genes

have the potential to become novel diagnostic biomarkers or

therapeutic targets of PDAC.
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SUPPLEMENTARY FIGURE 1

The GO and KEGG enrichment analysis of the three PDAC clusters. (A–C)GO
enrichment analysis of the three clusters. (D–F) KEGG enrichment analysis of
the three clusters. (G) The differentially expressed genes among the three

types were intersected, resulting in a total of 907 genes. (H, I)GO enrichment
analysis of the 907 genes. (J, K) KEGG enrichment analysis of the 907 genes.

(L) Area under the curve (AUC) for time-dependent receiver operating

characteristic curves of the m7G score model.

SUPPLEMENTARY FIGURE 2

The 25 drugs were selected for patients with low m7G score.

SUPPLEMENTARY FIGURE 3

CIBERSORT and checkpoint analysis of core genes. (A) CIBERSORT
analysis of FN1.(B) checkpoint analysis of FN1. (C) CIBERSORT analysis

of ITGB1. (D) checkpoint analysis of ITGB1.
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Transcriptional patterns reveal
tumor histologic heterogeneity
and immunotherapy response in
lung adenocarcinoma

Mengxue Jiao, Hui Liu* and Xuejun Liu*

School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
Tumoral heterogeneity has proven to be a leading cause of difference in

prognosis and acquired drug resistance. High intratumor heterogeneity often

means poor clinical response and prognosis. Histopathological subtypes suggest

tumor heterogeneity evolved during the progression of lung adenocarcinoma,

but the exploration of itsmolecular mechanisms remains limited. In this work, we

first verified that transcriptional patterns of a set of differentially expressed genes

profoundly revealed the histologic progression of lung adenocarcinoma. Next, a

predictive model based on the transcriptional patterns was established to

accurately distinguish histologic subtypes. Two crucial genes were identified

and used to construct a tumor heterogeneous scoring model (L2SITH) to stratify

patients, and we found that patients with low heterogeneity score had better

prognosis. Low L2SITH scores implied low tumor purity and beneficial tumor

microenvironment. Moreover, L2SITH effectively identified cohorts with better

responses to anti–PD-1 immunotherapy.

KEYWORDS

intratumor heterogeneity, immune microenvironment, histologic progression,
prognostic model, transcriptional pattern
1 Introduction

Non–small cell lung cancer (NSCLC) is one of the malignant tumors over the world

(1), and its morbidity and mortality increased gradually in recent years. The 5-year

survival rate of patients with NSCLC is only 18%. Lung adenocarcinoma (LUAD) is the

main subtype, accounting for 40% of patients with NSCLC (2). LUAD has distinctive

histological stages during its progression. Pathologists have categorized difference of

histological phenotype, referred to as histologic subtypes, including lepidic, papillary,

acinar, and solid (3). With the histologic progression from lepidic to solid, LUADs

become increasingly aggressive and metastatic.
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The immune system was supposed to drive intertumor and

intratumor heterogeneity by exerting different selective pressures to

different regions of the solid tumor (4). Prior studies have shown

significant difference of stroma and immune infiltrating cells in

different intratumor regions, as well as interpatient tumors (5, 6).

Accordingly, the tumor microenvironment has been shown to play

an important role in tumor growth, angiogenesis, immune evasion,

and metastasis (7). Substantial evidence suggests that tumor

heterogeneity increases the likelihood that cancer cells survive

conventional chemotherapy and targeted anticancer drugs (8–

10). In addition, tumor heterogeneity affects the efficacy of

immunotherapies, especially immune checkpoint inhibitors (11–

13). However, the exploration of molecular mechanism underlying

the histologic heterogeneity remained nascent (14).

In fact, the potential molecular mechanism of histologic

heterogeneity of LUAD is multifaceted. The genomic aberrations,

epigenetic modifications, small-molecule RNA, malfunction of

transcriptional regulations, and environmental factors may lead

to phenotypic differences (15–17). Studies have found strong

associations between the histologic heterogeneity and prognosis

of LUAD, but the investigation of molecular signature underlying

each histologic subtype is scarce (18). In this paper, we set about to

find molecular determinations of tumor heterogeneity from the

perspective of histologic subtypes. The immunogenetic

transcriptional patterns showed strong link to the histologic

progression and tumor microenvironment. We established a

heterogeneous scoring model (L2SITH) based on the molecular

signatures to stratify patients and found that patients in the low-

scored group had better prognosis, which was more predictive than

the stratification based on histologic subtypes. In contrast,

histologic subtypes did not showed significant prognostic value

for patients with LUAD. Moreover, L2SITH effectively identified

cohorts with better responses to anti–PD-1 immunotherapy.
2 Materials and methods

2.1 Data sources

Two LUAD cohorts from The Cancer Genome Atlas

(TCGA) (N = 246) and Gene Expression Omnibus (GEO)

(GSE58772, N = 48) were included in our study. The RNA-seq

and clinical data were obtained from the Genomic Data

Commons (https://gdc.cancer.gov/) and GEO database

(https://www.ncbi.nlm. nih.gov/geo/), respectively.

Intratumoral heterogeneity of these samples was annotated as

lepidic (L), papillary (P), acinar (A), or solid (S) subtypes,

according to the most popular histopathological classification

standard (3). The annotations of the TCGA cohort were from

(19), which included lepidic (N = 10), papillary (N = 50), acinar

(N = 69), and solid (N = 58) patients. The GEO GSE58772 cohort

included lepidic (N = 10), papillary (N = 18), acinar (N = 10). and

solid (N = 10) samples (20).
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The immune subtypes of 455 LUAD samples were marked by

Thorsson et al. (21), including C1 (wound healing, N = 82), C2

(Interferon (IFN)-dominant, N = 147), C3 (inflammatory, N =

178), C4 (lymphocyte depleted, N = 20), and C6 (Transforming

Growth Factor (TGF)-dominant, N = 28).

The cohort treated with the PD-1 inhibitor Nivolumab was

obtained from GEO (GSE126044, N = 16). This cohort included

11 non-responders (11 PD cases) and five responders (one SD

case and four partial response (PR) cases).
2.2 Differential expression and
enrichment analysis

The DESeq2 R package (22) was used to conduct differential

analysis between normal and two most representative subtypes,

including lepidic vs. normal, solid vs. normal, and lepidic vs.

solid. The differentially expressed genes were chosen using the

filtering criterion of absolute ǀ log2FoldChange ǀ > 1 and p.adj <

0.05. The differential expression genes overlapped with immune-

related genes from InnateDB were filtered out for further

analysis. Out of the 1,952 immune genes, we got 96 immune-

related differentially expressed genes.

The clusterProfiler R package (23) was applied for Gene

Ontology (GO) functional annotation and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis.

The GOPlot R package (24) was used to calculate the z-score

with the filtering threshold of P.adj < 0.05 to select statistically

significant pathways.
2.3 Histologic subtype clustering analysis

To visualize the molecular signature difference among

histologic subtypes, ComplexHeatmap package (25) was used

to draw the heatmap of expression profiles. The tSNE (26) and

UMAP (27) tools were used to perform dimensionality reduction

and clustering of expression profile of genes underlying the

tumor heterogeneity. The ggplot2 package (28) was used to

display the clusters.
2.4 MLP model for histologic subtype
classification

A multilayer perceptron (MLP) model was constructed

using the Neuralnet (29) package. The input layer included 38

nodes corresponding to differentially expressed immune-related

genes. The two hidden layers include 11 and 9 nodes,

respectively. There were three nodes in the output layer for

classification of histologic subtypes. The performance of the

classification model was evaluated by ROC curve and Receiver

Operating Characteristic (ROC)-Area Under Curve (AUC)
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values. The sklearn and matplotlib tools were used to calculate

the ROC-AUC values and plot ROC curves.
2.5 Random forest for immune subtype
classification

The transcriptomic data offiltered genes were transformed to z-

scores and then fed into a random forest model to predict immune

subtypes (C1, C2, C3, C4, or C6). The samples were split to training

and test set by 7:3 ratio. The random forest model included 50

decision trees with a maximum tree depth of 5 and a maximum

number of leaf nodes of 50. The sklearn and matplotlib tools were

used to calculate the ROC-AUC values and plot ROC curves.
2.6 Tumor purity and immune
microenvironment analysis

The ESTIMATE (30) tool was used to calculate the tumor

purity, stromal, and immune scores. The t-test was used for

statistical significance. The corrplot (31) package was used to plot

heatmap, in which p < 0.05 was denoted by *, p < 0.01 by **, and

p < 0.001 by ***.
2.7 Establishment of L2SITH score model

We performed univariate and multivariate Cox regression

analysis regarding the set of genes related to histologic subtype.

The genes significantly related to prognosis were used to

construct the heterogeneity score model L2SITH. The survival

tepallison2010survival package was used to run survival analysis

for high- and low-scored group, and the Kaplan-Meier (K-M)

curves were plotted by survminer (32) package. The pRRophetic

(33) package was used for drug proposal based on Cancer Cell

Line Encyclopedia drug sensitivity dataset.
3 Results

3.1 Transcriptional patterns reflect
histologic progression

Prior studies have reported the histologic heterogeneity of

LUAD, which mainly included four subtypes: lepidic, papillary,

acinar, and solid during tumor progression (3). From lepidic to

solid, tumor aggressiveness and metastasis increase. For simplicity,

we mainly focused on lepidic and solid patterns, regarding papillary

and acinar as intermediate state. On the basis of the differential

expression analysis between normal, lepidic, and solid samples, 96

differentially expressed genes related to immunologic function were

filtered out, as shown in Figure 1. After dimensionality reduction and
Frontiers in Immunology 03
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visualization by tSNE and UMAP tools, the transcriptional patterns

clearly distinguished the histologic subtypes, as shown in Figure 2.

The enriched GO annotations of 96 differentially expressed immune

genes were shown in Figure S1. The 38 significantly upregulated

immune genes showed positive correlation (Figures S2, S3).

As shown in Figure 3, these screened genes showed distinctive

transcriptional patterns among different histologic subtypes.

Interestingly, their expression levels increased significantly from

lepidic to solid pattern. This may implied the activation of the

immune response during tumor progression so that more and

more immune cells infiltrated into the tumor. Our analysis

preliminarily verified that transcriptional patterns of

immunologic genes reflected the histologic heterogeneity in LUAD.
3.2 Transcriptional patterns accurately
predict histologic subtypes

As molecular mechanism underlies the cell phenotype, we

supposed transcriptional patterns should be predictive of

phenotypic label. For this purpose, a MLP model was trained to

classify histologic subtypes. We split the 187 samples into three

types according to histologic subtypes: lepidic (N = 10), papillary

and acinar (N = 119), and solid (N = 58). This was a typical multi-

class classification task, based on the molecular signature of the set

of immune-related genes. Expectedly, the MLP model achieved

extremely high performance. The ROC-AUC was close to 1, and

the accuracy rate reaches 97%, as shown in Figure 4A. In

particular, 8 of 10 lepidic samples were correctly classified, 117

of 119 papillary and acinar samples were correctly classified, and

all 58 solid samples were correctly classified. Moreover, we found

that, as the histologic pattern progressed, a higher accuracy of the

model is achieved. This implied that progressive tumor tended to

develop distinctive molecular signatures that dominate the

histological morphology and cell phenotype.

To verify the generalization, we verified the classification

model on a GEO cohort (N = 48, where L = 10, P&A = 28, and

S = 10). We were pleased to find that the model can completely

distinguish the three types of histologic subtypes correctly, as

shown in Figure 4B. The independent test set fully validated the

outstanding potential of immunogenetic molecular signature in

differentiating tumor histologic heterogeneity.
3.3 Establishment of heterogeneity
scoring model L2SITH

We further performed Cox regression and survival analysis to

screen genes significantly related to prognosis and obtained two key

genes KIR2DL4 and SLC7A7. It has been reported that KIR2DL4

was highly associated with cancer development (34), and its lower

expression level means better prognosis (Figure 5A). SLC7A7 was a

suppressor gene inhibiting the progression of LUAD (35), and its
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higher expression level yielded to better prognosis (Figure 5B).

Therefore, we established the heterogeneity score model L2SITH

using these two genes, using the regression coefficients and the

transcriptional levels of these two genes. Its formal definition is

L2SITH = −0.0003708 * SLC7A7 (express) + 0.0047614 * KIR2DL4

(express). Using the L2SITH score, we divided the 62 lepidic and

solid patients into high- and low-scored groups. The KM survival

curves showed that the low-scored group had significantly high

overall survival rate, as shown in Figure 5C. However, if the patients

were divided into groups by histologic subtype (lepidic vs. solid),

then the overall survival has no significant difference (Figure 5D).

This suggested that the L2SITH model captured molecular factors

underlying tumor progression, thereby acquired better prognostic

power than the histologic heterogeneity. To verify this point, we

further divided the solid samples (N = 52) using L2SITH scores and

showed that the low-scored subgroup still had better overall

survival, as shown in Figure 5E.
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3.4 L2SITH revealed beneficial tumor
microenvironment

To validate the association between transcriptional patterns

and tumor microenvironment, we adopted the immune subtypes

established by Thorsson et al. (21) for analysis. We divided the

890 samples by 7:3 for training and test and built a random

forest model to predict the immune subtypes from molecular

signature. On the training and test set, the accuracy reached

0.867 and 0.813, respectively. The detail of each immune

subtypes was shown in Figures 6A, B, and the ROC curve was

shown in Figure 6C. This demonstrated that the transcriptional

patterns of the key immune-related genes can significantly

differentiate immune subtypes of LUAD.

We used ESTIMATE tool to evaluate the immune

infiltration level of the high- and low-scored group, to explore

the significance of the L2SITH in the stratification of tumor
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FIGURE 1

Differential analysis between normal, lepidic, and solid histologic subtypes. (A) Differential expression genes between lepidic and normal samples
(LvsN). (B) Differential expression genes between solid and normal samples (SvsN). (C) Differential expression genes between lepidic and solid
samples (LvsS). (D) Intersection of differentially expressed genes and immune genes (ImmuGene).
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microenvironment. As shown in Figure 7, we found that low-

scored L2SITH group had higher stromal level, immune

infiltration, and ESTIMATE scores than high-scored group.

Conversely, when samples were grouped by histologic subtype,

we observed a different trend, that is, the solid samples had

higher stromal level, immune infiltration, and ESTIMATE

scores than lepidic samples. The results indicated that the

patients with low L2SITH scores had low tumor purity and

beneficial tumor microenvironment to immunotherapy.
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3.5 L2SITH accurately predicts clinical
immunotherapy response

To validate the effectiveness of the L2SITH score model in

predicting response to immunotherapy, we analyzed a cohort of

patients with NSCLC received Nivolumab PD-1 inhibitor

treatment. Using the L2SITH to divide the sample into high-

and low-scored groups, we observed significant difference in

clinical response (Figures 8A, B). Clearly, the low-scored group
FIGURE 3

Heatmap of transcriptional patterns reflected histologic progression from lepidic to solid subtype.
tSNE UMAPA B

FIGURE 2

Dimension reduction and visualization of histologic subtypes. The LUAD samples showed separate distribution by (A) tSNE and (B) UMAP
dimension reduction on transcriptional profiles.
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TCGA cohort GEO GSE58772 cohortA B

FIGURE 4

RCO curves of MLP model for histologic subtype prediction using transcriptional pattern. (A) ROC curve on TCGA cohort. (B) ROC curve on
GEO GSE58772 cohort.
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Survival analysis of two key genes, L2SITH heterogeneity score, and histologic phenotype. Panels (A, B) showed the K-M survival curves of
patients grouped by KIR2DL4 and SLC7A7 gene, respectively. (C) K-M survival curve of patients grouped by L2SITH heterogeneity score. (D) K-M
survival curve of patients grouped by lepidic and solid subtypes. (E) K-M survival curve of the solid group patients divided by L2SITH
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had notably better OS and PFS than high-scored group.

Furthermore, we found that the patients who responded to

Nivolumab treatment were all in the low-scored group, as

shown in Figure 8C. The clinical response to immunotherapy

in the high-scored group was weak, and these patients suffered

progressive disease (Figure 8D). This confirmed the reliable

performance of L2SITH in predicting the immune response

of NSCLC.

In addition to the prognostic value, we further utilized the

L2SITH scores to screen potential beneficial drugs. Three

approved drugs, vinorelbine, gemcitabine, and etoposide, were

predicted to have higher potential sensitivity to the low-scored

group stratified by L2SITH (Figure 9). Vinorelbine is an anti-

mitotic chemotherapy drug that was approved in 1990s for the

treatment of non-NSCLC (29). According to a recent study,

vinorelbine is a suitable choice for elderly patients with NSCLC

and also a partner drug with immunochemotherapy (36).

Gemcitabine is a nucleoside metabolism inhibitor approved by

FDA in combination with cisplatin for the treatment of NSCLC

(37). Low-dose gemcitabine treatment is sufficient to inhibit

tumor growth with few side effects in vivo. Gemcitabine can also

activate antitumor immune response in patients with normal

immune system (38). Etoposide, a coccine toxin derivative, has
Frontiers in Immunology 07
51
also been shown to be useful in the treatment of small cell lung

tumors (39). Etoposide plus cisplatin chemotherapy improved

the efficacy and safety of small cell lung cancer (40).
4 Discussion

At present, the prognosis of patients with cancer depends

mainly on the clinical staging and pathological grading. In recent

years, more and more studies have shown that intratumor

heterogeneity is an important factor of clinical treatment efficacy

and prognosis. Tumors with high heterogeneity tend to be more

aggressive and indicate poor prognosis. In fact, interpatient and

intratumor heterogeneity is prevalent in both lymphoma and solid

tumor. Apart from the molecular feature difference, the

heterogeneity is also reflected in immune microenvironment,

such as different immune infiltration level and tumor purity.

This study tried to reveal the underlying molecular features

of histologic heterogeneity in LUAD. Through in-depth

exploration of the transcriptional profiles of immune-related

genes, we constructed a machine learning model to predict

histologic subtypes. In addition, the transcriptional profiles

were highly predictive of tumor immune subtypes. From these
TCGA cohort GEO cohort

ROC curve of the validation set

A B

C

FIGURE 6

Performance of immune subtypes prediction based on transcriptional pattern. (A) Immune subtype prediction results of TCGA cohort. (B)
Immune subtype prediction results of GEO cohort. (C) ROC curve of immune subtype prediction on GEO cohort.
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significance at the 0.05 level (p<0.05), ** indicates the level of significance 0.01 (p<0.01), *** indicates the level of significance 0.001 (p<0.001).
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Survival and clinical response to anti–PD-1 inhibitor (Nivolumab) of high- and low-L2SITH score groups. (A) Overall survival of patients in high-
and low-scored groups. (B) Progression-free survival of patients in high- and low-scored groups. (C) Percentage of patients with response to
Nivolumab high- and low-scored groups. (D) Percentage of high- and low-scored patients with clinical response from Nivolumab, including
progressive disease (PD), stable disease (SD), and partial response (PR). The symbol ** indicates significant difference at the 0.01 level (p<0.01).
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results, the molecular signature reflects the essential causes of

phenotypic differences.

We found significant correlation between the transcriptional

pattern of immune genes and the histologic progression

(Figure S4). During the early stage, most immune genes were

not activated and showed low transcriptional levels. With the

histologic progression, immune genes were activated along with

the tumor immune infiltration increased. This was reflected by

the significant positive correlation between the expression of

immune genes and histologic subtypes from lepidic to solid. We

also explored the correlation of the differentially expressed

immune genes with mutation type, but no significant

association was found (Figure S5).

From the perspective of histologic progression, the lepidic

cells were more differentiated, whereas solid cells were poorly

differentiated and aggressive, but we did not observed significant

difference in overall survival between lepidic and solid groups.

This motivated us to find the molecular factors that really lead to

differences in histologic subtypes and survival. Upon the

transcriptional profiles, we developed L2SITH, a simple but

predictive two-gene score model. The patient stratified by

L2SITH scores showed statistically significant differences in

overall survival. Within the solid group, L2SITH score model

was still effective in distinguishing patients with better prognosis.

On the other hand, this suggested that patients grouped in the

same histologic subtypes still have significantly different

molecular mechanisms. Rather than phenotypic differences,

molecular mechanisms are the real reasons for tumor

progression. In fact, a prior study (14) has explored the impact

of epigenetic factors on histological heterogeneity. It concluded

that the LUAD histological progression from lepidic to solid was

mainly caused by epigenetic and transcriptional factors. We

were exactly inspired by this prior study and focused on the

transcriptomic mechanism that actually drove the histological
Frontiers in Immunology 09
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progression but has not been explored before. In addition, we are

also interested in the small-molecule RNAs that are potentially

associated to histological subtypes and plan to explore such

association analysis in the near future work.

Finally, we tried to explore the association of genomic

mutations with the histologic progression in LUAD. However,

the mutation landscape of driver genes cannot reveal the

histologic progression. Moreover, we inspected the most highly

mutated genes in LUAD but found no consistent trends of

histologic progression driven by highly mutated gene (Figures

S6, S7). These were consistent with the conclusion that the

histologic progression is not dominated by genetic mutations

(14). Further, we explored the relationship between L2SITH

grouping and genomic mutations. The samples within each

histologic subtype were split into high- and low-scored

subgroups, and the mutations of each subgroup were shown in

Figures S8–S10. Although our L2SITHmodel cannot distinguish

the mutations, we found that, as the sample size increased, the

number of genes with significant differences between high- and

low-scored subgroups increased.
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Currently, breast cancer (BRCA) has become the most common cancer in the

world, whose pathological mechanism is complex. Among its subtypes, triple-

negative breast cancer (TNBC) has the worst prognosis. With the increasing

number of diagnosed TNBC patients, the urgent need of novel biomarkers is

also rising. Cyclin-dependent kinase inhibitor 2A (CDKN2A) has recently

emerged as a key regulator associated with ferroptosis and cuproptosis (FAC)

and has exhibited a significant effect on BRCA, but its detailed mechanism

remains elusive. Herein, we conducted the first converge comprehensive

landscape analysis of FAC-related gene CDKN2A in BRCA and disclosed its

prognostic value in BRCA. Then, an unsupervised cluster analysis based on

CDKN2A-correlated genes unveiled three subtypes, namely cold-immune

subtype, IFN-g activated subtype and FTL-dominant subtype. Subsequent

analyses depicting hallmarks of tumor microenvironment (TME) among three

subtypes suggested strong association between TNBC and CDKN2A. Given the

fact that the most clinically heterogeneous TNBC always displayed the most

severe outcomes and lacked relevant drug targets, we further explored the

potential of immunotherapy for TNBC by interfering CDKN2A and constructed

the CDKN2A-derived prognostic model for TNBC patients by Lasso-Cox. The

21-gene–based prognostic model showed high accuracy and was verified in

external independent validation cohort. Moreover, we proposed three drugs

for TNBC patients based on our model via targeting epidermal growth factor
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receptor. In summary, our study indicated the potential of CDKN2A as a

pioneering prognostic predictor for TNBC and provided a rationale of

immunotherapy for TNBC, and offered fresh perspectives and orientations

for cancer treatment via inducing ferroptosis and cuproptosis to develop novel

anti-cancer treatment strategies.
KEYWORDS

cuproptosis, immunotherapy, tumor microenvironment, triple-negative breast cancer,
cyclin-dependent kinase inhibitor 2A
Introduction

Nowadays, breast cancer (BRCA) is the worldwide leading

cause of cancer incidences and the second leading cause of

cancer-related death (1). Triple-negative breast cancer (TNBC),

which is distinguished by the absent expression of human

epidermal growth factor receptor 2 (Her2) and estrogen

receptor/progesterone receptor (ER/PR), is the most invasive

subtype with the highest mortality rate accounting for

approximately 15% of all BRCA (2). The mortality rate is up

to 40% within 5 years after the first diagnosis and distant

metastasis will occur in approximately 46% of TNBC patients

(3). Hence, the incidence and mortality of TNBC make it

necessary to explore reliable predictive biomarkers, construct

more promising prognostic models and develop novel drugs that

target at the known molecular pathways.

Cyclin-dependent kinase inhibitor 2A (CDKN2A), a cyclin-

dependent kinase inhibitor gene, that encodes the p16 protein

involved in the regulation of cell cycle pathways, is known as a

tumor suppressor (4). CDKN2A can inactivate the retinoblastoma

protein by binding to and inactivating the cyclin D-cyclin-

dependent kinase 4 complex (5). The expression of this gene is

verified to cause cell cycle arrested in the G1 phase, inhibit cell

proliferation, promote tumor cell apoptosis, and increase tumor

cell chemotherapy sensitivity (6). Recent studies have pointed out

that CDKN2A is correlated with ferroptosis (7) and cuproptosis

(8) (FAC), which are both novel types of regulated cell death that

their occurrence was ion-dependent. Ferroptosis indicates an

oxidative cell death resulting from the deterioration of

antioxidant function and accretion of lipid reactive oxygen

species (ROS) (9). Recent attention has been brought to a

brand-new cell death mode identified as cuproptosis, which

indicates that the excess copper can trigger proteotoxic stress

and death in cells through the combination with lipoylated

components of the tricarboxylic acid (TCA) cycle (8). These

ion-dependent cell death different from apoptosis, necrosis, and

autophagy can contribute to a burgeoning field that promising

cancer drugs are designed based on the induction of ferroptosis

(10) and cuproptosis (8).
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Additionally, researchers have discovered that the

malfunctioning of CDKN2A in BRCA has promoted the

discovery of many CDK inhibitors (11). The role of CDKN2A in

BRCA cannot be ignored and needs further investigations.

However, the investigations about the role of CDKN2A in BRCA

are limited, we are thereby unable to comprehensively elaborate the

biological function of CDKN2A. Hence, we conducted the first

converge comprehensive landscape analysis of FAC-related gene

CDKN2A in BRCA, including expression, prognostic values, DNA

methylation, tumor microenvironment (TME) analysis, and drug

sensitivity of CDKN2A in BRCA. Immediately afterward,

unsupervised cluster analysis revealed the difference in

immunological analysis and FAC status of CDKN2A-associated

genes among 3 groups, namely cold-immune subtype, IFN-g
activated subtype, and FTL-dominant subtype, groundbreakingly

laying a foundation for the application of immunotherapy and FAC

regulators in BRCA. Given the strong association between TNBC

and CDKN2A, as well as the fact that the most clinically

heterogeneous TNBC always displayed the most severe outcomes

and lacked relevant drug targets, we further explored the potential

of immunotherapy for TNBC by regulating CDKN2A and

constructed the CDKN2A-derived prognostic model for TNBC

patients by machine learning, aiming to predict the prognosis of

TNBC patients and provide the guidance on their long-term disease

outlook and design of treatment strategies.
Materials and methods

Data collection

BRCA data was downloaded from the UCSC Xena data

mining platform (http://xena.ucsc.edu/), which included the

messenger RNA (mRNA) expression matrix from The Cancer

Genome Atlas (TCGA), as well as the clinical information of 33

cancer types. Gene expression profile of BRCA patients and their

corresponding clinical information were obtained. Specimens

without survival information were excluded during this study

and FPKM values of RNA-Seq were log2 transformed. In total,
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1072 BRCA patients and included 185 TNBC samples were

retained for subsequent analysis.

We extracted and exhibited detailed clinical information of

1072 BRCA patients as shown in Table 1: age, sex, pathological

stage, estrogen receptor (ER) status, progesterone receptor (PR)

status, human epidermal growth factor 2 (HER2) status, T/N/M

stage, and adjuvant chemotherapies. Additionally, gene expression

array GSE58812 containing 107 TNBC patients and their

corresponding clinical data was retrieved from the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)

to externally validate the CDKN2A-derived prognostic model

constructed in our study. Gene expression array GSE173839

containing clinical information of 100 BRCA patients was used

to evaluate the status of immunotherapy response between high

and low CDKN2A expression groups in TNBC patients.
Landscape analysis of CDKN2A in BRCA

To comprehensively investigate the biological role of

CDKN2A in BRCA, we started with the pan-cancer analysis of

the CDKN2A expressions via Tumor Immune Estimation

Resource (TIMER) (https://cistrome.shinyapps.io/timer/)

database (12). Then, the expression levels of CDKN2A in

BRCA, as well as normal tissues were validated in Gene

expression profiling interactive analysis (GEPIA) (http://gepia.

cancer-pku.cn/) sequencing expression (13). Subsequently,

Human Protein Atlas (HPA) (https://www.proteinatlas.org/)

provided the immunohistochemical images of CDKN2A

expression in BRCA samples (14). To further explore the

biological role of CDKN2A in BRCA, UALCAN (http://ualcan.

path.uab.edu/index.html) (15) and MEXPRESS (http://

mexpress.be) (16) were utilized to analyze the DNA promoter

methylation status of CDKN2A in BRCA and the effects of

methylation of CDKN2A on clinical stages in BRCA. Besides,

cBio Cancer Genomics Portal (cBioPortal) (http://cbioportal.

org/) and Catalogue of Somatic Mutations In Cancer (COSMIC)

(https://cancer.sanger.ac.uk) were conducted to analyze the

mutation status of CDKN2A in BRCA (17, 18). TIMER and

Tumor and Immune System Interaction Database (TISIDB)

(http://cis.hku.hk/TISIDB) database (19) were used to

comprehensively explore the relationship between CDKN2A

expression and immune infiltration. Moreover, CellMiner (20)

was performed to evaluate the relationship between CDKN2A

and drug sensitivity, looking for the targeted therapies for

BRCA patients.
Unsupervised clustering of CDKN2A-
associated differentially expressed genes

Based on the integration of CDKN2A strongly associated

genes and differential genes, we used the R package
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“ConsensusClusterPlus” (https://bioconductor.org/packages/

ConsensusClusterPlus/), to perform an unsupervised cluster

analysis. After 1,000 iterations of the consensus clustering

algorithm, the number of optimal clusters was confirmed

according to the Item-Consensus plot, cumulative distribution
TABLE 1 Clinical pathological characteristics of extracted BRCA
patients.

Characteristic Group No. of cases (%)

Age (years) <60 570 (53.17%)

≥60 500 (46.64%)

Unknown 2 (0.18%)

Sex Female 1059 (98.78%)

Male 12 (1.12%)

Unknown 1 (0.09%)

Pathological Stage Stage I 176 (16.42%)

Stage II 607 (56.62%)

Stage III 245 (22.85%)

Stage IV 20 (1.86%)

Stage X 12 (1.12%)

Unknown 12 (1.12%)

Pathological T T1 274 (25.56%)

T2 621 (57.93%)

T3 133 (12.40%)

T4 40 (3.73%)

TX 3 (0.27%)

Unknown 1 (0.09%)

Pathological N N0 502 (46.83%)

N1 355 (33.11%)

N2 118 (11.01%)

N3 76 (7.09%)

NX 20 (1.86%)

Unknown 1 (0.09%)

Metastasis M0 896 (83.58%)

M1 22 (2.05%)

MX 153 (14.27%)

Unknown 1 (0.09%)

ER Positive 789 (73.60%)

Negative 232 (21.64%)

Unknown 51 (4.75%)

PR Positive 684 (63.80%)

Negative 334 (31.15%)

Unknown 54 (5.04%)

HER2 Positive 162 (15.11%)

Negative 547 (51.02%)

Unknown 363 (33.86%)

Adjuvant therapy No 1056 (98.51%)

Yes 13 (1.21%)

Unknown 3 (0.27%)

OS Status Living 921 (85.91%)

Dead 150 (13.99%)

Unknown 1 (0.09%)
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function curves, and the k-means clustering algorithm. Three

unsupervised clusters (cold-immune cluster, IFN-g activated

cluster, and FTL-dominant cluster) were selected for

subsequent analysis.
Profiling analysis of tumor
microenvironment

As a generic computational method of calculating cell

fractions from gene expression data, Cell-type Identification

By Estimating Relative Subsets Of RNA Transcripts

(CIBERSORT) (21), was separately used to analyze the

proportions of 22 infiltrating immune cells in high and low

CDKN2A expression groups in BRCA, as well as between 3

groups from the unsupervised cluster. The ESTIMATE approach

calculated the stromal, immune, and ESTIMATE scores of three

groups, predicting the level of stromal cells and infiltrating

immune, which constructed the basis of tumor purity (22).

The immunotherapy-related pathways, immune checkpoints,

and 122 immunomodulators, including chemokines, receptors,

MHCs, and immune stimulators were obtained from previous

studies (23–25). Single-Sample Gene Set Enrichment Analysis

(ssGSEA) was performed to derive the enrichment score of all

steps via the R package “GSVA” (26).
Evaluation of immunotherapy response
sensitivity in TNBC patients with different
CDKN2A expression

Immunophenoscore (IPS) is a generic machine learning-

based algorithm for quantifying tumor immunogenicity, which

is measured grounded in the gene expression of representative

cell types, including immunomodulators, immunosuppressive

cells, MHC molecules, and effector cells (27). The IPS from The

Cancer Immunome Atlas (TCIA) (https://tcia.at/) was

calculated in the high and low CDKN2A expression groups in

TNBC patients. In general, the higher IPS indicates a better

immunotherapy response. Subsequently, to further predict the

sensitivity to immunotherapy response, GSE173839 was used to

evaluate the status of immunotherapy response between high

and low CDKN2A expression subpopulations in TNBC patients.
Exploration of functional annotation of
CDKN2A-associated genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes,

Genomes (KEGG) functional enrichment analysis confirmed the

functions of CDKN2A-associated genes via the R language “cluster

Profiler” package (https://guangchuangyu.github.io/software/

clusterProfiler/). Additionally, gene sets “h.all.v7.5.1.symbols.gmt”
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were obtained from Molecular Signatures Database (MSigDB)

(https://software.broadinstitute.org/gsea/downloads.jsp) and were

used for calculations of 50 hallmark tumor-related pathways.

Moreover, oxidative stress caused by the accumulation of lethal

ROS is the recognized process of ferroptosis. But, due to the

definition of cuproptosis being relatively avant-garde, the

controversy of whether cuproptosis is a form of cell death

independent of other cell death modes or not still exists.

Therefore, based on the GO enrichment analysis and previous

studies, we collected 7 pathways implicated in ferroptosis and

cuproptosis via literature retrieval and vicariously evaluated their

activities in BRCA by ssGSEA analysis, including fatty acids

degradation (28), inflammatory response (29), oxidative stress

(9), positive regulation of MAPK cascade (30), regulation of

mitochondrial membrane potential (9), TCA cycle (8) and

VEGF signaling pathway (31). Moreover, Metascape (32) was

used to analyze the functional annotation of 413 survival-related

differentially expressed genes (SDEGs), aiming to reveal

the biological mechanism of the influence of CDKN2A on the

survival status of TNBC patients. Besides, Search Tool for the

Retrieval of Interacting Genes (STRING) (https://string-db.org/)

database (33) was utilized to gather and construct data about

protein-protein interaction (PPI) of CDKN2A and genes

constructing the model.
Weighted gene co-expression network
analysis based on RNA-seq data

After deleting the outliers in the gene expression matrix, the

TCGA-A7-A0DC-01A sample and the TCGA-A2-A3XV-01A

sample were expelled. Based on a scale-free topology with R2 =

0.85, the adjacency matrix was defined by using soft thresholding

with power b =6, to identify and build the different co-

expression gene modules in BRCA samples. Then, the

CDKN2A-derived genes were clustered based on a topological

overlap matrix (TOM)-based dissimilarity measure, and the

cluster dendrogram of all these genes was constructed by R

package “WGCNA” (34). Every identified co-expression module

was labeled with a different color. Then, we conducted principal

component analysis (PCA) of each module, extracted and

summarized the gene co-expression based on the eigengene

external traits that included TNBC and the status of

ferroptosis and cuproptosis (substituted by the scores of

oxidative stress, regulation of mitochondrial membrane

potential and TCA cycle). We further calculated the

correlation between each eigengene external trait and each

module with the biweight midcorrelation (bicor) that could

offer robust correlations with minor weight given to outlier

measures (35, 36). Subsequently, we selected genes in modules

that possessed the strongest relationship with TNBC and FAC as

the input for the Least Absolute Shrinkage and Selection

Operator (LASSO) regression analysis.
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Construction and validation of the
CDKN2A-derived prediction model

Based on the genes from WGCNA, we sequentially

developed univariate Cox, LASSO regression via the R package

“glmnet” to construct the CDKN2A-derived prognostic model

(37). The risk score was calculated via the following formula:

Risk   Score   =o
n

i=1
Coefi � expi

The Coefi represented the risk coefficients of each gene

weighted by LASSO-Cox model, and expi indicated the

expression of each gene in our study. Then, the Kaplan–Meier

survival analysis was developed to evaluate the difference in

survival between low and high risk-score groups through R

package “survival”. Subsequently, we used the time-dependent

receiver operating characteristic (ROC) curve to appraise the

performance of the CDKN2A-derived model. Further, to test

whether risk score could be an independent prognostic predictor

of TNBC patients, univariate Cox and multivariate Cox

regression analyses were conducted with risk score, sex, age,

metastasis status, tumor stage and pathological status as

variables. Ultimately, external validation of the CDKN2A-

derived prognostic model was performed via the clinical data

of 107 TNBC patients contained in GSE58812.
Potential drug prediction based on the
CDKN2A-derived model

Drug sensitivity data of diverse cell lines and corresponding

gene-expression data from three databases were used to perform

the drug sensitivity analysis based on the CDKN2A-derived

signature, including GDSC (Genomics of Drug Sensitivity in

Cancer), PRISM (Profiling Relative Inhibition Simultaneously in

Mixtures) and CTRP (Cancer Therapeutics Response Portal)

(38) (39). AUC values functioned as a measure of drug

sensitivity and drugs with missing AUC values more than 80%

were excluded. Based on the different drug reactions of high and

low groups, drugs with Padj value less than 0.05 were screened

out. The compound overlapping in the outcomes of PRISM,

CTRP, and GDSC analyses may serve as a potential treatment

for the certain subpopulation.
Statistical analysis

Correlations were analyzed via Pearson correlation except

for the part of WGCNA using bicor. Statistical analyses were

conducted using Kruskal–Wallis, Wilcoxon, chi-square test, and

Tuckey’s honestly significant difference and differences were

considered significant at P value < 0.05.
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Results

Landscape analysis of CDKN2A hints at
prognostic value and its association with
drug sensitivity in BRCA

Figure 1 illustrates the flow chart of the present study. In the

comparisons of multiple cancers with corresponding normal

tissues, CDKN2A exhibited a significant overexpression in

bladder urothelial carcinoma (BLCA), BRCA, cervical

squamous cell carcinoma and endocervical adenocarcinoma

(CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma

(COAD), head and neck cancer (HNSC), kidney chromophobe

(KICH), kidney renal clear cell carcinoma (KIRC), kidney renal

papillary cell carcinoma (KIRP), liver hepatocellular carcinoma

(LIHC), lung adenocarcinoma (LUAD), lung squamous cell

carcinoma (LUSC), prostate adenocarcinoma (PRAD), rectum

adenocarcinoma (READ), stomach adenocarcinoma (STAD),

thyroid carcinoma (THCA), and uterine corpus endometrial

carcinoma (UCEC) (Figure 2A). GEPIA database was used to

further confirm that CDKN2A was notably upregulated in

BRCA (Figure 2B). Immunohistochemistry outcomes from the

HPA database illustrated that the protein level of CDKN2A was

significantly increased in BRCA tissue (Figure 2C). As a

fundamental constituent element of epigenetics, DNA

methylation modification plays a vital role in silencing the

expressions of methylated genes. Our data indicated that

CDKN2A was notably hypermethylated in BRCA (Figure 2D),

especially in the luminal subtype and TNBC subtype

(Supplementary Figure S1C). BRCA patients with CDKN2A

hypermethylation possessed a relatively undesirable clinical

outcome (P = 0.0527833983) (Supplementary Figure S1D),

which needs further investigations. Additionally, the

hypermethylation of CDKN2A was positively correlated with

the tumor progression, verifying that CDKN2A may be a crucial

impact factor in the stage and grade of BRCA (Supplementary

Figures S1A, B). Besides, the COSMIC database was conducted

to evaluate the mutation type of CDKN2A. (Supplementary

Figures S2C, D). Missense substitutions notably occupied the

largest portion, accounting for 38.59%. Next, nonsense

substitutions occurred in 30.54%. Frameshift deletions

occupied 9.81% of the samples and frameshift insertions

occupied 6.40% of the samples. Moreover, our results

indicated that the substitution mutations chiefly occurred at C

> T (44.24%), G > A (20.45%), G > T (14.91%), and C > A

(5.5%). Additionally, cBioPortal database revealed that the

mutation frequency of CDKN2A in BRCA was 0.5% and the

mutation of CDKN2A had no effects on the prognosis of BRCA

patients (P > 0.05) (Supplementary Figures S2A, B).

To further explore the molecular characteristics of CDKN2A

in BRCA, we performed the relationship between CDKN2A and

tumor-infiltrating immune cells using the CIBERSORT
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algorithm. Our results demonstrated that BRCA patients with

high expression of CDKN2A exhibited an increased infiltration

level of most immune cells in BRCA, including activated

dendritic cells, M0 macrophages, activated NK cells, activated

memory CD4 + T cells, CD8 + T cells, follicular helper T cells,

and regulatory T cells (Figure 2H). Moreover, the expression of

CDKN2A was positively associated the expression of multiple

immune checkpoints, including CTLA4, PDCD1, PVR, TIGIT,

and so on in BRCA (Figure 2I). Our data from Timer 2.0 and

TISIDB database also indicated that CDKN2A expression could

significantly affect the immune infiltration status and immune

microenvironment of BRCA. The expression of CDKN2A was

respectively correlated with the infiltration abundances of

macrophages in basal-like BRCA, myeloid dendritic cells and

CD8+ T cells in luminal A (Supplementary Figure S3A). Besides,

CDKN2A expression was also correlated with CCL5, CCL7,

CCL8, CXCL16, etc (Supplementary Figure S3B).

Survival analysis was further indicative that BRCA patients

with high expression of CDKN2A had better overall survival

(OS) than those with low CDKN2A expression (Figure 2E). The

prognostic values of CDKN2A expression in different subtypes

of BRCA also presented a significant differentiation (Figure 2F).

The genetic alterations caused by the heterogeneity of BRCA

may also affect the responses to target agents (40). Improved

reliable biomarkers for targeted treatment are needed.

Consequently, the relationship between CDKN2A expression

and drug sensitivity was conducted, exploring the clinical roles

of CDKN2A. Our data indicated that the expression of

CDKN2A was positively connected with sensitivity to acetalax

(Figure 2G). Otherwise, CDKN2A presented a negative

correlation to sensitivity to mitoxantrone, O-6-Benzylguanine,
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bleomycin, valrubicin, and mitomycin. In conclusion, CDKN2A

has the potential of being a predictive marker of the

aforementioned agents.
Characterizations of CDKN2A-mediated
genes reveal linkage of CDKN2A to TME
and prognostic value in TNBC

To depict the crosstalk between CDKN2A and TME in

BRCA, two strategies were initially proposed to detect

CDKN2A-medicated genes. Concretely, 737 CDKN2A-

correlated genes were obtained using Pearson correlation

analysis (|corrcoef| > 0.4). Then we divided 1072 TCGA-

BRCA patients into four quartiles ranked by their expression

of CDKN2A and identified 228 differentially expressed genes

(DEGs) between the two quartiles groups with the highest and

lowest expression (|logFC| > 1, adjust P < 0.05). Combined with

737 CDKN2A-correlated genes, a total of 885 CDKN2A-

mediated genes were figured out. Subsequent functional

analysis indicated that these genes might involve in mitotic

cell cycle phase transition, double-strand break repair via

break-induced replication, DNA replication, positive

regulation of ubiquitin protein ligase activity, etc (Figure 3A,

Supplementary Figure S4A). Afterwards, an unsupervised cluster

analysis was conducted based on CDKN2A-medicated genes via

R package “ConsensusClusterPlus”. As a result, 1072 BRCA

patients were divided into 3 subgroups with optimal stability of

the classification. Through CIRBERSORT analysis, Subgroup 1

was closely associated with an increased infiltration of resting

dendritic cells, M2 Macrophages, resting mast cells, eosinophils,
FIGURE 1

The flow chart of our study.
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FIGURE 2

The landscape analysis of overexpressed CDKN2A in BRCA. (A) The difference in expression of CDKN2A between various malignant cancer types
from the cancer genome map (TCGA) database across TIMER database. CDKN2A was upregulated in bladder urothelial Carcinoma (BLCA),
breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (PEAD), Stomach adenocarcinoma (STAD),
Thyroid carcinoma (THCA) and Uterine Corpus Endometrial Carcinoma (UCEC). (*P < 0.05. **P < 0.01. ***P < 0.001). (B) CDKN2A was
significantly upregulated in BRCA by GEPIA database. (C) Representative immunohistochemical images of CDKN2A in BRCA tissues. (D)
Promoter methylation levels of CDKN2A in normal tissues and primary BRCA tissues in the UALCAN database. (E) The Kaplan-Meier curves of
OS for low and high expression of BRCA patients. (F) The prognostic values of CDKN2A in different BRCA subtypes. (G) Scatter plots depict the
relationship between CDKN2A expression and drug sensitivity in BRCA. (H) Comparison of infiltration of immune cells between high and low
CDKN2A expression groups in BRCA. (I) Comparison of immune checkpoints expression between high and low CDKN2A expression groups in
BRCA. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001. ns (not significiant, P > 0.05).
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monocytes, and resting memory CD4+T cells (Figure 3C),

equivalent to the phenotype with immunosuppressive

characteristic (41), which, thereby, was defined as cold-

immune subtype. Similarly, subgroup 2 was defined as IFN-g
activated subtype due to its elevated infiltration of M0 and M1

Macrophages, activated dendritic cell, CD8 T cells, follicular

helper T cells and activated memory CD4+T cells (Figure 3C),

which correspond to the active-immune phenotype (42, 43).

Subtype 3 was characterized by the highest expression of FTL,

namely FTL-dominant subtype. Also, three subgroups were

found to present the conspicuous discrepancy of expression

differences of immune checkpoints genes (Figure 3D). In

particular, IFN-g activated subtype exhibited an elevated

expression level of multiple immune checkpoints, including

CD274, CTLA4, PDCD1, PVR, TIGIT and VTCN1, etc.

Moreover, IFN-g activated subtype correlated the relatively

highest scores of certain immunotherapy-related pathways,

especially in IFN-g pathway (Supplementary Figure S4B),

which was another reason for naming it. Furthermore, the

heatmap depicted each BRCA patient with a corresponding

enrichment of 122 immunomodulators among three groups,

including chemokines, receptors, MHCs and immune

stimulators (Figure 3B). As demonstrated in the chart, cold-

immune subtype could be insinuated as an immunologically

“cold” phenotype. Notably, IFN-g activated subtype relatively

possessed the highest immune activity. These findings were

consistent with results of ESTIMATE analysis (Figure 3F).

Notably, IFN-g activated cluster was significantly associated

with numerous pathways, such as MYC targets, inflammatory

response, IL6/JAK/STAT3 signaling pathway and IFN-g
response, which was consistent with our way of naming it

(Figure 3E). Since CDKN2A is the ferroptosis and

cuproptosis-related gene, we collected seven pathways

implicated in ferroptosis and cuproptosis via literature

retrieval and outcomes of GO enrichment analysis, aiming to

vicariously evaluate their activities in patients with BRCA by

ssGSEA. The results demonstrated that ssGSEA scores of those

FAC-related pathways significantly differed among three

subgroups (Figure 3G). Notably, the FTL-dominant subtype

possessed the relatively highest scores of oxidative stress,

demonstrating its elevated activity in ferroptosis.

Next, we investigated the correlation between molecular

subtyping, immunological subtyping, and our unsupervised

subtyping in BRCA. Unexpectedly, we found that the majority

of patients (approximately 98.4%) of basal-like subtype were part

of IFN-g activated subtype (Figure 4A). More subtly, IFN-g
activated subtype chiefly belonged to the C2 subtype that was

dominated by IFN-g (Figures 4B, C). Our results also

demonstrated that CDKN2A more significantly overexpressed

in TNBC patients than non-TNBC patients (Supplementary

Figure S5A). Notably, our analysis demonstrated the CDKN2A

expression was relatively the highest in our S2 subtype

(Figure 4D), which suggested the close correlation between
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CDKN2A and TNBC (basal-like) subtype. This point was

supported by subsequent survival analysis, which indicated

that TNBC patients with low expression of CDKN2A

exhibited an undesirable clinical outcome (Figure 4E).

Moreover, CDKN2A also exhibited four methylation sites with

statistical significance among the molecular subtypes

(Figure 4H). Subsequently, we aimed at exploring the

underlying biological mechanism behind the survival

difference between the two groups through difference analysis

and function annotation analysis. We further identified 413

survival-related differentially expressed genes (SDEGs) between

two groups with high and low CDKN2A expression in TNBC

based on the best cut results of survival analysis (|logfc| > 0.5,

adjust P < 0.05). Our results showed that there were 294 up-

regulated SDEGs in high CDKN2A expression groups, which

were associated with the positive regulation of transforming

growth factor beta receptor signaling pathway, cellular response

to metal ion, regulation of actin cytoskeleton, signaling by Rho

GTPases, Miro GTPases and RHOBTb3, etc (Figure 4G). And

119 down-regulated SDEGs indicated in low CDKN2A

expression group correlated with the regulation of production

of molecular mediator of the immune response, mitochondrion

organization and cytokine signaling in the immune system, etc

(Figure 4G). The above enriched functional pathways may be the

reason for the significant difference in survival between the two

groups of TNBC patients. Further, we tried to explore the

potential interplay between CDKN2A and TME implicated in

TNBC. The IPS score was used to assess the impact of CDKN2A

expression on TNBC immunity. The results showed that the low

CDKN2A expression was positively correlated with the

decreased IPS (Figure 4F), which indicates that low expression

of CDKN2A might be unresponsible for immunotherapy,

probably linking to inhibition of T cell infiltration and

suppression of immunogenicity (Supplementary Figure S5B).

GSE173839 further effectively verified that high expression of

CDKN2A had a better immunotherapy response (Figures 4I, J).

Taken together, our analyses suggested that CDKN2A might

influence the progression and prognosis of TNBC and affect the

effectiveness of immunotherapy in TNBC through TME,

implying the potential of CDKN2A as a pioneering prognostic

predictor for TNBC.
The CDKN2A-derived prognostic model
by machine learning for TNBC patients

To further explore the relationship between CDKN2A, FAC,

and TNBC, on the basis of TCGA-BRCA cohort, a co-expression

network and modules of differentially expressed CDKN2A-

derived genes were constructed via the WGCNA. Overall, the

brown and green module had the strongest correlation with

TNBC via the Kruskal-Wallis test and Tuckey’s honestly

significant difference, and simultaneously possessed the most
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FIGURE 3

The immunological and functional analysis of CDKN2A among 3 groups from unsupervised clustering in BRCA. (A) The GO enrichment analysis
revealed the function of CDKN2A-mediated genes. (B) The heatmap depicted each BRCA patient with a difference of a corresponding enrichment
of 122 immunomodulators. (C) Comparison of infiltration of immune cells between 3 groups. (D) Comparison of immune checkpoints expression
between 3 groups in BRCA. (E) Comparison of 50 tumor-related pathways between 3 groups in BRCA. (F) Comparison of estimate score, immune
score, stromal score, and tumor purity between 3 groups in BRCA. (G) Comparison of scores of ferroptosis and cuproptosis between 3 groups in
BRCA. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001. ns (not significiant, P > 0.05).
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FIGURE 4

The linkage of CDKN2A to immunotherapy and TNBC. (A) The correlation between molecular subtypes, immunological subtypes, and our
unsupervised subtypes in BRCA. (B) The relationship between CDKN2A expression and immunological subtypes of BRCA. (C) The relationship
between CDKN2A expression and molecular subtypes of BRCA. (D) The comparison between CDKN2A expression and unsupervised subtypes of
BRCA. (E) The survival value of CDKN2A in TNBC. (F) The comparison between IPS score and high and low CDKN2A expression subpopulations in
TNBC. (G) The function annotation analysis of up-regulated and down-regulated SDEGs in high and low CDKN2A expression subpopulations. (H)
The comparison between methylation status of CDKN2A and molecular subtypes of BRCA. (I, J) The correlation between immunotherapy response
status and CDKN2A expression in TNBC via chi-square test. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001.
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outstanding connection with the FAC activity (Figure 5A). A

total of 1,924 CDKN2A-derived genes in these two modules

were selected for further study. Subsequently, the univariate Cox

regression analysis was conducted to gain 106 genes associated
Frontiers in Immunology 11
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with prognosis (Table 2). Then, LASSO regression further

screened out 21 prognostic genes for constructing the risk

predictive model (Table 3, Figure 5B). On the foundation of

21 genes, the formula of risk scores is as follows:
A

B C

FIGURE 5

The construction of CDKN2A-derived prognostic model of TNBC. (A) The relationships between each module and ER status, HER status, PR
status, BRCA subtypes, oxidative stress, regulation of mitochondrial membrane potential and TCA cycle. (B) 21 modeling genes determined by
lasso algorithm. (C) The ROC curves and AUC value of CDKN2A-derived model.
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TABLE 2 The 106 prognostic genes obtained by the univariate Cox regression analysis.

gene HR z P value

1 PIGA 0.397277864 -2.198591033 0.027907015

2 PDK1 0.357375189 -2.671129231 0.007559654

3 DLGAP5 0.567091502 -2.062635139 0.039147307

4 ASF1A 0.359053378 -2.653642374 0.007962817

5 ST6GALNAC6 1.898724967 2.019711022 0.043413371

6 SUMO2 0.346718485 -2.365117868 0.018024333

7 BRIP1 0.453575362 -2.119749975 0.034027136

8 AC131097.2 3.937831563 2.632738899 0.008469943

9 CENPF 0.586505608 -2.30669878 0.021071618

10 PTPN2 0.378693961 -2.177849625 0.029417234

11 CHEK2 0.422240769 -2.07745616 0.037759477

12 PAK1IP1 0.483556649 -2.245128753 0.024759868

13 NUS1 0.295640654 -2.890349779 0.003848134

14 C15ORF59 2.956081195 2.237525193 0.025252035

15 GTSE1 0.451487549 -2.438868384 0.014733333

16 TRIM59 0.310058943 -3.060009496 0.0022133

17 FAM111B 0.59996083 -2.269372812 0.023245664

18 ASPM 0.518452041 -2.349979602 0.01877444

19 MCM6 0.523212965 -2.251137167 0.024376851

20 TOM1L2 2.161448416 2.143470398 0.032075346

21 NEIL3 0.462511653 -2.160366585 0.030744302

22 HELLS 0.321344977 -2.789331014 0.005281705

23 ZDHHC1 2.628482692 2.440752437 0.014656698

24 GJC3 1.44465959 2.114886157 0.034439651

25 E2F8 0.425974425 -2.553875056 0.010653148

26 GRIA1 1723.544976 3.621990675 0.000292345

27 KIF11 0.55847202 -2.247271125 0.024622705

28 EXO1 0.460937898 -3.030924746 0.00243806

29 EZH2 0.572485292 -1.983570228 0.047303771

30 YES1 0.601630765 -2.039299095 0.041420186

31 FOXM1 0.650871311 -2.133764473 0.032862065

32 TYMS 0.628826297 -2.080108988 0.037515537

33 RAD51AP1 0.60276431 -2.043099948 0.041042545

34 CENPU 0.493079906 -2.724145067 0.006446818

35 RAPGEF3 3.967600937 2.640190769 0.008285937

36 DUSP4 0.565981807 -2.369869937 0.017794344

37 CENPQ 0.447055144 -2.271846928 0.023095757

38 ZNF883 1.55594112 2.089772472 0.036638243

39 LRRC8D 0.605125564 -2.132304254 0.032981843

40 CNIH2 0.65503232 -2.144605916 0.031984369

41 CEP55 0.562523781 -2.39416595 0.01665821

42 CCDC160 0.325162054 -2.138272672 0.032494619

43 KIF14 0.510799562 -2.092932584 0.036355173

44 ZWILCH 0.445430957 -2.106543951 0.03515713

45 FAM219A 1.893507046 1.964846926 0.049431957

46 KIF18A 0.449222812 -2.402609976 0.016278539

47 TMPO 0.553419185 -2.117824503 0.034189933

48 NFIA 0.638052834 -2.189504267 0.028560209

(Continued)
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TABLE 2 Continued

gene HR z P value

49 TPCN1 3.290932788 2.415741287 0.015703214

50 RHNO1 0.514295412 -2.204128211 0.027515329

51 CTSF 1.472449338 2.072960013 0.038176001

52 FAM72C 3.066644433 2.822432329 0.004766088

53 SEPT3 0.55369899 -3.504183774 0.000458009

54 APBA2 1.714725532 2.073801231 0.038097775

55 FUT8 0.474158219 -2.111769715 0.034706206

56 LRGUK 0.062432238 -2.110568263 0.034809438

57 ADCY6 2.067368208 2.081207676 0.037414901

58 VWA2 0.497605963 -2.143156172 0.03210056

59 TTC39C 0.508246458 -2.015928299 0.043807474

60 CYB5D2 2.662637199 2.878174729 0.003999835

61 EXOC6 0.291966726 -2.558775588 0.010504153

62 FAM228B 4.003772856 2.542647066 0.011001629

63 FYB2 0.004631401 -1.992285256 0.046339768

64 SPACA9 2.189328115 2.467635909 0.013600858

65 ARNT2 0.680364619 -2.106494914 0.035161384

66 KRT37 20.62888681 2.558603819 0.010509343

67 AGBL2 0.009647128 -2.17119562 0.029916388

68 AGR2 0.591598511 -2.312899108 0.020728187

69 CCNG2 0.505625171 -2.100827065 0.03565615

70 DNAH5 2.989128412 1.980489126 0.047648594

71 CFAP99 9925778.946 3.182566191 0.001459761

72 C16ORF71 3.729277111 2.109173849 0.034929578

73 FOLH1 0.560549119 -2.027960378 0.042564292

74 C11ORF70 2.694865042 2.529973668 0.011407109

75 LYPD6B 0.427966493 -2.203336375 0.027571049

76 TEX9 0.227190102 -2.109559499 0.034896316

77 NCCRP1 1.287452778 2.89136402 0.003835735

78 SLC1A4 0.569212551 -2.344642453 0.019045334

79 PSD3 0.467450303 -2.303773658 0.021235353

80 KITLG 0.589293262 -2.217628814 0.026580152

81 NT5DC2 1.82691064 2.549310104 0.010793628

82 HMGCL 2.643566798 2.3086158 0.02096491

83 AK8 5.224451486 3.075228928 0.00210341

84 TRERF1 0.510437127 -2.029071436 0.042451015

85 PLPPR3 1.450251013 2.269292578 0.02325054

86 PER2 0.403209642 -2.331594507 0.019722033

87 CFAP45 3.034070634 3.486607251 0.000489189

88 TRIM3 2.974918176 2.62253278 0.008727887

89 ZNF587B 0.19192526 -3.234985541 0.001216489

90 KIAA0040 0.620949694 -2.094736682 0.036194406

91 KCNK6 1.592776419 2.606639009 0.00914357

92 ZNF92 0.359485724 -2.793031961 0.005221653

93 PATZ1 0.401765187 -2.695232839 0.007033946

94 FRY 0.338592705 -2.016077604 0.043791862

95 RHOB 1.713754168 2.231692989 0.025635261

96 ZNF586 0.383365946 -2.064031138 0.039014764

(Continued)
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Risk   Score = AC131097:2   expression � 0:603906061605295 + TRIM59   expression

� −0:250311439654858ð Þ + GRIA1   expression  �4:75432106611303

+EXO1   expression� −0:151147624875987ð Þ + RAPGEF3   expression  

�0:0694637045689866 + FAM72C   expression� 0:687109193015145

+SEPT3   expression� −0:15730852851611ð Þ + FAM228B   expression

�0:0245662769232489 + AGBL2   expression � −0:255478956488232ð Þ
+AGR2   expression� −0:0563974779408671ð Þ + CFAP99   expression

�7:67515956697156 + CFAP300   expression� 0:271605260819289

+LYPD6B   expression� −0:0224796251790447ð Þ + NCCRP1   expression

�0:0265870429310081 + NT5DC2   expression� 0:196412885888264

+AK8   expression� 0:224051779836318 + CFAP45   expression

�0:226574196279908 + ZNF587B   expression

� −0:00393169189489084ð Þ + ZNF703   expression

�0:213684395875983 + LRRC46   expression� 0:202045367075346

+EMARD   expression� 0:0329920921209145:

The AUC was 0.867 and the survival analysis indicated that

TNBC patients with a high-risk score possessed a prognosis with

misery than those with a low-risk score (P < 0.0001) (Figures 5C,

6A, B). Additionally, univariate and multivariate Cox regression

analyses were both used to assess whether the 21 CDKN2A-

derived genes signature was an independent prognostic factor

for other features, including age, sex, metastasis status, tumor

stage, and so on. As the forest plots shown, univariate and

multivariate Cox regression analyses both indicated that risk

score, age, sex, metastasis status, tumor stage, and pathological

status were the independent prognostic factors (Figures 6C, D).

All results indicated that the 21 CDKN2A-derived genes

signature was an independent prognostic factor for

TNBC patients.

To further assess the robustness of the CDKN2A-derived

genomic model, an independent GEO dataset was used for

validation. Reassembly, our scoring system indicated that

TNBC patients in the low-risk subgroup had better survival

than those in the high-risk subgroup (P = 0.013) (Figure 6E).

The AUC for OS was 0.874 at 1.5 years, 0.577 at 3 months, 0.622

at 4.5 years, and 0.617 at 6 years in the GSE58812

cohort (Figure 6F).
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Moreover, 46 TNBC-specific differentially expressed genes

(TDEGs) were screened by two subpopulations comparison in

TCGA training data, and then the enrichment analysis of

TDEGs was conducted. GO functional annotations described

those TDEGs mainly involved in response to interferon-gamma,

virus receptor binding, several chemokines receptor binding,

and so on (Supplementary Figure S6A). The analysis of the

KEGG pathway revealed enrichment of COVID-19, pertussis,

Kaposi sarcoma-associated herpesvirus infection, IL-17

signaling pathway, staphylococcus aureus infection, and so on

(Supplementary Figure S6B). Additionally, our PPI network also

exhibited the correlation between CDKN2A and the genes

constructing the model (Supplementary Figure S6C).
Potential therapeutic agents for
TNBC patients based on the
CDKN2A-derived model

Profiles of gene expression and drug sensitivity were obtained

from the PRISM, CTRP, and GDSC dataset, which was used to

build the predictive signature of drug response for TNBC. We

obtained a total of 1995 drugs from the three databases, as well as

12 compounds shared among 3 datasets (Figure 7A). After

removing the drugs whose missing AUC value exceeded 80%

and was regarded as NA value, we obtained 174 drugs and 270 cell

lines in GDSC, 355 drugs and 638 cell lines in CTRP, as well as

1444 drugs and 462 cell lines in PRISM. The procedure in detail is

shown in (Figure 7B). We separated the TNBC patients into high

and low risk-score subpopulations pursuant to the CDKN2A-

derived prognostic model. The difference in AUC estimates of

lapatinib was compared via the Wilcoxon rank-sum test. Our data

demonstrated that the high risk-score group had higher AUC

estimates (Figure 7C). After confirming the reliability of the

calculation method, we made some modifications to the analysis

of Yang et al. (44). In our study, we started with the differential

drug response analysis between low risk-score group and high risk-
TABLE 2 Continued

gene HR z P value

97 ZNF703 1.9295092 2.970538785 0.002972779

98 AC008560.1 0.217653792 -2.008129249 0.044629559

99 LRRC46 8.348516913 2.84673037 0.004417076

100 ERMARD 3.155353 2.806137256 0.005013933

101 IKBKB 1.812822308 1.965508385 0.049355426

102 OSCP1 2.410070524 2.698798257 0.006959035

103 AC096887.1 16.86023895 2.189770024 0.02854092

104 INAVA 0.647831638 -2.038272415 0.041522697

105 CASD1 0.407790687 -2.164321144 0.030439711

106 ST8SIA6 0.494039492 -2.094576191 0.036208684
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2022.970950
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cheng et al. 10.3389/fimmu.2022.970950
score group by the median split. Next, agents with correlation

coefficients (P < 0.05) were identified according to Pearson rank

correlation analysis between the risk-score of the CDKN2A-

derived model and AUC values. Three overlapping drugs were

eventually found in these three databases, including afatinib,

erlotinib and lapatinib (Figures 7D–F). Then, we analyzed the

target gene expression difference of three mentioned-above
Frontiers in Immunology 15
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potential drugs between high risk-score and low risk-score

subpopulations. Notably, EGFR is the co-target gene of the three

candidate drugs. The expression level of EGFR was significantly

upregulated in the low risk-score subpopulation (Figure 7G). In

summary, our outcomes indicated that afatinib, erlotinib and

lapatinib could be designated as the potential drugs for low risk-

score TNBC patients by targeting EGFR.
TABLE 3 The 21 prognostic genes for constructing the risk predictive model.

Symbol Name Category Ensembl
Version

Description and Functional Summary

TRIM59 Tripartite Motif
Containing 59

Protein
Coding

ENSG00000213186 Activating ubiquitin protein ligase and Acting upstream of or within negative
regulation of I-kappaB kinase/NF-kappaB signaling.

GRIA1 Glutamate Ionotropic
Receptor AMPA Type

Subunit 1

Protein
Coding

ENSG00000155511 Ionotropic glutamate receptor. This gene belongs to a family of alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. It can alternatively splice

transcript variants encoding different isoforms.

EXO1 Exonuclease 1 Protein
Coding

ENSG00000174371 Encoding a protein with 5’ to 3’ exonuclease activity and being essential for male and
female meiosis.

RAPGEF3 Rap Guanine Nucleotide
Exchange Factor 3

Protein
Coding

ENSG00000079337 Enabling guanyl-nucleotide exchange factor activity and protein domain specific
binding activity.

FAM72C Family With Sequence
Similarity 72 Member C

Protein
Coding

ENSG00000263513 A neuronal progenitor cell (NPC) self-renewal supporting protein expressed under
physiological conditions at low levels in other tissues.

SEPT3 Neuronal-specific septin-3 Protein
coding

ENSG00000224883 Playing a role in cytokinesis.

FAM228B Family With Sequence
Similarity 228 Member B

Protein
Coding

ENSG00000219626 FAM228B is a Protein Coding gene. An important paralog of this gene
is ENSG00000276087.

AGBL2 AGBL Carboxypeptidase 2 Protein
Coding

ENSG00000165923 Enabling metallocarboxypeptidase activity and involved in protein side chain
deglutamylation.

AGR2 Anterior Gradient 2,
Protein Disulphide

Isomerase Family Member

Protein
Coding

ENSG00000106541 Encoding a member of the disulfide isomerase (PDI) family of endoplasmic reticulum
proteins that catalyze protein folding and thiol-disulfide interchange reactions.

CFAP99 Cilia And Flagella
Associated Protein 99

Protein
Coding

ENSG00000206113 Predicted to be located in motile cilium.

CFAP300 Cilia and Flagella-
associated Protein 300

Protein
Coding

ENSG00000137691.13 Playing a role in axonemal structure organization and motility.

LYPD6B LY6/PLAUR Domain
Containing 6B

Protein
Coding

ENSG00000150556 Enabling acetylcholine receptor regulator activity and predicted to be located in
extracellular region and plasma membrane.

NCCRP1 NCCRP1, F-Box
Associated Domain

Containing

Protein
Coding

ENSG00000188505 Predicted to contribute to ubiquitin protein ligase activity and be involved in positive
regulation of cell population proliferation.

NT5DC2 5’-Nucleotidase Domain
Containing 2

Protein
Coding

ENSG00000168268 Predicted to enable 5’-nucleotidase activity and be involved in dephosphorylation.

AK8 Adenylate Kinase 8 Protein
Coding

ENSG00000165695 Enabling AMP binding activity and nucleobase-containing compound kinase activity.

CFAP45 Cilia And Flagella
Associated Protein 45

Protein
Coding

ENSG00000213085 Enabling AMP binding activity and involved in establishment of left/right asymmetry
and flagellated sperm motility.

ZNF587B Zinc Finger Protein 587B Protein
Coding

ENSG00000269343 Enabling DNA-binding transcription repressor activity, RNA polymerase II-specific
and RNA polymerase II transcription regulatory region sequence-specific DNA binding

activity.

ZNF703 Zinc Finger Protein 703 Protein
Coding

ENSG00000183779 Enabling DNA-binding transcription factor binding activity.

LRRC46 Leucine Rich Repeat
Containing 46

Protein
Coding

ENSG00000141294 LRRC46 is a Protein Coding gene. Diseases associated with LRRC46 include Ciliary
Dyskinesia, Primary, 13. An important paralog of this gene is LRGUK.

EMARD Not Available Not
Available

Not Available Not Available

AC131097.2 Not Available Not
Available

Not Available Not Available
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Discussion

The rapidly increasing number of diagnosed BRCA patients

results in the urgent need for new biomarkers that can elucidate

breast carcinogenesis and predict the immune prognosis (45). In

view of problems, such as small sample size, multiple BRCA

subtypes, and complex mechanisms of BRCA, previous studies

disputed that heterogeneity existed in the expression of
Frontiers in Immunology 16
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CDKN2A in BRCA (46–48) and did not obtain the final

verdict of CDKN2A’s effects on BRCA.

The landscape analysis based on the multiple data indicated

that CDKN2A had an overexpression and critical values of

prognosis in BRCA, hinting at its clinical property as a

prognostic biomarker. Additionally, its upregulation was

strikingly correlated to DNA hypermethylation. Genetic and

epigenetic alterations are both involved in the procession of
A B

D
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F

C

FIGURE 6

Assessment of the independent prognostic value and validation of CDKN2A-derived prognostic model of TNBC. (A) The correlation between OS
status and risk score. (B) The survival curve of high and low risk score in TNBC. (C) Univariate Cox regression analysis of CDKN2A-derived
prognostic model. (D) Multivariate Cox regression analysis of CDKN2A-derived prognostic model. (E) The survival curve verified by the external
validation set. (F) The time-dependent ROC curve and AUC values respectively at 1.5 years, 3 years, 4.5 years, and 6 years verified by an external
validation set.
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breast carcinogenesis. The promoter hypermethylation level is

commonly associated with transcriptional gene silencing (49).

Our results were indicative that DNA hypermethylation of

CDKN2A promoted breast carcinogenesis and had a

significant association with subtypes of BRCA. Especially in

the Luminal and TNBC subtypes, the hypermethylation of

CDKN2A was more significant (P < 0.05). Lubecka et al. (50)

indicated that the administration of sulforaphane and

clofarabine could inhibit the tumor cell growth in breast

tissues via reactivating methylation-silenced CDKN2A. Thus,

inhibiting the hypermethylation levels of CDKN2A could be a

potential therapeutic method of BRCA, especially for patients

with Luminal and TNBC subtypes. In view of the uncommon

phenomenon that CDKN2A showed hypermethylation in BRCA

but exhibited high expression, we searched more literatures.

Smith et al. (51) reviewed several cases about promoter DNA
Frontiers in Immunology 17
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hypermethylation promoting target gene transcription and they

postulated a context-dependent model whereby epigenetic

contributions to transcriptional regulation occur in a more

complex and dynamic manner, which needs further

investigation. The analysis of CDKN2A and drug sensitivity in

BRCA expanded clinical applications of CDKN2A. A case-

control study (52) indicated the risk of BRCA had a 1.82-fold

increase in women with high sensitivity to bleomycin, which

reversely confirms our results that CDKN2A upregulation could

reduce sensitivity to bleomycin, resulting in a positive prognosis.

Herein, regulating the expression of CDKN2A might alter the

drug sensitivity and affect the therapeutic results.

As numerous evidence robustly supported, the overload of

copper is thought to induce neurotoxicity in neurodegenerative

disorders (Parkinson’s disease and Alzheimer’s disease) and

hepatocerebral (Wilson’s disease) over several decades (53).
A

B D
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C

FIGURE 7

The exploration of potential targeted drugs based on the CDKN2A-derived model for TNBC patients. (A) The shared drug between PRISM,
GDSC and CTRP. (B) The flow chart of exploring potential therapeutic agents. (C) The AUC of lapatinib in high and low risk score
subpopulations of TNBC patients. (D–F) The AUC of three selected drugs in high and low risk score subpopulations of TNBC patients. (G) The
relationship between AUC values and targets of three drugs. The P values of the figure are shown as follows: *P < 0.05. **P < 0.01. ***P < 0.001.
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However, the previous regulation of ferroptosis to trigger tumor

cell death (54) gave us inspiring hints that it is highly viable to

regulate the certain copper levels in a suitable concentration to

induce the cuproptosis and tumor cell death (55). Ferroptosis

indicates an oxidative cell death resulting from the deterioration

of antioxidant function and accretion of lipid reactive oxygen

species (9). Excess copper can trigger proteotoxic stress and

death in cells through the combination with lipoylated

components of the tricarboxylic acid (TCA) cycle (8). The

stimulation of inflammatory conditions will lead to elevated

serum copper levels and trigger oxidative stress, thereby

activating the inflammatory response (56). In reverse,

inflammation could also accelerate the cytotoxicity mediated

by copper via overexpressing six-transmembrane epithelial

antigens of prostate 4 (STEAP4) (29). Disulfiram/copper was

investigated to induce cytotoxic and anti-tumor effects on

nasopharyngeal carcinoma cells through p53-mediated

ferroptosis and ROS/MAPK pathways (30). Fatty acids

degradation can tremendously alter the microbial sensitivity to

copper, thus induce copper toxicity (28). Copper also could

trigger the expression of GPER, VEGF, and HIF-1a via

activating EGFR/ERK/c-fos transduction pathway, affecting the

angiogenesis and tumor progression in BRCA and LIHC (31).

Our study groundbreakingly and vicariously evaluated the

activities of ferroptosis and cuproptosis for patients with

BRCA based on the seven above-mentioned pathways. Our

three subtypes obtained from unsupervised cluster analysis not

only exhibited distinct activities in multiple tumor-related

pathways but also had critical significance in scores of FAC.

Ke et al. (57) indicated that FTL could function as a prognostic

and diagnostic ferroptosis regulator in hepatocellular carcinoma

via random forest analysis, which was consistent with our results

that the FTL-dominant cluster possessed a strong connection

with ferroptosis. Their resemble conclusion that higher

infiltrating immune cells, including Gamma delta T cells and

activated CD8+ T cells, emerged in the high FTL expression

group, was also confirmed in our study. Hence, regulating

pathways involved in CDKN2A-associated genes or designing

novel metal-based anticancer agents to induce ferroptosis and

cuproptosis may guide us to develop new anti-cancer treatment

strategies for BRCA, especially for the patients in the FTL-

dominant subtype.

As previous studies reported, the dynamical characteristics

of the TME, chemokines, immune checkpoints, and tumor

immune infiltration have a clear underlying role in

tumorigenesis and progression (58, 59). Surgery, endocrine

therapy, and chemotherapy remain the fundamental

cornerstones of BRCA, nevertheless, immunotherapy has

gradually become one of the neoadjuvant combination therapy

strategies (60). Our further analysis proved that CDKN2A

overexpression was correlated to the increased immune cells,

enhanced immune checkpoints, and elevated chemokines,

indicating that CDKN2A might be applied as a potential
Frontiers in Immunology 18
73
immunotherapeutic therapy. The profile from CIBERTSORT

in our unsupervised groups is highly in line with current studies

on immune cell infiltration. Group 1, namely the “cold immune

subtype”, showed relatively high levels of naïve B cells, resting

memory CD4+ T, and M2 macrophages. Gunderson et al. (22)

reported that patients with overexpression of naïve B cells had a

sign of misery prognosis, verifying its carcinogenic effect. The

higher ratio of resting memory CD4+ T cells in our cold immune

subtype was consistent with the hints that resting memory CD4+

T cells predicted an undesirable clinical outcome (61). As an

anti-inflammatory and pro-tumor factor, M2 macrophage, was

widely recognized as a promoter of metastatic progression and

poor prognosis in BRCA (62). However, Spear et al.

demonstrated that the infiltration of memory B cells could

serve as an immunostimulatory factor and supported the

adaptive antitumor immunotherapy (63), which was consistent

with our analyses of INF-g activated subtype. As was mentioned

above, our unsupervised groups were correlated with the TME

and gave us potential immune therapeutic opportunities by

respectively modulating corresponding immune cells in

each group.

Additionally, our results from unsupervised clusters analysis

were consistent with prior investigations that TNBC was more

likely to harbor immunogenicity and more suitable for

immunotherapy than other molecular subtypes (64).

Moreover, current clinical investigations are paying attention

to making non-responders convert to responders or deepening

those occurred responses. The previous study reported that the

loss of CDKN2A significantly made non-small cell lung cancer

patients experience disease progression after immune

checkpoint blockade therapy (65). Horn et al. also

demonstrated that the frequent loss of the CDKN2A could

trigger the susceptibility to IFN-g resistance via JAK2 gene

deletion in melanoma (66), which was in line with our

conclusion that high expression of CDKN2A potentially

benefited from immunotherapy. However, the immunotherapy

response of CDKN2A in TNBC has not been reported. Our IPS

and verification of external BRCA cohorts (GSE173839)

comprehensively suggested that the expression of CDKN2A

could modulate the response to immunotherapy to TNBC, and

TNBC with high CDKN2A expression patients have higher

immunogenicity and benefit from immunotherapy.

Because the overexpression of CDKN2A was indicative of

desirable clinical outcomes for TNBC patients, we further

conducted WGCNA analysis to determine CDKN2A-derived

genes that were chiefly associated with TNBC and pathways of

FAC. Determining genes and utilizing cox and lasso analysis, we

established a CDKN2A-derived prognostic model, consisting of

TRIM59, EXO1, AGR2, ZNF703, and other 17 genes. According

to immunohistochemistry, Liu et al. (67) found that TRIM59

levels were notably higher in the TNBC subtype and promoted

the malignant behavior via regulating the AKT pathway, leading

to the undesirable prognosis. Previously, RT-qPCR also proved
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the overexpression of EXO1 in BRCA cells MDA-MB231, and

the elevated EXO1 might be utilized as an indicator of poor

BRCA prognosis (68). A clinical observation study (69) via the

cross-sectional method indicated that AGR2 expression is

positively associated with the incidence of distant metastases

in BRCA and upregulated AGR2 was a poor prognosis predictor.

Current research reported that ZNF703 expressed in

approximately 34.2% of TNBC via immunohistochemistry and

the knockdown of ZNF703 triggered a powerful inhibition of

TNBC cell proliferation and cell cycle, along with the

downregulation of cyclin D1, CDK4, CDK6, and E2F1 (70).

Remaining genes were firstly explored to have effects on the

prognosis of TNBC patients. Deeper studies of the biological

roles of these genes in TNBC are warranted and clinical

investigations of this signature need to be further tested.

In terms of the high heterogeneity of TNBC, it’s incredibly

difficult to find new curative targets and develop novel targeted

therapy. DNAmicroarray analysis conducted by Nielsen et al. (71)

indicated that overexpression of EGFR existed in 60% of TNBC

samples, which was consistent with our results. The study of

Livasy et al. (72) also validified that approximately 70% of TNBC

samples significantly expressed elevated EGFR. Hence, it is

inferred that EGFR may be a promising curative target in

TNBC, especially for TNBC patients with low risk-score

according to our model. As the irreversible ErbB family blocker,

afatinib (AFT) was approved by the FDA to treat the advanced

EGFR mutation-positive NSCLC (73). The investigations of AFT

treatment in BRCA are undergoing. In an open-label, multicenter,

and phase II clinical trial, Hickish et al. (74) reported that for

metastatic BRCA patients whose prior HER2-targeted therapy

had undesirably failed, AFT alone and combined with paclitaxel

or vinorelbine could enhance the objective response. Our data

demonstrated AFT may have a good therapeutic effect on TNBC.

Coherent with our outcomes, Wang et al. (75) developed AFT/2-

BP@PLGA@MD, a poly(d,l-lactide-glycolide) (PLGA)-based

intelligent bionic nanoplatform, which was covered under a

cancer cell membrane to block PD-1 and PD-L1. AFT/2-BP@

PLGA@MD nanoparticles integrated the targeted therapy of AFT

and immunotherapy, exhibiting enhanced inhibition of the

growth of TNBC. As a dual inhibitor of EGFR and HER2,

lapatinib could also induce inhibition of p-Akt and CIP2A and

trigger apoptosis in TNBC cell lines (76). LHNPs, human serum

albumin nanoparticles loaded with lapatinib, were developed by

the advanced nanoparticle albumin-bound technology, and could

inhibit the brain metastasis from TNBC ascribed to the

downregulation of metastasis-related proteins (77). Collectively,

based on the model, we proposed three drugs that may be

applicable to TNBC patients with low risk-score. Previous

ssGSEA results also presented the CDKN2A-associated genes

also correlated to the EGFR activity, indicating that CDKN2A

may function as a promising predictive biomarker for anti-EGFR

therapy in TNBC. Moreover, drawing support from advanced

nanoparticle technology, we put forward the perspective that
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developing novel nanoparticles combined with immunotherapy

and targeted therapy to achieve a better prognosis for

TNBC patients.
Conclusion

In summary, our study comprehensively analyzed the

biological role and prognostic values of CDKN2A in BRCA.

Given the strong association between CDKN2A and FAC, we

indicated that regulating pathways involved in CDKN2A-

associated genes or designing novel metal-based anticancer

agents to induce ferroptosis and cuproptosis may guide us to

develop new anti-cancer treatment strategies. Besides, we

substantively found that CDKN2A may serve as the

pioneering prognostic predictor for TNBC. TNBC patients

with high CDKN2A expression possess the higher

immunogenicity and benefit from immunotherapy. The

CDKN2A-derived model we established can also guide the

prognosis of TNBC patients. To further guide the treatment,

we also provided three drugs for precision medicine of TNBC via

targeting EGFR and indicated that CDKN2A may function as a

promising predictive biomarker for anti-EGFR therapy in

TNBC. Therefore, this investigation provides a rationale and

offers fresh perspectives and orientations for TNBC treatment.
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Glossary

BRCA breast cancer

BLCA bladder urothelial carcinoma

CESC cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

HNSC head and neck cancer

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

STAD stomach adenocarcinoma

THCA thyroid carcinoma

UCEC uterine corpus endometrial carcinoma

TNBC triple-negative breast cancer

CDKN2A cyclin-dependent kinase inhibitor 2A

FAC ferroptosis and cuproptosis

TME tumor microenvironment

Her2 human epidermal growth factor receptor 2

ER/PR estrogen receptor/progesterone receptor

ROS reactive oxygen species

TCA tricarboxylic acid

mRNA the messenger RNA

IPS Immunophenoscore

MAPK mitogen-activated protein kinase

VEGF vascular endothelial growth factor

PCA principal component analysis

Bicor biweight midcorrelation

ROC receiver operating characteristic

GDSC Genomics of Drug Sensitivity in Cancer

PRISM Profiling Relative Inhibition Simultaneously in Mixtures

CTRP Cancer Therapeutics Response Portal

OS overall survival

DEGs differentially expressed genes

TDEGs TNBC-specific differentially expressed genes

STEAP4 six-transmembrane epithelial antigens of prostate 4

GPER G protein-coupled estrogen receptor

AFT afatinib

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

TIMER Tumor Immune Estimation Resource

GEPIA Gene expression profiling interactive analysis

HPA Human Protein Atlas

TISIDB Tumor and Immune System Interaction Database

(Continued)
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Continued

CIBERSORT Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts

ssGSEA Single-Sample Gene Set Enrichment Analysis

TCIA The Cancer Immunome Atlas

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes

Genomes

MSigDB Molecular Signatures Database

LASSO Least Absolute Shrinkage and Selection Operator.
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mRNAsi-related metabolic risk
score model identifies poor
prognosis, immunoevasive
contexture, and low
chemotherapy response in
colorectal cancer patients
through machine learning

Meilin Weng1,2†, Ting Li1,2†, Jing Zhao3†, Miaomiao Guo1,2,
Wenling Zhao1,2, Wenchao Gu4,5, Caihong Sun1,2, Ying Yue1,2,
Ziwen Zhong1,2, Ke Nan1,2, Qingwu Liao1,2, Minli Sun1,2*,
Di Zhou1,2* and Changhong Miao1,2*

1Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China, 2Shanghai
Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University,
Shanghai, China, 3Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University,
Shanghai, China, 4Department of Diagnostic and Interventional Radiology, University of Tsukuba,
Ibaraki, Japan, 5Department of Diagnostic Radiology and Nuclear Medicine, Gunma University
Graduate School of Medicine, Maebashi, Japan
Colorectal cancer (CRC) is one of the most fatal cancers of the digestive

system. Although cancer stem cells and metabolic reprogramming have an

important effect on tumor progression and drug resistance, their combined

effect on CRC prognosis remains unclear. Therefore, we generated a 21-gene

mRNA stemness index-related metabolic risk score model, which was

examined in The Cancer Genome Atlas and Gene Expression Omnibus

databases (1323 patients) and validated using the Zhongshan Hospital cohort

(200 patients). The high-risk group showed more immune infiltrations; higher

levels of immunosuppressive checkpoints, such as CD274, tumor mutation

burden, and resistance to chemotherapeutics; potentially better response to

immune therapy; worse prognosis; and advanced stage of tumor node

metastasis than the low-risk group. The combination of risk score and

clinical characteristics was effective in predicting overall survival. Zhongshan

cohort validated that high-risk score group correlated with malignant

progression, worse prognosis , infer ior adjuvant chemotherapy

responsiveness of CRC, and shaped an immunoevasive contexture. This tool

may provide amore accurate risk stratification in CRC and screening of patients

with CRC responsive to immunotherapy.

KEYWORDS

colorectal cancer, mRNAsi, stemness, risk score model, immunotherapy, metabolism,

immune evasion, Machine learning
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Introduction

Colorectal cancer (CRC) is one of the deadliest cancers of the

digestive system (1, 2). Although there is an increasing number

of potential therapeutic approaches for CRC, such as surgery,

chemotherapy, radiotherapy, and molecular targeted therapy,

the clinical prognosis remains unsatisfactory, especially for

patients with distant metastasis of CRC (3, 4). Therefore,

accurate medical treatment is essential for the eradication of

malignancy. At the same time, due to the high molecular

heterogeneity of CRC, most existing biomarkers lack strong

predictive accuracy (5). Hence, it has become an urgent

problem to find a powerful index to predict and evaluate the

clinical prognosis and therapeutic effect to achieve accurate

clinical intervention.

Cancer stem cells (CSCs) play a crucial part in the

progression, recurrence, and drug resistance of solid malignant

tumors (6). Furthermore, CSCs promoted immunosuppression,

immune escape, tumor metastasis, and therapeutic resistance by

interacting with immune cells (7). For example, in a co-

transplantation environment, CSCs can promote the

polar izat ion of CD14+ per ipheral monocytes into

immunosuppressive M2 macrophages and the generation of

tumorigenic myeloid cells, followed by the acceleration of

tumor growth in immunocompromised mice (8). CSCs also

drive the recruitment and polarization of TH17 cells and Treg

cells by secreting CCL1, CCL2, CCL5, and TGF-b, resulting in

an immunosuppressive environment (7). In recent years, the

mRNA expression-based stemness index (mRNAsi) developed

by a machine learning algorithm has been used to quantify the

stemness characteristics of tumors (9) such as esophageal cancer

(10), gastric cancer (11), hepatocellular carcinoma (12), and

glioma (13). However, the risk score model for stemness features

associated with immunological propert ies in CRC

remains uninvestigated.

Metabolic reprogramming, a hallmark of cancer, is another

important factor leading to antitumor immunity and immune

escape. For example, excessive glycolysis in tumor cells produces

a large amount of lactate, which leads to acidification of the

microenvironment and, consequently, inhibits the proliferation

and function of cytotoxic T cells. Other studies also showed that

inhibition of mTOR or the glycolysis pathway regulated T-cell

differentiation into naïve and memory phenotypes (14).

Furthermore, when CAR-T cells were expanded in vitro,

inhibition of AKT improved their metabolism and promoted

their differentiation to the memory phenotype, thus improving

the progression of acute lymphoblastic leukemia (15). Therefore,

further elucidation of the effects of tumor stemness and

metabolic characteristics on the immune microenvironment

may provide significant clinical benefits.

In this study, we generated a new risk prediction model using

mRNAsi and metabolism-related genes using CRC expression data
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retrieved from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases (n = 1323). We also

determined the association between the risk score and several

functional and clinical features of patients with CRC. Clinical

prognosis, tumor microenvironment and immunophenotype,

response to chemotherapy and immunotherapy, and genomic

variation between two risk score groups were evaluated

comprehensively. We then validated the mRNAsi-related

metabolic risk score model using the Zhongshan Hospital cohort

(n = 200). Our data aimed to provide new insights into the

screening of patients more likely to benefit from immunotherapy,

and to improve individualized treatments for CRC patients.
Methods

Data collection and processing

The expression profile data of colon adenocarcinoma

(COAD) and rectal adenocarcinoma (READ) of 591 patients,

and their clinicopathological annotation were retrieved from the

TCGA GDC website (https://portal.gdc.cancer.gov/). TPM

values were converted from FPKM. Furthermore, tumor

mutation burden (TMB) was obtained by analyzing the copy

number variation (CNV) and somatic mutation data using the

maftools package of R.

In addition, CRC gene expression data of GSE17536 (16–18)

and GSE39582 (19) and the clinicopathological features of the

patients were also downloaded from the GEO database.

GSE17536 included 177 CRC tissue samples, and GSE39582

included 555 CRC tissue samples. Subsequently, the TCGA and

GEO data were merged (n = 1323), and the limma (20) R

package and sva (21) R package were used to combine and

eliminate any batch effect.
Analysis of mRNAsi and differentially
expressed genes

Based on the relative expression data provided by Zheng et

al. (22), the mRNAsi of each sample was determined conforming

to the gene expression matrix by the single-sample gene-set

enrichment analysis (ssGSEA) method using the R-package

GSVA. According to the mRNAsi of each sample obtained,

combined with the survival status of the patients, the best cut-off

value of mRNAsi was set, and the patients with CRC were

distributed into the high-mRNAsi group and low-

mRNAsi group.

DEGs between the high-mRNAsi groups and low-mRNAsi

groups in patients with CRC were analyzed using the “limma” R

package. DEGs were defined as genes with Log2 (fold change) >

1.0 and P < 0.05. Metabolism-related gene sets were copied from
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the Molecular Signature Database (MSigDB) V7.0 (22). Finally,

the overlap between DEGs and metabolism-related genes

resulted in the identification of metabolism-related DEGs.
Weighted gene co-expression
network analysis

WGCNA was achieved using the WGCNA package in R,

which aims to determine the correlation between genes by

building important modules. First, a scale-free gene co-

expression network was constructed according to the weight of

the correlation coefficient, and a hierarchical clustering tree was

established depending on the adjacency matrix of the network.

The module significance (MS) was then calculated to judge the

correlation between the mRNAsi value and different modules.

The genes in each module were recorded and defined as module

characteristic genes. Modules with maximum and minimumMS

values were regarded as positive and negative modules,

respectively. After selecting the modules of interest according

to the MS values, all gene expressions in the modules were

identified as genes highly correlated with mRNAsi.
Construction of mRNAsi-related
metabolic risk score model

By integrating the results of metabolism-related DEG

analysis and WGCNA, mRNAsi-related metabolic genes were

finally obtained. Significantly differentially expressed mRNAsi-

related metabolic genes were included in the model,

dimensionality reduction analysis was performed using the

minimum absolute contraction and selection operator (least

absolute shrinkage and selection operator, LASSO) algorithm,

and the characteristic genes related to prognosis were obtained.

Using the normalized gene expression value weighted by the

penalty coefficient obtained by LASSO Cox analysis, a risk score

formula was established, and patients were divided into high-

risk group and low-risk group according to the median risk

score.

Risk score  =  o
i
Coefficient  hub geneið Þ �mRNA Expression  hub geneið Þ
Functional and pathway enrichment
analyses

Gene Ontology (GO) analysis is a widely used method for

functional enrichment studies and generates data related to

biological processes (BP), molecular functions (MF), and

cellular components (CC). Kyoto Encyclopedia of Genes and

Genomes (KEGG) is a database for systematic analysis of gene
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function, linking genome information with more orderly

biological function information. The clusterProfiler package of

R (23) was used for GO analysis and KEGG pathway enrichment

in the mRNAsi-related metabolic risk score model. FDR < 0.05

was regarded as significant.

To investigate differences in BP between different groups, we

employed gene-set enrichment analysis (GSEA) (22). The

“h.all.v7.2.symbols.gmt” gene set was copied from the MSigDB

for the GSEA. P < 0.05 was considered significant.
Molecular network analysis

The STRING database (https://cn.string-db.org) (24) was

used to construct a protein-protein interaction (PPI) network.

Genes with scores greater than 0.4 were chosen to build a

network model, which was visualized using Cytoscape (v3.7.2)

(25). Then, eight hub genes were selected using the CytoHubba

plug-in (26) in the Cytoscape software. Furthermore, we use the

GOSemSim package in R (27) to judge the GO semantic

similarity of the eight genes (28).

Information regarding miRNA-mRNA interactions from the

miRTarBase database was downloaded before analyzing the

basic statistics. Based on the core mRNA obtained by PPI

analysis, the miRTarBase database was used to predict the

miRNAs that may be regulated and to further predict the

related lncRNAs. Cytoscape software was used to visually

display the results of ceRNA analysis.
Analysis of tumor immune
infiltrating cells

An ssGSEA algorithm was deployed to measure the relative

number of tumor-infiltrating immune cells in patients with CRC

(29). The enrichment score calculated by ssGSEA using the

GSVA R package (30) indicates the in level of each immune cell

type in each sample. In addition, depending on the gene

expression profile, the ESTIMATE R package (31) was used to

quantify the level of immune infiltration of tumor samples, and

the immune score of each tumor sample was obtained. The

differences in the immune infiltration characteristics of CRC

patients between the high-risk score group and low-risk score

groups were evaluated.
Analysis of drug sensitivity and
immunotherapy response

The Genomics of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/) is an open database for

molecular therapy and mutation exploration in cancer. The

pRRophetic package of R (32) was used to download the cell
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line gene mutation data and the IC50 values of different

anticancer drugs from GDSC (33) and to analyze the

correlation between patients with high and low-risk scores and

different anticancer drug sensitivities.

In addition, we used online tumor immune dysfunction and

exclusion (TIDE) scores (34) to examine immunotherapy

sensitivity and compare the scores of tumor immunotherapy

markers, such as CD8 and CD274, between the high-risk score

groups and the low-risk scoring groups. The response of

immune-checkpoint blockade was predicted.
CNV analysis

To analyze the changes in copy number in different risk

score groups of patients with TCGA-CRC, we used the

TCGAbiolinks package of R to obtain the masked copy

number segment data of the patients. The downloaded CNV

fragments were analyzed using GISTIC 2.0, with default settings

in GenePattern5. Finally, the analysis results of GISTIC 2.0 were

visualized through the maftools package of R.
Establishment of a prognostic model

Univariate and multivariate Cox analyses were used to

predict the overall survival (OS) of patients with CRC. The

clinicopathological features were then incorporated into the risk

score model to construct a clinical predictive nomogram. To

quantify the differential performance of the nomogram, Harrell’s

consistency index (C-index) was estimated. A calibration curve

was produced and the capability of the nomogram

was evaluated.
Patients and CRC tissue samples

The Zhongshan Hospital cohort included 200 patients who

underwent CRC surgery between January 2008 and December

2014. The patients’ baseline characteristics included sex, age,

adjuvant chemotherapy, tumor location, tumor histology, tumor

differentiation, nerve invasion, surgicalmargin positivity, and stage

of tumor node metastasis (TNM). Tumor staging was performed

according to the 7th edition of the American Joint Commission on

Cancer (AJCC) TNM Classification (35). Conforming to the

National Comprehensive Cancer Network guidelines and patient

wishes, patientswith stage III-IVTNMwere treatedwithACTafter

surgery. OS was described as the time from the date of diagnosis to

death or last follow-up. Disease-free survival (DFS) was described

as the time from the date of diagnosis to relapse or last follow-up.

The follow-up period ended on December 31, 2020. Clinical data

validation was approved by the ethics committee of the Zhongshan

Hospital (B2022-068R2).
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RNA separation and quantitative reverse
transcription PCR

The mRNA expression of 21 mRNAsi-related metabolic

genes was measured by qRT-PCR in Zhongshan cohort. Total

RNA was obtained using the TRIzol reagent (Invitrogen,

Waltham, MA, USA). cDNA was obtained by reverse

transcription using the PrimeScript RT kit (Takara). The

expression of candidate genes and the housekeeping gene

GAPDH was evaluated by quantitative reverse transcription

PCR using the ABI 7900HT real-time PCR system (Applied

Biosystems, Carlsbad, CA, USA). Relative transcription levels

were calculated using the DDCt method (36). The primer

sequences used are listed in Supplementary Table 7.
Immunohistochemical staining

We randomly selected 20 cases from 200 Zhongshan

patients for IHC, including 10 cases in high risk group and 10

cases in low risk group. Paraffin-embedded tissues were stained

with antibodies. The staining score was decided by two

experienced pathologists at the Zhongshan Hospital. Six high-

power fields (HPFs, ×200 magnification) were randomly

counted by two independent pathologists (each with three

fields), and the densities of CD8+T cells, Foxp3+Tregs,

CD19+B cells, CD11c dendritic cells, immunosuppressive

checkpoints (PD-1, PD-L1) and effector molecules (GZMB,

PRF1) were recorded. Immunohistochemistry antibodies are

listed in Supplementary Table 8.
Statistical analysis

All data processing and analyses were accomplished using

the R software (version 3.6.2) and SPSS (version 25; IBM,

Armonk, USA). For the comparison of two groups of

continuous variables, the statistical significance of normally

distributed variables was calculated using an independent t-

test, and the difference between non-normally distributed

variables was measured using the Mann–Whitney U test. Chi-

square test or Fisher’s exact test was used to analyze the

significant differences between the two groups of classified

variables. The survival package in R was conducted for

survival analysis. The receiver-operating characteristic (ROC)

curve was drawn by the pROC package of R (37) and the area

under the curve (AUC) was calculated to evaluate the

performance of the risk score model. Univariate and

multivariate Cox analyses were used to determine independent

prognostic factors. All statistical P values were bilateral, and *P <

0 .05 , **P < 0.01 , ***P < 0.001 were regarded as

statistically significant.
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Results

Relationship between colorectal
cancer stemness characteristics
and clinical features

A flowchart of this study is shown in Figure 1A. To explore

the role of mRNAsi on the progression of CRC, including COAD

and READ, the gene expression matrices of GSE17536 and

GSE39582 datasets and TCGA database were downloaded

(Supplementary Figures 1A, B). The data from the two

databases were then merged (n = 1323) and cleaned from any

batch effect (Supplementary Figures 1C, D).

First, to explore the correlation between mRNAsi and

clinical characteristics, we determined CRC mRNAsi using the

ssGSEA algorithm. Then, according to the optimal mRNAsi cut-

off value, the patients with CRC were separated into high-
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mRNAsi and low-mRNAsi groups. The relationship between

CRC stemness characteristics and clinical characteristics is

shown in Figures 1B-E. No significant correlation between

mRNAsi and age (P = 0.56) or gender (P = 0.54) was observed

(Figures 1B, C). However, higher mRNAsi were associated with

staging of TNM (stage 2 vs. stage 3, P = 0.025; stage 2 vs. stage 4,

P = 0.02; Figure 1D). Furthermore, patients with high mRNAsi

showed a significant increase in OS compared to those with low

mRNAsi (log-rank P < 0.001, Figure 1E).
Identification of mRNAsi-related
metabolic genes in patients with CRC

To determine the role of the mRNAsi in metabolic processes

in CRC, DEGs between the high-mRNAsi and low-mRNAsi

groups were identified and intersected with a metabolic gene set
A

B D EC

FIGURE 1

Study flow chart and the relationship between colorectal cancer (CRC) stemness characteristics and clinical features. (A). Flow chart for
construction and validation of mRNAsi-related metabolic risk score model in CRC. TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus databases; mRNAsi, mRNA expression-based stemness index; DEGs, differentially expressed genes; WGCNA, weighted gene co-
expression network analysis; GO: gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene-set enrichment analysis; PPI,
protein-protein interaction; ceRNA, competing endogenous RNAs; SNP, single nucleotide polymorphism; TMB, tumor mutation burden; MSI,
microsatellite instability; CNV, copy number variation; TNM, tumor node metastasis; ACT, adjuvant chemotherapy. (B–E). Relationship between
CRC stemness characteristics and clinical features. Analysis of the correlation of mRNAsi with age (B), gender (C), TNM stage (D) and overall
survival (E) in patients with CRC.
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(2752 genes). One hundred and twenty-six genes were obtained

and labeled as metabolism-related DEGs, of which 108 genes

were significantly upregulated, and 18 genes were significantly

downregulated (Figures 2A, B and Supplementary Figure 3A).

WGCNA was used to identify modules closely related to

mRNAsi-related genes. A total of 22 co-expression modules

were identified, with the black module showing the strongest

correlation with mRNAsi in CRC (Figures 2C, D). All genes in

the black module were intersected with the metabolism-related

DEGs, and 83 mRNAsi-related metabolic genes were obtained

for further analysis, as shown in the Venn diagram (Figures 2E, F

and Supplementary Figure 3B).
Frontiers in Immunology 06
83
Construction of mRNAsi-related
metabolic risk score model

To quantitatively evaluate the predictive value of identified

mRNAsi-related metabolic genes in the clinical prognosis of

CRC, we constructed a risk score model based on these genes.

First, the expression characteristics of the 83 mRNAsi-related

metabolic genes were included in the LASSO Cox analysis and

21 genes with the optimal predictive value were selected

(Figures 3A, B). Simultaneously, a risk score formula was

established based on the normalized expression of important
A B

D

E F

C

FIGURE 2

Identification of mRNAsi-related metabolic genes in patients with CRC. (A–B). Volcano plot and heatmap showing the expression of
metabolism-related DEGs in patients with CRC. (C). Genes with similar expression patterns were merged in the same module to create a
hierarchical cluster tree. (D). Correlations and significant differences between different gene modules and mRNAsi and P values are displayed in
the module. (E). All genes in the black module, which were more closely related to mRNAsi, were overlapped with metabolism-related genes
and 83 candidate genes were obtained, which were defined as mRNAsi-related metabolic genes. (F). The heatmap shows the expression of 83
significantly differentially expressed mRNAsi-related metabolic genes in the CRC and normal tissues.
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characteristic genes weighted by the penalty coefficient

calculated by LASSO Cox analysis, and a risk score for each

sample was calculated. An example of the formula used to

calculate the risk score is given below.

Risk score = −0:1053ð Þ � PTGES3 + −0:1874ð Þ � PAICS +

−0:0133ð Þ � GNPNAT1+

0:02893ð Þ � PGM3 + 0:08862ð Þ �MTHFD2 + −0:0043ð Þ �
DCK + 0:06428ð Þ �MTAP+

0:22468ð Þ � SLC25A36 + 0:00308ð Þ � GBE1 + −0:0679ð Þ �
RRM2 + 0:0029ð Þ � KCTD3

+ −0:0436ð Þ � ACADSB + −0:0339ð Þ � ABCD3 + −0:0137ð Þ �
BCKDHB + −0:0525ð Þ�

PHOSPHO2 + −0:1185ð Þ � FUT4 + 0:00089ð Þ � EDEM3 +

−0:0684ð Þ � NEU4 + 0:6165ð Þ
�SLC16A1 + −0:0162ð Þ � ELOVL7 + 0:04312ð Þ � SLC6A8
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Then we performed the time-dependent ROC curve analysis

and found that the model had appropriate accuracy in predicting

OS in patients with CRC, and the AUC of 1-year, 2-year and 3-

year OS was 0.647, 0.644, and 0.672, respectively (Figure 3C).

Kaplan–Meier analysis showed a reduction in OS in patients

with high-risk scores (log-rank P < 0.001; Figure 3D). In

addition, there was a significant negative correlation between

mRNAsi and risk scores (Rho = -0.2, P < 0.001, Figure 3E). The

distribution of the risk score, survival status, and expression

pattern of characteristic genes is shown in Figure 3F.

GSEA, GO, KEGG analyses of DEGs
between high-risk and low-risk patients
in mRNAsi-related metabolic risk
score model

To analyze the impact of mRNAsi-related metabolic risk

score models on the occurrence and development of CRC, we
A B

D

E

F

C

FIGURE 3

Construction and evaluation of the mRNAsi-related metabolic risk score model. (A, B). LASSO Cox analysis identified 21 genes most associated
with OS in the TCGA dataset. (C). Time-dependent ROC curve analysis of risk score. (D). The effect of the risk score assessed by Kaplan–Meier
curve on the overall survival rate of patients with CRC. (E). Spearman rank correlation analysis was used to analyze the relationship between
mRNAsi and risk score. (F). The risk score distribution, survival status, and heatmap of characteristic gene expression in patients with CRC.
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used the median LASSO Cox risk score of CRC cases from

TCGA dataset and divided the CRC cases into high-risk and

low- risk score groups. There were 242 DEGs between high-risk

and low-risk patients (Log2 (fold change) > 1.0 and P < 0.05), of

which 195 were significantly upregulated, and 47 were

significantly downregulated (Figures 4A, B). The correlation

between the risk score with the clinical characteristics of CRC

patients in the TCGA and GEO database is shown in

Supplementary Table 1. The functional annotation of the GO

showed the DEGs were closely related to several BP, including

the organization of the extracellular matrix, the organization of

the extracellular structure and ossification, as well as several MF

such as extracellular matrix structural constituent,

glycosaminoglycan binding, and extracellular matrix structural

constituent conferring tensile strength (Figure 4C,
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Supplementary Table 2). KEGG analysis indicated that DEGs

were particularly involved in focal adhesion, phagosome, protein

digestion and absorption, complement and coagulation

cascades, and ECM-receptor interaction pathways (Figure 4D

and Supplementary Table 3). Two pathways, protein digestion

and absorption (P = 2.82E-08) and phagosome pathways (P =

2.96E-07), which were highly related to the mRNAsi-related

metabolic risk score model, are shown in Figures 4E, F.

Furthermore, GSEA showed that ascorbate and aldarate

metabolism (NES = -1.89, P = 0.002), citrate cycle (TCA

cycle) (NES = -2.28, P = 0.002), glyoxylate and dicarboxylate

metabolism pathways (NES = -2.03, P = 0.002), propanoate

metabolism (NES = -2.07, P = 0.002), arginine and proline

metabolism (NES = -1.94, P = 0.002), pyruvate metabolism

(NES = - 2 . 1 8 , P = 0 . 0 0 2 ) , h a l lma r k o x i d a t i v e
A B

D

E F

C

FIGURE 4

DEG analysis and functional enrichment analysis based on the mRNAsi-related metabolic risk score model. (A, B). Volcano plot and heatmap
showing the expression pattern of DEGs in two groups of patients with CRC. (C, D). Biological processes (BP) and KEGG pathway analysis of
DEGs in two groups of patients with CRC. (E, F). The two pathways are closely related to the mRNAsi-related metabolic risk score model:
protein digestion and absorption, and the phagosome pathway.
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phosphorylation (NES = -2.86, P < 0.001), and hallmark

fatty acid metabolism (NES = -1.93, P < 0.001), were

abundant in low-risk patients, whereas hallmark hypoxia

was significantly enriched in high-risk patients (NES = 2.04,

P < 0 . 0 0 1 ) , ( S upp l emen t a r y F i g u r e s 2A– I a nd

Supplementary Table 4).
Construction of PPI network and related
regulation network

We used the STRING database to establish the PPI network

between DEGs, and imported the interaction between genes into

Cytoscape software to obtain Figure 5A, in which the

upregulated genes were represented in red and the

downregulated genes were represented in blue.

The hub genes were analyzed using Cytoscape software

(Figure 5B). GO semantic similarity analysis showed that the

CALD1 gene played an important role in the hub genes

(Figure 5C). Subsequently, we conducted correlation analysis

between hub genes and mRNAsi, and found a significant co-

expression pattern between hub genes, whereas the relationship of

each hub gene andmRNAsi was not consistent (Figure 5D). Finally,

based on information about miRNA-mRNA interaction

downloaded from the miRTarBase database; the hub genes
Frontiers in Immunology 09
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obtained via the PPI network were used to construct the ceRNA

network of miRNA-mRNA–lncRNA interaction (Figure 5E).
Immune contexture difference between
high-risk and low-risk patients

We then evaluated the immune contexture heterogeneity

between the high and low-risk score groups. As shown in

Figure 6, the immune and stromal scores of the high-risk

score group were significantly higher than those in the low-

risk score group (both P < 0.001, Figures 6A, B). In addition, to

evaluate the degree of immune cell infiltration in tumor tissue,

we used the ssGSEA algorithm and obtained the relative

enrichment scores of 28 subtypes of immune cells between the

two groups, as shown in the heatmap in Figure 6C. The

correlation analysis showed that the infiltration levels of most

immune cells were positively correlated (Figure 6D). Further

analysis revealed that infiltration of CD4+T cells, CD8+ T cells, B

cells, dendritic cells, eosinophils, mast cells, macrophages,

myeloid-derived suppressor cells (MDSCs), natural killer cells,

regulatory T cells, and T helper cells was higher in the high-risk

score group (Figure 6E). In addition, in this study the expression

of HLA family members and several immunotherapy-related

target genes, such as CD274 (PD-L1), CTLA-4, and LAG-3, was
A B

D EC

FIGURE 5

Construction of the protein-protein interaction network (PPI) and the ceRNA network. (A). The results of PPI analysis were introduced into
Cytoscape software for analysis, in which red represents upregulated genes, blue represents downregulated genes, and color depth and node
size were positively correlated with log fold change (FC). (B). The CytoHubba algorithm was used to identify and extract the top eight genes
from the PPI network as the hub genes. (C). GO semantic similarity analysis of importance of the eight hub genes. (D). Circle diagram of the
correlation between the hub gene and mRNAsi. (E). Construction of the ceRNA interaction network based on hub genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950782
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Weng et al. 10.3389/fimmu.2022.950782
elevated in the tumor environment of the high-risk group

compared with the low-risk group (Figures 6F, G).
Sensitivity to chemotherapy and
immunotherapy in high-risk and low-risk
patients with CRC

To analyze the differences in the sensitivity of patients with

CRC to different drugs and small-molecule drugs based on the

risk score, we downloaded the CRC cell line gene mutation data

and the half-maximal inhibitory concentration (IC50) values of

several anticancer drugs from the GDSC database. In GDSC,

IC50 values for patients with CRC were predicted based on the

responses of cell lines to 138 chemotherapeutic agents and small-

molecule anticancer agents. This suggested that patients in the
Frontiers in Immunology 10
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high-risk score group were less susceptible to multiple

chemotherapeutic and small-molecule anticancer drugs,

including Metformin, PF.4708671, Sorafenib, Mitomycin,

Methotrexate, and gemcitabine (Figure 7A, all P < 0.05).

Because of the important role of immune-checkpoint

inhibitor (ICI) therapy in tumors, we examined the sensitivity

of two groups of patients with CRC to ICI therapy using the

TIDE algorithm, which models two mechanisms of immune-

evasion: T-cell dysfunction and reduced T-cell infiltration, to

predict the immunotherapy response. As shown in Figure 7B,

although no significant differences in the scores for two immune

markers CD8 and CD274 between the high-risk and low-risk

score groups was observed, the TIDE score in the high-risk score

group was lower than that in the low-risk score group,

suggesting a better response to the ICI therapy in the high-risk

score group than in the low-risk score group.
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FIGURE 6

Relationship between mRNAsi-related metabolic risk score groups and infiltration of different immune cell subtypes. (A, B). Differential analysis
of immune scores and stromal scores between the high- and low-risk score group of patients with CRC. (C). The heatmap showed the
infiltration levels of 28 immune cell subtypes in CRC samples from TCGA and GEO datasets. (D). Correlation heatmap showed the correlation
between different levels of immune cell infiltration. (E). Analysis of the difference of 28 levels of immune cell infiltration between two groups (F).
Multiple HLA family members, and (G) immunotherapy-related targets in high and low-risk score groups of patients with CRC. Differences were
considered significant at *P < 0.05, **P < 0.01, ***P < 0.001, compared to the low-risk group. ns, not significant.
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Analysis of genomic variation between
high and low-risk score patients

Research has suggested that genomic variation affects tumor

response to immunotherapy (38). Furthermore, we evaluated the

differences in genomic variation in patients with CRC in the high

and low-risk groups, including single nucleotide polymorphism

(SNP), TMB, microsatellite instability (MSI), and CNV.

Difference in the level of the top SNP between the two

groups was detected (Figure 8A). Furthermore, the TMB in the

high-risk score group was higher than in the low-risk score

group; however, no significant differences in MSI between the

two groups were detected (Figures 8B, C). In addition, compared

with the high-risk score group, the low-risk score group showed

a significant increase in CNV, mainly characterized by deletion

events (Figures 8D, E).
Frontiers in Immunology 11
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Construction and validation of clinical
prediction nomogram based on mRNAsi-
related metabolic risk score model

Next, we evaluated the association between mRNAsi-

associated metabolic risk scores and clinicopathological

characteristics in patients with CRC. The results showed no

significant correlation between the risk scores and the age and

gender of the patients (Figures 9A, B). However, high-risk scores

were associated with lower mRNAsi and an advanced TNM state

(Figures 9C, D).

In addition, univariate and multivariate Cox analyses

showed that a high mRNAsi-related metabolic risk score was

an independent predictor of prognosis in patients with CRC

(Figure 9E and Supplementary Table 5). The mRNAsi-related

metabolic risk score was then combined with different
A

B

FIGURE 7

Analysis of sensitivity differences between high-risk and low-risk patients to different chemotherapeutic agents, small-molecule anticancer
agents, and immunotherapy. (A). Difference in sensitivity between high-risk and low-risk patients to 138 small-molecule anticancer agents and
chemotherapeutic agents. (B). Differences in TIDE score, immune exclusive, scores of immunotherapy targets, CD8 and CD274 in high-risk and
low-risk score groups. Differences were considered significant at *P < 0.05, **P < 0.01, compared to the low-risk group. ns, not significant.
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clinicopathological features to create a nomogram to predict OS

in patients with CRC (Figure 9F). Then we preformed C-index to

evaluate the differentiation of nomogram and found it has high

discriminative ability (mean: 0.751 [range: 0.700–0.802]). In

addition, the calibration curve showed that the 1-, 2-, and 3-

year OS estimated by the nomogrammatched with the actual OS

values of the patients (Figure 9G).
High-risk score group correlated with
malignant progression, worse prognosis,
inferior adjuvant chemotherapy
responsiveness of CRC

To further determine the clinical significance of the risk

score model in CRC, we evaluated the correlation between the

high and low-risk score groups and the clinicopathological

characteristics of patients with CRC in the Zhongshan

Hospital cohort. The mRNA expression of 21 mRNAsi-related

metabolic genes was measured by qRT-PCR. The median
Frontiers in Immunology 12
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expression level of risk score was used as the cutoff value.

Patients were divided into high and low-risk score groups. The

high-risk score group was positively correlated with right-sided

colon, poorer differentiation, ucoid adenocarcinoma and signet-

ring cell carcinoma, nerve invasion, surgical margin positivity,

and higher TNM stage (all P < 0.001, Supplementary Table 6).

These findings suggest the gene set defining the high-risk score

group is potentially involved in tumor progression.

To investigate the association between the risk score model

and long-term outcomes of patients with CRC, Kaplan–Meier

analysis was performed. The high-risk score group predicted

worse survival of patients with CRC in the Zhongshan Hospital

cohort (OS: P < 0.001, log-rank = 13.102; DFS: P < 0.001, log-

rank = 26.309; Figures 10A, B). These results indicate that the

high-risk score was related to a worse outcome for patients

with CRC.

In addition, we evaluated the interaction between the risk

score model and therapeutic responsiveness to adjuvant

chemotherapy (ACT) for TNM stage III-IV patients with

CRC. In this study, ACT could improve patient survival in the
A
B

D E

C

FIGURE 8

Analysis of genomic variation between high-risk and low-risk patients. (A). Mutation profiles of common tumor-related genes in patients in
high and low-risk score groups (Left: high-risk score group, right: low-risk score group). (B, C). The difference of microsatellite instability
(MSI) and tumor mutation burden (TMB) between two groups. (D, E). Copy number variation in patients between two groups. Red indicates
the amplified genes, and blue indicates the deleted genes. Differences were considered significant at *P < 0.05, compared with low-risk
group. ns, not significant.
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low-risk score group (OS: P = 0.043, log rank =4.094, Figure 10C;

DFS: P = 0.005, log rank = 7.860, Figure 10D) but had no

significant benefit in the high-risk score group (OS: P = 0.209,

log rank = 1.579, Figure 10E; DFS: P = 0.413, log rank = 0.670,

Figure 10F). Therefore, these results suggest that the high-risk

score group might have impaired therapeutic responsiveness to

ACT in TNM stage III-IV CRC.
High-risk score group shaped
immunoevasive contexture

To explore the underlying mechanism, we performed IHC

staining of tumor-infiltrating immune cells in CRC tissues

obtained from the Zhongshan Hospital cohort. The number of

CD8+T cells (P=0.0080), CD19+B cells (P=0.0013), Foxp3+Tregs

(P<0.001), and CD11c dendritic cells (P=0.0028) was more
Frontiers in Immunology 13
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abundant in the high-risk group (Figures 11A–H). But

the ratio of Foxp3+Treg cells to CD8+T cells also

increased markedly in the high-risk score group (P=0.029)

(Figure 11I), suggesting a more immunosuppressive tumor

microenvironment with increased Treg cell infiltration. We

further investigated whether the high-risk score group could

affect CD8+T-cell function. The results indicated that CD8+T

cells in the high-risk score group showed an exhausted T-cell

phenotype with increased expression of immunosuppressive

checkpoints, programmed cell death protein 1 (PD-1)

(P=0.0027) and programmed cell death-ligand 1 (PD-L1)

(P=0.0013), and decreased expression of CD8+T-cell effector

molecules, granzyme B (GZMB)(P=0.0028) and perforin (PRF1)

(P=0.0020), compared to the low-risk score group (Figures 11J-

Q). Taken together, these data suggest that the high-risk score

group may orchestrate an immunoevasive contexture and direct

CD8+T-cell dysfunction in CRC.
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FIGURE 9

Analysis of the predictive ability of mRNAsi-related metabolic risk score model for the prognosis of patients with CRC. (A–D). Analysis of
correlation between mRNAsi-related metabolic risk scores and clinicopathological features of patients with CRC. (E). Multivariate Cox regression
analysis of HR and P values of risk score, combined with clinicopathological features. (F). mRNAsi-related metabolic risk score combined with
clinicopathological features to construct a clinical predictive model. (G). The calibration curve of the nomogram showed that the risk score
model had a good predictive ability for the overall survival rate of 1-, 2- and 3-year OS in patients. Differences were considered significant at *P
< 0.05, ***P < 0.001, compared to the reference.
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Discussion

Tumor recurrence and drug resistance have always been

obstacles to the treatment of CRC. Studies have shown that CSCs

and metabolic reprogramming promote immunosuppression,

immune escape, and therapeutic resistance by interacting with
Frontiers in Immunology 14
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immune cells (39, 40). Therefore, by integrating differential

expression analysis between high and low mRNAsi,

metabolism-related genes, co-expression network analysis, and

LASSO Cox regression analysis, 21 mRNAsi-related metabolic

genes with the highest prognostic value were identified and used

to construct the risk score model. After validation first in the
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FIGURE 10

High-risk score group determines poor prognosis and impairs the ACT responsiveness of patients with CRC in Zhongshan cohort. (A, B). Overall
survival (OS) and disease-free survival (DFS) curves between high and low-risk score group in Zhongshan Hospital cohort. (C, D). The OS and
DFS curves for TNM stage III-IV patients with CRC in low-risk score group with or without ACT treatment. (E, F). The OS and DFS curves for
TNM stage III-IV patients with CRC in high-risk score group with or without ACT treatment.
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FIGURE 11

High-risk score group drives immunoevasive contexture and damages CD8+ T-cell function in CRC in Zhongshan cohort. (A–D). Representative
immunohistochemical (IHC) staining of four significant tumor-infiltrating immune cell subtypes between high and low-risk score groups,
including CD8+ T cells, CD19+ B cells, Foxp3+ Tregs, CD11c dendritic cells. (E–I). Comparison of CD8+ T cells, CD19+ B cells, Foxp3+ Tregs,
CD11c dendritic cells and the ratio of Foxp3+ Tregs to CD8+ T cells between two groups. (J–M). Expression of immunosuppressive checkpoints
(PD-1, PD-L1) and effector molecules (GZMB, PRF1) between two groups. (N–Q). Representative IHC staining of immunosuppressive
checkpoints (PD-1, PD-L1) and effector molecules (GZMB, PRF1) between two groups. n = 10 in each group, scale bar: 250um. Differences were
considered significant at *P < 0.05, **P < 0.01, ***P < 0.001, compared to the low-risk group.
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data retrieved from the TCGA and GEO databases, and then in

the Zhongshan Hospital cohort, the CRC samples in the high-

risk score group exhibited poor clinical outcome, increased

immune-evasion, reduced sensitivity to chemotherapy, whereas

potentially better response to immunotherapy, and higher

genomic variation. This risk score model could be a tool to

screen for patients with worse prognosis and inferior

chemotherapy response, optimizing targeted treatment for

CRC patients.

According to the GO functional enrichment results, most of

these genes were clustered in functional groups related to the

extracellular matrix (ECM). The ECM, as the main component

of the tumor microenvironment, is considered to play a leading

role in the progression of various cancers, including CRC, and

promotes the invasion and metastasis of cancer (41–43). In

addition, Ortensi et al. have demonstrated that the stemness

characteristic of cancer tissue contributes to glioma invasiveness,

which is closely related to the ECM (44). KEGG analysis also

showed these genes were significantly abundant in

inflammation, immunity, adhesion, invasion, and other

processes. These results suggest that mRNAsi-related

metabolic genes are involved in CRC metastasis and invasion.

Furthermore, GSEA revealed that hallmark hypoxia was

significantly enriched in the high-risk score group. Our study

and other studies have shown that hypoxia may promote

glycolysis in CRC cells by activating the HIF-1a signaling

pathway, thus promoting the proliferation and metastasis of

CRC cells (45, 46). Hypoxia reduced the sensitivity of CRC to 5-

fluorouracil chemotherapy (47). This suggests that mRNAsi-

related metabolic genes participate in hypoxia-related pathways,

leading to a poor prognosis and chemotherapy resistance

in CRC.

Hub genes were obtained by PPI network construction and

Cytoscape software analysis. GO semantic similarity analysis

showed a key role for the CALD1 gene. Li et al. found that

CALD1 upregulated the expression of PD-L1 through the JAK/

STAT signaling pathway and promoted malignant progression

of bladder cancer (48). Several bioinformatics analyses and

cellular studies have shown that CALD promoted the

proliferation, metastasis, and invasion of CRC cells and is

related to a reduction in OS (49). However, the exact

mechanism of CALD involvement in CRC remains to

be clarified.

Considering that the risk score model was derived from the

stemness index and metabolism-related genes, which were

significantly associated with antitumor immunity (13, 50), we

further investigated the immune contexture heterogeneity

between the high-risk and low-risk score groups. Tumor-

infiltrating immune cell analysis showed that the high-risk

score group had greater infiltration of CD8+ T cells, CD4+ T

cells, B cells, Treg cells, dendritic cells, macrophages, MDSCs,

neutrophils, regulatory T cells, and T helper cells, which is

consistent with infiltrating immune cells from colorectal
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cancer in a highly inflammatory state (51). Meanwhile,

Zhongshan cohort validated that CD8+T cells, CD19+B cells,

Foxp3+Tregs, and CD11c dendritic cells was more abundant in

the high-risk group. But an increase in the ratio of Foxp3+Treg

cells to CD8+T cells in high-risk group, which leads to an

immunosuppressive microenvironment. Treg cells promote

tumorigenesis and development by inhibiting adaptive anti-

tumor immunity, which is the key mechanism of tumor

immune escape (52). The ratio of Foxp3+Treg cells to CD8+T

cells as is a better variable because they are more representative

of the biological characteristics of infiltrating immune cells (53).

The immune microenvironment of tumor is closely related to

clinical outcome and drug resistance (54). Further

immunostaining experiments confirmed CD8+T-cell

dysfunction with decreased levels of cytotoxic molecules

(GZMB and PRF1) and increased the expression of immune

checkpoints (PD-1 and PD L1) in the high-risk score group,

resulting in a highly exhausted state and impaired immune

function. The effect of tumor on immune cells can lead to T

cell anergy or dysfunction, which promotes tumor escape and

therapeutic drug resistance (55). Our results suggested that high-

risk group induced an immunoevasive contexture and impaired

antitumor immunity, which explains the poor clinical prognosis.

Immunotherapy is a novel cancer treatment approach.

Although the effect is significant, only a fraction of the

patients responds to the treatment (56, 57). In the TCGA and

GEO databases, patients with CRC with high-risk scores had

higher expression of immunotherapeutic molecules (such as PD-

L1, CTLA4, HAVCR2 and LAG3), suggesting that CRC with

high-risk scores may be more likely to be affected by the

immune-checkpoint pathway, inhibit the antitumor immune

response, and lead to deterioration of prognosis. Similarly, the

TIDE algorithm predicted that patients with high-risk scores

were more sensitive to ICI therapy. In the Zhongshan Hospital

cohort, we confirmed that CD8+T cells in high-risk score

patients showed an exhausted T-cell phenotype with increased

expression of the immunosuppressive checkpoint, PD-1 and

PD-L1, compared with low-risk score patients. These findings

also suggest that CRC patients with high-risk scores may

clinically benefit from immunotherapy. The TMB score of

patients with the high-risk score group is higher, suggesting

that PD-1 blocking therapy has a certain curative effect on these

patients (13). Low TMB is an important reason for patient

resistance to immunotherapy (58). This provides a new

approach for stratifying this subgroup of patients with CRC to

identify those who may achieve a superior response

to immunotherapy.

Because of the close relationship of the stemness index and

chemotherapeutic drug resistance in cancer, we analyzed the

predictive ability of the risk score to chemotherapeutic drug

sensitivity and found that patients with high-risk scores were less

susceptible to a variety of small molecular anticancer drugs and

chemotherapeutic medicines in TCGA and GEO databases. In
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the Zhongshan Hospital cohort, our findings suggest that the

high-risk score group might have impaired therapeutic

responsiveness to ACT in TNM stage III-IV CRC. Some

studies have shown that in CRC, tumor stem cells lead to

chemotherapy resistance by inhibiting antiapoptotic gene

expression and reducing mitochondrial transcription initiation

(59, 60). Due to the heterogeneity of CRC, the response of

patients to chemotherapy is different, even at the same stage

(61). This further suggests that patients with high-risk scores are

potentially more suitable for immunotherapy than for

traditional chemotherapy. However, the exact correlation

between the risk score and the response to anticancer

treatment needs to be further explored in a larger CRC cohort.

Finally, to improve clinical application, mRNAsi-related

metabolic risk scores were combined with different

clinicopathological characteristics to construct a prognostic

nomogram and verify the predictive ability of the nomogram in

TCGA and GEO datasets. In the Zhongshan Hospital cohort, a

high-risk score was related to malignant progression and worse

clinical outcomes in patients with CRC. This risk score model

contains 21 important prognostic genes and has never been

reported to identify the immunoevasive subgroup of patients with

CRC in previous publications related to the CRC stemness index

(62). Furthermore, this risk score model could help molecular

typing and screening of differential subgroups to optimize

personalized treatment and facilitate clinical translation.

Our study bears limitations. First, the mechanism of crosstalk

between mRNAsi and metabolic reprogramming remains unclear,

and further experimental studies are needed. Second, the clinical

data of patients receiving immunotherapy in this study were

limited, and the robust ability of the risk score model to predict

immunotherapy responsiveness needs to be verified in a future

larger immunotherapycohort. Finally, although thenewmodel and

nomogram could accurately forecast the survival of patients with

CRCin theTCGAandGEOdatabases and theZhongshanHospital

cohort, more cell experiments, animalmodels, and clinical samples

are needed toverify the value of thismRNAsi-relatedmetabolic risk

score model before developing immunotherapy strategies for

subgroups of patients with CRC.

In this study, we proposed and validated a new risk score

model according to 21 mRNAsi-related metabolic genes. The

high-risk score group had a poorer clinical prognosis, inferior

sensitivity to chemotherapy, a potentially better response to

immunotherapy, and an immunoevasive environment, which

sheds light on more accurate risk stratification and divides

subgroups of patients with CRC for immunotherapy.
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prognostic factors in acute
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Affifiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research,
Nanjing, China, 6Translational Medicine Institute, Xi’an Jiaotong University Health Science Center,
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Acute myelocytic leukemia (AML) is a malignancy of the stem cell precursors of

the myeloid lineage. CD4+ and CD8+ T cells play pivotal roles in influencing

AML progression but are functionally suppressed in the bone marrow

microenvironment. We aimed to find hub genes related to T cell exhaustion

and suppression, thereby providing evidence for immunotherapy. In this study,

gene transcriptome expression data from TCGA and TARGET databases were

utilized to find key genes. Firstly, CIBERSORT immune cell infiltration algorithm

and WGCNA method were used to identify CD4+ and CD8+ T cells-related

genes. Univariate and multivariate cox regression analyses were then

introduced to construct the overall survival prognosis model and included

hub genes. The ESTIMATE and ssGSEA scoring methods were used to analyze

the correlation between the hub genes and immune activity. Single-cell

transcriptome analysis was applied to detect the immune cells expressing

hub genes, hence, to detect exact mechanisms. Consequently, FLT3LG and

IFITM3P6 were determined to be positively correlated with patients’ overall
frontiersin.org01
97

https://www.frontiersin.org/articles/10.3389/fimmu.2022.980911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.980911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.980911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.980911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.980911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.980911/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.980911&domain=pdf&date_stamp=2022-08-23
mailto:yangdaheng@njmu.edu.cn
https://doi.org/10.3389/fimmu.2022.980911
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.980911
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2022.980911

Frontiers in Immunology
survival andmicroenvironment immune activity. Further study suggested FLT3-

FLT3LG and IFITM3P6-miR-6748-3p-CBX7 signaling axes were involved in

CD4+ and CD8+ T cells activation. This may be one of the mechanisms of T

cells suppression in AML.
KEYWORDS

acutemyelocytic leukemia, bonemarrowmicroenvironment, dendritic cell activation,
T cell activation, FLT3LG, IFITM3P6
Introduction

Acute myelocytic leukemia (AML) is a group of malignant

clonal diseases that originate from the myeloid stem and

progenitor ce l l s and are highly heterogeneous in

immunophenotype, cytogenetics, and molecular genetics (1).

It’s the most common acute leukemia in adults (~80% in this

group), and the proportion of pediatric patients is about 20% (2).

Similar to other malignant tumors, genetic variations consist of

the main reason that leads to neoplastic changes and clonal

proliferation. The incidence of AML elevated with age, from ~1.3

cases per 100 thousand population less than 65 years old, to 12.2

per 100 thousand population that over 65 years old (3). With a

very variable prognosis and a high mortality rate, 5-year overall

survival in AML cases is less than 50%, and 20% of elderly

patients will survive 2 years after diagnosis (4, 5). In the past

decades, treatment paradigms were still unchanged with survival

curves remaining stagnant (6).

The current regimens include a high-intensity induction

phase wherein cytotoxic chemotherapy, or other target-specific

agents are administered based on disease profile as well as patient

risk and comorbidities (6, 7). Due to the minimal residual disease

in the bone marrow (BM) microenvironment, failure in

treatment often occurred (8, 9). Therefore, a better

understanding of the AML microenvironment is crucial for

preventing tumor development and designing an effective

treatment regimen. Studies have reported various disorders in

T cell immunity, including increased T regulatory cells, decreased

T helper cells, exhausted T cells, functional T cell suppression

and abnormal activity of transcription factors in the presence of

AML (10). Consequently, T cell-associated functions are changed

to allow immunity evasion of tumor cells. The importance of T

cell in antileukemia is confirmed by Lamble et al., they showed an

association between T cells and clinical outcomes based on their

research. Patients with higher BM T cell percentages (over 78.5%

of total lymphocytes) presented favorable overall survival (11). In

addition, an in vitro co-culture experiment of T cells and AML

leukemic cells revealed that pooled CD4+ and CD8+ cells

cytotoxic against blasts (32%, 30:1 E/T ratio) (12). The

antitumor effect of CD8+ T cells is mainly attributed to it can
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recognize AML-derived mutated peptides and induce a cytotoxic

effect on tumor cells. One important mechanism was revealed in

a study that CD8+ T cells could disrupt AML progression caused

by mutation of nucleophosmin 1 (NPM1) or FMS-like tyrosine

kinase receptor 3 internal tandem duplication (FLT3-ITD) (13,

14). Other studies demonstrated that CD4+ T cells prompt

apoptotic effect on AML cells and are mainly associated with

INF-g release (15).
It has been well documented cytotoxic effects of CD4+ and

CD8+ T cells against AML cells, which consists of important

mechanisms in influencing disease relapse and drug resistance in

the tumor microenvironment (TME) (16, 17), blocking tumor

progression, invasiveness, and metastasis, and even maintaining

a cancer stem-like phenotype (18). But so far, the molecular and

cellular mechanisms of T cell exhaustion and functional

suppression remain unclear. A better understanding of these

will give a deep insight into the balance of tumor immune

surveillance and cancer cell evasion in TME, and help to develop

novel immunotherapeutic approaches.

The rapid development of bioinformatics facilitates the

exploration of potential mechanisms driving tumor

progression. In this study, we sought to determine the

relationship between hub genes and T cells in TME to reveal

the landscape of AML progression.
Materials and methods

Data acquisition and processing

Gene transcriptome expression data of AML were obtained

from The Cancer Genome Atlas (TCGA) (https://portal.gdc.

cancer.gov/) and Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) (https://ocg.cancer.

gov/programs/target/data-matrix) databases. The blood gene

expression data of healthy controls were obtained from the

Genotype-Tissue Expression (GTEx) (https://gtexportal.org/

home/datasets) database, including 755 cases. All expression

data were raw count values. Before analysis, these values were

converted into transcripts per million (TPM) values.
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Batch correction of the merged data was performed by the

normalizeBetweenArrays function of the limma package.

Finally, the expression data were filtrated with a criterion by

the average expression level of each gene across samples > 0.1,

and the repeated genes were averaged.
Analysis of immune cell infiltration

Firstly, the immune cell infiltration landscape of TCGA and

TARGET data was explored to find relationships between

infiltrating immune cells, especially CD4+ and CD8+ T cells,

and AML patients’ overall survival (OS). A deconvolution

algorithm CIBERSORT (https://cibersortx.stanford.edu/)

calculates the composition and proportion of infiltrating

immune cells (19). It has been widely used to reveal the

immune cell subtypes infiltrating numerous cancers (20, 21).

With matched R script v1.03 (last updated 07-10-2015) and

feature genes expression matrix of 22 immune cell subsets

(downloaded from CIBERSORT website) as background

expression data, the infiltration features of these immune cells

in each sample were determined. Samples with P < 0.05 were

included for further analysis. The analysis was based on e1071,

parallel and preprocessCore packages.
Screening of immune cell infiltration-
related genes

Next, we introduced weighted gene co-expression network

analysis (WGCNA), which is used to analyze gene expression

patterns of multiple samples, to identify core modules and

central genes that are associated with infiltrating CD4+ and

CD8+ T cells (22). WGCNA method can cluster genes and form

modules by similar gene expression patterns and analyze the

relationship between modules and specific features. Candidate

genes were screened by module membership (MM) > 0.8 and

gene significance (GS) > 0.4, with both threshold of P-value <

0.05. Then these candidate genes were intersected between

TCGA and TARGET data. Gene co-expression modules were

identified using the WGCNA package.
Identification of hub genes

Based on those intersected genes, AML patients’ overall

survival prognosis model was constructed using TCGA data by

univariate and multivariate cox regression methods. Univariate

cox regression analysis for survival-related genes was

determined by P < 0.05. Finally, genes included in the

prognosis model were defined as hub genes. The analysis was

based on survival and survminer packages.
Frontiers in Immunology 03
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Relationship between hub genes and
immune activity in TME

To investigate the correlation of hub genes and immune

activity in microenvironment, the single-sample gene set

enrichment analysis (ssGSEA) algorithm, which standardizes

the gene expression value of an AML sample by rank and

calculates the enrichment fraction of 29 immune cell types

(23) using the empirical cumulative distribution function (24),

was implemented to group AML samples into different immune

activity sets. Patients were assigned into high- and low-immune

activity groups using the GSVA package.

Furtherly, the ESTIMATE method (25), an algorithm

designed to calculate scores for reflecting the infiltration levels

of immune cells and stromal cells within the TME on the

foundation of their specific genes expression level, was

introduced to validate the accuracy of immune activity

grouping based on the TCGA data. Then the relationship

between hub genes expression level and immune activity

was determined.
Detection of hub genes at the
single-cell level

Commonly, accurate positioning of gene expression in

certain cells will contribute to a better understanding of their

functional mechanism, and single cell RNA sequencing (scRNA)

technology provides us a chance to realize the research.

Herein, the Tumor Immune Single-cell Hub (TISCH)

(http://tisch.comp-genomics.org/home/), a database that

integrated enormous scRNA data of various tumors, was used

to obtain the accurate expression location of these genes.

AML_GSE116256 (26) and PBMC_30K_10× datasets (a test

data from 10× Genomics website) for AML and healthy control

were obtained. Then, the immune subset of malignant cells in

which genes are mainly expressed was explored to determine the

precise mechanisms of action.
Functional enrichment analysis of hub
genes

To find the function of these hub genes, gene set enrichment

analysis (GSEA) was performed based on their expression level to

complete gene ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses.

According to the screening criteria suggested by MsigDB

website (https://www.gsea-msigdb.org/gsea/msigdb), enrichment

terms were included with NOM p-value < 0.05 and FDR q-value <

0.25. GSEA was performed by gsea software (version 3.0) and

visualization was based on the clusterProfiler package.
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Pseudogene exploration

A pseudogene was included as a hub gene in this study.

Pseudogenes are a special type of long non-coding RNAs

(lncRNAs) that regulate different tumorigenic processes. To

detect its function involved in competing for endogenous RNA

(ceRNA) reaction in AML, we firstly retrieved its sequence

information from the UCSC Genome Browser (http://genome.

ucsc.edu/) and predicted its location in lncLocator (http://www.

csbio.sjtu.edu.cn/bioinf/lncLocator/) and iLoc-LncRNA (http://

lin-group.cn/server/iLoc-LncRNA/predictor.php) databases.

Then its predicted mRNA sequence was put in miRDB (http://

www.mirdb.org/) database to select its sponge-binding miRNAs.

LncRNAs are confirmed to be critical in influencing

transcription factors involved in biological processes, therefore

yielding or facilitating tumor development. We downloaded a

gene set containing 318 tumor-related transcription factors

(Supplementary Table 1) from the Cistrome Cancer (http://

cistrome.org/CistromeCancer/) database, mapped them to

TCGA expression data, and resulted in pseudogene-related

transcription factors using the univariate Cox regression

analysis method. Genes with a correlation coefficient > 0.5 and

P < 0.05 were selected.

Additionally, the catRAPID omics database (http://service.

tartaglialab.com/page/catrapid_group) was used to find

potential genes interacting with the pseudogene. Moreover,

pseudogene-related transcription factors and potentially

related genes were intersected and put into the miRDB

database to find potentially interacting miRNAs. Finally,

pseudogene- and intersected transcription factors-related

miRNAs were further intersected to determine those genes

involved in the ceRNA mechanism.
Validation of genes in peripheral blood
by qRT-PCR

Based on these findings , we col lected ethylen-

ediaminetetracetic acid disodium (EDTA-Na2) anticoagulant

peripheral whole blood of 24 AML patients and 19 healthy

controls from the Children’s Hospital of Nanjing Medical

University and The First Affiliated Hospital of Xi’an Jiaotong

University from November 2020 to February 2021. All patients

were initially diagnosed with AML; their blood was obtained

before treatment. For mRNA and lncRNA validation, total RNA

was extracted using the RNAprep Pure Hi-Blood Kit (TianGen

Biotechnology, China) and reverse transcribed using the

PrimeScript RT reagent kit (Takara, Japan). Primer sequences,

which were synthesized by Generay Biotechnology (Shanghai,

China), are listed in Supplementary Table 2. For microRNA

validation, the specific primers of real-time reverse transcription

PCR (qRT-PCR) from Bulge-loop™ miRNA qRT-PCR Primer

Sets (one RT primer and a pair of qPCR primers for each set) for
Frontiers in Immunology 04
100
hsa-miR-6748-3p quantification were designed by RiboBio

(Guangzhou, China).

Quantification of all genes was based on a real-time

fluorescent quantitative PCR assay. The SYBR Green dye was

purchased from Takara (Japan). For mRNA and lncRNA,

GAPDH was used as an endogenous control gene; U6 was

used as an endogenous control for miRNA. The relative

quantification for gene expression was defined as 2-DDCT

compared with control group. All PCR reactions were

performed in triplicate.
Dual-luciferase reporter gene assay and
ceRNA mechanism validation

This study was performed in human embryonal kidney 293T

cell line, CD4+ T cell and CD8+ T cell. CD4+ and CD8+ T cells

were extracted from EDTA-Na2 anticoagulant peripheral whole

blood (donated by Daheng Yang), using MojoSort™ Human

CD4T/CD8T Cell Isolation Kit (BioLegend, USA). 293T cells

and T cells were maintained in Dulbecco’s Modified Eagle’s

medium (DMEM, Hyclone, USA) and 1640 medium (Hyclone,

USA), respectively, with 10% fetal bovine serum (Gibco, USA),

100 U/ml penicillin and 100 U/ml streptomycin (Beyotime,

China), and incubated at 5% CO2 at 37°C.

PmirGLO-CBX7 vector plasmids (mutant and wild types)

were constructed by Generay Biotechnology (Nanjing, China);

micrON™ miR-6748-3p mimic, micrOFF™ miR-6748-3p

inhibitor and their negative controls were synthesized by

RiboBio; overexpression plasmid and shRNA plasmid of

IFITM3P6 were constructed by Qingke Biotech (Beijing,

China), target sequences were presented in Supplementary

Table 2. All experiments were performed in 6-well plates

(Corning, USA) in triplicates. Synthetic nucleic acids were

transfected by lipofectamine 2000 (Invitrogen, USA) to cells.

Reporter gene assay was performed using the Dual-Luciferase®

Reporter Assay System Kit (Promega, USA) according to the

manufacturer’s instructions, plasmids were quantified by 4mg
and miR-6748-3p mimic was quantified by 100nM per well.

Upregulation and downregulation of miR-6748-3p were

quantified by 100nM mimic and 150nM inhibitor per well,

respectively. Overexpression and down expression of

IFITM3P6 plasmids were quantified by 4mg, respectively.

CBX7 expression levels were detected by qRT-PCR with

GAPDH as endogenous control in triplicates.
RNA N6-methyladenosine (m6A) and
DNA methylation analysis

RNA m6A and DNA methylation are important biological

processes affecting expression of genes. Their abnormalities will

lead to different consequences in tumor progression. Our study
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has included hub genes and their relevant genes, but aberrant

expression mechanism is need to be elucidated. Methylation

may be the main reason.

Herein, we downloaded DNA methylation data of 140 AML

samples from the TCGA database using gdc-client tool

(downloaded from https://gdc.cancer.gov/access-data/gdc-data-

transfer-tool), and extracted methylation positions for

each sample.

For RNA m6A methylation analysis, we compared the

correlations of included genes with m6A-related genes by

Pearson test. For DNA methylation analysis, correlations of

gene expression with methylation and gene expression with

methylation position were tested. All statistical significance

was determined by Pearson coefficients > 0.3 or < -0.3, and P

< 0.05.
Statistical analysis

All statistical analyses were performed using R software

(version 4.0.3) and RStudio (version 1.2.1335). The Wilcox

signed-rank test was used for extracting differentially

expressed genes (DEGs) with a |log2Fold Change (FC)| > 2 and

adjusted P-value < 0.01. PCR detection was analyzed by

unpaired t-test using GraphPad Prism 8 software (version

8.0.1), with a P < 0.05.
Results

Data preprocessing and identification of
DEGs

The flow chart of the study is shown in the Supplementary

Figure 1. Clinical information from the TCGA and TARGET

datasets is shown in Table 1. There were 151 samples from 151

patients in TCGA and 358 samples from 296 patients in the

TARGET cohort. After data batch correction by the normalize

BetweenArrays function of the limma package, principal

component analysis (PCA) showed that the tumor samples

were significantly different from the control samples

(Supplementary Figures 2A, B). Heatmap of the top 1000

genes with the highest standard deviation (SD) values

indicated that there were significant differences between

groups (Supplementary Figures 2C, D). The results suggested

that the batch effect of the corrected expression data could be

ignored. The number of DEGs in TCGA and TARGET was

11084 and 8436, respectively. WGCNA analysis was based on

these DEGs.
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CD4+ and CD8+ T cells infiltration levels
are associated with OS of AML patients

CIBERSORT deconvolution algorithm showed that the

infiltration of 22 types of immune cell was significantly

different between the tumor group and the control group in

TCGA (tumor group, n = 121; control group, n = 375) and

TARGET (tumor group, n = 224; control group, n = 751)

datasets. The results revealed that the infiltration level of

resting memory CD4+ T cells was significantly increased in

tumors. However, the infiltration levels of CD8+ T cells and

naïve CD4+ T cells, activated memory CD4+ T cells were

markedly reduced in tumors, both in TCGA and TARGET

samples (Figures 1A, B; Supplementary Figure 3).

In the TCGA dataset, CD8+ T cells and activated memory

CD4+ T cells were significantly associated with the patient’s

survival. The OS rate of the high-level group was markedly

higher than that of the low-level group (P = 0.012; P = 0.012).

Similar results were observed for CD8+ T cells and naïve CD4+

T cells in the TARGET dataset (P = 0.014; P< 0.001). However,

the infiltration of resting memory CD4+ T cells showed a

contrary result (P = 0.009) (Figures 1C–G).
Identification of hub genes

The WGCNA method was used to screen out genes related

to infiltrating CD4+ and CD8+ T cells. By combining the

CIBERSORT results and the differential gene expression

matrices, outlier samples were deleted through sample

clustering to reduce sample derived deviation. A soft threshold

power of 4 was chosen for TCGA data to construct weighted

genes co-expression networks, and 23 color modules were finally

obtained by merging similar modules. Similarly, a soft threshold

power of 8 was selected for TARGET data, and 21 color modules

were finally obtained (Supplementary Figure 4).

Interestingly, the correlation analysis between the module

genes and immune cells showed some similar patterns in the two

datasets. In the TCGA dataset, the green module was

significantly correlated with CD8+ T cells and resting memory

CD4 T+ cells (R = 0.7, P = 9.2e-106; R = 0.69, P = 1.3e-101,

respectively) (Figures 2A–C). In the TARGET dataset, the yellow

module was significantly correlated with CD8+ T cells and

resting memory CD4+ T cells (R = 0.76, P = 5.3e-111; R =

0.44, P = 4.8e-29, respectively) (Figures 2D–F). In addition,

infiltration of CD4+ and CD8+ T cells was markedly associated

with the OS rate of AML patients. Consequently, 94 genes were

obtained from the TCGA dataset and 89 genes from the

TARGET dataset, according to the screening criteria. The
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intersection of the two datasets included 37 candidate

genes (Figure 3A).

The univariate Cox regression method screened 6 OS-related

genes from these candidate genes using TCGA data, including

RP11-23J18.1, FLT3LG, LCK, RNF157, GOLGA7B and ZNF831.

All of the 6 genes were found to be downregulated in the tumor

samples and were significantly associated with the OS rate of

AML patients (Figure 3B, Supplementary Figure 5). Multivariate

cox regression analysis was used to build a survival prediction

model, which finally included RP11-23J18.1 and FLT3LG

(Figure 3C). The Kaplan-Meier curve showed that the OS rate

in the lower-risk group was significantly higher than that in the

higher-risk group (P = 4.251e-03), suggesting that the patients’

overall survival time decreases with an increase of the risk score

(Figure 3D, E).
RP11-23J18.1 and FLT3LG are positively
correlated with immune activity

Next, the relationship between RP11-23J18.1 and FLT3LG

and immune activity was explored. Firstly, we utilized the

ESTIMATE algorithm to evaluate the TCGA expression

matrix, obtained the immune cell score, stromal cell score,

ESTIMATE score (the total score) and tumor purity score in
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the TME (Figure 4A), finding that immune cell score, stromal

cell score and ESTIMATE score were positively correlated with

immune activity (Figures 4B–D), while tumor purity was

inversely correlated with immune activity (Figure 4E). That

validated high- and low-immune activity grouping by ssGSEA

method was accurate.

Further analysis showed that the expression levels of

FLT3LG and RP11-23J18.1 genes were significantly higher in

the high immunocompetence group compared with the low

immunocompetence group in the TCGA (P < 0.001; P < 0.001;

Figures 4F, G). These results suggest that FLT3LG and RP11-

23J18.1 may play an important role in the activation process of

CD4+ and CD8+ T cells. Moreover, GSEA analysis showed that

FLT3LG and RP11-23J18.1 were mainly enriched in antigen

receptor-mediated signaling transduction, cell killing, T cell

migration and differentiation, interleukin regulation, etc.

(Figure 5). These biological processes are closely related to T

cells, which are involved in killing tumor cells.
FLT3LG-FLT3 axis involved in influencing
dendritic cell activation

In TISCH database, we retrieved FLT3LG is mainly expressed

in CD4+ and CD8+ T cells in healthy control (PBMC_30K_10×
TABLE 1 Clinical characteristics of patients in TCGA and TARGET datasets.

Characteristics Databases

TCGA TARGET

Age (year) > 50 94 >12 122

≤50 57 <=12 174

Gender male 83 Male 159

female 68 Female 137

Leukocyte (×109/L) >30 63 >30 182

≤30 88 ≤30 114

Blast cell (%) >30 84 >30 270

≤30 67 ≤30 17

NA 0 NA 9

FAB category M0 15 M0 8

M1 35 M1 37

M2 38 M2 73

M3 15 M3 0

M4 29 M4 72

M5 15 M5 54

M6 2 M6 4

M7 1 M7 9

unknown 1 unknown 39

Survival status alive 54 alive 158

dead 97 dead 138
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dataset, Figures 6A, C). Its receptor, FLT3, is mainly expressed in

dendritic cells (DCs) (Figure 6E). Pearson test determined

FLT3LG expression was positively correlated with CD40

expression, which is the marker of dendritic cell activation

(Figure 6G). In the AML_GSE116256 dataset, FLT3LG is

mainly expressed in CD4+ T cells, but compared with the

PBMC_30K_10× dataset, the expression level of FLT3LG is

remarkably reduced (Figures 6B, D), and FLT3 is mainly

expressed in leukemia cells and precursor cells (Figure 6F). This

reminder us FLT3LG (ligand) may activate DCs by acting on

FLT3 (receptor) under physiological conditions.
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To prove it, we purchased primary dendritic cells (cat NO.:

CP-R162) that were extracted from the bone marrow of rats by

flow cytometry from Procell Life Science & Technology

Corporation (Wuhan, China), cultured them in customized

media (provided by the company). Added 1mg/ml, 10mg/ml,

50mg/ml, 100mg/ml and 200mg/ml of recombinant rat Flt3lg

cytokine (PEPROTECH, USA) per well (6-well plate) to

stimulate the activation of dendritic cells and performed qRT-

PCR, found that expression of CD40 was higher than the

negative control, and its expression presented positive dose-

dependent (Figure 6H).
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FIGURE 1

Differences of immune cell infiltration between the tumor and the normal group, and correlation between immune cells and the overall survival
rate. (A) Violin plot of immune cell infiltration in TCGA. (B) Violin plot of immune cell infiltration in TARGET. (C, D) CD8 and activated memory
CD4 T cells were associated with the overall survival (OS) rate, which was significantly higher in the high-level group than in the low-level group
in TCGA. (E–G) CD8 T cells and naïve CD4 T cells were associated with the OS rate, which was markedly higher in the high-level group than in
the low-level group in TARGET; however, resting memory CD4 T cells showed the opposite results.
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IFITM3P6 influences CBX7 expression by
sponge binding miR-6748-3p

The pseudogene, RP11-23J18.1 (ensemble name

ENSG00000258352), was put into the UCSC Genome Browser

(http://genome.ucsc.edu/) and GeneCards (https://www.

genecards.org/) databases. It was confirmed that it mostly

matched with IFITM3P6 (IFITM3P pseudogene 6). The

annotation for its gene version (ENSG00000258352.1_8) and

transcript version (ENST00000553227.1_1) was validated level.
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Therefore, the predicted RNA sequences of IFITM3P6 provided

by the UCSC database were obtained (Supplementary Table 3).

In the NCBI database, the gene ID of IFITM3P6 was confirmed

to be 643058 (Homo sapiens). Transcriptome sequencing

analysis showed that IFITM3P6 had the highest mean

expression in blood compared with other tissues and organs in

its physiologic context in the GTEx (https://www.gtexportal.org/

home/gene/ENSG00000258352 ) database (Supplementary

Figure 6). In subsequent studies, IFITM3P6 will be used as the

pseudogene instead of RP11-23J18.1.
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FIGURE 2

WGCNA analysis between genes and immune cell infiltration signatures. (A, D) Heatmap of the correlations between module eigengenes and
immune cells infiltration. (B) Pearson correlation between gene significance (GS) in CD8 T cells and module membership (MM) in the green
module in the TCGA database. (C) Pearson correlation between GS in memory CD4 T cells and MM in the green module in the TCGA database.
(E) Correlation between GS in CD8 T cell and MM in the yellow module in the TARGET database. (F) Correlation between GS in resting memory
CD4 T cells and MM in the yellow module in the TARGET database.
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In the lncLocator database, the predicted subcellular

locations of IFITM3P6 were mainly in cytoplasm and cytosol

with a score of 0.449968 and the nucleus with a score of

0.416618. In the iLoc-LncRNA database, the subcellular

location was cytoplasm and cytosol, with a probability score of

0.956631. Based on these results, we hypothesized that

IFITM3P6 is a lncRNA that exerts function in the cytoplasm.

A total of 579 IFITM3P6-related genes were retrieved from the

catRAPID omics database (Supplementary Table 4), which are

potentially binding to IFITM3P6 directly or indirectly.

Next, 10 transcription factors were identified, which were

significantly correlated with IFITM3P6. Then, 579 IFITM3P6-

related genes were intersected with the 10 IFITM3P6-related

transcription factors, including CBX7 as a core gene (Figure 7A).

In TCGA data, the expression of IFITM3P6 was positively

correlated with CBX7 expression level by Pearson test (R = 0.57,

P = 2.116e-14) (Figure 7B). scRNA analysis showed that CBX7

was mainly expressed in T cells, B cells, NK cells and plasma cells

in a healthy control, while it presented a striking decrease in the

AML data (Figures 7C, D).

Furthermore, 18 IFITM3P6-related miRNAs and 142 CBX7-

related miRNAs were predicted in the miRDB database. miR-

6748-3p was finally intersected from them (Figure 7E;

Supplementary Table 5). Compared to healthy controls,

IFITM3P6 and CBX7 were significantly decreased in AML
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blood and HL-60 cell (t = 9.665, P < 0.0001; t = 9.043, P <

0.0001, respectively). However, miR-6748-3p was significantly

increased in AML blood samples (t = 4.197, P <

0.001) (Figure 7F).

The binding sites of miR-6748-3p to CBX7 and IFITM3P6

were predicted in the miRDB database (Figure 7G). Dual-

luciferase reporter assay in 293T cells confirmed that CBX7

wild type and miR-6748-3p mimic co-transfected group

significantly decreased luciferase activity compared with CBX7

wild type and miR-6748-3p negative control co-transfected

group (P < 0.0001). The result was comparable with CBX7

mutant type and miR-6748-3p mimic co-transfected group (P <

0.0001) (Figure 7H), while the luciferase activity of the co-

transfected group with miR-6748-3p mimic and CBX7 mutant

type had no significance compared to control group, suggesting

that miR-6748-3p could bind to the 3’ UTR of CBX7, thereby

interfering with its expression. Similar results were validated in

CD4+ and CD8+ T cells (Supplementary Figure 7).

Compared with negative controls, mRNA of CBX7

presented significantly lower expression in miR-6748-3p

mimic group, while presented higher expression in miR-6748-

3p inhibitor group (Figures 7I, J). Furtherly, qRT-PCR revealed a

higher expression of CBX7 compared with negative control

when IFITM3P6 was upregulated, while its downregulation led

contrary result (Figures 7K, L).
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FIGURE 3

Screening of survival-related differentially expressed genes. (A) The intersection of candidate genes in TCGA and TARGET datasets. (B) Univariate
cox regression analysis of 6 survival-related genes in TCGA. (C) Multivariate cox regression analysis included RP11-23J18.1 and FLT3LG as
survival predicting gene models in TCGA. (D, E) Application of the survival predicting model in TCGA dataset.
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RNA m6A and DNA methylation regulate
gene expression

FLT3LG, IFITM3P6 and CBX7 were downregulated in AML

samples, while FLT3 was upregulated. The mechanism

underlying the cause of aberrant gene expression is worthy of

exploring. We found that FLT3 expression is negatively

correlated with its DNA methylation level (R = -0.338, P =

5.943e-04) (Figure 8A), in which the main methylation site is

cg26472910 (Figure 8B). However, FLT3LG, IFITM3P6 and
Frontiers in Immunology 10
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CBX7 expression presented non-significant correlations with

their DNA methylation level.

Furthermore, the relationship between the expression of

these genes and m6A-related gene expression was assessed,

found that FLT3LG was negatively correlated with m6A writer

and m6A reader genes, including RBMX (writer, R = -0.416, P =

1.068e-07, Figure 8C), ZC3H13 (writer, R = -0.311, P = 9.98e-05,

Figure 8D), HNRNPC (reader, R = -0.418, P = 9.025e-08,

Figure 8E) and YTHDF2 (reader, R = -0.368, P = 3.373e-06,

Figure 8F), but positively correlated with m6A eraser gene,
A

B D

E F G

C

FIGURE 4

Evaluation of tumor microenvironment (TME). (A) Heatmap of immune cell, stromal cell and ESTIMATE scores and tumor purity in high and low
immune activity groups. (B–E) Relationship between immune cell, stromal cell and ESTIMATE scores and tumor purity with immune activity in
the TME. (F, G) Relationship between FLT3LG and RP11-23J18.1 expression and immune activity. ***p < 0.001.
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ALKBH5 (R = 0.45, P = 6.78e-09, Figure 8G). IFITM3P6 was

negatively correlated with m6A reader gene, EIF3 (R = -0.321, P

= 5.748e-05, Figure 8H). CBX7 was negatively correlated with

m6A writer and m6A reader genes, including METTL14 (writer,

R = -0.383, P = 1.188e-06, Figure 8I), ZC3H13 (writer, R =

-0.361, P = 5.157e-06, Figure 8J), HNRNPC (reader, R = -0.542,

P = 6.941e-13, Figure 8K), YTHDF2 (reader, R = -0.406, P =

2.266e-07, Figure 8L) and EIF3 (reader, R = -0.582, P = 4.649e-

15, Figure 8M).
FLT3LG, IFITM3P6 and CBX7 may exist
coupling effects

Now that FLT3-FLT3LG and IFITM3P6-miR-6748-3p-

CBX7 axes were determined in activating T cells, we were

curious about whether they exist coupling effects. Interestingly,

we found FLT3LG was positively correlated with IFITM3P6 (R =

0.41, P = 1.7e-08, Figure 9A) and CBX7 (R = 0.45, P = 5e-10,

Figure 9B) in TCGA data. It’s suggested that CBX7 may be the

key node connecting FLT3LG and IFITM3P6.

Furtherly, KEGG enrichment analysis by GSEA method

showed high expression of FLT3LG and IFITM3P6 were both

enriched in NOTCH signaling pathway (Figures 9C, D).
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Meanwhile, CBX7 was determined to be positively correlated

with NOTCH1 (R = 0.49, P = 4.9e-12, Figure 9E) and MAML2

(R = 0.53, P = 1.1e-13, Figure 9F).

NOTCH pathway has been well documented in activating

CD4+ and CD8+ T cells. CBX7 was reported to involve in FasL

suppression, the latter is an important factor suppressing T cell

activation. This reminded us that NOTCH1, MAML2 and CBX7

in nucleus may form a suppressive complex to suppress FasL

expression. In PPA-Pred2 database (https://www.iitm.ac.in/

bioinfo/PPA_Pred/), a protein-protein affinity predictor, we

retrieved their potential binding affinity by putting their

protein sequences, and predicted value of Delta G (DG,
binding free energy) between CBX7 and NOTCH1 is -12.58

kcal/mol, between CBX7 and MAML2 is -16.91 kcal/mol,

between NOTCH1 and MAML2 is -30.07 kcal/mol. These

provide evidence that CBX7, NOTCH1 and MAML2 exist

binding potential to reduce FasL expression.

Ligand-receptor reaction is the indispensable condition for

signaling pathway activation. Herein, we found Dll1 (delta like

1), the ligand of NOTCH receptor, in rat bone marrow-derived

dendritic cells was significantly increased in Flt3lg-stimulating

model, with a trend of dose-dependent (Figure 9G), revealing

that activated dendritic cells, which is stimulated by FLT3LG-

FLT3 axis, will further activate NOTCH pathway in T cells.
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FIGURE 5

GO term enrichment analysis of FLT3LG and RP11_23J18.1 by GSEA method. (A) GO analysis of FLT3LG. (B) GO analysis of RP11_23J18.1.
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Discussion

AML is a biologically and clinically heterogeneous disease,

despite advances in supportive care and prognostic risk

stratification that have been optimized for established

treatments, overall long-term survival remains a challenge (3).

Leukemia blasts exhibit impressive immunoediting capabilities

under the selective immune pressure. The presence of T cells at

the tumor site is the prerequisite for immune recognition and

elimination of AML cells, also for any therapy leveraging on this

condition. In a mouse model of AML, deletional CD4+ and CD8

+ T cell tolerance induction is attributed to leukemia antigen
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presentation by immature antigen-presenting cells (DCs) or

splenic CD8a+ dendritic cells (27, 28). Moreover, a recent

study demonstrated loss of plasmacytoid DC differentiation

was associated with persistence of the residual disease after

AML treatment and unfavorable outcomes (29).

Our present research and those previously reported studies

have confirmed that FMS-related tyrosine kinase 3 (FLT3) is

mainly physiologically expressed in DCs (30), but pathologically

expressed in malignant and progenitor cells. FLT3 ligand

(FLT3LG) is predominantly produced by lymphocytes,

especially T cells (31). Admittedly, FLT3LG has been shown to

bind to FLT3 (receptor) on DCs to stimulate their differentiation
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FIGURE 6

Single-cell transcriptome analysis revealed detailed gene location in various cell types. (A, B) UMAP cluster after cluster analysis of peripheral
blood mononuclear cells (PBMC) and acute myelocytic leukemia (AML). (C, E) Violin plot and heatmap of FLT3LG and FLT3 expression in the
PBMC_30K_10× dataset. (D, F) The transcription level of FLT3LG and FLT3 in cell types of the AML_GSE116256 dataset. (G) FLT3LG expression
was positively correlated with CD40 expression in TCGA data. (H) CD40 expression was significantly elevated when Flt3lg cytokine activation in
dendritic cells. ***p < 0.001; ****p < 0.0001.
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and expansion, facilitating tumor antigen cross-presentation and

anticancer immune responses (32). However, in a malignant

context, FLT3 mutations induce receptor dimerization, resulting

in constitutive activation of PI3K-AKT, RAS-MEK-MAPK and

STAT-5 signaling pathways (33).

We found that low DNA methylation occurred in AML,

induced upregulation of FLT3, that’s a reason for eliciting pro-

tumor signaling pathway activation. Targeting the methylation

site (cg26472910) may lead to the elimination of FLT3

upregulation. FLT3LG expression was positively correlated
Frontiers in Immunology 13
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with the N6-methyladenosine (m6A) eraser gene (ALKBH5)

but negatively correlated with the writer (RBMX, ZC3H13)

and reader (HNRNPC, YTHDF2) genes, and induced its low

expression. Considering FLT3LG is positively correlated with

immune activity in the TME, this might be one of the reasons for

the attenuated power of DCs in tumor antigen presentation.

Regarding DCs function, it’s been well documented as the

strongest presenting cell in activating T cells. Hence, FLT3LG-

FLT3 axis is a key way to promote DC-based cross-priming of

antileukemia T cells.
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FIGURE 7

ceRNA mechanism detection of IFITM3P6 in T cell activation. (A, B) CBX7 was determined as a hub transcription factor that is computationally
correlated with IFITM3P6. (C, D) Location of CBX7 in cell subtypes in healthy and AML single-cell transcriptome sequencing datasets. (E) Venn
diagram of IFITM3P6- and CBX7-related miRNAs. (F) Relative expression of IFITM3P6, CBX7 and miR-6748-3p compared between the AML
group and healthy control group. (G) Potential competing endogenous RNA (ceRNA) mechanism of IFITM3P6 and CBX7. (H) Dual-luciferase
reporter assay revealed that miR-6748-3p could bind to the 3’ UTR of CBX7. (I, J) MiR-6748-3p expression was negatively correlated with CBX7
expression. (K, L) IFITM3P6 expression was positively correlated with CBX7 expression. ***p < 0.001; ****p < 0.0001.
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IFITM3P6 was identified as a special type of lncRNA that

regulates AML processes and positively correlated with immune

activation in this study. It was predicted to be mainly in the

cytoplasm and hypothesized that it may exert functions via the

ceRNA mechanism. Based on these findings and analysis of

multiple databases, we found that the IFITM3P6-miR-6748-3p-

CBX7 axis may play an important role in regulating the activity

of T cells.

Chromobox homolog 7 (CBX7) is a polycomb protein

involved in the formation of polycomb repressive complex 1.

Low expression of the CBX7 gene is associated with poor

prognosis in most cancers (34). It has been reported that
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CBX7 represses FasL expression in CD4+ T cells, consequently

preventing CD4+ T cell apoptosis (35). Here, we also found that

CBX7 expression was negatively correlated with caspase 3

expression (data not presented), suggesting that the

IFITM3P6-miR-6748-3p-CBX7 axis modulates T cells activity

and apoptosis.

M6A is methylation that occurs in the N6-position of

adenosine, which is the most prevalent internal modification

in eukaryotic mRNA. Accumulating evidence suggests that m6A

modulates gene expression (36). We found that EIF3 (m6A

reader) was reported to be upregulated in AML (37) and was

negatively correlated with IFITM3P6, suggesting that m6A
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FIGURE 8

Functional mechanism analysis for FLT3LG, IFITM3P6 and CBX7. (A, B) Relationship between FLT3 DNA methylation and FLT3 expression and
the main methylation site. (C–G) Relationship between FLT3LG expression and N6-methyladenosine (m6A) methylation-related gene
expression. (H) Relationship between IFITM3P6 expression and m6A methylation-related gene expression. (I–M) Relationship between CBX7
expression and m6A methylation-related gene expression.
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modification could reduce the expression of IFITM3P6. m6A

writer and reader genes, including METTL14 (writer), ZC3H13

(writer), HNRNPC (reader) and EIF3 (reader) were also

negatively correlated with CBX7 expression. In addition, they

are upregulated in AML (38, 39). METTL14 and ZC3H13 are

accessory subunits that form a stable complex with METTL3 and

play key roles in substrate recognition (40–42). HNRNPC is

mainly involved in mediating mRNA splicing (43).

Consequently, m6A modification in combination with

IFITM3P6-miR-6748-3p-CBX7 regulatory axis downregulates

CBX7 in AML, thereby prompting T cells apoptosis.

In a summary, the downregulation of FLT3LG induced by

m6A modification and the ectopic expression of FLT3 in

malignant cells and progenitor cells ultimately decrease the

ability of DCs to present antigen to T cells. What’s more, m6A

modification induces the downregulation of IFITM3P6 to
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regulate the expression of CBX7 through the ceRNA

mechanism, thereby inducing T cell apoptosis in AML.

Additionally, we found that FLT3LG and IFITM3P6 were both

enriched in NOTCH signaling pathway. Evidence showed they

may a exert synergy effect by promoting the formation of

NOTCH1-MAML2-CBX7 suppressive transcription system,

combining with the canonical pathway molecule like RBP-Jк,

to block FasL expression.

The role of IFITM3P6-miR-6748-3p-CBX7 and FLT3LG-

FLT3 axes in AML was revealed for the first time, but the

experimental verification was not solid. Whether these key genes

could exert function on AML cells directly, such as the landscape

of exosome of IFITM3P6 and/or miR-6748-3p secreted by T

cells to interact with tumor cells, these questions remain to be

explored. What’s more, the FLT3 gene located near the

membrane region mutation has been found in about 30% of
A B

D E F

G

C

FIGURE 9

The potential relationship of FLT3LG and IFITM3P6 in activating T cells. (A) FLT3LG is significantly correlated with IFITM3P6 in TCGA data.
(B) FLT3LG is positively correlated with CBX7. (C, D) FLT3LG and IFITM3P6 are enriched in NOTCH signaling pathway. (E, F) CBX7 is
positively correlated with NOTCH1 and MAML2. (G) Dll1 is increased in rat bone marrow-derived dendritic cells along with elevated
concentration (mg/ml) of Flt3lg stimulation. *p < 0.05; **p < 0.01; ns, no significance.
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patients with AML. It is an internal tandem duplication (ITD)

mutation composed of exon 11, intron 11 and exon 12, which is

called the FLT3/ITD gene mutation. The impact of ITD on FLT3

was not evaluated in the current study. FLT3-TKD (tyrosine

kinase domain) is another form of mutation. These two

mutations are associated with recurrence and drug resistance.

In general, our results demonstrate that IFITM3P6 and

FLT3LG might serve as prognostic markers in AML and may

be used as potential therapeutic targets for the treatment of

leukemia in the future (Figure 10).
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The main mechanisms of FLT3LG and IFITM3P6 in T cell activation. On the one hand, increased DLL1 by stimulation of FLT3LG to FLT3 in
dendritic cells, transduct signals to NOTCH1 receptor expressed by T cells. Ligand/receptor binding triggers sequential proteolytic cleavage of
NOTCH receptor, first by the ADAM10 metalloprotease and by the g-secretase complex. These cleavages release intracellular NOTCH (ICN) into
the nucleus. On the other hand, IFITM3P6 as a kind of ceRNA inhibit targeted degradation of CBX7 by miR-6748-3p. They finally promote the
formation of NOTCH1-MAML2-CBX7 complex system, and suppress expression of FasL.
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Necroptosis is a novel type of regulated cell death that is intimately associated

with a variety of tumors. However, how necroptosis affects the identification of

gastric cancer (GC) remains unclear. Here we seek to find new potential

necroptosis-related biomarkers to predict GC prognosis and immunotherapy

effect. We used Cox analysis to obtain shared prognostic markers related to

necroptosis from five datasets (TCGA and four GEO datasets). Then, a

necroptosis-related gene prognostic score (NRGPS) system was constructed

using LASSO Cox regression, NRGPS consisting of three necroptosis-related

mRNAs (AXL, RAI14, and NOX4) was identified, 31 pairs of GC and adjacent

normal tissues from the Second Hospital of Harbin Medical University were

collected and Real-Time Quantitative PCR (RT-qPCR) was used to detect the

relative expression levels of the three necroptosis-related mRNAs, and external

validation was performed on four GEO datasets (GSE84437, GSE26901,

GSE62254 and GSE15459). In this study, Overall survival (OS) in the high-

NRGPS group was significantly lower than in the low-NRGPS group. Cox

regression analyses showed that NRGPS was an independent prognostic

variable. Tumor-mutation-burden (TMB), tumor microenvironment (TME),

microsatellite instability (MSI), and Tumor Immune Dysfunction and Exclusion

(TIDE) scoring were used as predictors of the immunotherapy response. A

cancer-friendly immune microenvironment, a high TIDE score, a low TMB, and

a low MSI were all characteristics of the high-NRGPS group, and they all

consistently showed that the issues seen there are related to immune escape in

GC. The combination of three candidate genes may be an effective method for

diagnostic assessment of GC prognosis and immunotherapy efficacy.
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Introduction

Over one million new cases of gastric cancer (GC) and close

to 80,000 GC-related fatalities were reported in 2020, making it

one of the most prevalent cancers in the world (1).

Immunotherapy has improved the treatment strategy for

several types of malignancies, including GC, as ICB has the

potential to induce durable immune responses in different types

of cancers (2, 3). However, only one-third of individuals with the

majority of malignancies benefit with checkpoint inhibitors (4).

This resistance is usually through a well-established mechanism

of immune evasion of the cancer cells, leading to the spread of

the disease (5). GC prognosis is currently based on the Lauren

and World Health Organization classification as well as the

Tumor-Node-Metastasis (TNM) staging system (6). However,

patients in the same stage of cancer may demonstrate

significantly different prognoses. Although many patients have

similar clinical characteristics and associated treatment options,

outcomes may differ markedly. Thus, to improve the prognosis

of GC patients, it is necessary to investigate trustworthy

biomarkers that can reliably predict prognosis and identify

targets for prospective treatment.

Necroptosis is a new type of programmed necrotic cell death,

which is regulated differently from apoptosis. The necroptosis

signaling pathway includes activated receptor-interacting

protein kinases (RIPKs) as well as mixed lineage kinase

domain-like pseudokinases (MLKL) (7). Necroptosis induces

strong cross-priming of anti-tumor CD8+ T cells by releasing

damage-associated molecular patterns, thereby suppressing

tumor progression (8). A recent study showed that nano-

vaccines that mimic necrotic cancer cells could enhance

immunity in mice through the proliferation of NKG2D+

natural killer cells and CD8+ T cells, ultimately enhancing the

anti-tumor effects (9). Another study showed that the activation

of RIPK3 results in a reliable derepression of tripartite motif-

containing 28 in cancer cells, thereby inducing increased

production of immunostimulatory cytokines in the tumor

microenvironment (TME), thus promoting potent cytotoxic

antitumor immunity (10).

Recent basic experiments and bioinformatics analyses have

revealed that MLKL mRNA expression levels are dramatically

lower in GC than normal tissue and that GC patients with low

MLKL expression have a poorer prognosis compared to normal

tissues (11). Another study found that astaxanthin caused AGS

death in GC cell lines by inducing increased NADPH oxidase

activity, ROS production, and phosphorylation of RIP1/RIP3/

MLKL (12). This indicates that necroptosis is related to the

prognosis and treatment of GC. Necroptosis is a new target for

cancer therapy, considering its critical role in cancer biology

(13). The quality and quantity of innate necroptosis-centered

immune cell rely on the inflammatory background, tissue type,

and other individual circumstances (7). However, only a small
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number of research have examined the connection between

necroptosis-related genes (NRGs) and the prognosis and

therapy of GC (14, 15).

In this study, The Cancer Genome Atlas (TCGA) was

searched to develop prognostic NRGs markers for GC. We

identified three mRNA markers with reliable prognostic

expression and experimentally validated NRGPS using RT-

qPCR assay for GC and adjacent normal tissues to detect their

relative mRNA level, as well as independent external validation

using the GSE84437, GSE26901, GSE62254 and GSE15459

datasets. It was finally demonstrated that NRGPS could be

used as an independent prognostic indicator for GC. Our aim

is to fully investigate the expression profile of necroptosis and

the predicted effect of immunotherapy treatment, thus

identifying potential targets for the treatment of GC. We hope

to our study enable the improved stratification of GC patients,

thus facilitating personalized treatment decisions.
Materials and methods

Clinical specimen collection

Thirty-one pairs of GC and healthy tissue samples from

cancer were gathered and frozen in liquid nitrogen at the Second

Hospital of the Harbin Medical University.All specimens were

judged by experienced pathologists and informed consent and

permission was obtained from the Medical Ethics Committee of

the Second Affiliated Hospital of Harbin Medical University.

Detailed clinicopathological data of the patients are shown in

Supplementary Table S1.
Acquisition of Information of patients
with GC

The flow chart of this study is shown in Figure 1. The RNA-

Seq data, clinical information, and somatic mutations of GC

patients (375 tumor samples, 32 normal samples) were obtained

from TCGA (https://portal.gdc.cancer.gov/). The external

validation cohorts GSE84437 (n = 433), GSE26901 (n = 109),

GSE62254 (n = 300) and GSE15459 (n = 192) were obtained

from GEO (https://www.ncbi.nlm.nih.gov/geo/). In addition,

GSE29272 (134 pairs) and GSE63089 (45 pairs) with adjacent

normal tissues as controls, and the melanoma cohort

(GSE78220) with anti-PD-1 checkpoint inhibition therapy

were similarly derived from GEO. Gene Expression Profiling

Interactive Analysis (GEPIA; http://gepia.cancer-pku.cn/)

contains data from TCGA and Genotype-Tissue Expression

(GTEx). 583 NRGs sets were derived from GeneCards (https://

www.genecards.org/). After 12 non-coding RNAs were removed,

571 necroptosis-related mRNAs were obtained.
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Identication of prognosis markers

First, we extracted necroptosis-related gene expression data

from TCGA and GEO cohorts. Then, the non-technical batch

effect between TCGA and GEO data was corrected before

analysis by using the “sva” R package. In addition, we also

intersect the gene symbols of TCGA cohort with GEO cohorts to

ensure that the genes obtained from subsequent analysis are

shared by the five data sets. Next, univariable Cox regression

analysis was performed for each cohort to further screen for

potential prognostic markers. The venn diagrams were drawn

using the “VennDiagram” R package to show common

prognostic markers in all five cohorts.
Construction and validation of the
necroptosis-related gene prognostic
score system

The Least Absolute Shrinkage and Selection Operator

(LASSO) Cox regression method was used to create the

NRGPS system, and tenfold cross validation was used to

estimate the ideal coefficients based on the partial likelihood

deviance. To determine the patient risk scores, regression

coefficients of the genes and matching mRNA expression

levels were employed.The formula for calculating NRGPS is as
Frontiers in Immunology 03
117
follows:

NRGPS =o
n

i=1
coef (genei)*expr(genei)

The median NRGPS was used to separate the high-NRGPS

group from the low-NRGPS group. Using the Kaplan-Meier

curve, the survival status of both the high-NRGPS and low-

NRGPS groups was examined. The prognostic significance of the

created marker for predicting survival was evaluated using a

time-dependent receiver operating characteristic (ROC) curve

analysis. The independent prognostic significance of NRGPS

was assessed using univariable and multivariable Cox regression

analysis.At the same time, we performed the same analysis on

four GEO cohorts to verify. The above analysis was performed

using the “survminer”, “survival”, and “timeROC” R packages.
Detection of NRGs mRNA expression
levels in GC tissues by RT-qPCR

Total RNA was extracted from GC and Normal using Trizol

reagent (SM129-02, Sevenbio, China); cDNA was synthesized

using a reverse transcription kit (1119ES60, Yeasen, China);

SYBR Green Master Mix kit (11184ES03, Yeasen, China) and

RT-qPCR instrument (SLAN-96p Shanghai hongshi, China)

were used for RT-qPCR, glyceraldehyde-3phosphate

dehydrogenase (GAPDH) was used as an internal control, and

three NRGs quantification was based on the 2-DDCt method, and

the primer sequences are shown in Supplementary Table 2.
Function enrichment analysis

The “clusterProfiler”, “enrichplot”, and “ggplot2”Rpackageswere

used to conduct the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway studies (16, 17).

Then, we performed a Gene Set Enrichment Analysis (GSEA) to

investigate potential biological courses.c2.cp.kegg.v7.4.symbols.gmt

was chosen as the reference file, and meaningful biological processes

and pathways were enriched to FDR< 0.05. The protein-protein

interactions (PPI) of prognostic markers were shown using a string

database (https://www.string-db.org/).
Development of nomogram based on
NRGPS and clinical features

Nomogram was created to predict the survival probability of

gastric cancer patients at 3 and 5 years. The ROC curve of

nomogram is drawn to evaluate its accuracy. The “rms”,”regplot”,

“survival”, “survminer” and “timeROC” R packages were used for

the above analysis.
FIGURE 1

Flowchart of this study.
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Correlation analysis to identify an
association between NRGPS and
immune typing

Based on immune typing files (Subtype_Immune_Model_Based.txt),

GC patients were classified into six subtypes (18). Then observe whether

there are differences in NRGPS between patients with different

immune subtypes.
Immune cell infiltration analysis

First, on the TCGA cohort, it was done using single sample

gene set enrichment analysis (ssGSEA).The relative abundance

of 16 immune cell infiltrates and the activity of 13

immunological-related pathways in the TME were represented

by enrichment scores.Next, the correlation between three

candidate genes and NRGPS and immune cells and pathways

was analyzed. The relationship between immune cell infiltration

and GC patients’ survival time was further analyzed. Immune

cell infiltration and NRGPS were combined to perform a survival

analysis of the GC patients. The absolute mode of cell type

identification by estimating relative subsets of RNA transcripts

(CIBERSORT-ABS) technique was utilized to confirm the

immune cells’ invasion of TME. Finally, to confirm the

relationship between the three candidate genes and

macrophages, estimating the proportion of Immune and

cancer cells (EPIC), tumor immune estimation resource

(TIMER), comprehensive bioinformatic deconvolution

(xCELL), and microenvironment cell populations- counter

(MCPCOUNTER) techniques were employed. The data of

CIBERSORT-ABS in TCGA cohort comes from TIMER

(http://timer.cistrome.org/). The EPIC, TIMER, xCELL and

MCPCOUNTER algorithms are implemented based on the

TIMER website.
Prediction of immunotherapy effect

Based on the somatic mutation data downloaded from

TCGA, the number of mutations in each gene in the sample

was first counted to analyze the mutation status in the high- and

low-NRGPS groups. Then, the “limma”, “ggplot2”, “ggpubr”,

and “ggExtra” R packages were used for the following: analyze

the difference in the TMB of the high- and low-NRGPS groups;

identify a correlation between NRGPS and TMB; Then, The link

between TMB and prognosis was assessed using the TMB value

and the accompanying survival data. Finally, NRGPS and TMB

were combined to perform a survival analysis of the GC samples.

We plotted the percentage histogram of microsatellite

instability (MSI) states of GC patients in the high- and low-

NRGPS groups. Then, the boxplot is drawn to show the NRGPS

differences of different MSI groups. The MSI status of GC
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patients in the TCGA cohort was downloaded from The

Cancer Immunome Atlas (TCIA; https://tcia.at/home) database.

We further analyzed the correlation between the NRGPS

and immune checkpoints and plotted the correlation plot using

the “corrplot” R package. Then, the expression of immune

checkpoints between high- and low-NRGPS groups

was compared.

Immune escape and treatment were evaluated by subjecting

the high- and low-NRGPS groups to tumor immune dysfunction

and exclusion (TIDE; http://tide.dfci.harvard.edu/). The TIDE

score, dysfunction score, and immune exclusion score were

obtained from TIDE.

The GSE78220 cohort was used to verify the effect of NRGPS

in predicting immunotherapy. We divided the GSE78220 cohort

into high- and low-NRGPS groups according to the median

NRGPS, and plotted the survival curve and ROC curve. Then,

the boxplot was drawn to compare the NRGPS of patients who

responded and did not respond to the treatment. In addition, we

drew a histogram and compared whether there was a difference

between the proportion of patients who responded and did not

respond to the treatment in the high- and low-NRGPS groups.
Statistical analysis

Statistical analysis of this study was conducted by R (Version

4.1.2) and SPSS software (version 25.0). Including Cox regression

analysis, Lasso analysis, Kaplan-Meier survival analysis, ROC curve

analysis, independent prognostic analysis, functional analysis,

nomogram analysis, immune cell infiltration analysis, correlation

analysis, TMB analysis and TIDE analysis. To compare the

differences between the two groups of data, we used the

Wilcoxon test. The Spearman method was used for correlation

analysis. RT-qPCR data did not conform to normal distribution,

and non-parametric Wilcoxon’s matched-pairs test was conducted.

The paired samples of GSE29272 and GSE63089 also used non-

parametric Wilcoxon’s matched-pairs test. Fisher’s exact test was

used to determine the proportion of patients who responded to

treatment in the high- and low-NRGPS groups of the GSE29272

cohort. The R packages and statistical methods used by GEO

validation cohorts are consistent with TCGA. p< 0.05 was

considered statistically significant.
Results

Identification of prognosis markers and
functional enrichment analysis

To explore the prognostic value of the NRGs, we conducted a

univariable Cox regression analysis for GC patients in TCGA

cohort and GEO cohorts. The results showed that 35 NRGs were

significantly associated with GC prognosis in TCGA cohort
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(Figure 2A). NRGs of the four GEO cohorts significantly associated

with prognosis are presented in Supplementary Table 3. To learn

more about the function of prognostic markers in GC, we

conducted GO and KEGG pathway enrichment analyses. The

GO analysis revealed that prognostic indicators were enriched in

necroptosis development and maintenance,such as “extrinsic

apoptotic signaling pathway”, “regulation of mRNA stability”, and

“mRNA stabilization” (Figure 2B). The most abundant pathways in

the KEGG analysis were related to “MAPK signaling pathway”,

“apoptosis” and “pathogenic escherichia coli infection” (Figure 2C).

Together, these findings are associated with programmed cell death

and tumor progression. The PPI network of 21 nodes and 24 edges

showed a complex relationship between these prognostic markers

in GC (Figure 2D).
Development and validation of the
NRGPS system

To better understand the mechanism by which these 35

NRGs affected the prognosis of the GC patients, we further

analyzed their somatic mutation status in GC samples. The

result indicated that 135 of 433 (31.18%) GC samples

demonstrated genetic mutations. The missense mutation was

the most common type of variation (Figure 3A).

In order to ensure the accuracy of prognostic markers, we

divided prognostic markers into risk factor (HR > 1) and

protective factor (HR< 1) groups according to HR values

obtained by univariable Cox regression analysis, and then

divided prognostic markers from five cohorts into two groups

for intersection. Finally, in the risk factor group, there were five

intersection genes (TUBB6, LGALS1, AXL, RAI14, and NOX4) in

five cohorts (Figure 3B).

Lasso Cox regression was performed on the five risk factor

genes to obtain the NRGs markers (Figures 3C, D). Then, an

NRGPS was constructed as follows: score = 0.162 × expression

quantity of AXL + 0.152 × expression quantity of NOX4 +

0.153 × expression quantity of RAI14), with the median NRGPS

of TCGA cohort as the critical value. In addition, scatter plots

indicated that GC patients in the high-NRGPS group had a

higher proportion of death and shorter survival time than those

in the low-NRGPS group (Figures 3E, F). The Kaplan–Meier

curve indicated that the overall survival (OS) of the high-NRGPS

group was shorter than that of the low-NRGPS group

(Figure 3G). The area under the curve (AUC) in the time-

dependent ROC analysis was 0.622 at 3 years and 0.715 at 5 years

(Figure 3H), indicating great specificity and sensitivity of the

NRGPS in predicting the OS. To assess the value of NRGPS as a

standalone prognostic marker, we performed univariable and

multivariable Cox analyses to identify its correlation with age (≥

60 years vs< 60 years), gender (male vs female), Stage (StageIII-

IV vs StageI-II) in the GC patients in TCGA cohorts. Univariable
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Cox regression analysis showed that the NRGPS was associated

with GC prognosis in TCGA cohort (Figure 4A). Multivariable

Cox regression confirmed that the NRGPS was an independent

predictor of survival after correcting for other clinical

confounding factors in TCGA cohort (Figure 4B). In addition,

we also performed a stratified analysis to assess whether NRGPS

is applicable to patients with different clinical characteristics

(Figure S1A).
Validation of 3 NRGs in GC
tissue specimens

RT-qPCR was used to detect the relative mRNA level of 3

NRGs in 31 pairs of GC and adjacent normal tissues, Results

from RT-qPCR revealed that the expression levels of AXL,

RAI14, and NOX4 were higher in GC tissues than in nearby

normal tissues next to cancer (Figure 4C), further demonstrating

from the perspective of basic experiments that the reliability of

NRGPS for determining GC prognosis. In addition, we also

added three data sets and obtained the same trend results

(Figures 4D–F).
GEO external verification of NRGPS

To evaluate the stability of NRGPS—constructed from

TCGA cohort—as a prognostic biomarker for GC, four

independent GEO data sets were used for validation. Then,

according to the median NRGPS of TCGA cohort, 240 GC

patients were included in the high-NRGPS group and 191 GC

patients were included in the low-NRGPS group in GSE84437

cohort; 51 GC patients were included in high-NRGPS group and

58 GC patients were included in the low-NRGPS group in

GSE26901 cohort; 140 GC patients were included in the high-

NRGPS group and 160 GC patients were included in the low-

NRGPS group in GSE62254 cohort; 114 GC patients were

included in the high-NRGPS group and 77 GC patients were

included in the low-NRGPS group in GSE15459 cohort. The

TCGA cohort’s NRGPS distribution, survival status, and survival

time were comparable in the GEO cohorts (Figures 5A–D). The

results proved that the NRGPS has excellent stability.

In addition, we also analyzed Kaplan–Meier curve and the

AUC in the time-dependent ROC analysis of four GEO cohorts

to further verify NRGPS. As shown in Figures 5E–H, the OS of

the high-NRGPS group was lower than of the low-NRGPS

group.The AUC in the time-dependent ROC curve of the four

cohorts showed that NRGPS had excellent predictive efficacy

(Figures 5I–L). Finally, we performed univariable and

multivariable Cox analyses on four GEO validation cohorts to

further determine the independent predictors that NRGPS can

be used (Figures 6A–H).
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Nomogram and GSEA analysis of NRGPS

To help in determining each patient’s specific prognosis for

GC, we developed a nomogram based on NRGPS and clinical

characteristics. In order to accurately evaluate the prognosis of

each patient with GC, we constructed a 3-year and 5-year

prognostic nomogram model combined with age, gender, stage

and NRGPS (Figure 7A). For example, when a 60-year-old male

patient is in stage III and NRGPS of 2.7, he will get 178 total

points, which means that his probability of survival in less than 3

years and less than 5 years is 0.477 and 0.6, respectively. Next, we

demonstrate the nomogram model’s predictive power using a

time-dependent ROC analysis. The AUC is 0.710 in 3 years and

0.708 in 5 years (Figure 7B). At the same time, four GEO cohorts

were used to verify the Nomogram model (Figures S2, S3). For
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GC patients in the GSE15459 cohort, a Nomogram model was

used to predict the prognosis, and the AUC reached 0.872 in 3

years, 0.891 in 5 years (Figure S3B). These results suggest that

the nomogram has accurate and stable prognostic ability.

Based on the KEGG gene sets in the high- and low-NRGPS

groups, GSEA was carried out to investigate variations in

biological characteristics between the two groups.The enriched

pathways in the high-NRGPS group were “Neuroactive ligand-

receptor interaction”, “Calcium signaling pathway”, “Vascular

smooth muscle contraction”, and “Focal adhesion” (Figure 7C).

The enriched pathways in the low-NRGPS group were “DNA

replication” and “cell cycle” (Figure 7D). These findings

demonstrated that NRGPS can reliably detect tumor

progression and that the high-NRGPS group was related to

tumor development and metastasis.
A B
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FIGURE 2

Identification and functional enrichment analysis of prognostic markers. (A) The forestmap of 35 prognostic markers of GC patients in the TCGA
cohort. (B) The GO enrichment analysis of the prognostic markers. (C) The KEGG pathway analysis of the prognostic markers. (D) The PPI
network was constructed through 35 prognostic markers. The interaction score was set to 0.4. GC, Gastric cancer; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.
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Analysis of TME

By analyzing human tumors in TCGA, six kinds of immune

infiltration were identified, namely wound healing (C1), INF-g
dominant (C2), inflammatory (C3), lymphocyte depleted (C4),

immunologically quiet (C5), and TGF-b dominant (C6) (18),

corresponding to tumor promotion and tumor inhibition,

respectively. No GC patient belonged to the C5 subtype, and
Frontiers in Immunology 07
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only four GC samples belonged to the C6 subtype; thus, C5 and

C6 were not included in this study. According to our analysis of

the associations between the GC sample subtypes and NRGPS,

C4 was related with low-NRGPS groups, whereas C3 was

connected with high-NRGPS groups (Figure 8A).

The activation of 13 immune-related pathways and the

infiltrating status of 16 immune cells in the TCGA cohort

were investigated using ssGSEA. As shown in Figure 8B, the
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FIGURE 3

Development of the NRGPS System. (A) The waterfall plot of the prognostic associated genes mutations. (B) The venn plots of intersection of
prognostic markers in five cohorts were shown. (C) LASSO coefficient profiles of prognostic markers. (D) The tuning parameters were cross-
validated in the LASSO model. (E) Distribution of NRGPS in TCGA cohort. (F) Survival status in the high-NRGPS and low-NRGPS groups of TCGA
cohort. (G) Kaplan-meier survival analysis in TCGA cohort. (H) The ROC curve of TCGA cohort verifies the prediction ability of this prediction
model. LASSO, Least Absolute Shrinkage and Selection Operator. NRGPS, necroptosis-related gene prognostic score.
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three candidate genes and NRGPS are closely related to immune

cells and pathways. Next, we discovered that the level of immune

cell infiltration in the high-NRGPS group in TCGA cohort was

higher, especially with respect to B-cells, CD8 T cells, dendritic

cells, immature dendritic cells, Macrophages cells, mast cells,

neutrophils, plasmacytoid dendritic cells, helper T cells, tumor-

infiltrating lymphocytes, and regulatory T cells (than in the low-

NRGPS group) (Figure 8C). Moreover, the activity of nine

immune pathways, i.e., antigen-presenting cell co-inhibition,
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antigen-presenting cell co-stimulation, C–C chemokine

receptor, Check-point, para-inflammation, T cell co-inhibition,

T cell co-stimulation, type I interferon response, and type II

interferon response in the high-NRGPS group was higher than

that in the low-NRGPS group in TCGA cohort (Figure 8D). The

relatively high level of immune cell infiltration and pathway

activation in the high-NRGPS group was also consistent with the

C3 subtype of GC tissues, with the highest number of

“inflammatory” features, as shown in our previous results. In
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FIGURE 4

Independent prognostic analysis of prognostic model in TCGA cohort was performed. (A) The forestplot of univariable Cox regression analysis
of NRGPS and clinical characteristics in TCGA cohort. (B) The forestplot of multivariable Cox regression analysis of NRGPS and clinical
characteristics in TCGA cohort. (C) RT-qPCR was used to detect the relative mRNA levels of three NRGs in GC and adjacent normal tissues.
(D) Relative mRNA levels of three NRGs in GC and adjacent normal tissues in GSE29272 dataset. (E) Relative mRNA levels of three NRGs in GC
and adjacent normal tissues in GSE63089 dataset. (F) Relative mRNA levels of three NRGs in GC and adjacent normal tissues in GEPIA dataset.
NRGPS, necroptosis-related gene prognostic score; NRG, necroptosis-related genes; GEPIA, Gene Expression Profiling Interactive Analysis.
*p < 0.05, **p < 0.01, ***p < 0.001.
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addition, We analyzed the immune cell between the high- and

low-NRGPS groups in TCGA cohort using the CIBERSORT-

ABS algorithm. The levels of CD8 T cells,resting memory CD4 T

cells, activated NK cells, Monocytes, M1 Macrophages, M2

Macrophages, and activated Mast cells were higher in high-

NRGPS group than in the low-NRGPS group (Figure 8E). Again,

this supports the results of the above analysis. On the one

hand, this result suggests that inflammatory cells are

associated with the prognosis of GC patients. On the other

hand, it provides a basis for the possible regulatory role of

NRGPS in the TME, which may affect the prognosis of

GC patients.

Since differences in the degree of macrophage infiltration

were observed in the high- and low-NRGPS groups, the OS of

GC patients with different macrophage infiltration was

analyzed. It can be found from the results that the OS of GC

patients with high macrophage infiltration is relatively low

(Figure 9A). Next, we combined macrophages and NRGPS to

analyze the survival of patients. High-macrophages-high-

NRGPS patients had the lowest OS (Figure 9B). The results

confirmed our speculations. Finally, we confirmed the close

relationship between the three candidate genes and
Frontiers in Immunology 09
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macrophages through the algorithms of EPIC, TIMER,

xCELL and MCPCOUNTER (Figure 9C).
The effect of immunotherapy in the
different NRGPS groups

To investigate the connection between somatic mutation and

NRGPS in more detail, analysis was done on the variations in

somatic mutation distribution between the TCGA cohort’s high-

NRGPS and low-NRGPS groups. Somatic mutations were found

in 88.89% of the GC patients in the high-NRGPS group and 92.4%

of the GC patients in the low-NRGPS group (Figures 10A, B).

Missense mutations, frameshift deletions, as well as nonsense

mutations were the most frequent mutations in GC patients, a

discovery that is in line with the findings of earlier research (19).

Additionally, the TMB of the two groups was calculated and

analyzed, showing that the TMB level was significantly higher in

the low-NRGPS group than in the high-NRGPS group

(Figure 10C). The TMB was negatively correlated with NRGPS

(r = -0.3, p< 0.001) (Figure 10D). The OS of the high-TMB group

was higher than that of the low-TMB group (Figure 10E). To
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FIGURE 5

Validation of the NRGPS System. Distribution of NRGPS and survival status in the high-NRGPS and low-NRGPS groups in (A) GSE84437, (B)
GSE62901, (C) GSE62254, (D) GSE15459. Kaplan-Meier survival analysis in (E) GSE84437, (F) GSE62901, (G) GSE62254, (H) GSE15459. The ROC
analysis in (I) GSE84437, (J) GSE62901, (K) GSE62254, and (L) GSE15459 verifies the prediction ability of this prediction model. NRGPS,
necroptosis-related gene prognostic score; GC, Gastric cancer; ROC, receiver operating characteristic.
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further prove that NRGPS and TMB could be used together for

the prognostic assessment of GC, we combined the high- and

low-NRGPS groups with the high- and low-TMB groups

(Figure 10F), and the results showed that patients with high-

TMB-low-NRGPS had the longest survival time, while patients

with low-TMB-high-NRGPS had the shortest survival time. This

indicated that the NRGPS combined with TMB level has

excellent predictive power for the prognosis of GC patients.

Then, we analyzed the MSI of GC patients in the TCGA

cohort. We discovered that the high-NRGPS group contained

more MSS patients and fewer MSI-H patients (Figure 11A). This
Frontiers in Immunology 10
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also predicted a poor prognosis for patients in the high-NRGPS

group. Furthermore, patients with MSS had a higher NRGPS than

those with MSI-H, demonstrating once more that NRGPS can

accurately predict the prognosis of GC patients (Figure 11B).

In addition, we performed a correlation analysis between

NRGPS and immune checkpoints. NRGPS is positively

correlated with PDCD1LG2 and HAVCR2, and the expression

of PDCD1LG2 and HAVCR2 is significantly higher in GC

patients in the high-NRGPS group (Figure S4A).

Because the TIDE score and immune escape potential are

positively associated, tumor patients with higher TIDE scores are
A B

D

E F

G H

C

FIGURE 6

Independent prognostic analysis of prognostic model in GEO validation cohorts was performed. The forestplot of univariable Cox regression
analysis of NRGPS and clinical characteristics in (A) GSE84437, (C) GSE62901, (E) GSE62254, (G) GSE15459. The forestplot of multivariable Cox
regression analysis of NRGPS and clinical characteristics in (B) GSE84437, (D) GSE62901, (F) GSE62254, (H) GSE15459. NRGPS,necroptosis-
related gene prognostic score.
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less likely to benefit from immunotherapy. Our results showed that

compared with that in the high-NRGPS group, the low-NRGPS

group had a lower TIDE score, and NRGPS was positively

correlated with TIDE (r = 0.4, p< 0.001), implying that the low-

NRGPS group GC patients might benefit more from the

immunotherapy than the high-NRGPS group GC patients

(Figure 11C). Additionally, we discovered that the T cell

dysfunction and T cell exclusion scores in the high-NRGPS group

were higher than those in the low-NRGPS group, and that NRGPS

was also positively connected with these scores (Figures 11D, E).

This indicates that NRGPS has a high degree of confidence in

determining the effectiveness of immunotherapy.

Finally, the GSE78220 cohort verified the predictive ability of

NRGPS for immunotherapy. According to the median NRGPS

of the GSE78220, patients were divided into high-NRGPS group

and low-NRGPS group. With the increase in NRGPS, the

survival rate of patients also decreased gradually (Figure 11F).

There was a significant difference in survival time between high-

and low-NRGPS groups, and NRGPS also had good prediction

ability (Figures 11G, H). Then, the NRGPS of the non-response
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group was significantly higher than that of the response group

(Figure 11I). In addition, there are also differences in the

proportion of patients with or without response to

immunotherapy in the high- and low-NRGPS group, and the

proportion of patients with non-response in the high-NRGPS

group is larger (Figure 11J).
Discussion

Necroptosis is closely related to tumorigenesis and

immunity and is a target for tumor therapy. In the tumor

microenvironment, necroptosis is mostly considered as pro-

inflammatory cell death (20), but its underlying inflammation

also has the potential to promote tumor development and

metastasis through genomic instability, cell proliferation and

angiogenesis proliferation and angiogenesis to promote tumor

development and metastasis (21). Necroptosis plays different

roles in different cancers, with necroptosis-associated protein

RIPK3 being expressed at low levels in leukemia, colorectal
A

B

D

C

FIGURE 7

Nomograph Model and GSEA Analysis. (A) Nomogram of NRGPS and clinical factors predicting survival probability of GC patients. (B) The ROC
curve verifies the predictive ability of the nomogram. (C) Enrichment pathways in high-NRGPS group. (D) Enrichment pathways in low-NRGPS
group. GSEA, Gene Set Enrichment Analysis; NRGPS, necroptosis-related gene prognostic score; GC, Gastric cancer; ROC, receiver operating
characteristic. ***p < 0.001.
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cancer, breast cancer and melanoma relative to adjacent normal

tissues, and at increased levels in lung cancer and pancreatic

cancer (8). Recent research showed that necroptosis was

associated with a critical role in GC development (22).

However, it remains unclear whether necroptosis can predict

prognosis and immunotherapy efficacy for GC patients.

Typically, either TNM stage systems or serum markers (CEA,

CA19-9, and CA125) are employed to monitor progression and

to predict prognosis in GC patients. Nevertheless, these methods
Frontiers in Immunology 12
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are not unsatisfactory, having low accuracy and high non-

specifici ty , especial ly for GC patients with highly

heterogeneous (23). In this study, a new NRGPS system for

GC was established and four independent GEO external

validation were performed. The ability of NRGPS to predict

the effect of immunotherapy was also confirmed in the

GSE78220 cohort. The results demonstrated that the NRGPS

system could accurately forecast the prognosis and

immunotherapy sensitivity of GC patients.
A
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FIGURE 8

Analysis of immune subtypes and immune cell infiltration in the TCGA cohort. (A) The boxplot of differences in NRGPS between immune
subtype groups. (B) Correlation analysis of NRGPS and 3 candidate genes with immune cells and signaling pathways (ssGSEA algorithm). (C) The
boxplot of 16 immune cell differences in the low- and high-NRGPS groups (ssGSEA algorithm). (D) The boxplot of 13 immune signaling pathway
differences in the low- and high-NRGPS groups (ssGSEA algorithm). (E) The boxplot of 22 immune cell infiltration differences between high-
NRGPS and low-NRGPS groups in TCGA cohort (CIBERSORT-ABS algorithm). NRGPS, necroptosis-related gene prognostic score; ssGSEA,
single sample gene set enrichment analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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In order to understand how NRGs promote GC progression,

we first obtained 35 NRGs significantly associated with GC

prognosis by univariable Cox regression analysis in the TCGA

cohort. Then,it was revealed by GO and KEGG pathway analysis

that these NRGs were mostly implicated in several pathways

linked to tumor growth.In the risk factor group, there were 5

cross-genes in TCGA and 4 independent GEO datasets. The

NRGPS system for gastric cancer patients consisting of three

NRGs was further constructed using lassoCox regression analysis,

and this system had an excellent performance in discriminating

the high-NRGPS group with a poorer prognosis. The results

demonstrated that the high-NRGPS group was significantly

associated with shorter survival time in TCGA and four GEO

cohorts. Moreover, NRGPS could independently predict the OS

for GC patients. We used the GSEA analysis to investigate the
Frontiers in Immunology 13
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gene sets enriched in the two NRGPS groups in order to more

thoroughly examine the function of these three marker genes in

GC, and the results showed that the gene sets of the high-NRGPS

group were mainly enriched in the “Neuroactive ligand-receptor

interaction”, “Calcium signaling pathway”, “Vascular smooth

muscle contraction”, and “Focal adhesion”, which are associated

with tumor development (24–27).

The NRGPS was made up of three NRGs, such as AXL, RAI14,

andNOX4. Upregulated of these genes in the GC tumor tissues was

link to a poor prognosis. The tumor microenvironment’s

immunosuppression and the survival, proliferation, migration,

invasion, and metastasis of tumor cells are all significantly

influenced by the oncogenic receptor tyrosine kinase AXL (28–

30). AXL increases the expression of ZEB1 in GC cells, promoting

EMT, invasion, and proliferation (31). AXL inhibitors control the
A B

C

FIGURE 9

NRGPS and macrophages in TME were analyzed. (A) Difference in survival time between high- and low-macrophage groups (ssGSEA algorithm).
(B) Survival analysis of macrophage combined NRGPS (ssGSEA algorithm). (C) EPIC, TIMER, XCELL and MCPCOUNTER algorithms were used to
analyze the correlation between the three candidate genes and macrophages. NRGPS, necroptosis-related gene prognostic score; TME, tumor
microenvironment.
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polarization of macrophages to boost tumor immunity (32).

Targeting of AXL receptors is particularly well suited to enhance

the efficacy of immune checkpoint inhibitors (33). Retinoic acid

induced 14 (RAI14) was originally identified in all-trans retinoic

acid-induced human retinal pigment epithelial cells (34), RAI14

may be connected to the growth and invasion of cancer cells in

several malignancies, according to current investigations (35). High

expression of RAI14 may enhance the translocation of esophageal

tumor cells (36). RAI14 is significantly expressed in GC, and its

knockdown slows the development of GC (37).

The nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase 4 (NOX4) is one of the most important
Frontiers in Immunology 14
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NADPH isoforms in endothelial cells, and it has been reported

that the receptor-interacting protein 1 is involved in tumor

necrosis factor-a-induced reactive oxygen species generation

and necroptosis through interaction with NADPH oxidase

(38). Through the recruitment of M2 TAM through the

generation of different cytokines in response to ROS/PI3K

signaling, tumor NOX4 stimulates the proliferation of non-

small cell lung cancer cells (39). In GC patients, the high

expression of NOX4 results in a bad prognosis (40).

We next further demonstrated that NRGPS is associated

with multiple immune cell recruitment, so we further performed

TME analysis.
A B
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FIGURE 10

TMB analysis and survival analysis of patients in TCGA cohort. (A) The waterfall plot of somatic mutation in high-NRGPS group. (B) The waterfall
plot of somatic mutation in low-NRGPS group. (C) The boxplot of TMB differences between low-NRGPS and high-NRGPS groups.
(D) Correlation analysis between TMB and NRGPS. (E) Difference in survival time between high- and low-TMB groups. (F) Survival analysis of
TMB combined NRGPS. TMB, Tumor mutation burden; NRGPS, necroptosis-related gene prognostic score.
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The imbalance in the ratio of immune cell components is

highly correlated with poor prognosis in cancer patients (41).

Moreover, the immune cells in the TME can be used in the

prognostic assessment of a variety of tumors (42). Recent studies
Frontiers in Immunology 15
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have identified that necroptosis can regulate the TME (43). On

this basis, we evaluated the GC TME based on the NRGPS. In

this study, the degree of immune cell infiltration varied

significantly between the groups with high and low NRGPS.In
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FIGURE 11

Differences in MSI statuse, TIDE score between high-NRGPS and low-NRGPS groups in the TCGA cohort. (A) Distribution of patients with
different MSI statuses in high- and low-NRGPS groups. (B) The boxplot of NRGPS differences between groups with different MSI. (C) The
boxplots of differences between TIDE in low- and high-NRGPS groups and correlation analysis of TIDE with NRGPS. (D) The boxplots of
differences between Immune Dysfunction scores in low- and high-NRGPS groups and correlation analysis of Immune Dysfunction scores with
NRGPS. (E) The boxplots of differences between Immune Exclusion scores in low- and high-NRGPS groups and correlation analysis of Immune
Exclusion scores with NRGPS. (F) The distribution of NRGPS and the survival status of the high- and low-NRGPS groups. (G) Kaplan-meier
survival analysis in GSE78220 cohort. (H) The ROC analysis of GSE78220 cohort. (I) The boxplot of NRGPS differences between immunotherapy
responde and non-responde groups. (J) Distribution of patients who responded and did not respond to immunotherapy in the high- and low-
NRGPS groups. MSI, Microsatellite Instability; TIDE, Tumor Immune Dysfunction, and Exclusion; NRGPS, necroptosis-related gene prognostic
score, ROC, receiver operating characteristic.
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patients with high-NRGPS, the majority of immune cells were

heavily invaded.

One of the most crucial elements of the tumor

immunosuppressive microenvironment are tumor-associated

macrophages (TAM),which is influenced by the surrounding

TME, and macrophages show a continuous activation state

(44, 45). In our results, TAM infiltration was relatively high in

the high-NRGPS group and was abundant in immune cells

recruited by NRGPS, AXL, RAI14, and NOX4, and in the

combined TAM and NRGPS analysis results, we found that

GC patients in the high-TAM and high-NRGPS groups had the

shortest survival times.M1-like macrophages and M2-like

macrophages are the two main classifications of activated

macrophages. The inflammatory response is intimately

correlated with both M1 and M2 macrophages, with M1

macrophages primarily generating pro-inflammatory cytokines

to take part in the pro-inflammatory response., stimulating the

Th1 response of T cells (IFN-g) and further enhancing the M1

macrophage response, and M2 macrophages mainly

participating in the anti-inflammatory response (46, 47).

It is well known that M1macrophages promote the attack on

tumor cells, while M2 macrophages have been consistently

associated with cancer metastasis and poor prognosis (48), but

it has also been suggested that CD68+ HLA-DR+ M1-type

macrophages in the tumor microenvironment can promote

tumor migration through the NF-KB signaling pathway, which

in turn promotes tumor progression (49). Moreover, recent

studies have shown that M1-type macrophages polarized by

exosomes promote the malignant migration of oral squamous

cell carcinoma (50). It is clear that the complexity of the tumor

microenvironment is not only in the differences between

individuals with different diseases, but also in the different

parts of the same tumor tissues of patients, which may have

different effects depending on the microenvironment in which

the tumor is located (51–53).

Thus, It is obvious that the biology of M1-type macrophages

in relation to cancer is complex and fascinating.Additionally, we

discovered that patients with GC in the high-NRGPS group with

pro-tumor immune cell infiltration had a much shorter survival

time than those in the low-NRGPS group. This suggests that in

the high-NRGPS group, these immunosuppressive cells were

manipulated to protect them from the body’s immune response,

which is also known as “sabotage” (54).

Ultimately, the tuRecent studies have demonstrated the

significant association of TMB and TME in GC patients

regarding tumorigenesis, tumor progression, and drug

resistance (55). Nevertheless, the exact mechanisms by which

necroptosis plays a role during tumor immunotherapy remain

largely unknowable. We further analyzed the TMB and TIDE in

the different subgroups to assess the immunotherapy response.

The TMB is another index to evaluate patient reaction to

immunotherapy independent of the programmed cell death-
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ligand 1 expression level (56, 57). A comprehensive analysis of

27 cancer types showed a positive correlation of benefit between

TMB and immunotherapy (58). According to a recent Panel

Sequencing study, patients with elevated TMB had longer OS.,

and tests for treatment response to immunotherapy were

performed, suggesting that TMB could be used as a predictive

biomarker for advanced GC patients treated with immunotherapy

(59). In the field of cancer biomarkers, although thousands of

expression signatures have been nominated to be used as

biomarkers, few have found reliable clinical use, therefore the

expression signature of the marker must be consistent with

reproducible genetic marker alterations (60).

Consistently, in our study, the TMB was lower in the high-

NRGPS group than in the low-NRGPS group. The NRGPS was

negatively correlated with the TMB, and the combination of

NRGPS with the TMB interestingly revealed that GC patients in

the high-TMB and low-NRGPS groups had the longest survival

time, and GC patients in the low-TMB and high-NRGPS groups

had the shortest survival time, demonstrating the reliability of

NRGPS as a prognostic evaluation index for the immunotherapy

of GC patients. In China, about 95% of GC patients have the

characteristics of microsatellite stability (MSS) (61). Patients

with GC in the MSI-H group had a higher survival rate and

significantly more benefit from immunotherapy in contrast to

the MSS/MSI-L group (62, 63). Consistently, according to our

research, the high-NRGPS group of GC patients had a larger

percentage of MSS and a lower percentage of MSI-H.

Programmed cell death-ligand 1 level and TMB are less

accurate than the TIDE at predicting survival outcomes in

cancer patients receiving immunotherapy medications (64, 65).

Recent research has demonstrated its usefulness in predicting or

evaluating the impact of immunotherapy (66–68), and it has also

been affirmed in GC studies (69). Because anti-tumor immune

escape is more likely in patients with higher TIDE scores,

immunotherapy response rates are lower in these patients

(64). Consistent with the TMB result, the GC patients with

more immune dysfunction in the high-NRGPS group were more

likely to resort to immunotherapy and receive immunotherapy

less effectively than those in the low-NRGPS group.mor escapes

immune surveillance and flees the immune system.

Our findings show that the high-NRGPS group was

characterized by a pro-cancer immune microenvironment,

high TIDE score, and low TMB, low MSI, which demonstrated

that the high-NRGPS group was correlated with immune escape

in GC, and therefore NRGPS could be used as a new biomarker

to accurately predict the prognosis and immunotherapy efficacy

in GC patients. Some limitations must be highlighted. First, A

large number of clinical specimens and relevant information

should be used to further verify the prognostic characteristics of

NRGs. Second, the mechanisms by which necroptosis shapes the

TME features in GC are unclear and would be experimentally

investigated in the future.
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Conclusion

In conclusion, our study defined a new prognostic signal

composed of three necroptosis-related genes and validated it

using RT-qPCR methodsas, well as independent external

validation using the GSE84437, GSE26901, GSE62254 and

GSE15459 datasets. This signal was verified in GC prognosis

and immunotherapy effects and was proven to be

independently related with OS in the TCGA cohort and the

GEO validation cohorts.It is a prognostic classifier that can be

applied to clinical decision-making for therapy and

personalised prognosis.
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with glioma
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Background: Copper ions are essential for cellular physiology. Cuproptosis is a

novel method of copper-dependent cell death, and the cuproptosis-based

signature for glioma remains less studied.

Methods: Several glioma datasets with clinicopathological information were

collected from TCGA, GEO and CGGA. Robust Multichip Average (RMA)

algorithm was used for background correction and normalization,

cuproptosis-related genes (CRGs) were then collected. The TCGA-glioma

cohort was clustered using ConsensusClusterPlus. Univariate Cox regression

analysis and the Random Survival Forest model were performed on the

differentially expressed genes to identify prognostic genes. The cuproptosis-

signature was constructed by calculating CuproptosisScore using Multivariate

Cox regression analysis. Differences in terms of genomic mutation, tumor

microenvironment, and enrichment pathways were evaluated between high-

or low-CuproptosisScore. Furthermore, drug response prediction was carried

out utilizing pRRophetic.

Results: Two subclusters based on CRGs were identified. Patients in cluster2

had better clinical outcomes. The cuproptosis-signature was constructed

based on CuproptosisScore. Patients with higher CuproptosisScore had

higher WHO grades and worse prognosis, while patients with lower grades

were more likely to develop IDH mutations or MGMT methylation. Univariate

and Multivariate Cox regression analysis demonstrated CuproptosisScore was

an independent prognostic factor. The accuracy of the signature in prognostic

prediction was further confirmed in 11 external validation datasets. In groups

with high-CuproptosisScore, PIK3CA, MUC16, NF1, TTN, TP53, PTEN, and EGFR

showed high mutation frequency. IDH1, TP53, ATRX, CIC, and FUBP1

demonstrated high mutation frequency in low-CuproptosisScore group. The

level of immune infiltration increased as CuproptosisScore increased. SubMap

analysis revealed patients with high-CuproptosisScore may respond to anti-

PD-1 therapy. The IC50 values of Bexarotene, Bicalutamide, Bortezomib, and
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Cytarabine were lower in the high-CuproptosisScore group than those in the

low-CuproptosisScore group. Finally, the importance of IGFBP2 in TCGA-

glioma cohort was confirmed.

Conclusion: The current study revealed the novel cuproptosis-based signature

might help predict the prognosis, biological features, and appropriate

treatment for patients with glioma.
KEYWORDS

glioma, cuproptosis, signature, clusters, bioinformatics
Introduction

Glioma is the most common primary brain tumor,

accounting for about 40% of all brain tumors (1), among

which glioblastoma (GBM) is the most malignant brain tumor.

According to the classification of World Health Organization

(WHO), gl iomas are class ified into four di fferent

histopathological grades: Grade I, II, III and IV, of which

WHO II and III are considered low-grade gliomas (LGG).

Glioblastoma (GBM, WHO IV) characterized by new

angiogenesis is the most aggressive molecular subtype of

glioma (2, 3). The median survival of LGG can be achieved

from five to ten years through the administration of surgery,

radiotherapy, and chemotherapy combination treatments,

whereas the median survival of GBM is normally around one

or two years (4, 5). The prognosis of glioma patients is divergent,

which may be related to different tumor grades, mutation of

isocitrate dehydrogenase (IDH) (6), amplification of epidermal

growth factor receptor (EGFR) (7) and other factors. The current

glioma prognostic evaluation model is mainly based on clinical

factors, which has limited predictive ability (8–11). Therefore, a

better prognostic evaluation system is needed.

Gene-regulated cell death known as “programmed cell

death” is crucial for tissue homeostasis and growth, it also

takes part in several pathological processes (12). At present,

various types of cell death, such as necroptosis, ferroptosis, and

pyroptosis, have been found to belong to necrotic programmed

cell death (12). Researchers have found that cell death is closely

related to tumorigenesis and prognosis. In the process of tumor

development, cell death often occurs in the intratumoral area

due to metabolic stress, such as hypoxia or glucose deprivation

(13). Consequently, triggering programmed cell death could be a

potential strategy for novel tumor therapy. Currently, knowledge

of programmed cell death in cancer is continuously updated as

more types of programmed cell death are discovered and

recognized. Biology has long recognized copper as a vital

component in all living things, from bacteria and fungi to

mammals and plants, where it is a must for survival (14, 15).
02
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In humans, it binds to enzymes that assist in blood clotting,

hormone maturation, and cell processing of energy, however,

excessive copper can cause cell death (14). Cuproptosis as a new

type of cell death is modulated and regulated by copper in cells.

Copper ion directly binds to the lipoacylated components in the

tricarboxylic acid cycle, leading to abnormal aggregation of

lipoacylated proteins and loss of iron-sulfur cluster proteins,

which leads to protein toxic stress and ultimately leads to cell

death (15). Cuproptosis in glioma, however, has not yet been

studied in depth.

The establishment of a glioma prognosis prediction model

based on transcriptome data combined with clinical data can

improve the prediction ability to a certain extent, which has

highly significant clinical significance. In this study, glioma gene

expression data and clinical data were collected from open

databases, combined with reported cuproptosis-related genes

(CRGs), was used to establish and verify cuproptosis-related

clusters and signature. Subsequently, the prognosis, immune

status, and treatment response of patients was also explored

based on the cuproptosis-related clusters and signature.
Materials and methods

Collection and preprocessing of data
for glioma

Transcripts and clinical data of glioma samples, including

survival status, IDH status, grade, gender, and age, were collected

from TCGA database based on UCSC Xena platform (16, 17). A

total of 656 glioma patients with corresponding data were enrolled.

Meanwhile, the gene expression profile of the control (non-tumoral

samples) were also obtained from Genome Tissue Expression

(GTEx) project (https://www.gtexportal.org) (18, 19). In addition,

11 glioma-cohorts (CGGA311, CGGA668, GSE108474, GSE13041,

GSE16011, GSE43289, GSE43378, GSE4412, GSE4412, GSE68838,

and GSE83300) were collected from Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) or Chinese Glioma
frontiersin.org

https://www.gtexportal.org
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2022.998236
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.998236
Genome Atlas (CGGA, http://www.cgga.org.cn/). Robust Multichip

Average (RMA) algorithm was used for background correction and

normalization (20). Data in the form of fragments per kilobase

million (FPKM) was transformed into transcripts per kilobase

million (TPM). The list of cuproptosis-related genes (CRGs)

refers to the previous literature (14). In the end, ten CRGs were

included in our study: FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1,

POHB, MTF1, GLS, and CDKN2A.
Establishment of cuproptosis-clusters
and cuproptosis-signature

Based on the collected ten CRGs, the TCGA-glioma cohort

was clustered using ConsensusClusterPlus package (21). Next,

principal component analysis (PCA) (22) was further carried out

to assess patterns associated with cuproptosis. Limma package

was used to identify the differentially expressed genes (DEGs) in

cuproptosis-clusters (logFC>1, P<0.05) (23). Subsequently,

Univariate Cox regression analysis was performed to identify

prognostic DEGs preliminarily (24). Subsequently, more

valuable prognostic genes were screened out based on Random

Survival Forest model (variable importance>0.25) (25, 26). To

construct a cuproptosis-signature, Multivariate Cox regression

analysis was used to estimate and weight the regression

coefficients of the prognostic genes, and the CuproptosisScore

for each glioma sample was calculated. According to the best

optimal cutoff, the patients were divided into high- or low-

CuproptosisScore subgroups. The association between overall

survival (OS) and CuproptosisScore was analyzed using Kaplan-

Meier curves. ROC curves were further utilized to validate the

efficiency and accuracy of CuproptosisScore in predicting

outcomes at one-, two-, and three-year. In addition, Univariate

or Multivariate Cox regression analyses of CuproptosisScore and

several clinical factors were performed to verify the

independence of CuproptosisScore in predicting prognosis.
Genomic mutation analysis for
cuproptosis-signature

The data of somatic mutations (16, 27) or copy number

variation (CNV) (16) was acquired from TCGA. Genomic

Identification of Significant Targets in Cancer (GISTIC) (28)

algorithm was used to assess genomic characterization and

CNV landscape.
Analysis of immune infiltration

Immune cell abundance (immune score), stromal cell

infi ltrating level (stromal score), and tumor purity

(ESTIMATE score) were estimated via ESTIMATE (The
Frontiers in Immunology 03
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Estimation of Stromal and Immune cells in Malignant Tumor

tissues using Expression) algorithm (29). Using Tumor Immune

Estimation Resource 2.0 (TIMER 2.0, http://timer.cistrome.org/)

(30), a comprehensive analysis of immune infiltration in the

tumor microenvironment of glioma was carried out.

MCPcounter algorithm was used to estimate the relative

proportions of ten immune cells in glioma (31). The

infiltration of 28 immune cells was indicated by enrichment

scores, which were calculated by single sample gene set

enrichment analysis (ssGSEA) using Gene Set Variation

Analysis (GSVA) R package (32, 33). Immunomodulators

associated with seven different immune processes (Antigen

presentation, Cell adhesion, Co-inhibitor, Co-stimulator,

Ligand, Receptor and Other) were obtained from the previous

literature (34). The response of glioma to anti-PD1 and anti-

CTLA4 therapy was evaluated by Submap algorithm (35–37).
Enrichment pathway analysis

All gene sets from Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) were

downloaded from the MSigDB database (38). Gene Set

Enrichment Analysis (GSEA) (39) and Gene Set Variation

Analysis (GSVA) (33) were carried out according to

clusterProfiler and GSVA packages, respectively.
Drug response prediction

Pharmacogenomic data from Genomics of Drug Sensitivity

in Cancer (GDSC) (40) database was used to predict drug

sensitivity in the enrolled glioma cases. The half maximal

inhibitory concentration (IC50) value was calculated by

pRRophetic package to reflect the drug response (41).
Immunohistochemistry (IHC) staining

The tissue sections through deparaffinization and

dehydration were incubated with polyclonal rabbit anti-human

IGFBP2 antibodies (1:50, Proteintech, 11065-3-AP) overnight at

4°C after epitope retrieval, H2O2 treatment, and non-specific

antigens blocking. Next, sections were incubated with secondary

antibodies (1:1000, Proteintech, SA00001-2) for two hours at

room temperature, and then the signal was detected by an

enhanced DAB staining kit (Proteintech, China).
Western blot

Tumor tissues as well as normal tissues were lysed in RIPA

buffer (Solarbio, Beijing, China), protease and phosphatase
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inhibitors were added, and then denatured at 100°C for 15 min.

The protein samples were then separated by 10% SDS-PAGE

and transferred to polyvinylidene fluoride (PVDF) membranes.

Next, PVDF membranes were blocked with 5% skim milk

powder solution for 1 hour, and incubated with primary

antibodies, including anti-IGFBP2 antibody (1:1000,

Proteintech, 11065-3-AP), anti-GAPDH antibody (1:5000,

Abcam, ab9485) overnight, followed by secondary antibodies

(1:2000, Proteintech, SA00001-2) for 2 hours at room

temperature, observed with the ECL kit chemiluminescence

reagent (Billerica Millipore, MA, USA). Protein band signals

were detected by the Chemidoc detection system (Bio-Rad,

Hercules, CA, USA) and quantified by ImageJ software

(National Institutes of Health, USA).
Statistical analysis

The Wilcoxon test was used to compare non-normally

distributed data. The T-test was used to compare normally

distributed variables between two groups. The R package

survminer was used to estimate OS between two groups using

Kaplan-Meier survival plots. Cox regression of survival analysis

was also performed by survival. Time-dependent receiver

operating characteristics (ROC) curves were plotted using R

package timeROC. All heatmaps were performed through

pheatmap package. The data were visualized by ggplot2

(V4.1.2). P<0.05 was considered statistically significant.
Results

Characteristics of cuproptosis-clusters
for TCGA-glioma

The clinical information of patients from TCGA was listed in

the Supplemental Table S1. The correlations among the ten CRGs

were mostly positive, and the most strongly associated variables

w e r e DLD an d DLAT ( F i g u r e 1A ) . B a s e d o n

ConsensusClusterPlus, the optimal number of clusters was

determined, k=2 (Figure 1B). Furthermore, PCA analysis was

further used to validate that patients in the two subclusters

clustered separately, which confirmed the reliability of the

clustering results (Figure 1C). Patients with glioma in cluster2

had significantly better clinical outcomes than those in cluster1

(Figure 1D). Compared with the other subcluster, the expressions

of FDX1, DLD, DLAT, PDHB, GLS were relatively high in

cluster1, while the expression of CDKN2A was relatively high in

cluster2, which indicates that these CRGs may be genetic markers

for identifying different clusters (Figure 1E). Interestingly, we

discovered that cluster2 had a greater percentage of IDH

mutation status, which may be one of the factors contributing

to a better prognosis of this subcluster (Figure 1E).
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Establishment of cuproptosis-signature

In the two subclusters, a total of 27 differentially expressed

genes (DEGs) were identified (logFC>1, P<0.05), and the

volcano map accurately reflected the gene expression

differences between the two subclusters (Figure 2A). After

Univariate Cox regression analysis, 16 potential pro-oncogenes

(HR>1; CYTOR, EMP3, OCIAD2, PLA2G5, FABP5P7, IGFBP2,

TSTD1, TIMP1, RBP1, METTL7B, POSTN, CHI3L1, H19,

CXCL14, LTF and ENC1) and 9 potential suppressor genes

were identified (HR<1; CAMK2A, LINC01088, CDKN2B,

LINC00689, TPTEP1, C5orf38, KLRC2, VIPR2, and SMOC1)

(Figure 2B). Figure 2C showed the distribution of error rates in

Random Survival Forest model, after which the relative

importance of seven genes (H19, CYTOR, IGFBP2, EMP3,

KLRC2, C5orf38, and CHI3L1) was established (variable

importance>0.25, Figure 2D). Multivariate Cox regression

analysis was used to develop the cuproptosis-signature, and

the CuproptosisScore for each glioma sample was calculated

according to the following formula: 0.0621*ExprH19

+0.0196*ExprCYTOR+0.2739*ExprIGFBP2+0.0183*ExprKLRC2
+0.0036*ExprC5orf38+0.1406*ExprCHI3L1. Heatmap displayed the

distr ibution of six genes in cuproptosis-signature,

CuproptosisScore and the clinical characteristics (Figure 2E). It

was clear that a higher CuproptosisScore was linked to higher

expressions of H19, CHI3L1, CYTOR, and IGFBP2 and, in

contrast, was associated with lower expressions of KLRC2 and

C5orf38 (Figure 2E). In the meantime, IDH mutation status was

more likely to be present in glioma patients with lower Cuprop

tosisScore. (Figure 2E).
Prognostic potential of
cuproptosis-signature

Next, we analyzed the CuproptosisScore of TCGA patients

among WHO grades, mutation status and MGMT methylation

status (Figure 3A). Patients with higher CuproptosisScore had

higher WHO grades, while patients with lower grades were more

likely to develop IDH mutations or MGMT methylation

(Figure 3A), all of which may explain the significantly better

clinical outcomes of patients with lower CuproptosisScore

(P<0.001, Figure 3B). In addition, Univariate and Multivariate

Cox regression analysis of CuproptosisScore and clinicopathologic

features demonstrated that both CuproptosisScore and Grade

were independent prognostic factors for patients with glioma

(Figure 3C). The survival ROC curves predicted by the

cuproptosis-signature showed that the AUCs were all greater

than 0.8, indicating the effectiveness of the cuproptosis-signature

in predicting prognosis for glioma at the 1-year (AUC=0.898), 2-

year (AUC=0.922), 3-year (AUC=0.918), 4-year (AUC=0.867),

and 5-year (AUC=0.828) time points (Figure 3D). Furthermore,

we conducted Univariate Cox regression analysis on the OS
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(overall survival) of glioma patients based on the external

validation data sets, and the results showed that HR was greater

than 1 in all of the 11 data sets, which further validated the

accuracy of our constructed cuproptosis-signature in prognostic

prediction (Figure 3E).
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Genomic mutation analysis for
cuproptosis-signature

GISTIC algorithm was used to assess the genomic

characterization landscape between high- CuproptosisScore
A B

D
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C

FIGURE 1

Characteristics of CuproptosisCluster in TCGA-glioma cohort. (A) The correlations among the ten cuproptosis-related genes (CRGs). The color
represents the correlation coefficient. (B) Cluster diagram for subtype analysis of glioma samples. The intragroup correlations were the highest
and the inter-group correlations were low when k=2. (C) PCA analysis for the two subclusters. (D) Kaplan-Meier survival curve showing survival
probability of cluster1 and cluster2. (E) Heatmap showing the expression levels of the ten cuproptosis-related genes (CRGs) in different clinical
features and clusters. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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and low-CuproptosisScore subgroups, which was shown in

Figure 4A. In patients with high-CuproptosisScore, PIK3CA,

MUC16, NF1, TTN, TP53, PTEN, and EGFR had high mutation

frequency (over 10%, Figure 4B), while in those with low-

CuproptosisScore, IDH1, TP53, ATRX, CIC, and FUBP1 had
Frontiers in Immunology 06
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high mutation frequency (over 10%, Figure 4C). TP53 had high

mutation rates in both groups (26% and 51%, respectively). In

agreement with the findings above, the mutation rate of IDH1

was particularly high in the low-CuproptosisScore group,

reaching as high as 89% (Figure 4C).
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FIGURE 2

Establishment of cuproptosis-signature. (A) The volcano map reflects the differentially expressed genes identified (logFC > 1, P < 0.05). (B) The
forest figure for Univariate Cox regression analysis of the differentially expressed genes. (C) The distribution of error rates in Random Survival
Forest model. (D) The variable relative importance of the seven genes. (E) Heat map showing the relationship between six genes in the
cuproptosis-signature and CuproptosisScore distribution and its clinical characteristics. ****P < 0.0001.
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Immune status for cuproptosis-signature

Based on ESTIMATE, MCPcounter, ssGSEA, and TIMER

algorithms mentioned in the Methods section, the heatmap

showed the abundance of infiltrating immune cell populations
Frontiers in Immunology 07
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at different CuproptosisScores (Figure 5A). In general, the level

of immune infiltration increased as the CuproptosisScore

increased (Figure 5A). However, it was observed that patients

with lower CuproptosisScores had more tumor purity

(Figure 5A). In addition, our results showed that glioma
A
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FIGURE 3

Prognostic potential of cuproptosis-signature. (A) The violin figures for comparing the CuproptosisScore of TCGA patients among WHO grades,
mutation status and MGMT methylation status. (B) Kaplan-Meier survival curve showing survival probability of high-CuproptosisScore or low-
CuproptosisScore subgroups. (C) The forest figure for Univariate or Multivariate Cox regression analysis of CuproptosisScore and
clinicopathologic features. (D) The 1-year, 2-year, 3-year, 4-year, and 5-year survival ROC curves are predicted by the cuproptosis-signature. (E)
Univariate Cox regression analysis of the cuproptosis-signature in 11 external validation data sets. ***P < 0.001.
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patients with high CuproptosisScores also had higher levels of

TMB (Figure 5B), GEP (Figure 5C), and CYT (Figure 5D).

GSVA analysis also suggested that patients with high

CuproptosisScores were enriched in immune-related

pathways, such as negative regulation of macrophage

apoptotic process, macrophage fusion, B cell receptor signaling

pathway, T cell receptor signaling pathway, and primary

immunodeficiency (Figure 5E).
Frontiers in Immunology 08
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Immunotherapy and chemotherapy of
cuproptosis-signature

Immunomodulators (IMs) are closely related to the

immunotherapy of malignant tumors, as well, agonists and

antagonists for immunomodulators are also being studied (42).

The expression of IM-related genes varied across high-

CuproptosisScore or low-CuproptosisScore subgroups
A

B

C

FIGURE 4

Genomic mutation analysis for cuproptosis-signature. (A) Genomic characterization landscape of high-CuproptosisScore or low-
CuproptosisScore subgroups. (B) Gene mutation frequency in high-CuproptosisScore. (C) Gene mutation frequency in low-CuproptosisScore.
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(Figure 6A). As the heatmap demonstrated that the level of

TNFSF9, IL13, and TIGIT, showed no difference between the

two groups, VTCN1, TNF, CX3CL1, IL12A, HMGB1, EDNRB,

and TLR4 were highly expressed in the low-CuproptosisScore

group, and the remaining genes were highly expressed in the

high-CuproptosisScore group (Figure 6A). In addition, SubMap

analysis revealed patients with high-CuproptosisScore may
Frontiers in Immunology 09
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respond to anti-PD-1 therapy (Figure 6B). This may be due to

the high expression of IMs in this group of patients. We also

investigated the IC50 values of four chemotherapeutics

(Bexarotene, Bicalutamide, Bortezomib, and Cytarabine) between

the high- and low-CuproptosisScore groups. Results showed that

IC50 values of patients in the high- CuproptosisScore group were

lower than those in the low-CuproptosisScore group, suggesting
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FIGURE 5

Immune status for cuproptosis-signature. (A) The heatmap shows the abundance of infiltrating immune cell populations at different
CuproptosisScores. (B–D) Glioma patients with high CuproptosisScores had higher levels of TMB (B), GEP (C), and CYT (D). (E) The heatmap
shows CuproptosisScores, clinical features, and immune-related pathways based on GSVA analysis. ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.998236
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.998236
A

B

C

FIGURE 6

Immunotherapy and chemotherapy of cuproptosis-signature. (A) Correlation of CuproptosisScore with seven immunomodulators in gliomas. (B)
SubMap analysis for cuproptosis-signature in gliomas. (C) Box plots of estimated IC50 for several chemotherapeutic agents in the high- or low-
CuproptosisScore groups. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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that patients in the high-CuproptosisScore group were more likely

to benefit from these four drugs (Figure 6C).
The importance of IGFBP2 in TCGA-
glioma cohort

The aforementioned results showed that the cuproptosis-

signature we created has substantial clinical significance. Next,

we randomly selected one gene from this signature, IGFBP2, and

explored its important value in gliomas. As is evident from WB

and IHC results that IGFBP2 was significantly higher in the six

tumor tissues than in the paired adjacent tumor tissues

(Figures 7A–C). The patients with IGFBP2 expression values

were listed in the Supplemental Table S2. The expression level of

IGFBP2 was further compared between the glioma sample and

the healthy control sample, it was found that IGFBP2 was

significantly overexpressed in the cancer tissue (Figure 7D). In

terms of the survival curve, glioma patients with low expression

of IGFBP2 had better survival, indicating that IGFBP2 may be a

promoter of the malignant progression of glioma. The 1-year

(AUC=0.877), 2-year (AUC=0.92), 3-year (AUC=0.91), 4-year

(AUC=0.858), and 5-year (AUC=0.822) survival ROC curves

predicted by IGFBP2 revealed that the AUCs were all higher

than 0.8, indicating the efficiency of IGFBP2 in predicting

prognosis for glioma (Figures 7E, F). Therefore, IGFBP2 is

highly likely to be the oncogenic gene of glioma. The heatmap

(Figure 7G) showed that the expression value of IGFBP2 was

positively correlated with the expression value of eight immune

checkpoints (LAG3, CD274, PDCD1LG2, TNFRSF9, PDCD1,

CTLA4, CD247, and TNFRSF4). Moreover, we carried out

GSEA analysis to explore cancer and immune-related signaling

pathways positively modulated by IGFBP2. We found six

signaling pathways (Figure 7H): immune response, T cell

receptor signaling pathway, regulation of immune response,

pathways in cancer, p53 signaling pathway, and TF

signaling pathway.
Discussion

Gliomas, especially glioblastoma (GBM), are the most

destructive brain tumors within the human nervous system

(43). Despite improvements in glioma diagnosis and treatment

in recent years, gliomas are still difficult to treat with surgery

alone due to their invasive and quickly proliferating nature.

Patients with postoperative recurrence have a poor prognosis,

with the median survival time only being extended by a few

months (44, 45). One of the crucial characteristics of tumor cells

is their resistance to cell death. Unrestricted proliferation is

typical for tumor cells, and they overcome growth inhibition by

resisting death and avoiding being killed by immune cells.

However, due to metabolic stress, such as hypoxia and glucose
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deprivation, necrotizing cell death often occurs in the interior of

solid tumors, which affects the occurrence and development of

tumors by reshaping the tumor microenvironment. With the

discovery of ever-more programmed death modes and the

elucidation of associated molecular mechanisms, our

understanding of the role of cell death in tumor is constantly

updated. Since multiple forms of cell death occur simultaneously

in tumors, an in-depth study of cell death on the occurrence and

development of tumors can help us better understand their

pathogenesis and pave the way for the creation of effective anti-

tumor medications. For example, abnormalities of apoptosis

pathways play critical roles in tumorigenesis, and tumor cell

avoidance of apoptosis has long been thought to lead to primary

or acquired therapeutic resistance (46). Necroptosis has both

pro-tumor and anti-tumor effects in different types of cancer

(13). Inducing necroptosis of tumor cells is an important way to

overcome chemotherapy resistance of tumor cells. Finding a

novel way to precisely regulate necroptosis might be an essential

research target in the field of tumor therapy in the future (47).

Numerous pieces of evidence suggest that pyrotopia plays an

important role in tumor progression, and inducing pyrotopia

has become one of the focuses of cancer immunotherapy (48–

51). Ferroptosis is a type of cell death induced by oxidative stress.

Cancer cells metabolize more efficiently than normal cells, with a

higher ROS load (52) and require large amounts of iron, thus

they are more sensitive to ferroptosis than normal cells (53).

However, cancer cells also employ additional genetic or

epigenetic mechanisms to combat elevated ROS levels, thereby

reducing their sensitivity to ferroptosis (54). Therefore,

ferroptosis is closely related to the occurrence and

development of tumors.

Copper ions can be combined with a variety of proteins or

enzymes, as cofactors or structural components, involved in the

regulation of energy metabolism, mitochondrial respiration,

antioxidant, and other physiological processes (55, 56). The

content of copper ions maintains a dynamic balance, which

can lead to oxidative stress (55) and abnormal autophagy (56),

and thus induce a variety of copper or copper ion-related

diseases. Tsvetkov et al. proposed for the first time that a new

method of cell death with copper dependence, which was called

cuprotosis (14). Several studies had shown that copper

metabolism was associated with tumorigenesis, and cancer

cells have a higher demand for copper than normal cells (57–

60). Wang et al. found that blocking Cu2+ transport can cause

oxidative stress and decrease cellular ATP levels, which in turn

activates AMP-activated protein kinase (AMPK), leading to

reduced adipogenesis and inhibiting tumor cell proliferation

(61). Studies have confirmed that copper is closely related to

the expression level of hypoxia-inducible factor 1a (HIF-1a)
(62). The use of copper chelating agent tetrathiomolybdate can

significantly reduce the content of Cu2+ in vivo, and dramatically

reduce tumor angiogenesis, restrain tumor growth, and reduce

the invasion of breast cancer cells (63). In conclusion, cuprotosis
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is a novel kind of cellular regulatory death that impacts copper

metabolism. The identification of cuprotosis molecular

pathways has implications for the mechanism of cuprotosis,

cancer drug discovery, and a deeper understanding of copper

metabolic diseases. In this study, we included ten cuproptosis-
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related genes (CRGs): FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1, POHB, MTF1, GLS, and CDKN2A. The correlations

among the ten CRGs were primarily positive in TCGA-glioma

cohort. In addition, a prognostic signature based on

CuproptosisScore was established to explore its prognostic and
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FIGURE 7

(A) WB for IGFBP2 in 3 pairs patients from Nantong cohort. (B) Represented IHC for IGFBP2 in three parents with different WHO stage from
Nantong cohort. (C) Boxplot of IHC for IGFBP2 in six pairs parents from Nantong cohort. (D) The expression level of IGFBP2 in glioma sample
and the control normal sample. (E) Kaplan-Meier survival curve showing survival probability of high- or low-expression IGFBP2. (F) The 1-year,
2-year, 3-year, 4-year, and 5-year survival ROC curves are predicted by the expression of IGFBP2. (G) The heat map shows the correlation
between IGFBP2 and eight immune checkpoints in TCGA. (H) GSEA maps of cancer and immune-related signaling pathways positively
modulated by IGFBP2. ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.
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clinical value in glioma. The current research provides a

reference for exploring the mechanism of cuprotosis in the

development of glioma.

As for the ten CRGs, the phosphorylation and

dephosphorylation of PDHA1 (Pyruvate Dehydrogenase E1

alpha Subunit) are key modulators of deactivation and

activation of PDC(Pyruvate Dehydrogenase Complex) (64). It

was reported that the increasing level of PDHA1 was observed in

the higher grade of glioma and PDHA1 could regulate the

migration of glioma cells (65). LINC00665 promoted MTF1

degradation, and MTF1 bound to the promoter region of GTSE1

and transcription promoted GTSE1 expression, which proved

that LINC00665/MTF1/GTSE1 axis played an important role in

regulating the biological behavior of glioma cells (66). GLS are

oncogenic genes of glioma (67, 68) and Qiangzhen Huang et al.

found that GLS could regulate the effect of SNAP25 in glioma

(66, 69). CDKN2A homozygous deletion was reported to serve

as an adverse prognostic factor for IDH-mutant gliomas (70–

72). However, to our knowledge, the role of the remaining CRGs

in glioma has not been reported in the literature.

The complexity of gliomas is mainly reflected by their

molecular heterogeneity. Molecular subtypes can well predict

the occurrence and development of glioma polymorphism,

which can assist us in developing better treatments (73).

Mesenchymal subtypes are particularly malignant compared to

other subtypes (neurogenic, canonical, and preneurotic)

according to TCGA classification, with recurrent GBM always

fatal and often presenting as a mesenchymal phenotype (74–76).

In addition, mesenchymal subtypes of gliomas expressed higher

levels of angiogenic markers in addition to higher levels of

necrosis (74, 77). It has been reported that the transition from

the former neural subtype to the mesenchymal subtype is closely

associated with treatment resistance and poor prognosis (78).

Currently, no fully verified and feasible classification system has

been applied to clinical practice, and the glioma classification

system needs to be continuously explored and improved. In this

study, we determined the optimal number (k=2) of clusters

based on R package (Figure 1B). Furthermore, the reliability of

the clustering results was confirmed by PCA analysis

(Figure 1C). Patients with glioma in cluster2 had significantly

better clinical outcomes than those in cluster1 (Figure 1D).

Interestingly, it was observed that cluster2 had a higher

proportion of IDH mutation status, which may be one of the

reasons for the better prognosis of this subcluster (Figure 1E). In

the two subclusters, a total of 27 differentially expressed DEGs

were identified (Figure 2A). When combined with the

aforementioned findings, our study sheds light on the need for

a new glioma typing system.

Although the WHO classification system has been used for

many years to predict the prognosis of patients with glioma, it is

occasionally inaccurate due to the heterogeneity of the tumor. In

addition to identifying potential biomarkers, new advances in

bioinformatics and genome sequencing can help predict cancer
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patient outcomes and treatment strategies (79, 80). Studies have

shown that the prognostic value of a single biomarker is limited,

and it is better to integrate multiple biomarkers into a single

model (81). For example, three IncRNAs can predict the

prognosis of colorectal cancer (CRC) based on a network of

metastasis-related competing endogenous RNAs (ceRNA) (82).

By extracting TCGA-related data, four IncRNA signals can

effectively predict the survival time of lung adenocarcinoma

(LUAD) (83). Importantly, recent studies have confirmed the

predictive power of some IncRNA prognostic signatures in

gliomas, such as immune-associated IncRNAs and autophagy-

associated IncRNAs, which have strong prognostic potential for

glioma patients (44, 45). In this study, we also used

bioinformatics methods to identify a signature containing

multiple genes based on CuproptosisScore. Patients with

higher CuproptosisScore had higher WHO grades, while

patients with lower grades were more likely to develop IDH

mutations or MGMT methylation (Figure 3A) and patients with

lower CuproptosisScore had the significantly better clinical

outcomes (Figure 3B). In addition, Univariate and Multivariate

Cox regression analysis of the signature demonstrated that the

cuproptosis-signature was an independent prognostic factor for

patients with glioma (Figure 3C). The survival ROC curves

indicated the efficiency of the cuproptosis-signature in

predicting prognosis for glioma (Figure 3D). Furthermore, we

conducted Univariate Cox regression analysis on the OS of

glioma patients based on the external validation data sets, and

the results demonstrated the accuracy of our constructed

cuproptosis-signature in prognostic prediction. In conclusion,

the signature we have identified has excellent prognostic

power (Figure 3E).

We randomly selected one gene from this signature,

IGFBP2, and explored its important value in gliomas. In

glioma, IGFBP2 is often involved in the activation of PTEN,

AKT and other related pathways, leading to enhanced

invasiveness and malignancy (84, 85). Studies have shown that

overexpression of IGFBP2 can increase the malignant degree of

glioma and up-regulate the expression of invasion protein

MMP2, thereby enhancing the invasion ability of glioma cells

(86). Previous studies have confirmed that the expression levels

of IGFBP2 transcripts and proteins are positively correlated with

the malignant degree of glioma, suggesting that IGFBP2 plays an

important role in malignant transformation, tumor necrosis and

metastasis of glioma (87, 88). In our study, we also found that

IGFBP2 is highly likely to be the oncogenic gene of glioma.

However, our study still has several shortcomings. Due to

the lack of data of clinical samples collected by us, the prognostic

cuproptosis-signature constructed in this study was based on the

public database, which may have a certain bias in the source of

samples. The hypothesis obtained in this study was not verified

by experimental results, and the next step is to be confirmed by

various in vivo and in vitro experiments and larger multicenter

studies. In conclusion, this prognostic cuproptosis-signature still
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needs to be further tested, evaluated and applied in a wide range

of clinical settings.
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prognostic features of
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m6A regulators
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Chen Xu1, Dongxian Jiang1, Qi Song1, Haixing Wang1,
Liyan Wang2, Yu Lin3, Yuanmei Chen4, Junqiang Chen3,
Yuanji Xu3* and Yingyong Hou1*

1Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China, 2Clinical
Oncology School of Fujian Medical University, Fuzhou, China, 3Department of Radiation Oncology,
Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,
4Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian
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Background: Esophageal cancer (ESCA) is a common malignancy with high

morbidity and mortality. n6-methyladenosine (m6A) regulators have been

widely recognized as one of the major causes of cancer development and

progression. However, for ESCA, the role of regulators is unclear. The aim of

this study was to investigate the role of m6A RNA methylation regulators in the

immune regulation and prognosis of ESCA.

Methods: RNA-seq data were downloaded using the Cancer Genome Atlas

(TCGA) database, and the expression differences of m6A RNA methylation

regulators in ESCA were analyzed. Further m6A methylation regulator markers

were constructed, and prognostic and predictive values were assessed using

survival analysis and nomograms. Patients were divided into low-risk and high-

risk groups. The signature was evaluated in terms of survival, single nucleotide

polymorphism (SNP), copy number variation (CNV), tumor mutation burden

(TMB), and functional enrichment analysis (TMB). The m6A expression of key

genes in clinical specimens was validated using quantitative reverse

transcription polymerase chain reaction (qRT-PCR).

Results: In ESCA tissues, most of the 23 regulators were significantly

differentially expressed. LASSO regression analysis included 7 m6A-related

factors (FMR1, RBMX, IGFBP1, IGFBP2, ALKBH5, RBM15B, METTL14). In

addition, this study also identified that the risk model is associated with

biological functions, including base metabolism, DNA repair, and mismatch

repair. In this study, a nomogram was created to predict the prognosis of ESCA

patients. Bioinformatics analysis of human ESCA and normal tissues was

performed using qRT-PCR. Finally. Seven genetic features were found to be
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associated with m6A in ESCA patients. The results of this study suggest that

three different clusters of m6A modifications are involved in the immune

microenvironment of ESCA, providing important clues for clinical diagnosis

and treatment.
KEYWORDS

esophageal cancer, m6A RNAmethylation regulators, prognosis, signature, the cancer
genome atlas, nomogram
Introduction

Esophageal cancer is a common malignancy, and in 2020,

ESCA had the 7th highest incidence (604,000 new cases) and 6th

highest incidence (544,000 deaths) of all cancers (1). ESCA has a

high mortality rate due to the lack of effective diagnostic and

treatment strategies.

N6-methyladenosine (m6A) is the most common epigenetic

RNA modification that plays an important role in the regulation

of malignancies (2). Despite the potential of m6A for the

diagnosis and treatment of ESCA (3, 4), its potential targets

and mechanisms remain unclear.

m6A refers to themethylation reaction at the sixth position of

adenosine. m6A methylation abnormalities play an important

role inmany diseases, especially in tumors (5).Methyltransferases

(METTL3, METTL14, METTL16, WTAP, KIAA1429, ZC3H13,

RBM15), demethylases (FTO, ALKBH5), binding proteins

(HNRNPC, HNRNPA2B1, YTHDF1, YTHDF2, YTHDC2,

YTHDC2, YTHDC1). m6A methylation regulators have

important effects on ESCA progression, proliferation,

migration, and invasion. hNRNPA2B1 affects the prognosis of

ESCA by regulating the miR-17-92 cluster as an oncogenic factor

(6). In addition, HNRNPA2B1 promotes ESCA progression

through upregulation of fatty acid synthase ACLY, ACC1 (7).

ALKBH5 exerts tumor suppressive effects by inhibiting miR-194-

2 biogenesis through demethylation of pri-miR-194-2, thereby

inhibiting RAl1 (8). Another study showed that FTO is involved

in oncogenesis of ESCA through upregulation of MMP13 (9). In

addition, METTL3 may also promote ESCA proliferation and

invasion by regulating multiple pathways, such as AKT (10),

Notch (11), COL12A1/MAPK (12) and other signaling pathways.

In addition, Xu et al. (13) demonstrated that eight regulators

(KIAA1429, HNRNPC, RBM15, METTL3, WTAP, YTHDF1,

YTHDC1, YTHDF2) were significantly upregulated in ESCA

tissues. The above results suggest that the prognostic features of

two genes, ALKBH5 and HNRNPC, have a predictive effect on

prognosis. In another study (7), HNRNPA2B1, ALKBH5 was the

prognostic signature consisting of HNRNPA2B1 and ALKBH5

(7). In addition, a recent study found that m6A methylation
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regulators may be important mediators of PD-L1 expression and

immune cell infiltration, which may strongly influence the tumor

microenvironment of esophageal squamous cell carcinoma

(ESCC) (14). Furthermore, Saiyan et al. (15) suggested that Flap

endonuclease 1 Facilitated hepatocellular carcinoma progression

by enhancing USP7/MDM2-mediated P53 inactivation. However,

previous bioinformatics studies were relatively simple: no multi-

omics integration analysis or assessment of tumor mutation

burden (TMB) was used, or focusing on exploration of the

single gene, or without experimental validation. The aim of this

study was to investigate the molecular targets and therapeutic

mechanisms of ESCA.
Methods

Data acquisition and processing

RNA transcriptome data (FPKM) format was obtained from

the TCGA public database (https://portal.gdc.cancer.gov/),

along with copy number variation (CNV), somatic mutations,

corresponding clinical data, TNM classification, survival

information, and prognostic data for ESCA patients. To ensure

data consistency, FPKM was transformed into transcripts per

kilobase (TPM) values. Patients with no clinical information

were excluded from this study. Finally, 161 ESCA samples and

11 adjacent tissues were included in the analysis. For CNV

analysis, the "Circos" R package was used, and CNV genes were

mapped on 23 chromosome pairs. Somatic mutation data were

obtained from the TCGA database, and somatic mutation data

were visualized using the "maftools" software (16). In addition, a

TMB examination was performed for each patient.
Construction and prediction of
predictive features

First, the differences in m6A-related regulators expression

between ESCA samples and normal tissues, and the relationship
frontiersin.org
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between regulator expression and prognosis of ESCA patients

were analyzed. To determine the prognostic value of m6A-

associated regulators, TCGA-ESCARNA-seq candidate risk

regulators were selected in combination with LASSO

regression analysis to reduce the dimensionality and select

representative indicators. Subsequently, the selected genes were

subjected to dimensionality reduction analysis to determine

whether the selected genes had independent prognostic value.

Finally, the minimum criterion was used to determine the

corresponding specification coefficients. The regression

coefficients were estimated based on the LASSO regression

model, and the results were calculated as follows.

riskScore =o
i
Coefficient hub geneið Þ

�mRNA Expression hub geneið Þ

ESCA patients were divided into low-risk and high-risk

subgroups according to median risk score.
Genomic and functional analysis

Gene ontology (GO) functional analysis is a common method

for large-scale functional enrichment studies, including biological

process (BP), molecular function (MF), and cellular component

(CC). GO analysis was performed using the clusterProfiler (17) R

package, based on differential gene expression analysis between

high-risk and low-risk groups. False discovery rate q<0.05 was

considered statistically significant.

Gene set enrichment analysis (GSEA) is a computational

method to analyze whether statistical differences exist in a

particular gene set. In this study, the GSEA method was used

to analyze TCGA-ESCA RNA-seq data to explore the differences

in BP between different sets." The h.all.v7.2.symbols.gm t set was

downloaded from the MSigDB (18) database and used for GSEA.

p<0.05, statistically significant.
Quantitative validation of pivotal genes
using reverse transcription polymerase
chain reaction

The expression of IGFBP2, ALKBH5, FMR1, RBMX in 15

pairs of ESCA and adjacent esophageal tissues was detected by

quantitative reverse transcription polymerase chain reaction

(qRT-PCR). IGFBP2, ALKBH5, FMR1, RBMX, were acquired

from BioSune (Shanghai, China). qRT-PCR analysis was

performed using the Hieff® qPCR ® qRT-PCR system

(Applied Biosciences, USA, USA) was used for qRT-PCR

analysis. Reactions were performed at 95°C for 10 min,95°C,

40 cycles for 15 s, and 60°C for 1 min. The relative levels of gene
Frontiers in Immunology 03
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expression were calculated by the 2-D Ct method using GAPDH

as a reference gene. The study was conducted according to the

Declaration of Helsinki of the World Medical Association. The

School of Clinical Oncology of Fujian Medical University

approved the use of human tissues.
Consistent clustering study of m6A-
related genes

To assess genetic identity, molecules significantly

associated in the m6A risk model were analyzed using the

Spearman method. p values were adjusted with the Benjamin-

Hochberg test. When the absolute correlation coefficient was

greater than 0.3 and P<0.01, it was significantly associated

with genetic correlation. Tumor samples were clustered into

distinct GeneClusters using the Kaplan-Meier method, which

partitions around significantly correlated molecular expression

and Euclidean measurement distances. Specifically, clustering

analysis was performed using the ConsensusClusterPlus (19) R

package, with 1000 cycles of calculation to ensure stability

and reliability of the classification. To study the signature

genomes, the Boruta algorithm was used to perform a

dimensionality reduction analysis of significantly related

genomes. Then, two classes, signature gene A and signature

B, were clustered according to signature gene expression

changes and visualized using the ComplexHeatmap package

in the R software.
Copy number variation analysis

For CNV analysis, masked copy number segment datasets

for different risk groups were downloaded from TCGA-ESCA.

The data were examined using GISTIC 2.0 (20). GenePattern 5

was used for the above analysis.
Construct and validate the
prediction nomogram

To improve the value of the signature in clinical practice,

clinical factors (T, N, M, TNM) and m6A risk score were used as

prognostic nomograms to evaluate the probability of OS

occurrence in ESCA patients at 1, 2, and 3 years. To quantify

the discriminatory performance of the nomogram, the

concordance index (C-index) of T, N, M, m6A risk score,

TNM, TNM+m6A risk score were compared. Calibration

curves, time-dependent receiver operating characteristic (ROC)

curves, and decision curve analysis (DCA) were used to examine

the TNM and TNM+m6A risk scores.
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Results

Genetic variation of m6A-related genes

To analyze the overall expression of m6A-related genes in

ESCA patients, this paper first analyzed mutations and gene

expression levels, including single nucleotide polymorphisms

(SNPs), CNV, and gene expression. Among the 172 samples, 23

samples showed SNPs of m6A-related regulators, mainly

missense mutations (Figure 1A). Subsequently, we summarized

the incidence of CNV for the 23 m6A-associated regulators in

the ESCA samples. Figure 1B shows the altered CNV

chromosomal location. CNV alterations were widespread in

m6A-related genes, with reduced copy number in most

patients (Figure 1C). In addition, the mRNA expression levels

of m6A-related genes were analyzed between ESCA samples in

this study, and the results showed that all genes were

differentially expressed except METTL14, ZC3H13, RBM15,

YTHDC2, and IGFBP1 (Figure 1D). Spearman correlation

analysis was applied to correlate the 23 m6A RNA

methylation regulators. From Figure 1E, the transcriptome

associations were explored, and we suggested that there are
Frontiers in Immunology 04
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close correlations among writers, erasers and readers. The

correlation between RBMX and HNRNPC, HNRNPA2B1 was

the highest (P<0.01), while the correlation between YTHDF3,

VIRMA was the highest (P<0.01) (P<0.01).
Construction and validation of a
prognostic risk model based on seven
m6A methylation regulators

Next, we analyzed the role of m6A-related regulators in

ESCA patients. The m6A regulatory network shown in

Figure 2A reveals the interactions with m6A-related genes,
B

C

D

A

E

FIGURE 1

Genetic variants of m6A-related genes. (A) SNP of m6A related
genes in 23 samples. (B) Location of CNV alterations on
chromosomes. (C) Frequency of CNV in m6A related genes. Blue
represents amplification, orange represents deletion. (D) Genetic
variants of m6A-related genes. (E) Diagram showing the
relationship between different m6A-related genes through
Pearson correlation analysis. Red and blue represent a positive
and negative correlation, respectively. *p < 0.05, **p < 0.01,
***p < 0.001; ns, not significant.
B

C

D
E

F

A

FIGURE 2

PPI network and prognostic signatures construction and
prediction. (A) Interaction among m6A-related regulators. Circle
size indicates the effect of each gene on survival, the larger the
size, the greater the effect; on the right half of the circle, red
represents risk prognostic factors and blue represents favorable
factors; on the left side of the circle, red represents recognition
proteins (readers), blue represents methyltransferases (writers),
and brown demethyltransferases (erasers); lines that connect
genes exhibit genetic interactions, red and blue represent
positive and negative associations, respectively. (B) Partial
likelihood deviance of different numbers of variables. One-
thousand-fold cross-validation was applied for tuning penalty
parameter selection. (C) LASSO analysis identified seven m6A-
related genes in the 23 m6A-related regulators cohort. Each
curve corresponds to one gene (cyan, FMR1; green, RBMX; pink,
IGFBP1; brown IGFBP2; blue, ALKBH5; orange, RBM15B; purple,
METTL14). (D) Risk score, distribution of patient survival status
between the low- and high−risk groups, and expression heat
maps of seven m6A-related regulators. (E) Kaplan–Meier curves
indicated that there is a strong relationship between high and
low m6Ascore and the overall survival rate. (F) ROC curve was
applied to assess the predictive efficiency of the prognostic risk
signature.
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nodes, and their role in ESCA prognosis. It was found that not

only the m6A regulators share the same functional class, but also

the expression of functional class m6A regulators was

significantly correlated.

In addition, to quantitatively evaluate the effect of m6A-

related regulators on the prognosis of each ESCA patient, we

constructed a risk model of m6A-related regulator expression.

First, based on the results of LASSO regression analysis, the

minimum-minimum criterion and optimal-minimum criterion

M6A-related genes, including FMR1, RBMX, IGFBP1, IGFBP2,

ALKBH5, RBM15B, METTL14, were used (Figure 2B–C).

Meanwhile, the penalty coefficients of the characteristic

regulators were calculated using LASSO analysis, and the risk

index was established by multiplying the gene expression by the

corresponding coefficients. The risk score of each sample was

then calculated based on the median of m6A scores and divided

into two groups of low risk and high risk. The risk score

distribution, survival status and characteristic gene expression

patterns are shown in Figure 2D. Kaplan-Meier survival analysis

showed that OS was significantly lower in the high-risk group

ESCA patients than in the low-risk group (log-rank

p<0.001, Figure 2E).

The sensitivity and predictive specificity of the risk scores

were investigated using ROC curve analysis. The AUC values

were 0.657, 0.753, 0.758, and 0.758, respectively (Figure 2F). The

AUC values showed that the risk scores significantly predicted

the prognosis of patients with ESCA.
GO enrichment and genome
enrichment analysis

In this study, GO analysis was used to explore the

biological functions of the low-risk and high-risk groups.

The results showed the processes of organ identity

maintenance, negative regulation of synaptic vesicle

extravasation, tubular boys, meiotic telomere and nuclear

envelope attachment, meiotic telomere aggregation, telomere

localization, neuronal action potential regulation, purine

nucleotide metabolism in the high-risk group animals.

decoder complex, tetrahydrobiopterin biosynthesis process,

reduced food intake, brush border assembly, galactolipid

biosynthesis, glycosylceramide biosynthesis, transmembrane

transport of pyrimidine compounds, and purine nucleobase

transport (Figure 3A). Next, we performed the GSEA analysis

shown in Figure 3B. The high-risk group was associated with

antigen processing mechanisms, EMT-1, and mismatch

repair. The low-risk group was correlated with CD8-T,

immune checkpoint, EMT2, pan-F TBRS, angiogenesis,

Fanconi anemia, DNA damage repair, WNT target, and

DNA damage response.
Frontiers in Immunology 05
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Validation of IGFBP2 ALKBH5, FMR1, and
RBMX by qRT-PCR

IGFBP2, ALKBH5, FMR1, and RBMX were selected as the

study subjects and validated by qRT-PCR method (Table 1).

RESULTS: The expression level of IGFBP2 in normal tissues was

significantly higher than that in ESCA tissues (Figure 4).
Constructing genetic traits based on the
m6A risk model

To better understand the biology of phenotypes associated

with the m6A risk model, genes significantly associated with

m6A risk scores were analyzed using the Spearman method

(Cor|>0.3 & p.adjusted<0.01). A total of 741 associated genes

were identified. Subsequently, based on the expression of these

genes, the unsupervised clustering method was used to classify

ESCA patients into three subtypes, named GeneClusters A, B,

and C. The dimensionality of the associated gene clusters was

reduced using the Boruta algorithm to obtain the signature gene

clusters. Based on the trend of signature gene expression, the

signature genes were classified into two groups, A and B. The

relationship between GeneCluster groups, m6A signature group,

m6A risk score and clinical prognosis was further analyzed

(Figure 5A). Meanwhile, the results of survival analysis showed

significant differences in the prognosis of patients with the three
B

A

FIGURE 3

GO enrichments and gene set variation analysis. (A, B)
Bioinformatics analysis of low- and high-risk groups. *p < 0.05,
**p < 0.01, ns, not significant.
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gene subtypes, with the GeneCluster C group having the worst

prognosis (log-rank p=0.003, Figure 5B).
Effect of genetic variant risk score

To better understand the effect of high and low m6A scoring

methods on the level of genetic variants, this study analyzed
Frontiers in Immunology 06
155
single nucleotide mutations in driver genes during common

tumorigenesis, with differences in SNP levels between groups

(Figure 6A). The overall level analysis showed that TMB

(P=0.051, Figure 6B) was slightly correlated between the low-

risk and high-risk groups, and TMB was significantly lower in

GeneCluster A than in groups B and C (Figure 6C). In addition,

the study of CNV variation frequency showed that the variation

of gene CNV in the high-risk group was mainly focused on gene

amplification (Figure 6D), while the low-risk group deleted gene

copy number relatively (Figure 6D).
Construction of a clinical prediction
model based on the m6A risk score

Next, to quantify OS prediction, we combined risk scores

with independent clinical characteristics (T, N, M, and TNM)

to construct a nomogram (Figure 7A). To verify the different
B C DA

FIGURE 4

Validation of the expression levels of target IGFBP2. The IGFBP2
expression in ESCA (n = 15), and adjacent normal tissues (n = 15)
was evaluated by qRT-PCR including FMR1 (A), AKBH5 (B), RBMX
(C), IGFBP2 (D); the results were analyzed using paired sample t
test. Results are expressed as mean ± standard deviation (SD).
*p< 0.05, *p< 0.05, ns, not significant.
BA

FIGURE 5

Genetic signature of risk grouping. (A) Relationship between
GeneCluster groups, m6A signature groups, m6A risk scores, and
clinical prognosis. (B) Kaplan–Meier curves indicate that there is
a strong relationship between GeneClusters A, B, and C and the
overall survival rate.
B

C

D

A

FIGURE 6

Molecular profiling of high and low m6A score groups. (A)
Distribution of driving genes during common tumorigenesis
between high and low m6A score samples; (B, C) Tumor
mutation burden distribution in the different m6A score samples
and GeneCluster groups; (D) Distribution of copy number
amplifications and deletions in high and low m6A score samples.
Table 1 Primers of IGFBP2, ALKBH5, FMR1, RBMX, and GAPDH.

Primer Forward (5′ to 3′) Reverse (5′ to 3′)

IGFBP2
ALKBH5
FMR1
RBMX

TGCAGACAATGGCGATGACC
GACAAGGAAGAGAACCGGCG
GCCAAAGAGGCGGCACATAA
CCCAGCAGACGCTAAGGATG

GGTGCTGCTCAGTGACCTTC
GCATCTTCACCTTTCGGGCA
CGCAGACTCCGAAAGTGCAT
CTACGAGAGGGCAGCGGTTC

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
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predictive effects of m6A risk scores on the combined T, N, and

M stages, this study compared the T, N, M,m6A risk scores

using the scales of the TNM risk scale; and a TNM+m6A risk

score model was developed (Figure 7B). The results showed

that the TNM+m6A prediction model had a better predictive

effect. To verify the prognosis of TNM and the predictive value

of the TNM+m6A risk score model, time-dependent ROC

curves were established (Figures 7C–E). the AUC of the

TNM model for 1, 2, and 3-year OS were 0.691,0.733, and

0.715, respectively; the AUC of the TNM+m6A risk score

model for OS 1,2, and 3-year OS were 0.783, These results

suggest that the TNM+ risk score model has a higher predictive

value than the TNM model. Also, calibration curves were

generated to test the correctness of the models. With the

calibration curves, we found that the survival curves

predicted by both models at 1, 2, and 3 years were very close
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to the observed survival curves, indicating that the nomograms

were highly predictive (Figures 7F–H). In addition, DCA

showed that the TNM+m6A risk score model had a broader

clinical benefit than the TNM prognostic model, but the benefit

of 3-year OS was similar (Figures 7I–K).
Discussion

ESCA is a lethal malignancy. Despite advances in surgery,

radiation therapy, chemotherapy and immunotherapy, the 5-

year survival rate of ESCA remains low due to late detection and

lack of precise treatment (21). Therefore, it is important to gain

insight into the mechanisms of oncogenicity of ESCA. ESCA is

closely associated with lifestyle environmental factors that can

alter genomic inheritance and epigenetics (22). m6A

modification is a novel regulatory mechanism of eukaryotic

gene expression that controls gene expression through

reversible epigenetic modifications (23).

In the present study, CNV alterations in the m6A regulator

were prevalent in ESCA patients and mostly concentrated in

copy number deletions. However, SNP was low in the m6A-

regulator. We further demonstrated general differences and

positive correlations in the expression of the 23 m6A-gene

regulators in ESCA. Next, prognostic scores (high vs. low risk)

were established based on the expression levels of FMR1,

RBMX, IGFBP1, IGFBP2, ALKBH5, RBM15B, and METTL14

genes. These patterns could well predict the survival of ESCA

patients. Initial analysis of biological functions in the high-risk

versus low-risk groups was performed by GO functional

annotation and genomic variation analysis. Based on this, the

TCGA-ESCA cohort was clustered according to the high-risk

score moderator. There were significant survival status

differences among the three GeneClusters. In addition, there

were some differences between the high-risk and low-risk

groups according to prognostic characteristics, with CNV

alterations mainly focused on gene amplification and the

opposite in the low-risk group. Finally, a nomogram was

constructed combining risk scores and independent clinical

characteristics (T, N, M and TNM). The results showed that

the TNM+m6A model was the best predictor. The calibration

curves showed a significant agreement between prediction and

actual survival probability.

First, 17 m6A regulators (METTL3, METTL16, WTAP,

VIRMA, RBM15, YTHDC1, YTHDF2, YTHDF3, HNRNPC,

FMR1, LRPPRC, HNRNPA2B1, IGFBP2, IGFBP3, RBMX,

FTO, ALKBH5 gene expression differences. The expression of

IGFBP2 in normal tissues was significantly higher than that in

ESCA tissues as confirmed by qRT-PCR; IGFBP2 is involved in

various oncogenic processes, such as epithelial-to-mesenchymal
B

C D E

F G H

I J K

A

FIGURE 7

Nomogram analysis. (A) Nomogram composed of stage, T, N, M,
and risk score for the prediction of 1-, 2-, and 3-years OS
probability. (B) C-index analyses of T stage, N stage, M stage, risk
score, TNM, TNM +risk score. (C–E) ROC curve for the
nomogram based on TNM prognosis model and TNM +risk
score model 1-, 3-, and 5-y survival. (F–H) Calibration plot of the
TNM prognosis model and TNM +risk score model for 1-year (F),
2-year (G), and 3-year (H) OS. (I–K) DCA curve of TNM
prognosis model and TNM +risk score for 1, 2, and 3 years.
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transition, cell migration, invasion, angiogenesis, stemness,

transcriptional activation, epigenetic programming, etc. A

recent study showed that rs1470579 CC genotype IGFBP2 is

protective against adenocarcinoma of the esophagogastric

junction (24). Based on previous findings, we suggest that

IGFBP2 may be a key regulator affecting the prognosis of

patients with ESCA. reduced IGFBP2 gene expression may be

associated with poor prognosis. Genomic mutation analysis

showed that SNPs and CNVs of gene regulatory genes were

associated with ESCA.

LASSO regression analysis showed that the prognostic

features of ESCA patients-FMR1, RBMX, IGFBP1, IGFBP2,

ALKBH5, RBM15B, METTL14-predicted the OS of ESCA

patients. ALKBH5 promotes ESCC proliferation and its

mechanism of action is cell cycle regulation (25). IGFBP1 has

a regulatory role in cell proliferation and invasion under the

regulation of miRNAs. miRNAs regulate oncogenes with

regulatory cell proliferation and invasive effects. For example,

miR-454-3P can act on IGFBP1 through ERK and AKT

signaling, thereby inhibiting its proliferation, invasion, and

apoptosis (26). However, the mechanism of action of FMR1,

IGFBP1, RBM15B, and METTL14 is still unclear. We will

explore their relationship with the development of ESCA in a

future study. The predictive potential of these seven factors

combined is much greater than that of individual factors.

Although the ROC curve did not show strong predictive

power in 4-5 years, the number of patients in year 4-5 was too

small, which may lead to an unstable ROC curve.

In addition, this study also analyzed the GO enrichment and

GSVA of ESCA patients based on risk scores using TCGA

information. The high-risk group may be involved in telomere

localization, base metabolism, base translocation, and mismatch

repair. This may be the reason for the poor prognosis of ESCA

due to risk modifiers.

On this basis, the TCGA-ESCA cohort was clustered

according to the high-risk score moderator. The results of the

survival analysis showed significant differences in prognosis

among the three gene cluster groups, with the GeneCluster C

group having the worst prognosis. Most samples had high risk

scores in GeneCluster C. These results suggest that the regulators

involved in the m6A risk model are significantly correlated with

ESCA characteristics.

We then combined risk scores and independent clinical

characteristics (T, N, M, TNM) to construct a nomogram that

allowed the prediction to be quantified. The results showed that

the TNM combined with the risk score model was able to predict

the prognosis of ESCA patients. This improves the value of this

prognostic feature for clinical application.
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The study has several limitations. First, the lack of complete

clinical data from TCGA may affect the results; therefore, the

statistical power may not be high. Further improvement of

sample size, sequencing data and clinical information is

essential. Second, the mechanism of IGFBP2's effect on the

prognosis of ESCA has not been explored in depth. Therefore,

this study will focus on the mechanism of IGFBP2's action as a

tumor suppressor. Finally, this study was based on

bioinformatics and qRT-PCR techniques to analyze the results

of ESCA patient tissues.
Conclusions

The above results suggest that abnormal expression of 17

m6A- RNA methylation regulators is associated with survival

outcome in ESCA patients. The risk score was then combined

with TNM to quantify OS prediction. This study highlights the

important role of RNA modifications in the formation of ESCA

and also provides potential biomarkers for the selection of

therapeutic approaches.
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Immune depletion of the
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Kaihong Chen5* and Shiqian Lan1*
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Hospital of Fujian Medical University, Longyan, China, 3Department of Science and Education,
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Background: Molecular typing based on single omics data has its limitations

and requires effective integration of multiple omics data for tumor typing of

colorectal cancer (CRC).

Methods: Transcriptome expression, DNA methylation, somatic mutation,

clinicopathological information, and copy number variation were retrieved

from TCGA, UCSC Xena, cBioPortal, FireBrowse, or GEO. After pre-

processing and calculating the clustering prediction index (CPI) with gap

statistics, integrative clustering analysis was conducted via MOVICS. The

tumor microenvironment (TME) was deconvolved using several algorithms

such as GSVA, MCPcounter, ESTIMATE, and PCA. The metabolism-relevant

pathways were extracted through ssGSEA. Differential analysis was based on

limma and enrichment analysis was carried out by Enrichr. DNA methylation

and transcriptome expression were integrated via ELMER. Finally, nearest

template or hemotherapeutic sensitivity prediction was conducted using NTP

or pRRophetic.

Results: Three molecular subtypes (CS1, CS2, and CS3) were recognized by

integrating transcriptome, DNA methylation, and driver mutations. CRC

patients in CS3 had the most favorable prognosis. A total of 90 differentially

mutated genes among the three CSs were obtained, and CS3 displayed the

highest tumor mutation burden (TMB), while significant instability across the

entire chromosome was observed in the CS2 group. A total of 30 upregulated

mRNAs served as classifiers were identified and the similar diversity in clinical

outcomes of CS3 was validated in four external datasets. The heterogeneity in

the TME and metabolism-related pathways were also observed in the three
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CSs. Furthermore, we found CS2 tended to loss methylations while CS3 tended

to gain methylations. Univariate and multivariate Cox regression revealed that

the subtypes were independent prognostic factors. For the drug sensitivity

analysis, we found patients in CS2 were more sensitive to ABT.263, NSC.87877,

BIRB.0796, and PAC.1. By Integrating with the DNA mutation and RNA

expression in CS3, we identified that SOX9, a specific marker of CS3, was

higher in the tumor than tumor adjacent by IHC in the in-house cohort and

public cohort.

Conclusion: The molecular subtypes based on integrated multi-omics

uncovered new insights into the prognosis, mechanisms, and clinical

therapeutic targets for CRC.
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Introduction

Colorectal cancer (CRC) is the third most common

malignant tumor in the world and the fourth major cause of

cancer death (1). The diagnosis of CRC is often in the middle

and late stages with poor prognosis, and distant metastasis is the

main cause of death in colorectal cancer patients. With the

continuous improvement in medical level, comprehensive

treatment measures such as surgery, radiotherapy, and

chemotherapy, targeted therapy, and immunotherapy have

improved the overall survival (OS) of patients with CRC, but

their overall efficacy is still poor, and the 5-year survival rate of

patients with metastatic CRC is only about 14% (1). Therefore,

how to effectively evaluate the prognosis of different CRC

patients is an urgent problem to be solved.

At present, the most widely used prognostic staging system

for CRC is the TNM (Tumor, Node, and Metastasis) staging

system, which is easy to observe from clinical information and is

the benchmark for the establishment of clinical treatment plans
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for patients. However, the TNM staging system mainly relies on

expert opinions, and the features used are relatively single. The

abnormal phenomenon of the TNM staging system in CRC (the

prognosis of patients at stage IIB/C is significantly worse than

that of patients at stage III A) results in its limited ability of

personalized and accurate clinical decision (2). At the same time,

as a population-based system, the TNM staging system has been

questioned about its application to individual patients (3). The

latest eighth edition of the TNM staging system included

biomarkers as new prognostic factors in some cancer staging

(3). Therefore, it is necessary to introduce new prognostic factors

to the existing TNM staging system in order to more accurately

assess the prognosis of patients and formulate treatment plans.

Cancer is a complex disease with high heterogeneity, even

patients with the same histopathological classification will have

different gene mutations (4). Hence, personalized prevention,

diagnosis, and treatment should be done according to the clinical

and omics characteristics of different patients (5). For CRC,

microsatellite instability (MSI), DNA mismatch repair (MMR),

and the results of molecular tests such as RAS mutation and

BRAF VE6000 are used to determine the prognosis (3, 6). It is

possible to combine clinical and omics information for more

personalized prognostic analysis of cancer, but it is difficult for a

single omics data to fully account for all factors in a complex

disease such as cancer, making it difficult for researchers to

derive data from millions of single-nucleotide variations (SNV)

to find the key gene that actually causes the disease (7). In recent

years, more and more researchers have carried out integrated

analysis of various omics data and obtained certain results (8, 9).

However, most prognostic studies of CRC are limited to one set

of omics, such as gene expression (10) or DNAmethylation (11),

and few studies that consider multiple omics data have failed to

effectively combine multiple omics data with clinical data (12).
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Therefore, how to integrate clinical data and omics data and

apply them to the prognosis of CRC is of great significance.

The Cancer Genome Atlas (TCGA) is a platform that

integrates clinical data, survival information, and multiple

omics data for 33 cancers. Through the integration and

analysis of multiple omics, cancer subtype classification,

biomarker discovery, and survival prognosis analysis can be

carried out (13–15). Herein, using data from TCGA and other

public databases, we developed a classifier based on multi-omics

integration for the prognosis prediction of CRC for the first time.

We evaluated the differences in genomic heterogeneity,

transcriptome biomarkers, TME landscape, metabolism-related

pathways, epigenetic regulation, and chemotherapeutic drug

sensitivity among the molecular subtypes of CRC. Multivariate

Cox regression analysis confirmed the independent prognostic

value of our subtype system. In summary, the molecular

subtypes based on integrated multi-omics uncovered new

insights into the prognosis, mechanisms, and clinical

therapeutic targets for patients with CRC.
Materials and methods

Study population

Molecular data of patients diagnosed with CRC were retrieved

from TCGA (13). Transcriptome expression profiles of the TCGA-

COAD (colon adenocarcinoma) and TCGA-READ (rectum

adenocarcinoma) projects quantified by the number of fragments

per kilobase million (FPKM) were downloaded from the UCSC

Xena (https://xenabrowser.net/), including 616 fresh-frozen

samples with primary malignancy and 51 adjacent normal

samples. The DNA methylation profile quantified by Illumina

HumanMethylation 450K-array platform was downloaded from

the UCSC Xena (https://xenabrowser.net/) under the projects of

TCGA-COAD and TCGA-READ, respectively, including a total of

387 primary colorectal tumour samples and 45 adjacent normal

samples. Somatic mutation data, patients’ clinicopathological

information, and survival data were retrieved from cBioPortal

(http://www.cbioportal.org/datasets) (16). Copy number variation

(CNV) data was collected from FireBrowse (http://firebrowse.org/)

(17). For the purpose of multi-omics integrative clustering, 306

primary colorectal tumour samples with available transcriptome

expression, DNA methylation, and somatic mutation profiles were

identified for this study. Another four independent cohorts

downloaded from GEO, including GSE14333 (18), GSE17538

(19), GSE38832 (20), and GSE39582 (21), comprised of a total of

1,159 CRCs with gene expression matrix and corresponding

clinicopathological information. Of these external validation

cohorts, gene expression matrices were profiled by Affymetrix

Human Genome U133 Plus 2.0 Array. The Robust Multichip

Average (RMA) algorithm was used for background correction

and normalization (22).
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Data pre-processing for gene expression
and DNA methylation profiles

For the FPKM data of high-throughput sequencing from

TCGA, Ensembl IDs for mRNAs were transformed to gene

symbols by GENCODE 22. The FPKM values were transferred

into transcripts per kilobase million (TPM) values, which

showed more similarity to those derived from microarray and

more comparable between samples (23). For microarray data

retrieved from GEO database, we performed RMA

normalization and processing using default settings for

background correction and normalization by R package affy

(24). Affymetrix probe ID was annotated with gene symbols

according to the GPL570 platform. For multiple probes that

mapped to one gene, mean value of expression was considered.

The potential cross-dataset batch effect was removed under an

empirical Bayes framework, namely, ComBat, by the R package

sva (25), and the batch effect was further investigated using

principal component analysis (PCA) for transcriptome profiles.

For DNA methylation, we performed logit transforms b-values
before ComBat adjustment and then computed the reverse logit

transformation following the ComBat adjustment (26).

Subsequently, we used R package ChAMP to comprehensively

filter the methylation matrix. To be specific, probes with

detection P value > 0.01, probes with <3 beads in at least 5%

of samples per probe, all non-CpG probes, all SNP-related

probes, all multi-hit probes, and probes located on sex

chromosomes were removed in the first place (26, 27).
Integrative clustering based on multi-
omics profiles

To perform integrative clustering analysis, we processed the

TCGA multi-omics data sets to form three data matrices with

columns corresponding to the common samples (n = 306) and

rows corresponding to the omics features. The transcriptome

expression profile was first log2 transformed. For the

methylation data, we extracted probes located in promoter

CpG islands, and for genes having more than one probe

mapping to its promoter, the median b value was considered

to identify 10,263 methylated genes. For the mutation matrix, a

gene was considered mutated (entry of 1) if it contained at least

one type of the following nonsynonymous variations: frameshift

deletion/insertion, in-frame deletion/insertion, missense/

nonsense/nonstop mutation, splice site or translation start site

mutation; otherwise, 0 was used to designate wild-type status. To

better fit the model and accelerate the clustering efficiency,

features with flat values were removed. Specifically, we used

the top 1,500 most variable mRNAs, and methylation genes

according to the median absolute deviation. Additionally, 20

genes that were previously identified as driver mutations for
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colorectal carcinoma were selected for cancer subtyping (28). To

find an optimal clustering number, we calculated the clustering

prediction index (CPI) and gap statistics using R package

MOVICS (29). Consequently, integrative clustering of the

TCGA cohort was conducted by R package MOVICS using a

Bayesian latent variable model (29, 30).
Deconvolution of tumour
microenvironment

To estimate the cell abundance of TME, we retrieved from

the previous study a compendium of microenvironment genes

related to specific microenvironment cell subsets, which

consisted of 364 genes representing 24 microenvironment cell

types (31, 32). We then used gene set variation analysis (GSVA)

on these gene sets to generate enrichment scores for each cell

using the R package GSVA (33). Additionally, quantification of

the absolute abundance of eight immune and two stromal cell

populations in heterogeneous tissues from transcriptomic data

was conducted by the R package MCPcounter (34). The presence

of infiltrating immune/stromal cells in the tumour tissue was

estimated by the R package ESTIMATE (35). Additionally, the

individual DNA methylation of tumour-infiltrating lymphocyte

(MeTIL) score in the TCGA cohort was calculated using PCA

according to the protocols described in the literature (36).
Single sample enrichment for
metabolism-relevant pathways

The 115 metabolism-relevant gene signatures were achieved

from previously published study (37), and were quantified by

using single-sample GSEA (ssGSEA) approach through R

package GSVA (38). Specifically, we extracted three main

categories of these metabolism-relevant pathways, including

carbohydrate metabolism, amino acid metabolism, and

lipid metabolism.
Differential analysis and functional
enrichment

Differential expression analyses were conducted using the R

package “limma” (39). Gene set enrichment analysis (GSEA) was

performed based on pre-ranked gene list according to the

descending ordered log2FoldChange value derived from

differential expression analysis; we then leveraged R package

clusterProfiler to determine functional enrichment based on

Hallmark gene set background that was retrieved from

Molecular Signatures Database (MSigDB) (40, 41). The
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differentially methylated probes (DMPs) were obtained by R

package ChAMP (26). Specifically, we considered probe to have

significantly gained methylation if its corresponding mean b-
value was greater than 0.3 in the specific subtype but less than 0.2

in the reference subtype with P<0.05 and FDR<0.05; vice versa

for probes that significantly lost methylation. Gene-list based

enrichment analysis was conducted by an integrative and

collaborative website tool (Enrichr; https://maayanlab.cloud/

Enrichr/) (42).
Cancer subtype characterization and
visualization

As previously developed R package MOVICS provides

powerful functions to comprehensively characterize cancer

subtypes and create feature rich customizable visualizations

with minimal effort, we therefore characterized the identified

colorectal subtypes from multiple aspects, including survival

rate, mutational frequency, fraction of copy number-altered

genome (FGA), and clinical characteristics. All parameters

were set to default values (29).
Integrative analysis of DNA methylation
and transcriptome expression

We used R package ELMER to investigate the crosstalk

between DNA methylation and transcriptome expression

under an integrative analytic pipeline (43). For probes that are

located in promoters, we identified putative genes that were

significantly downregulated due to the hypermethylation of

promoter probes. Next, the closest 20 upstream and

downstream genes were collected for each probe, and for each

candidate probe-gene pair, the Mann-Whitney U test was

harnessed to test the null hypothesis that overall gene

expression in the specific group was less than or equal to that

in the reference group. For probes that are located in enhancers

(distal probes that are at least 2Kb away from transcription start site

on human chromosomes), hypomethylated enhancer mode with

overexpressed gene expression pattern was investigated accordingly.
Nearest template prediction

Gene-expression signature-based classification was

conducted using NTP algorithm, which provided a convenient

model-free approach to make category prediction at single-

sample level using only a list of signature genes and a test

dataset, which was flexible and beneficial in external cohort

application (44, 45).
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Analysis of regulons

Transcriptional regulatory networks (regulons) were

constructed for 71 candidate regulators associated with

cancerous chromatin remodelling (46). As described in the

previous study (31), potential associations between a regulator

and all possible target genes were revealed by mutual

information and Spearman’s correlation, and associations were

dropped via permutation analysis if the corresponding FDR was

greater than 0.00001. Unstable associations were also eliminated

through bootstrapping (1,000 re-samplings, consensus

bootstrap>95%), and the weakest associations were removed

by data processing inequality (DPI) filtering embedded in the R

package RTN (47). Regulon activity scores for all samples were

calculated by two-tailed GSEA.
Therapeutic response analysis

We employed R package pRRophetic to predict the

chemotherapeutic sensitivity for each colorectal sample using

the parameters by default (48, 49). For immunotherapy, we

retrieved a published data set consisting of 47 patients with

melanoma who responded to anti-CTLA4 or anti-PD1

blockades (50), and then harnessed subclass mapping to

predict the clinical response to immune checkpoint

blockade (51).
Immunohistochemical staining

The 50 pairs of CRC tumor and adjacent normal tissue

Microarray (D216Re01) were purchased from Xi’an bioaitech Co.,

Ltd (Xi’an, China). Immunohistochemical staining was performed

on normal and the paired tumor tissue slides. The slides were

incubated with rabbit polyclonalanti-SOX9 (EPR14335, 1:2000);

antibodies at 4℃ overnight. SOX9 expression was evaluated by

using a system considering the staining intensity (0 means negative

1 means weak; 2 means moderate; and 3 means strong) and the

percentage of positively stained cells (<5%=05% to <25%=1, 25% to

50%=2, >50 to <75%=3, >75%=4). The final score was calculated by

multiplying the extent score by the intensity score.
Statistical analyses

All statistical analyses were performed by R (Version 4.0.2).

We used Fisher’s exact test for categorical data, Kruskal–Wallis

one-way analysis of variance for continuous data, a log-rank test

for Kaplan-Meier curve, and Cox regression for hazard ratio. For

all comparisons, a two-sided P < 0.05 was considered

statistically significant.
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Results

Multi-omics integrative molecular
subtype of colorectal cancer

We combined expression profiles of TCGA-COAD and

TCGA-READ, and further removed the potential batch effect

(Figure 1A). We determined the optimal cluster number of three

taking into account two clustering statistics and previous

molecular classifications (Figure 1B). Subsequently, integrative

clustering identified three robust cancer subtypes (CSs), which

were characterized by distinct molecular patterns across

transcriptome mRNA expression, DNA methylation and

colorectal cancerous driver mutations (Figure 1C). Of note,

these classifications were not associated with major clinical

features (all P > 0.05; Supplementary Table S1); our

classification system was tightly associated with overall

survival rate (OS; P = 0.001; Figure 1D) and progression-free

survival rate (PFS; P = 0.009);. Generally, CS3 showed the most

favourable prognosis among three clusters.
Genomic heterogeneity of colorectal
cancer subtype

To investigate the genomic heterogeneity of these molecular

subtypes further, we investigate the differentially mutated genes

among our classifications, leading to a total of 90 genes (FDR <

0.05 and mutational frequency > 10%; Figure 2A). Among these

90 genes, 11 genes were previously identified as driver mutations

in colorectal cancer, including PIK3CA, APC, BRAF, KRAS,

TP53, FBXW7, AMER1, TCF7L2, SOX9, ARID1A, and SMAD4

(Supplementary Table S2). Additionally, we found that CS3

showed a significantly higher tumour mutation burden (TMB,

P = 0.002; Figure 2B) than the other two subtypes. We then

investigated chromosomal instability by calculating the FGA

scores and found that CS2 had significant instability across the

entire chromosome as compared to the other two subtypes with

significantly higher copy number loss or gain (P < 0.001;

Figure 2C). We showed three types distinguishing composite

copy number profiles: gistic score (Figure 2D), and

percentage/frequency.
Identification of transcriptome
biomarkers for colorectal cancer subtype

Given that transcriptome-level data were the most commonly

used molecular profiles in cancer research, we identified 30

mRNAs with uniquely and significantly upregulated expression

as classifiers for each subtype in the TCGA cohort, and a 90-gene

signature was generated (Figure 3F; Supplementary Table S3). To
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test the reproducibility of our identified colorectal molecular

subtypes, we combined four external datasets as GEO cohort of

which expression profiles were measured by microarray platform;

batch effect across different datasets were removed (Figures 3A,

B). We then predict the identified molecular subtypes in the GEO

cohort (n = 1,159) using NTP algorithm, which classified each

sample in the GEO cohort as one of the identified CS (Figure 3C).

Of note, a total of 961 cases of GEO cohort were predicted with

confidence (FDR < 0.05) and those cases were used for the

downstream analyses. Likewise, CS3 presented with the most

favourable clinical outcome out of the three subtypes (P = 0.008;

Figures 3D, E).
Delineation of metabolism-related
pathways in colorectal cancer subtype

Oncogenic heatmap with cancer associated mutations in

tcga coadread (Figure 4A). Boxplot for oncogenetic pathways in

iclusters of tcga coadread(Figure 4B). Similarly, GSEA is run for

each subtype based on its corresponding DEA result to identify

subtype-specific functional pathways (Figures 4C, D). Since
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Metabolic pathways regulate colorectal cancer initiation and

progression, we further explored whether distinct subtypes had

different metabolic characteristics in both TCGA and GEO

cohort (Figure 4E). Of note, we found global dysfunction of

metabolism-related pathways among three molecular subtypes,

and generally CS3 showed relatively higher enrichment level of

carbohydrate, amino acid, and lipid metabolism-relevant

pathways, which may suggest that these colorectal cancers

preserved the default metabolic program of normal colon and

rectum, leading to a generally good clinical outcome.
Tumour microenvironment landscape of
colorectal cancer subtype

Since cancer immunity plays a critical role in tumour

progression, we suspected that the tumour microenvironment

may vary a lot among these molecular subtypes. Since cancer

immunity plays a critical role in tumour progression, we

suspected that the tumour microenvironment may vary a lot

among these molecular subtypes. Therefore, we investigated the

specific immune cell infiltration status of samples in the TCGA
A B
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FIGURE 1

Multi-omics integrative molecular subtype of colorectal cancer. Principal component analysis to investigate the potential batch effect between
TCGA-COAD and TCGA-READ. (A) before and after Combat. (B) Identification of optimal clustering number by calculating CPI and Gaps-
statistics. (C) Comprehensive heatmap showing the molecular landscape of three cancer subtypes of colorectal carcinoma using integrative
clustering. Kaplan-Meier curves of (D) OS and PFS with log-rank test for 306 patients with colorectal cancer according to the current
molecular classification.
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cohort. To be specific, we quantified the infiltration levels of

several microenvironment cell types using different approach,

and surveyed the colorectal samples for the expression of genes

representing immune checkpoint targets. The analysis of gene

expression signatures suggested that CS1 was highly immune-

infiltrated, CS3 showed relatively higher immunocyte

infiltration, while CS2 was generally immune-depleted

(Figure 5A). This finding may converge to the poor overall

survival of CS2 versus other molecular subtypes. Compared to

the other subtypes, CS1 had relatively higher expression of

severa l genes that represent potent ia l targets for

immunotherapy, including CD274 (PDL1), PDCD1 (PD1),
Frontiers in Immunology 07
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CD247 (CD3), PDCD1LG2 (PDL2), CTLA4 (CD152),

TNFRSF9 (CD137), TNFRSF4 (CD134) and TLR9 (Sup_S2).

Interestingly, CS1 enriched for B cell, CD8 T cells but may lack

CD4 memory activated cells (Sup_S2); previous study showed

the ratio of CD4/CD8 may play prognostic role in several cancer

subtypes (52, 53). Additionally, we found that interferon-g
pathway was significantly activated in CS1 (FDR < 0.001;

Figure 5B), which made us hypothesized that CS1 may be

beneficial from immune checkpoint inhibitors. In this manner,

we performed subclass mapping of TCGA cohort and revealed

that only the CS1 showed high transcriptome-level similarity to

a group of patients with melanoma who responded to anti-
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FIGURE 2

Genomic heterogeneity of colorectal cancer subtype. (A) OncoPrint showing the distribution of genes that were differentially mutated between
three cancer subtypes. (B) Distribution of TMB and TiTv (transition to transversion) between two epigenetic phenotypes. (C) Barplot showing the
distribution of FGA and fraction genome gain/loss (FGA/FGG). Bar charts are presented as the mean ± standard error of the mean. (D)three
types distinguishing composite copy number. ****p<0.0001.
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CTLA4 or anti-PD1 blockades (P < 0.05, adjusted P ≤0.25;

Figure 5C), which indicated that the current classification may

be useful to identify ideal candidates of patients with colorectal

cancer for immunotherapy. The tumour microenvironment

landscape was generally validated in GEO cohort. Consistently,

CS1 in GEO cohort significantly activated interferon-g pathway,
and showed higher likelihood of responding to immune

checkpoint inhibitors.
Epigenetic regulation in colorectal
cancer subtype

Given the different transcription profiles among the three

CRC subtypes, we then asked if this could mirror the epigenetic

aspect. To this end, we identified differentially methylated

probes for each subtype, and we found CS2 tended to loss

methylations (n = 240) as compared to other subtypes

(Supplementary Table S4). Notably, these probes losing DNA

methylation were significantly enriched in enhancers compared

to the 450K array background (P<0.001; Figure 6A). As to CS3,
Frontiers in Immunology 08
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we found this subtype tended to gain methylations (n=249)

compared to other subtypes (Supplementary Table S5), and

those probes gaining methylation significantly enriched in

promoter CpG islands (P<0.001; Figure 6B). To further

investigate the crosstalk between epigenetic DNA methylation

and transcriptome expression, we performed integrative analysis

combining both gene expression and DNA methylation profiles

using ELMER pipeline. First, for CS2, we identified distal probes

that are 2Kb away from the transcription start site of the human

chromosome, and performed differential methylation analysis at

probe level to identify probes with difference of b-value greater
than 0.1 (FDR<0.05) in CS2 compared to other subtypes, ending

up with a total of 3,683 distal probes/enhancers (Supplementary

Table S6). Next, ELMER searched for the nearby 20 genes

corresponding to these probes, and further predicted

enhancer-gene linkages using associations between DNA

methylation at enhancers and expression of 20 nearby genes of

the CpG sites; such analysis identified a total of 2,533 pairs

corresponding to 1,003 genes (Figure 6C; Supplementary Table

S7). To understand the biologic relevance of these genes that

were epigenetically activated, we harnessed Enrichr and found
A
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FIGURE 3

Identification of transcriptome biomarkers for colorectal cancer subtype. Principal component analysis to investigate the potential batch effect
among four GEO datasets (A) before and (B) after Combat. (C) Heatmap showing the transcriptome expression pattern of the 120-gene
signature in nearest template predicted cancer subtype of GEO cohort. (D) Kaplan-Meier curves of OS with log-rank test for 961 patients with
colorectal cancer according to the eligible predicted classification. (E) KM of os using ntp in GEO (F) Heatmap showing the transcriptome
expression pattern of the 90-gene signature (30 uniquely significantly upregulated genes in each cancer subtype) in TCGA cohort.
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that these genes were significantly enriched in MYC Hallmark

pathways (P =0.006, FDR=0.24; Supplementary Table S8).

Previous study demonstrated that MYC oncogene was

associated the suppression in tumour immunity (54), which

suggest that the downregulation of MYC oncogenic pathway

may contribute shaping the immune-depleted tumour

microenvironment of CS2. Using the similar strategy, we

investigated CS3, but we searched for promoter-gene pairs that

showed epigenetically silencing mode. In this manner, ELMER

identified a total of 1,063 promoters that gained methylation in

CS3 versus other subtypes (Supplementary Table S9), and a total
Frontiers in Immunology 09
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of 3,212 promoter-gene pairs were identified to be epigenetically

silenced in CS3 (Figure 6D; Supplementary Table S10). Enrichr

revealed that these genes are significantly enriched in epithelia-

mesenchymal transition (EMT) hallmark pathway (P<0.001,

FDR<0.001; Supplementary Table S11). Down-regulation of

EMT may decrease tumour-initiating and metastatic potential

of cancer cells (55), which lead to good prognosis of CS3. In

addition, activity profiles of regulons associated with chromatin

remodelling highlighted additional potential regulatory

differences among three colorectal cancer subtypes, indicating

that epigenetically driven transcriptional networks might be
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FIGURE 4

Delineation of metabolism-related pathways in colorectal cancer subtype. (A) Oncogenic heatmap with cancer associated mutations in tcga
coadread. (B) Boxplot for oncogenetic pathways in iclusters of tcga coadread. (C) Upregulated hallmark pathway heatmap in
tcga_using_upregulated_pathways. (D) Upregulated hallmark pathway heatmap in geo_using_upregulated_pathways. (E) Heatmap showing
transcriptome enrichment score of three metabolic categories in TCGA and GEO cohorts. **p < 0.01; ***p < 0.001.
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important differentiators of these molecular subtypes

(Figures 6E, F).
Independent prognostic value of
colorectal cancer subtype

We then surveyed that whether the current classification was

an independent prognostic factor in colorectal cancers from

TCGA cohort. As the generally favourable prognosis of CS3, we

therefore considered the CS3 as the non-aggressive subtype

while patients belonged to CS1 or CS2 were aggressive in

clinical setting. In this manner, univariate Cox regression

model was first conducted to filter out prognostic clinical

characterizations concerning OS and PFS; multivariate Cox

regression was subsequently performed based on those

prognosis-relevant features. Using such strategy, we found that

the current classification remained the independent prognostic
Frontiers in Immunology 10
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factor after adjusting clinical prognostic features with respect to

OS (P = 0.026) and PFS (P = 0.032) (Figures 7A, B).
Potential therapeutic strategy for
colorectal cancer subtype

Considering the significantly poor clinical outcome of CS2 in

colorectal cancer, we decided to infer potential anticancer agents

that may show clinical efficiency for patients belonging to CS2

through an in-sillico drug screening approach. To this end, we

constructed ridge regression model between cell lines and

corresponding drug sensitivity and applied the predictive model

to each of the colorectal cases in both TCGA and GEO cohorts

(Supplementary Tables 12, 13). A total of four drugs were

discovered to be potentially effective in treating patients with

CS2 phenotype as compared to other cases, including ABT.263,

NSC.87877, BIRB.0796, and PAC.1 (all, P < 0.01; Figures 7C, D).
A

B C

FIGURE 5

Tumour microenvironment landscape of colorectal cancer subtype. (A) Heatmap showing the immune profile in the TCGA and GEO cohort,
with the top panel showing the expression of genes involved in immune checkpoint targets, the middle panel showing the enrichment level of
10 microenvironment cell types using MCPcounter approach, and the bottom panel showing the 24 microenvironment cells using GSVA
approach; DNA methylation of tumour-infiltrating lymphocytes (MeTILs) were annotated at the top of the heatmap. The immune enrichment
score and stromal enrichment score were annotated at the top of the heatmap. (B) GSEA plot showing activation of interferon-g hallmark
pathway. (C) Subclass analysis manifested that CS1 subtypes could be more sensitive to the immune checkpoint inhibitors.
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Identified a biomarker for multi-omics
molecular subtype

To apply the molecular subtype better in the clinic, we

identified a biomarker for our molecular subtype which most

based on the DNA mutation and RNA expression among

different subtypes. By using the Chi-square test for DNA

mutation and fold change with adjust FDR value for RNA

expression, then, we detected SOX9 was a significant gene in

the CS3 subtype. Through the IHC experiment, we found

SOX9 was higher in the 50 tumor tissue than the 50 tumor

adjacent tissue. IHC showed the represent sample in adjacent

and tumor samples (Figures 8A, B). TCGA-COAD public

cohort also confirmed that SOX9 was higher in tumor tissue

than that in adjacent tissue (Figures 8C, D). SOX9 mainly

located in the nucleoplasm of cell in A-431, U-2 OS and

U-251 MG multi cell lines by immunofluorescence with

HPA001758 antibody in the Human Protein Atlas

(HPA) (Figure 8E).
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Discussion

The high incidence and mortality of CRC have brought a

huge burden on patients. How to effectively judge the prognosis

of CRC patients and correctly evaluate the severity of the disease

of CRC patients are the main objectives of the study on the

prognosis of CRC. The prognosis of patients based on traditional

tumor typing is often very different. Molecular typing of tumors

can better reflect the differences in internal molecular

characteristics of tumors, which is the basis for the realization

of precision medicine. Accurate identification of patients’

molecular subtypes will help to accurately predict patient

prognosis and develop personalized treatment plans.

Currently, tumor molecular subtype studies are mainly

based on single omics data, such as transcriptomics,

proteomics, genomics, etc (56–61). Bhattacharjee et al. divided

lung adenocarcinoma into 4 subtypes by analyzing gene

expression profile data from lung adenocarcinoma patients,

and found that abnormal expression profile can be used to
A

B D

E

F

C

FIGURE 6

Epigenetic regulation in colorectal cancer subtype. Heatmap showing activity of regulon relevant to potential regulators associated with
chromatin remodelling in both (A) TCGA and (B) GEO cohorts. Heatmap showing the association between DNA methylation and gene
expression, presenting with (C) an epigenetic activation pattern in CS2 and (D) an epigenetically silencing pattern in CS3 of TCGA cohort.
Barplots showing the region-specific distribution of DMPs comparing to the Illumina 450karray background for the (E) CS2 and (F) CS3
molecular classification in TCGA cohort.
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distinguish primary and metastatic adenocarcinoma of lung

(58). Based on genomic CNV data, Shibata et al. divided lung

adenocarcinoma into three subtypes by unsupervised clustering

analysis, and found that patients with EGFR mutations had

shorter disease-free survival times (60). As for CRC, Roepman

et al. conducted unsupervised classification of genome-wide data

of CRC patients based on EMT, microsatellite instability caused

by mismatch repair gene defects, and high mutation frequency

associated with cell proliferation (62). Meanwhile, Lai et al.

proposed the co-ordinate immune response cluster (CIRC),

and identified four patient groups by this method (63). Zhang

et al. identified two molecular subtypes, C1 and C2, based on cell

cycle-related genes. PIK3CA, RYR2 and FBXW7 mutations were

more frequent in C1, and the clinical characteristics and

prognosis of patients were relatively poor (64). In addition to

the above genotyping based on gene mutations and cytogenetic

changes in the genome (10, 21, 65–68), CRC was also classified

based on differences in gene expression profiles and proteomic
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(69–72)biomarkers. Therefore, molecular typing based on omics

data can effectively identify clinically relevant tumor subtypes,

which plays a very important role in judging patient prognosis

and guiding clinical treatment.

Nevertheless, any single omics data can only reflect the

intrinsic molecular characteristics of tumors from a single

perspective, and the contribution of single-omics analysis to

tumor typing is one-sided. Therefore, the integration of multi-

omics information can simultaneously capture the heterogeneity

of tumors in different omics and integrate the information from

multiple perspectives to identify more accurate tumor molecular

typing. As the high heterogeneity of tumors is determined by

multiple omics, such as genome, epigenome, transcriptome, and

proteome, the analysis of data from different omics sources is

expected to better reveal the mechanism of tumor genesis and

development. For the first time, Matan Hofree et al. integrated

genomic mutations and protein interaction networks for

molecular typing of tumors to identify subtypes significantly
A

B

D

C

FIGURE 7

Identification of transcriptome biomarkers for colorectal cancer subtype. (A) KM of os using movics agreesiveness in coadread of tcga.
(B) Forest plot showing the hazard ratio (95% CI) in univariate and multivariate Cox regressions with the corresponding P values. (C, D) Boxplot
showing the distribution of estimated IC50 among three cancer subtypes based on GDSC database, (C) TCGA, (D) GEO.
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associated with clinical features (73). Ronglai Shen et al.

integrated genomic mutations, CNV and transcriptome

expression profiles to obtain tumor classification based on

iCluster (74). Herein, using transcriptome, DNA methylation,

and driver mutations of CRC, we developed a classifier based on

multi-omics integration for the prognosis prediction of CRC for

the first time. At present, many studies have proved that CRC is

the result of accumulation of multiple gene mutations and

epigenetic modifications, and DNA hypermethylation or

hypomethylation can be used as epigenetic biomarkers to

predict the occurrence and prognostic effects of CRC (75–77).

Driver mutations in the genome can be viewed as responsible for

molecular changes associated with CRC progression, so

targeting such genes for the elimination of multiple CRC gene

dependencies could significantly improve efficacy (78). In

conclusion, CRC can be comprehensively understood from

multiple omics based on transcriptome, DNA methylation,

and driver mutation levels to predict prognosis and guide

clinical medication.

In the medical field, prognostic models need to undergo

extensive and rigorous validation before they can be used in

practice, and they also need to be continuously evaluated by

feedback. At present, due to the different data standards and

coding systems used by different sources, the output platforms
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and schemes of omics data also have certain heterogeneity.

Therefore, the current integrated prognostic models are often

internally verified by resampling or cross-validation. The few

externally validated integrated prognostic models often involve

only one type of omics data and have been externally validated in

only a few open data sets, making it difficult for the current

integrated prognostic models to be applied in clinical practice. In

order to verify the reproducibility of the colorectal molecular

subtypes we identified, we combined four external datasets from

GEO cohort. We removed batch effects across different datasets

and predicted the identified molecular subtypes in the GEO

cohort using NTP algorithm. CS3 presented with the most

favourable clinical outcome out of the three subtypes,

indicating the accuracy of the subtype system.

Beyond that, there are several new findings and notable

advantages to our study. TME and tumor cells interact and co-

evolve to drive tumor growth and progression, and also play an

important role in regulating tumor sensitivity to treatment (79).

The results showed that CS1 was highly immune-infiltrated, CS3

showed relatively higher immunocyte infiltration, while CS2 was

generally immune-depleted, explaining the difference in

prognosis. Immunotherapy is an important treatment for

CRC. We compared the responses of the three subtypes to

immune checkpoint inhibitors. Abnormal metabolism is
A B

D

E

C

FIGURE 8

Molecular subtype biomarkers validated by wet experiment. (A) SOX9 protein expression of the represent sample in adjacent and tumor samples
by IHC. (B) Pair-test for SOX9 protein expression between 50 tumor tissue and 50 tumor adjacent tissue by IHC. (C) and (D) SOX9 gene
expression between tumor tissue and adjacent tissue in TCGA-COAD public cohort. (E) The location of SOX9 in A-431, U-2 OS and U-251 MG
in the Human Protein Atlas(HPA). ***p<0.001.
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closely related to the occurrence, development, recurrence,

metastasis, and prognosis of CRC. We found that the

enrichment level of carbohydrate, amino acid, and lipid

metabolism-relevant pathways in CS3 was higher. Our results

showed that CS2 tended to loss methylations while CS3 tended

to gain methylations. ABT.263 is a small molecule Bcl-2

inhibitor that can induce cell apoptosis (80). BIRB.0796 is one

of the most potent compounds of (81) p38 inhibitors. PAC.1

(Caspase activator) is an effective procaspase-3 activator, which

acts on primary cancer cells and induces apoptosis (82). Our

findings showed that ABT.263, NSC.87877, BIRB.0796, and

PAC.1 were discovered to be potentially effective in treating

patients with CS2 phenotype.

Nonetheless, some limitations of the current study should

not be ignored. Hence, the cases of CRC patients were relatively

small; more cases are needed to confirm our conclusions. The

molecular subtypes of CRC were based on retrospective cohorts.

Therefore, prospective studies are needed in the future. Even

though we developed molecular subtypes based on integrated

multi-omics, the metabolomics and proteomics data were

missing because the relevant omics information was not

available in the TCGA database. With the development of

information technology and genetic testing technology, more

and more clinical data in the form of accessible electronic

medical records and shared omics data are available. The rapid

development of artificial intelligence technology can further

mine the correlation and interaction between different scales

of data and more effectively use different scales of data for

information complementarity to achieve a more accurate

prediction model. Therefore, it is of great significance to

further improve and optimize the multi-omics analysis based

on this study, realize the multi-center collaborative multi-omics

integrated analysis, and apply it to the prognostic analysis

of CRC.
Conclusion

Taken together, we carried out multi-omics analysis of

transcriptome mRNA expression, DNA methylation, and

colorectal cancerous driver mutations. Three molecular

subtypes were constructed and clinical significances, such as

prognosis, mechanisms, and clinical therapeutic targets were
Frontiers in Immunology 14
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observed among them. Besides, the subtypes were independent

prognostic factors.
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International network of cancer genome projects. NATURE (2010) 464:993–8.
doi: 10.1038/nature08987

8. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol
(2017) 18:83. doi: 10.1186/s13059-017-1215-1

9. Ideker T, Dutkowski J, Hood L. Boosting signal-to-noise in complex biology:
prior knowledge is power. CELL (2011) 144:860–3. doi: 10.1016/j.cell.2011.03.007

10. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C,
et al. The consensus molecular subtypes of colorectal cancer. Nat Med (2015)
21:1350–6. doi: 10.1038/nm.3967

11. Kang KJ, Min BH, Ryu KJ, Kim KM, Chang DK, Kim JJ, et al. The role of the
CpG island methylator phenotype on survival outcome in colon cancer. GUT
LIVER (2015) 9:202–7. doi: 10.5009/gnl13352

12. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity
network fusion for aggregating data types on a genomic scale. Nat Methods (2014)
11:333–7. doi: 10.1038/nmeth.2810

13. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G,
et al . Comprehensive molecular characterization of human colon and rectal cancer.
NATURE (2012) 487:330–7. doi: 10.1038/nature11252

14. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Veizer JK, McMichael
JF, et al. Comprehensive molecular portraits of human breast tumours. NATURE
(2012) 490:61–70. doi: 10.1038/nature11412

15. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al.
Multiplatform analysis of 12 cancer types reveals molecular classification within
and across tissues of origin. CELL (2014) 158:929–44. doi: 10.1016/
j.cell.2014.06.049

16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.
Integrative analysis of complex cancer genomics and clinical profiles using the
cBioPortal. Sci Signal (2013) 6:l1. doi: 10.1126/scisignal.2004088

17. Chabanais J, Labrousse F, Chaunavel A, Germot A, Maftah A. POFUT1 as a
promising novel biomarker of colorectal cancer. Cancers (Basel) (2018) 10(11):411.
doi: 10.dio: 10.3390/cancers10110411

18. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al.
Metastasis-associated gene expression changes predict poor outcomes in patients
with dukes stage b and c colorectal cancer. Clin Cancer Res (2009) 15:7642–51.
doi: 10.1158/1078-0432.CCR-09-1431

19. Freeman TJ, Smith JJ, Chen X, Washington MK, Roland JT, Means AL, et al.
Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of
beta-catenin. GASTROENTEROLOGY (2012) 142:562–71. doi: 10.1053/
j.gastro.2011.11.026

20. Tripathi MK, Deane NG, Zhu J, An H, Mima S, Wang X, et al. Nuclear
factor of activated T-cell activity is associated with metastatic capacity in colon
cancer. Cancer Res (2014) 74:6947–57. doi: 10.1158/0008-5472.CAN-14-1592

21. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene
expression classification of colon cancer into molecular subtypes: characterization,
validation, and prognostic value. PloS Med (2013) 10:e1001453. doi: 10.1371/
journal.pmed.1001453

22. Katz S, Irizarry RA, Lin X, Tripputi M, Porter MW. A summarization
approach for affymetrix GeneChip data using a reference training set from a large,
biologically diverse database. BMC Bioinf (2006) 7:464. doi: 10.1186/1471-2105-7-
464

23. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using
RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci
(2012) 131:281–5. doi: 10.1007/s12064-012-0162-3

24. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy–analysis of affymetrix
GeneChip data at the probe level. BIOINFORMATICS (2004) 20:307–15.
doi: 10.1093/bioinformatics/btg405

25. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. BIOINFORMATICS (2012) 28:882–3. doi: 10.1093/bioinformatics/
bts034

26. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, et al. ChAMP:
updated methylation analysis pipeline for illumina BeadChips. BIOINFORMATICS
(2017) 33:3982–4. doi: 10.1093/bioinformatics/btx513
Frontiers in Immunology 15
173
27. Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation
and innovative use of infinium DNA methylation BeadChip probes. Nucleic Acids
Res (2017) 45:e22. doi: 10.1093/nar/gkw967

28. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D,
Weerasinghe A, et al. Comprehensive characterization of cancer driver genes
and mutations. CELL (2018) 173:371–85. doi: 10.1016/j.cell.2018.02.060

29. Lu X, Meng J, Zhou Y, Jiang L, Yan F. MOVICS: an r package for multi-
omics integration and visualization in cancer subtyping. BIOINFORMATICS
(2020) 14:btaa1018. doi: 10.1093/bioinformatics/btaa1018

30. Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. A fully
Bayesian latent variable model for integrative clustering analysis of multi-type
omics data. BIOSTATISTICS (2018) 19:71–86. doi: 10.1093/biostatistics/kxx017

31. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM,
Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine
administered in a prime-boost regimen in young and old adults (COV002): a
single-blind, randomised, controlled, phase 2/3 trial. LANCET (2021) 396:1979–93.
doi: 10.1016/S0140-6736(20)32466-1

32. Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue MZ, et al. Multi-omics profiling
reveals distinct microenvironment characterization and suggests immune escape
mechanisms of triple-negative breast cancer. Clin Cancer Res (2019) 25:5002–14.
doi: 10.1158/1078-0432.CCR-18-3524

33. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7

34. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol (2016) 17:218. doi: 10.1186/
s13059-016-1070-5

35. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-
Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture
from expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

36. Jeschke J, Bizet M, Desmedt C, Calonne E, Dedeurwaerder S, Garaud S, et al.
DNAMethylation-based immune response signature improves patient diagnosis in
multiple cancers. J Clin Invest (2017) 127:3090–102. doi: 10.1172/JCI91095

37. Rosario SR, Long MD, Affronti HC, Rowsam AM, Eng KH, Smiraglia DJ.
Pan-cancer analysis of transcriptional metabolic dysregulation using the cancer
genome atlas. Nat Commun (2018) 9:5330. doi: 10.1038/s41467-018-07232-8

38. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al.
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require
TBK1. NATURE (2009) 462:108–12. doi: 10.1038/nature08460

39. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

40. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation (Camb) (2021)
2:100141. doi: 10.1016/j.xinn.2021.100141

41. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst
(2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004

42. Xie Z, Bailey A, Kuleshov MV, Clarke D, Evangelista JE, Jenkins SL, et al.
Gene set knowledge discovery with enrichr. Curr Protoc (2021) 1:e90. doi: 10.1002/
cpz1.90

43. Silva TC, Coetzee SG, Gull N, Yao L, Hazelett DJ, Noushmehr H, et al.
ELMER v.2: an R/Bioconductor package to reconstruct gene regulatory networks
from DNA methylation and transcriptome profiles. BIOINFORMATICS (2019)
35:1974–7. doi: 10.1093/bioinformatics/bty902

44. Hoshida Y. Nearest template prediction: A single-sample-based flexible class
prediction with confidence assessment. PloS One (2010) 5:e15543. doi: 10.1371/
journal.pone.0015543

45. Eide PW, Bruun J, Lothe RA, Sveen A. CMScaller: an r package for
consensus molecular subtyping of colorectal cancer pre-clinical models. Sci REP-
UK (2017) 7:16618. doi: 10.1038/s41598-017-16747-x

46. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring
Harb Perspect Biol (2016) 8:a19521. doi: 10.1101/cshperspect.a019521

47. Castro MA, de Santiago I, Campbell TM, Vaughn C, Hickey TE, Ross E,
et al. Regulators of genetic risk of breast cancer identified by integrative network
analysis. Nat Genet (2016) 48:12–21. doi: 10.1038/ng.3458

48. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted
using baseline gene expression levels and in vitro drug sensitivity in cell lines.
Genome Biol (2014) 15:R47. doi: 10.1186/gb-2014-15-3-r47

49. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One
(2014) 9:e107468. doi: 10.1371/journal.pone.0107468
frontiersin.org

https://doi.org/10.1038/nm.4494
https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.1235122
https://doi.org/10.1245/s10434-018-6462-1
https://doi.org/10.1038/nature08987
https://doi.org/10.1186/s13059-017-1215-1
https://doi.org/10.1016/j.cell.2011.03.007
https://doi.org/10.1038/nm.3967
https://doi.org/10.5009/gnl13352
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nature11412
https://doi.org/10.1016/j.cell.2014.06.049
https://doi.org/10.1016/j.cell.2014.06.049
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.dio: 10.3390/cancers10110411
https://doi.org/10.1158/1078-0432.CCR-09-1431
https://doi.org/10.1053/j.gastro.2011.11.026
https://doi.org/10.1053/j.gastro.2011.11.026
https://doi.org/10.1158/0008-5472.CAN-14-1592
https://doi.org/10.1371/journal.pmed.1001453
https://doi.org/10.1371/journal.pmed.1001453
https://doi.org/10.1186/1471-2105-7-464
https://doi.org/10.1186/1471-2105-7-464
https://doi.org/10.1007/s12064-012-0162-3
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/btx513
https://doi.org/10.1093/nar/gkw967
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1093/bioinformatics/btaa1018
https://doi.org/10.1093/biostatistics/kxx017
https://doi.org/10.1016/S0140-6736(20)32466-1
https://doi.org/10.1158/1078-0432.CCR-18-3524
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1172/JCI91095
https://doi.org/10.1038/s41467-018-07232-8
https://doi.org/10.1038/nature08460
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1093/bioinformatics/bty902
https://doi.org/10.1371/journal.pone.0015543
https://doi.org/10.1371/journal.pone.0015543
https://doi.org/10.1038/s41598-017-16747-x
https://doi.org/10.1101/cshperspect.a019521
https://doi.org/10.1038/ng.3458
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.3389/fimmu.2022.983636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.983636
50. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK,
et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune
checkpoint blockade. SCIENCE (2016) 351:1463–9. doi: 10.1126/science.aaf1490

51. Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, et al. Immune signature-
based subtypes of cervical squamous cell carcinoma tightly associated with human
papillomavirus type 16 expression, molecular features, and clinical outcome.
Neoplasia (New York N.Y.) (2019) 21:591–601. doi: 10.1016/j.neo.2019.04.003

52. Matkowski R, Gisterek I, Halon A, Lacko A, Szewczyk K, Staszek U, et al.
The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast
cancer. Anticancer Res (2009) 29:2445–51.

53. Shah W, Yan X, Jing L, Zhou Y, Chen H, Wang Y. A reversed CD4/CD8
ratio of tumor-infiltrating lymphocytes and a high percentage of CD4(+)FOXP3(+)
regulatory T cells are significantly associated with clinical outcome in squamous
cell carcinoma of the cervix. Cell Mol Immunol (2011) 8:59–66. doi: 10.1038/
cmi.2010.56

54. Wu X, Nelson M, Basu M, Srinivasan P, Lazarski C, Zhang P, et al. MYC
oncogene is associated with suppression of tumor immunity and targeting myc
induces tumor cell immunogenicity for therapeutic whole cell vaccination. J
Immunother Cancer (2021) 9(3):e001388. doi: 10.1136/jitc-2020-001388

55. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-
mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol (2019)
20:69–84. doi: 10.1038/s41580-018-0080-4

56. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al.
Repeated observation of breast tumor subtypes in independent gene expression
data sets. P Natl Acad Sci USA (2003) 100:8418–23. doi: 10.1073/pnas.0932692100

57. Sun Y, Zhang W, Chen D, Lv Y, Zheng J, Lilljebjorn H, et al. A glioma
classification scheme based on coexpression modules of EGFR and PDGFRA. Proc
Natl Acad Sci U.S.A. (2014) 111:3538–43. doi: 10.1073/pnas.1313814111

58. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, et al.
Classification of human lung carcinomas by mRNA expression profiling reveals
distinct adenocarcinoma subclasses. Proc Natl Acad Sci U.S.A. (2001) 98:13790–5.
doi: 10.1073/pnas.191502998

59. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A,
Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet
(2012) 44:751–9. doi: 10.1038/ng.2323

60. Shibata T, Uryu S, Kokubu A, Hosoda F, Ohki M, Sakiyama T, et al. Genetic
classification of lung adenocarcinoma based on array-based comparative genomic
hybridization analysis: its association with clinicopathologic features. Clin Cancer
Res (2005) 11:6177–85. doi: 10.1158/1078-0432.CCR-05-0293

61. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.
Molecular portraits of human breast tumours. NATURE (2000) 406:747–52.
doi: 10.1038/35021093

62. Roepman P, Schlicker A, Tabernero J, Majewski I, Tian S, Moreno V, et al.
Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient
mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer (2014)
134:552–62. doi: 10.1002/ijc.28387

63. Lal N, Beggs AD, Willcox BE, Middleton GW. An immunogenomic
stratification of colorectal cancer: Implications for development of targeted
immunotherapy. ONCOIMMUNOLOGY (2015) 4:e976052. doi: 10.4161/
2162402X.2014.976052

64. Zhang Z, Ji M, Li J, Wu Q, Huang Y, He G, et al. Molecular classification
based on prognostic and cell cycle-associated genes in patients with colon cancer.
Front Oncol (2021) 11:636591. doi: 10.3389/fonc.2021.636591

65. Budinska E, Popovici V, Tejpar S, D'Ario G, Lapique N, Sikora KO, et al.
Gene expression patterns unveil a new level of molecular heterogeneity in
colorectal cancer. J Pathol (2013) 231:63–76. doi: 10.1002/path.4212

66. Schlicker A, Beran G, Chresta CM, McWalter G, Pritchard A, Weston S,
et al. Subtypes of primary colorectal tumors correlate with response to targeted
Frontiers in Immunology 16
174
treatment in colorectal cell lines. BMC Med Genomics (2012) 5:66. doi: 10.1186/
1755-8794-5-66

67. Zhang J, Wang N, Wu J, Gao X, Zhao H, Liu Z, et al. 5-methylcytosine
related LncRNAs reveal immune characteristics, predict prognosis and oncology
treatment outcome in lower-grade gliomas. Front Immunol (2022) 13:844778.
doi: 10.3389/fimmu.2022.844778

68. Perez-Villamil B, Romera-Lopez A, Hernandez-Prieto S, Lopez-Campos G,
Calles A, Lopez-Asenjo JA, et al. Colon cancer molecular subtypes identified by
expression profiling and associated to stroma, mucinous type and different clinical
behavior. BMC Cancer (2012) 12:260. doi: 10.1186/1471-2407-12-260

69. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic
characterization of human colon and rectal cancer. NATURE (2014) 513:382–7.
doi: 10.1038/nature13438

70. Wang J, Mouradov D, Wang X, Jorissen RN, Chambers MC, Zimmerman
LJ, et al. Colorectal cancer cell line proteomes are representative of primary tumors
and predict drug sensitivity. GASTROENTEROLOGY (2017) 153:1082–95.
doi: 10.1053/j.gastro.2017.06.008

71. Mischak H, Ioannidis JP, Argiles A, Attwood TK, Bongcam-Rudloff E,
Broenstrup M, et al. Implementation of proteomic biomarkers: making it work. Eur
J Clin Invest (2012) 42:1027–36. doi: 10.1111/j.1365-2362.2012.02674.x

72. Sveen A, Kopetz S, Lothe RA. Biomarker-guided therapy for colorectal
cancer: strength in complexity. Nat Rev Clin Oncol (2020) 17:11–32. doi: 10.1038/
s41571-019-0241-1

73. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based
stratification of tumor mutations. Nat Methods (2013) 10:1108–15. doi: 10.1038/
nmeth.2651

74. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast and lung
cancer subtype analysis. Bioinf (Oxford England) (2009) 25:2906–12. doi: 10.1093/
bioinformatics/btp543

75. Akimoto N, Zhao M, Ugai T, Zhong R, Lau MC, Fujiyoshi K, et al. Tumor
long interspersed nucleotide element-1 (LINE-1) hypomethylation in relation to
age of colorectal cancer diagnosis and prognosis. Cancers (Basel) (2021) 13(9):2016.
doi: 10.3390/cancers13092016

76. Hagg S, Jylhava J. Should we invest in biological age predictors to treat
colorectal cancer in older adults? Eur J Surg Oncol (2020) 46:316–20. doi: 10.1016/
j.ejso.2019.11.003

77. Liu J, Liu Z, Zhang X, Yan Y, Shao S, Yao D, et al. Aberrant methylation and
microRNA-target regulation are associated with downregulated NEURL1B: a
diagnostic and prognostic target in colon cancer. Cancer Cell Int (2020) 20:342.
doi: 10.1186/s12935-020-01379-5

78. Raskov H, Soby JH, Troelsen J, Bojesen RD, Gogenur I. Driver gene
mutations and epigenetics in colorectal cancer. Ann Surg (2020) 271:75–85.
doi: 10.1097/SLA.0000000000003393

79. Jin K, Ren C, Liu Y, Lan H, Wang Z. An update on colorectal cancer
microenvironment, epigenetic and immunotherapy. Int IMMUNOPHARMACOL
(2020) 89:107041. doi: 10.1016/j.intimp.2020.107041

80. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al.
Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells
in mice. Nat Med (2016) 22:78–83. doi: 10.1038/nm.4010

81. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, et al.
Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct
Biol (2002) 9:268–72. doi: 10.1038/nsb770

82. Putt KS, Chen GW, Pearson JM, Sandhorst JS, Hoagland MS, Kwon JT,
et al. Small-molecule activation of procaspase-3 to caspase-3 as a personalized
anticancer strategy. Nat Chem Biol (2006) 2:543–50. doi: 10.1038/
nchembio814
frontiersin.org

https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1016/j.neo.2019.04.003
https://doi.org/10.1038/cmi.2010.56
https://doi.org/10.1038/cmi.2010.56
https://doi.org/10.1136/jitc-2020-001388
https://doi.org/10.1038/s41580-018-0080-4
https://doi.org/10.1073/pnas.0932692100
https://doi.org/10.1073/pnas.1313814111
https://doi.org/10.1073/pnas.191502998
https://doi.org/10.1038/ng.2323
https://doi.org/10.1158/1078-0432.CCR-05-0293
https://doi.org/10.1038/35021093
https://doi.org/10.1002/ijc.28387
https://doi.org/10.4161/2162402X.2014.976052
https://doi.org/10.4161/2162402X.2014.976052
https://doi.org/10.3389/fonc.2021.636591
https://doi.org/10.1002/path.4212
https://doi.org/10.1186/1755-8794-5-66
https://doi.org/10.1186/1755-8794-5-66
https://doi.org/10.3389/fimmu.2022.844778
https://doi.org/10.1186/1471-2407-12-260
https://doi.org/10.1038/nature13438
https://doi.org/10.1053/j.gastro.2017.06.008
https://doi.org/10.1111/j.1365-2362.2012.02674.x
https://doi.org/10.1038/s41571-019-0241-1
https://doi.org/10.1038/s41571-019-0241-1
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1093/bioinformatics/btp543
https://doi.org/10.1093/bioinformatics/btp543
https://doi.org/10.3390/cancers13092016
https://doi.org/10.1016/j.ejso.2019.11.003
https://doi.org/10.1016/j.ejso.2019.11.003
https://doi.org/10.1186/s12935-020-01379-5
https://doi.org/10.1097/SLA.0000000000003393
https://doi.org/10.1016/j.intimp.2020.107041
https://doi.org/10.1038/nm.4010
https://doi.org/10.1038/nsb770
https://doi.org/10.1038/nchembio814
https://doi.org/10.1038/nchembio814
https://doi.org/10.3389/fimmu.2022.983636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hao Zhang,
Xiangya Hospital Central South
University, China

REVIEWED BY

Hongze Chen,
Tulane University, United States
Zhen Ning,
Dalian Medical University, China

*CORRESPONDENCE

Xiaoming Zou
zou4930@163.com
Jiacheng Li
ljc911201@163.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 03 August 2022
ACCEPTED 24 August 2022

PUBLISHED 12 September 2022

CITATION

Yang S, Zou X, Li J, Yang H, Zhang A,
Zhu Y, Zhu L and Zhang L (2022)
Immunoregulation and clinical
significance of neutrophils/NETs-
ANGPT2 in tumor microenvironment
of gastric cancer.
Front. Immunol. 13:1010434.
doi: 10.3389/fimmu.2022.1010434

COPYRIGHT

© 2022 Yang, Zou, Li, Yang, Zhang, Zhu,
Zhu and Zhang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 12 September 2022

DOI 10.3389/fimmu.2022.1010434
Immunoregulation and
clinical significance of
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Ange Zhang1,2, Yanli Zhu4, Lei Zhu1 and Lisha Zhang1
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Although significant progress has been made in the study of gastric cancer

(GC), clinicians lack reliable protein markers for accurate diagnosis and tumor

stratification. Neutrophil extracellular traps (NETs) are networks of extracellular

fibers composed of DNA from neutrophils. We have previously reported that

abundant NETs are deposited in GC, damaging human umbilical vein

endothelial cells (HUVECs) and triggering the release of tissue factors,

leading to a hypercoagulable state in GC. However, the specific effects of

NETs on HUVECs are unclear. We aimed to explore the functional changes

caused by NETs on HUVECs, providing evidence that NETs may fuel GC

progression. Through quantitative proteomics, we identified 6182

differentially expressed proteins in NET-stimulated HUVECs by TMT. The

reliability of the TMT technique was confirmed by parallel reaction

monitoring (PRM) analysis of 17 differentially expressed proteins. Through

bioinformatics analysis, we found that NETs upregulate ANGPT2 in HUVECs.

We comprehensively analyzed the prognosis, biological function, immune

response, and therapeutic value of ANGPT2 in GC. We found that

overexpression of ANGPT2 in GC is associated with poor prognosis and

potentially regulates multiple biological functions. At the same time, ANGPT2

also predicted immunotherapeutic and chemotherapeutic responses in GC. In

conclusion, NETs promoted ANGPT2 overexpression in the GC

microenvironment. In the future, the neutrophil/NETs-ANGPT2 axis may

provide a new target for the treatment of GC.

KEYWORDS

gastric cancer, human umbilical vein endothelial cells, neutrophil extracellular traps
(NETs), ANGPT2, tumor microenvironment
frontiersin.org01
175

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010434/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010434/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010434/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010434/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010434/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1010434&domain=pdf&date_stamp=2022-09-12
mailto:zou4930@163.com
mailto:ljc911201@163.com
https://doi.org/10.3389/fimmu.2022.1010434
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1010434
https://www.frontiersin.org/journals/immunology


Yang et al. 10.3389/fimmu.2022.1010434
Introduction

Gastric cancer (GC), one of the most common digestive tract

malignant tumors, severely threatens human health worldwide,

with high morbidity and mortality rates (1, 2). GC has strong

heterogeneity and rapid progression, with the liver being the

most common organ involved in hematogenous metastasis (3).

The five-year survival rate of patients with GC after liver

metastasis is less than 20% (4). New tumor markers, treatment

targets, and therapeutic strategies are urgently required to

improve the prognosis and the postoperative survival time of

patients with GC.

The importance of the tumor microenvironment (TME) in

tumorigenesis is being extensively explored (5, 6). GC is a

dynamic entity. There is continuous communication between

GC cells and their surrounding environment, which fuels and

maintains phenotypic and heterogeneous factors of cancer cells

(7, 8). The complex TME of GC includes fibroblasts, immune

cells, adipocytes, vascular endothelial cells, and extracellular

matrix (9). Tumor-associated neutrophils (TANs) are

important matrix partners in carcinogenesis. Neutrophils can

increase gastric cancer cell migration and invasion abilities (10–

12). Neutrophil extracellular traps (NETs) are defensive

mechanisms deployed by neutrophils (13, 14). Current studies

suggest that NETs may exert double-edge effects on tumors,

possibly due to the physicochemical properties of NETs (15, 16).

NETs are DNA-based network structures rich in a variety of

active proteins (17, 18). NETs can capture circulating tumor cells

through DNA reticular structures. Cools-Lartigue et al. have

shown that NETs can prevent circulating tumor cells from

entering the vascular system of the lung and liver, suggesting

that NETs are closely related to tumor progression (19).

Although endothelial cells are relatively stable cells in the

human body, they can re-enter the cell cycle under certain

triggering conditions (20). Some studies have shown that

vascular occlusion and blood hypercoagulability adversely

affect the hemodynamic stability of patients, possibly

increasing the number of circulating tumor cells captured by

NETs in tumor patients (21–23). However, NETs can damage

endothelial cells, and captured tumor cells can spread, forming

new metastatic foci after adhering to activated endothelial cells

(15). Therefore, clarifying the mechanism between NETs and

endothelial cells is pivotal to explaining tumor occurrence and

development. In this study, we found that NETs act on

HUVECs, triggering the release of coagulation-related factors

and promoting tube formation. Therefore, the interaction

between NETs and HUVECs is worth exploring.

In our study, we used proteomic technology to characterize

differentially expressed proteins in NET-stimulated HUVECs.

Parallel reaction monitoring (PRM) analysis was used to validate

17 selected proteins. Finally, ANGPT2 was chosen as the target

protein. ANGPT2 belongs to the angiopoietin (Ang) family (24).
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ANGPT2 expression plays a vital role in vascular remodeling

and inflammation (25). As an early autocrine initiator of

angiogenesis, ANGPT2 first destabilizes resting blood vessels,

thus allowing VEGF to drive the proliferation and chemotactic

migration of vascular buds. ANGPT2 also activates

TIE2-expressing monocytes/macrophages (TEM), which

promote angiogenesis, tumor formation, metastasis, and

immunosuppression (26). ANGPT2 regulates vascular

remodeling and tumor progression under many pathological

conditions through different effects on TIE2 signaling. Targeting

the ANG-TIE2 axis can significantly improve the effect of tumor

immunotherapy (27). Therefore, it also proves that ANGPT2

participates in tumor immune response and targeting

neutrophil/NETs-ANGPT2 may be a new target of anti-tumor

therapy in the future.
Materials and methods

Patients and tissue samples

This study included 20 healthy participants and 60 patients

with newly diagnosed primary gastric cancer by pathological

examination who were admitted to the Second Affiliated

Hospital of Harbin Medical University from October 2019 to

April 2021. We based the evaluation (TNM), staging, and

histological classification of gastric cancer on the 8th edition of

the American Joint Commission on Cancer (34). The inclusion

criterium was patients aged 18–65 years without any endocrine,

cardiovascular, hematological, and infectious diseases. The

exclusion criteria were as follows: patients who are not

pregnant, without coexisting cancers, and those who did not

receive any antineoplastic treatment before surgery. Samples of

cancerous and para-cancerous tissues of patients with gastric

cancer were collected. All patients provided informed consent,

and this study was approved by the Internal Audit and Ethics

Committee of the Second Affiliated Hospital of Harbin Medical

University. Ethical review approval document No : KY2021-075.
Isolation of neutrophils

A neutrophil isolation kit (TBD sciences, Tianjin, China)

was used to isolate neutrophils from blood samples of patients

with GC or healthy controls. Venous blood samples were

collected using a 5 ml catheter containing 3.2% sodium

citrate. Then, a 5 mL neutrophil separation solution was

mixed with anticoagulants and whole blood. The neutrophil

layer was added to the erythrocyte separation solution and

centrifuged repeatedly at 450 ×g for 5 min at 24°C until red

blood cells disappeared. Neutrophils were resuspended in 1 mL

PBS and counted.
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Generation, isolation, and preparation
of NETs

Purified neutrophils (1 × 106/well) were seeded in a 6-well

plate, stimulated with 100 nM PMA, and cultured at 37°C, 5%

CO2, for 4 h. Then, the medium was gently removed, leaving

NETs and neutrophils attached to the bottom. Pre-cooled PBS

without calcium and magnesium was added to elute NETs and

neutrophils. Liquid samples were collected in 6-well plates,

centrifuged at 450 ×g, 4°C, for 10 min, and the supernatant

was collected. The collected supernatant was centrifuged at 4°C

15000 ×g for 15 min. The concentration of NETs was

determined using a micro-DNA instrument, and samples were

stored at -20°C.
Cell culture

Primary human umbilical vein endothelial cells (HUVECs)

were purchased from PROCELL (Wuhan, China). All cell lines

were verified by a short tandem repeat (STR) map and negative

detection of mycoplasma contamination. All cell lines were

cultured at 37°C in a 5% CO2 humidified laboratory and

cultured in ECM (Scien Cell, USA) medium containing 10%

fetal bovine serum (FBS) for 5 days; then, the medium was

replaced with FBS-free medium.
Stimulation of HUVECs

HUVECs were cultured in a medium containing NETs

(NETs were derived from neutrophils from patients with GC,

as described above) at 37°C, 5% CO2, for 24 h. To conduct the

inhibition test, isolated NETs were pretreated with DNase-1

(100 U/mL) at 37°C for 1 h, and then co-cultured with

HUVECs. At a specific time, point, HUVECs were collected

by centrifugation for follow-up experiments, including western

blot, after protein extraction and measurement of target

protein expression.
Tube forming experiment

The Corning matrix glue was diluted with matrix glue at a

1:1 ratio in a 24-well plate, with 200 ml per well. The mix was

incubated at 37°C for 30 min to obtain a gelatinous base glue.

HUVECs were digested, and a single-cell suspension was

prepared. The conditioned medium was replaced by FBS-free

medium. Next, 20 000 cells were seeded in each well. The process

of tubule formation was observed under a microscope at 37°C

for 2–4 h.
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Immunofluorescence

HUVECs were stimulated with 0.4 μg/mL NETs prepared

hours in advance, and then an immunofluorescence experiment

was carried out. The medium in the 24-well plate was removed,

cells were fixed in 1% PFA for 15 min, and washed twice with

PBS. Samples were then incubated in 3% BSA for 30 min,

washed twice with PBS, and incubated overnight at 4°C with

primary antibodies: diluted anti-VWF (Abcam), anti-ANGPT2

(Affinity) (13% BSA 500). Specimens were washed twice with

PBS and incubated with secondary antibodies: diluted AF-488 or

AF-594 antibody for 30 min. For nuclear staining, cells were

incubated with DAPI for 10 min and washed with PBS twice.

Sharp tweezers were used to remove adherent cells from each

well and deposit them with the cellular side upside down on a

slide coated with anti-quenched glycerol. Specimens were

observed and imaged under a confocal microscope. All results

were expressed as mean ± standard deviation (SD). SPSS or

GraphPad Prism 8.0 were used to analyze all data. Multiple

groups were compared and analyzed by one-way. ANOVA. Two

pairs variables were analyzed by paired t-test. Statistical

significance was determined when P< 0.05.
TMT-MS/MS labeled

The trypsin-hydrolyzed peptides were desalted with

StrataXC18 (Phenomenex) and then freeze-dried in a vacuum.

Peptides were dissolved with 0.5 M TEAB and labeled according

to the operating instructions of the TMT kit. Briefly, after the

labeled reagent is thawed, it is dissolved with acetonitrile, mixed

with the peptide, and incubated at room temperature for 2 h; the

labeled peptide is mixed, desalted, and vacuum freeze-dried.
Quantitative analysis

The results of database search of MS data show the signal

intensity value (Intensity) of each peptide in different samples.

According to this information, the relative quantity of protein is

calculated by the following steps: First of all, the signal intensity

values (I) of peptides in different samples were centralized, and

the relative quantitative values (R) of peptides in different

samples were obtained. The formula is as follows: where i

represents the sample and j represents the peptide:

Rij  =  Iij=Mean Ijð Þ
The relative quantitative value of protein was calculated. The

relative quantitative value of protein was expressed by the

median of the relative quantitative value of specific peptide

corresponding to protein. The formula is as follows: where k
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represents protein. J represents the specific peptide to which the

protein belongs:

Rik  =  Median (NRij, j ∈ k)
Differential protein screening.

Protein difference analysis first selects the sample pairs that

need to be compared, and takes the ratio of the mean value of all

biological repetitive quantitative values of each protein in the

comparison sample pair as the difference multiple (Fold Change,

FC). For example, the multiple of protein difference between

sample group A and sample group B is calculated. The

calculation formula is as follows: R represents relative quantity

of protein, i represents sample, k represents protein:

FCA=B,k = Mean(Rik, i ∈ A)=Mean(Rik, i ∈ B)

According to the above difference analysis, when P value

≤0.05, the change threshold of differential expression was more

than 1.3 as the threshold of significant up-regulation, and less

than 1.3 as the threshold of significant down-regulation.
Establishment of animal model

Animal experiments were carried out at the Animal

Experimental Center of the Key Laboratory of Myocardial

Ischemia of the Second Affiliated Hospital of Harbin Medical

University in strict accordance with the scheme approved by the

Animal Care and Use Committee. Ten BALB/c nudemice aged 5–

7 weeks were purchased from Weitong Lihua Experimental

Animal Technology Co. Ltd and kept in a 22°C aseptic animal

house. Food and autoclaved water were provided. The mice were

randomly divided into the control (n = 5) and DNAse-1 treatment

(n = 5) groups. All mice were anesthetized with 2% isoflurane

mixture; the axillary skin of the mice was disinfected with

sterilized cotton balls; 1 × 106 HGC-27 gastric cancer cells were

subcutaneously injected into the armpit; and cotton swabs were

applied to stop the bleeding. The mice in the treatment group were

intraperitoneally injected with deoxyribonuclease (DNase-I, 50mg/
mouse, Roche) every 12 h until they were euthanized. The tumor

volume in each mouse was measured once every 3 days and

calculated using the following formula: 0.5 × length × width2.

Euthanasia was performed on all mice after 18 days. The tumor

tissues were harvested, weighed, soaked in 4% paraformaldehyde

for 24 h, embedded in paraffin, and divided into 4-mm paraffin

sections for follow-up immunohistochemical staining.
Screening of ANGPT2 genes

NET+ vs. Control difference analysis was performed with a

cutoff of P-value< 0.05. 123differentially upregulated proteins
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were identified. We then used machine learning algorithms,

svm-rfe and random Forest-rfe, to reduce dimensionality,

yielding 29 proteins. Then we selected the 17 most valuable

proteins according to the literature.
STAD dataset and preprocessing

STAD-related data and corresponding clinical information

were downloaded and collected from TCGA (https://

xenabrowser.net/). The transcriptional spectrum of 414

patients with STAD cancer was obtained from TCGA, of

which 388 patients with STAD had complete OS information.

36 paracancerous STAD samples were obtained from TCGA.

The transcriptional data from 174 normal gastric samples were

collected from the genotype-tissue expression project (GTEx;

https://www.gtexportal.org). The fragment (FPKM) value per

kilobase was converted to the transcript (TPM) value

per kilobase.
Carcinogenic characteristics
of ANGPT2

The difference of ANGPT2 between GC samples and non-

cancer samples was analyzed in TCGA and GTEx. We estimated

the ANGPT2 of 388 patients in the TCGA-STAD dataset, then

sorted patients into high ANGPT2 and low ANGPT2 groups

according to the P-value of the best cutoff. Kaplan–Meier curves

were used to analyze the association between OS and ANGPT2.

Univariate and multivariate Cox regression analysis was

performed for ANGPT2.
Genome change

Somatic mutation data and somatic copy number variation

(CNV) were collected from TCGA. Genomic identification

(GISTIC) analysis of important targets in cancer is used to

evaluate genomic characteristics. GISTIC2.0 analysis (https://

gatk.broadinstitute.org) was used to evaluate the increase or loss

of copy number of CNV landscape and amplification or

deletion peaks.
The immunological characteristics of
TME

We used the Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression (ESTIMATE)

algorithm to estimate the abundance of immune cells and the

level of stromal cell infiltration. The level of immune infiltrating

cells in STAD was analyzed comprehensively using Tumor
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Immune Estimation Resource2.0 (TIMER2.0; http://timer.

cistrome.org/) network server. The relative proportion of ten

kinds of immune cells in the tumor was estimated by the

MCPcounter algorithm. The infiltration level of 28 kinds of

immune cells was expressed as the enrichment fraction based on

the corresponding characteristics using a single sample genome

enrichment analysis (ssGSEA) using the GSVA R package. The

response of STAD to immunotherapy was evaluated by a

submap algorithm.
Functional analysis

Gene set variation analysis (GSVA) was carried out with the

GSVA R package.
Prediction of drug response

Pharmacogenomics data from cancer drug sensitivity

genomics (GDSC, https://www.cancerrxgene.org/) are used to

predict the drug sensitivity of included cases. Drug sensitivity

was calculated with the oncoPredict R package.
Statistical analysis

Wilcoxon test was used to compare non-normally

distributed data. The t-test was used to compare normally

distributed variables between two groups. Using the R package

survminer, the Kaplan–Meier survival graph was used to

estimate the OS between two groups. The Cox regression of

survival analysis was conducted with the R package survival. All

heat maps were drawn with the R pheatmap package. The data

were visualized with R ggplot2 package. P< 0.05 was considered

statistically significant.
Results

3.1 Gastric cancer tissue shows multiple
blood vessels with abundant NETs
deposition around blood vessels

Immunofluorescence staining showed that GC tissue (n =

30) had more NET deposition (Figures 1A, B) than adjacent

tissue (n=30) and staining of HE showed microvessels in GC; the

worse the staging, the more abundant the microvessels

(Figures 1A, C). CD31 immunofluorescence staining was used

to characterize the blood vessels of GC, several NETs deposits

were found around the vessels (Figures 1C, D).
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NETs enhance the angiogenesis ability of
HUVECs and the expression of damage
factor vWF

After stimulating HUVECs with 0.4 mg/ml NETs, more

tubules (Figure 1E) were formed compared with the PBS

group. Immunofluorescence staining showed that VWF

expression and the intercellular space increased after HUVECs

were stimulated with NETs (Figure 1F). DNAse-1 could

attenuate the above phenomena (Figures 1E, F). Figure 1G

shows the result of quantitative analysis of the mean

fluorescence intensity of VWF, which is statistically significant.

Figure 1H shows scanning electron microscope images of NETs

and cell-free NETs.
Identification of differentially expressed
proteins in NET-stimulated HUVECs by
TMT-MS/MS and PRM

For TMT-MS/MS analysis of NET-stimulated and

unstimulated HUVECs, a total of 363519 secondary mass

spectra were collected, including 83412 effective mass spectra,

with a utilization rate of 22.9%. Among quantifiable proteins,

123 upregulated and 73 downregulated proteins were observed

in the NET-stimulated group but not in the unstimulated group

(Figure 2A). Then the dimension of 123 upregulated differential

proteins was reduced with machine learning, reduce the number

of proteins to 29 (Figure 2B). By reviewing the literature related

to tumor progression and angiogenesis, 17 proteins were selected

from the above 29 proteins for PRM analysis, which, namely

ACE, ANGPT2, CCN1, CD34, GDF15, HTRA1, HTRA3, IFI16,

IGFBP7, LAMA4, LAMC1, MRPS15, MYO1B, PLVAP, RPL34,

RPL4, and RPL6 (Figures 2C, D). The results showed that the

expression of these proteins was significantly upregulated in the

NETs-stimulated group.
ANGPT2 is associated with poor
prognosis of patients with gastric cancer
and participates in carcinogenesis

The TCGA database analysis indicated that ANGPT2

expression in GC tissues (414) was significantly higher than in

para-cancerous (36) and normal tissues in GTEx (174)

(Figure 3A). The Kaplan–Meier curve results showed overall

svrvival (OS) that high ANGPT2 expression was associated with

worse survival (Figure 3B). Univariate and multivariate analysis

based on TCGA dataset revealed that ANGPT2 can work as an

independent risk factor in GC. (Figure 3C). GSVA analysis

highlighted that ANGPT2 was significantly associated with
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FIGURE 1

Expression of NETs in gastric cancer (GC) and paracancerous tissues and quantification of related factors in NET-stimulated HUVECs. (A) NETs
deposition in GC and paracancerous tissues was analyzed by immunohistochemical staining. HE staining was used to analyze the distribution of
microvessels in GC and paracancerous tissues. (B) Quantitative analysis of cit-H3 in GC and paracancerous tissues. (C) The localization of CD31
and NETs marker cit-H3 in GC. HE staining was used to analyze the distribution of microvessels in different stages of GC. (D) Mean fluorescence
intensity of CD31 and cit-H3 in tumor tissues at different stages. (E) Tubule formation of HUVECs stimulated with PBS, NETs, and NETs+DNAse-
1 was analyzed by a tube forming experiment. (F, G) The vWF expression on HUVECs was detected by confocal microscopy and analyzed with
Image J software [the expression is indicated as the mean fluorescence intensity (MFI). (H) NETs and cell-free NETs imaged by scanning
electron microscope. 20× objective. Scale bars indicate 20 mm. Arrows indicated ETs. All values are mean ± SD. ****P < 0.0001, **P < 0.01, *P
< 0.05 by one -way ANOVA or t-test.
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many important tumor-related pathways, such as the p53

signaling pathway, regulation of DNA damage response signal

transduction, p53 class mediator, JAK-STAT signaling pathway,

and cell migration involved in angiogenesis.We also observed that

ANGPT2 participated in immune response-related processes,
Frontiers in Immunology 07
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such as the T cell receptor signaling pathway and leukocyte

trans endothelial migration (Figure 3D). Therefore, the high

ANGPT2 expression can activate a variety of tumor-related

pathways and immune responses, suggesting that ANGPT2

plays a significant role in the occurrence and development of GC.
B
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A

FIGURE 2

Screening ANGPT 2 based on TMT-MS/MS data and PRM analysis. (A) Volcanic map of the results of NETs + vs. Control difference analysis.
(B) Svm-rfe and randomForest-rfe reduce dimensionality based on up-regulating differential proteins. (C) PRM analysis heat map of 17
differential proteins. (D) Analysis of bar plot by PRM of 17 differential proteins.
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ANGPT2 expression and the diversity of
genomic changes

CNV in the human genome can affect gene expression by

altering gene expression, destroying regulation or coding

regions, or changing genome structure, ultimately affecting the

normal function of genes. CNVs have been directly or indirectly

related to various diseases. Cancer genomes are usually

characterized by somatic CNV, often accompanied by

amplification of proto-oncogenes or deletion of tumor

suppressor genes. CNV and somatic mutation analysis were

conducted in the TCGA GC data set. The results of the global

CNV map showed that the amplification of the high ANGPT2

group was concentrated in Chr17, especially 17q12, and the

deletion was concentrated in Chr4 and Chr16, especially loci

4q35.2 and 16q23.1. In the low ANGPT2 group, the increase of

Chr17, the loss of Chr9, and the loss of Chr16 were identified.

The amplification was mainly found in 17q12, and the deletion

was mainly concentrated in 9p21.3 and 16q23.1 (Figure 4A,

Supplementary Figure S1). The global view of mutation

distribution shows that actin (TTN) and cell tumor antigen

p53 (TP53) mutations are the most abundant in both the high

ANGPT2 and low ANGPT2 groups, 51% and 44%, respectively

(Figure 4B). The next three most common mutations in the high

ANGPT2 group were MUC16 (31%), ARIDEA (27%), and

LRP1B (26%). In the low ANGPT2 group, LRP1B (32%),

MUC16 (30%), and SYNE1 (30%) (Figure 4B).

The mutation frequency ratio between the high ANGPT2

and low ANGPT2 groups was assessed by Fisher’s exact test and

sorted by increasing P-values. The sudden change load of the

high ANGPT2 group was lower than that of the low ANGPT2

group (Supplementary Figure S2A). At the same time, we

analyzed the coexistence or mutually exclusive mutation

(Supplementary Figures S2B, C) of the 25 most frequent

mutations. In the high ANGPT2 group, TTN and CSMD1

mutations frequently coexisted. ARID1A and PIK3CA, SYNE1

and SPTA1, FAT4 and DMD were also closely related mutation

sites. In the low ANGPT2 group, the common co-mutations

were FLG, SACS, OBSCN, and PCLO. Moreover, we found that

the changes of some gene pairs were mutually exclusive, such as

TP53 and PIK3CA, TP53 and ARID1A in the high ANGPT2

group; TP53 and ARID1A in the low ANGPT2 group

(Supplementary Figures S2B, C).
Immune correlation of ANGPT2 in TCGA
cohort

ESTIMATE analysis showed that the ANGPT2 immune and

stromal scores were significantly increased (Figure 5A) in the

high expression group, implying worse patient prognoses. We

further analyzed the correlation between ANGPT2 expression

and neutrophil infiltration. We found a positive correlation
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based on ESTIMATE, MCP counter, ssGSEA, and TIMER

algorithms (Figure 5B), consistent with our results. Neutrophil

infiltration correlates with NET deposition. At the same time, we

also analyzed the correlation between ANGPT2 and other

immune cell infiltration, and found that the high expression of

ANGPT2 was significantly correlated with Macrophages M0 、

NK cells resting and Mast cells activated (Supplementary Figures

S3A, B). So we have reason to think that ANGPT2 is involved in

the regulation of immune microenvironment for gastric cancer.
Potential targets of immunotherapy and
chemotherapy in patients with gastric
cancer with high
ANGPT2 expression

Since immune checkpoint inhibitors are the basis of

immunotherapy, immune checkpoint expression is of great

significance in guiding clinical practice. The submap result

showed that the response to immunotherapy differed between

the high ANGPT2 and the low ANGPT2 groups. The result

indicated that GC patients with high expression of ANGPT2 are

more likely to respond with immunotherapy (Figure 6A), which

is a significant reference in accurately choosing immunotherapy.

We analyzed the correlation between ANGPT2 and multiple

immune checkpoints. The results showed that ANGPT2 was

closely related to the level of multiple immune checkpoints in

GC, PD-L1, PD-L2, and CTLA-4 (Figure 5C) are the most

significant. These results suggest that inhibition of ANGPT2JI

may be beneficial to immunotherapy.

We used the GDSC database to evaluate chemotherapeutic

drug responses in high ANGPT2 and low ANGPT2 groups and

measured accuracy by 10x cross-validation. The results showed

the sensitivity of the high expression group to the following

chemotherapeutic drugs, Rapamycin, LCL161, CZC24832,

OTX015, AZD5153, GDC0810, UMI-77, BPD-00008900,

Ulixertinib, Uprosertib, GSK591, and AT13148 was lower

relative to the low expression group (Figure 6B). Therefore,

patients with low ANGPT2 expression might experience better

chemotherapeutic outcomes, and the efficacy of these

chemotherapeutic drugs is worthy of further exploration.
ANGPT2 is highly expressed in gastric
cancer, and NETs promote ANGPT2
expression in HUVECs

To further verify ANGPT2 expression in GC specimens, we

found that ANGPT2 was highly expressed in cancer tissues from

patients with GC than in para-cancerous tissues. ANGPT2 was

more overexpressed in stage II/III than in stage I patients

(Figures 7A, C). Compared with the control group,

intraperitoneal injection of DNAse-1 reduced the growth
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FIGURE 3

The importance of ANGPT2 gene in TCGA-STAD. (A) ANGPT2 expression level between STAD samples from TCGA cancer database and TCGA
paracancerous plus GTEx normal samples. (B) Kaplan–Meier curves of high and low ANGPT2 groups in TCGA data. (C) Forest map of univariate
and multivariate cox regression based on TCGA dataset and clinical variables. (D) GSVA thermomaps show functional pathways (GO and KEGG
cancer-related pathways) significantly related to ANGPT2 in TCGA. **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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FIGURE 4

Genomic changes related to ANGPT2 in STAD samples (A) Changes in the copy number of ANGPT2 between high and low STAD groups. (B)
Somatic mutation waterfall map in STAD of high and low ANGPT2 groups.
Frontiers in Immunology frontiersin.org10
184

https://doi.org/10.3389/fimmu.2022.1010434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1010434
volume of the subcutaneous gastric cancer tumors (Figures 7E,

F). Staining of GC tissue derived from a subcutaneous tumor

model in nude mice showed that ANGPT2 expression in

DNAse-1-treated mice was significantly lower than in the
Frontiers in Immunology 11
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control group (Figures 7B, D). After stimulating HUVECs

with NETs, we found that ANGPT2 expression increased

significantly, as evidenced by Western blot, and began to

change significantly when NET concentration was 0.4 μg/ml.
B

C

A

FIGURE 5

Relationship between ANGPT2 and immune characteristics in TCGA cohort. (A) Changes of ANGPT2 and ESTIMATE score, immune score, and
stromal score. (B) Correlation between ANGPT2 and neutrophil cell infiltration level in three immune infiltration estimation algorithms. (C) The
relationship between ANGPT2 and three classical immune checkpoints.
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FIGURE 6

Immunotherapy and chemotherapy involved in ANGPT2 in TCGA-STAD. (A)Submap analysis of ANGPT2 levels in TCGA-STAD. (B) Box diagrams
for estimating drug sensitivity of several GDSC chemotherapeutic drugs in the high ANGPT2 and low ANGPT2 groups.
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Consistent with our previous experimental results, DNAse-1

could significantly weaken this phenomenon (Figures 7G, H).

Through immunofluorescence staining, it was found that

ANGPT2 expression increased, and CD31 expression

decreased after HUVECs were stimulated with 0.4 μg/ml

NETs, while DNAse-1 could weaken the effects of NETs

(Figures 7I, J).
Discussion

An increasing number of studies have shown that the tumor

microenvironment (TME) has important clinical significance in

predicting prognosis and guiding immunotherapy. However,

there is still a lack of systematic cell interaction analysis in

TME. In our study, we analyzed and identified differentially

expressed proteins in NET-stimulated HUVECs in GC with the

help of TMT-MS/MS and PRM techniques. We found that NETs

stimulation can increase ANGPT2 expression in HUVECs.

Through comprehensive bioinformatic analysis, we found that

the increased ANGPT2 expression is closely related to the poor

survival of patients with GC. At the same time, ANGPT2 is

related to the genomic changes of GC and TME. ANGPT2 can

be used not only as a therapeutic indicator of immune

checkpoint inhibitors but also as a target for accurate selection

of chemotherapeutic drugs; thus, targeting the neutrophil/NETs-

ANGPT2 axis may unveil new therapeutic targets in the future.

NETs are not only related to antimicrobial defense but also

play a role in non-infectious diseases, including tumor

occurrence and development, thrombosis, vasculitis, etch (28–

30). Many NETs deposits have been found in the blood and

tumor tissues of many solid tumors (31–33). Yang et al. found

that neutrophils of patients with liver cancer, especially those

with metastatic liver cancer, release more NETs; in animal

experiments, they found that these NETs can capture liver

cancer cells, induce cell death resistance, and enhance invasion

(34). In our early studies, it has been confirmed that a large

number of NETs deposit in GC tissue, significantly correlating

with tumor staging. At the cellular level, NET deposits can

promote the EMT process, invasion, and metastasis of GC cells,

as well as the formation of a hypercoagulable state (35). In this

study, we verified that NET deposition is more abundant in

cancer tissues of patients with GC, accompanied by significant

NET infiltration around miANGPT2cro vessels. Related studies

have also confirmed that NETs can damage endothelial cells and

recruit platelets to the injured site, leading to the formation of

deep venous thrombosis (36, 37). This evidence shows that

NETs can affect endothelial cells and trigger the onset and

development of GC in the TME. Therefore, we should actively

explore the specific mechanism of NETs on HUVECs. Due to

the relatively low consistency between mRNA and protein

expression in some tumor types, proteome analysis may

outperform transcriptome analysis in detecting disease-related
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changes in cell activity and function (38). Therefore, in our

study, proteomic technique was used to understand the changes

in protein post-transcriptional translation levels after NETs

stimulation of HUVECs. Thus, this approach allows us to

explore the mechanism underlying the effects of NETs on

HUVECs, providing a theoretical basis for the clinical

treatment of GC.

Existing research results show that neovascularization in the

TME provides nutrition and oxygen for tumors and is also a

channel for tumor spread (39–41). Endothelial-derived SLIT2

protein and its receptor ROBO1 reportedly promote the

migration and infiltration of cancer cells into endothelial

tissue, whereas endothelial Slit2 knockout can inhibit tumor

metastasis. In contrast, Slit2 knockout in the tumor can promote

metastasis. Tumor cell-derived double-stranded RNA acts as an

upstream signal to interact with RNA receptor TLR3 to induce

endothelial SLIT2 expression (42). This study revealed that

endothelial cells play a direct role in driving tumor metastasis

and spread, proving that single genes from different cell sources

can promote or inhibit cancer progression. In our study, we

found that NETs act on HUVECs to trigger the release of various

tumor-related factors, such as ANGPT2, ECM, CD40, and IL-8.

Therefore, we have reason to believe that endothelial cells play a

diverse role in the TME and can promote GC progression under

the action of triggering factors.

In this study, we found that NETs promoted ANGPT2

release from HUVECs. Immunohistochemical staining showed

large depositions of ANGPT2 in GC. The expression level in

stage I was lower than that in stage II-III, which was positively

correlated with the clinical stage, indicating that ANGPT2

overexpression occurred in the late stage of tumorigenesis. In

murine subcutaneous tumor tissues, ANGPT2 expression of

DNAse-1-treated mice was significantly decreased, which

proved that inhibition of NETs could significantly reduce

ANGPT2 expression. Consistent with this study, many studies

have shown that ANGPT2 expression is significantly

upregulated in breast cancer, pancreatic cancer, glioma, GC,

colon cancer, liver cancer, melanoma, and other tumors.

ANGPT2 plays a key role in tumor angiogenesis, tumor

inflammation, and tumor metastasis (43–50). For instance,

studies have shown that ANGPT2 and other factors are

involved in the growth and metastasis of breast cancer, and

their expression is related to the clinical stage of cancer, blood

lymphatic, etc. Its high expression can lead to abnormal

regulatory functions such as vascular repair and reconstruction

in breast tissue, increasing the incidence of breast cancer (43). In

colon cancer, an immunohistochemical study showed that the

expression level of ANGPT2 protein was not related to the

degree of differentiation and lymph node metastasis but to the

depth of intestinal wall invasion, blood metastasis, and poor

clinical prognosis (46). In normal intestinal mucosa, the

expression of ANGPT2 is lower than that of intestinal

adenoma, and there is a positive correlation between the
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FIGURE 7

ANGPT2 expression in NET-stimulated HUVECs. (A) Immunohistochemical analysis of ANGPT2 expression in gastric cancer and paracancerous
tissues of different stages. (B) ANGPT2 expression in mouse subcutaneous tumor tissue was analyzed by immunohistochemical staining.
(C) Quantitative analysis of ANGPT2 in gastric cancer and paracancerous tissues. (D) Quantitative analysis of ANGPT2 in mouse subcutaneous
tumor tissues. (E) Subcutaneous tumor samples from nude mice treated with DNAse-1 and control group, n=5. (F) Growth curve of
subcutaneous tumor in nude mice, all values are mean ± SD. *p < 0.05 by two-way ANOVA. (G) Western blot analysis of ANGPT2 expression
after HUVECs were stimulated by different concentrations of NETs. (H) Quantitative analysis of mRNA of ANGPT2. (I) ANGPT2 expression in
HUVECs stimulated by PBS, NETs, and NETs+DNAse-1 was analyzed by immunofluorescence. (J) Tthe expression is indicated as the mean
fluorescence intensity (MFI),analyzed with Image J software. All values are mean ± SD. ****P < 0.0001, ***P < 0.001,** P < 0.01, *P < 0.05 and
ns, not significant by one-way ANOVA.
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angiogenic factor and tumor cell proliferation activity. The

ANGPT2 expression can promote colorectal cancer growth.

Therefore, the intervention of the ANGPT2 mechanism

system is considered a measure to treat tumors.
Conclusion

In this study, we used bioinformatics to predict the

significance of ANGPT2 in GC. We found that ANGPT2 is a

carcinogenic factor which is closely related to the tumor

microenvironment in GC. It also has guiding significance with

immunotherapy and chemotherapy, with a certain reference

significance for clinical application.

Our method used three normal HUVECs samples and three

NETs-stimulated HUVECs samples for proteomic analysis. The

sample size selection was statistically significant. Our study

established the relationship between NETs and HUVECs in

the TME, formed a molecular network of neutrophils, NETs,

and ANGPT2, and gave GC a new biomarker reference,

ultimately providing a theoretical reference for the

development of new therapeutic targets. These findings also

support research to determine how ANGPT2-related

biomarkers contribute to personalized GC treatment.
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SUPPLEMENTARY FIGURE 1

The genomic alterations in high-ANGPT2 and low-ANGPT2 groups. (A, B)
Amplification and deletions in gastric cancer with high and low ANGPT2
expression. (C, D) The detailed amplification and deletion of chromosome

copy number variation in gastric cancer with high and low
ANGPT2 expression.

SUPPLEMENTARY FIGURE 2

The somatic mutations in high-ANGPT2 and low-ANGPT2groups. (A) The
forest plot illustrates the difference in mutation patterns between high-
ANGPT2 and low-ANGPT2 groups. (B, C) The heatmap presents the

somatic interaction in gliomas with high and low ANGPT2 levels.

SUPPLEMENTARY FIGURE 3

Analysis of the correlation between ANGPT2 and other cellular immune
infiltration. The lollipop illustrates the difference in immune infiltration

between high-ANGPT2 and low-ANGPT2 groups.
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Protective effect of tertiary
lymphoid structures against
hepatocellular carcinoma:
New findings from a
genetic perspective

Weili Jia1,2, Qianyun Yao1, Yanfang Wang1,2, Zhenzhen Mao1,2,
Tianchen Zhang1,2, Jianhui Li3, Ye Nie2, Xinjun Lei1,2,
Wen Shi1,2 and Wenjie Song2*

1Xi'an Medical University, Xi’an, China, 2Department of Hepatobiliary Surgery, Xijing Hospital, Fourth
Military Medical University, Xi’an, China, 3Department of General Surgery, The First Affiliated
Hospital of Anhui Medical University, Hefei, China
Background: Tertiary lymphoid structures (TLS) have an effect on hepatocellular

carcinoma (HCC), but the underlying mechanism remains to be elucidated.

Methods: Intratumoral TLS (iTLS) was classified in the Cancer Genome Atlas-

Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort using pathological

sections from the Cancer Digital Slide Archive. Univariate and multivariate

Cox regression analyses were performed to validate the effect of iTLS on

overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS).

The genes differentially expressed between the iTLS-negative and iTLS-positive

groups were analyzed in combination with sequencing data. Gene set

enrichment analysis (GSEA) was used to explore the signaling pathways

affected by these differentially expressed genes. The random forest algorithm

was used to identify genes with the highest correlation with the iTLS in the

training set. Multivariate logistic regression was used to build a model to predict

iTLS in tissue samples. Spearman’s correlation was used to analyze the

relationship between TLS-associated chemokines and signature genes, and

CIBERSORT was used to calculate immune infiltration scores. Copy number

variation and its relationship with immune cell infiltration and signature genes

were assessed using the gene set cancer analysis (GSCA). The Correlation R

package was used for gene ontology (GO), disease ontology (DO), and gene

mutation analyses. The GSCA was used for drug sensitivity analysis. LASSO

regression was used to build prognostic models, and external data were used

to validate the models.

Results: There were 218 positive and 146 negative samples for iTLS. iTLS was

significantly associated with better RFS and DFS according to Cox regression

analysis. Twenty signature genes that were highly associated with iTLS positivity

were identified. GO and mutation analyses revealed that the signature genes

were associated with immunity. Most signature genes were sensitive to
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immune checkpoint inhibitors. Risk scores calculated using a characteristic

gene-based prognostic model were found to be an independent prognostic

factor for OS.

Conclusions: The improvement of RFS in HCC by iTLS was not limited to the

early period as previously reported. iTLS improved DFS in patients.

Characteristic genes are closely related to the formation of iTLS and TLS

chemokines in HCC. These genes are closely related to immunity in terms of

cellular infiltration, biological functions, and signaling pathways. Most are

sensitive to immune checkpoint inhibitors, and their expression levels can

affect prognosis.
KEYWORDS

tertiary lymphoid structures (TLS), hepatocellular carcinoma (HCC), immunotherapy,
cancer prognosis, immune microenvironment (IME)
1 Introduction

As of 2020, hepatocellular carcinoma (HCC) was the sixth

leading cause of cancer-related deaths, making it one of the world’s

leading public health problems (1). The incidence of HCC

continues to increase annually. According to World Health

Organization estimates, by 2040 the number of new cases and

deaths will exceed 1.4 million and 1.3 million, respectively (2).

Tertiary lymphoid structures (TLS), also known as tertiary

lymphoid organs (TLO) and ectopic lymphoid structures (ELS),

are aggregates of lymphocytes capable of providing ectopic hubs for

the acquired immune response, and can affect various disease

outcomes (3). TLS is acquired and often formed under the

stimulation of chronic inflammation to address the invasion of

various pathogenic factors (4). The first study on TLS was

conducted on non-small-cell lung cancer (NSCLC). Seventy-four

patients were studied using immunohistochemistry in the early

stages (5). Subsequently, the amount of TLS-related literature has

increased annually, and more scientists are involved in the research

of TLS every year.

Most patients with HCC are not diagnosed until in the

advanced stages, thus missing the optimal window for treatment

(6). The insensitivity of HCC to conventional malignancy

therapies has led to the emergence of immunotherapy as one

of the most promising treatments (7). As an immune structure,

TLS is gaining attention from researchers worldwide. There is

growing evidence of its direct and indirect impact on HCC

outcomes. While TLS in cancer is generally protective, two

contrasting effects have been reported in HCC: intratumoral

TLS (iTLS) can be protective against HCC, while peritumoral

TLS (pTLS) can be detrimental for HCC. iTLS may be associated

with sustained and effective anti-tumor immunity (8–12).
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Additionally, more mature iTLS could help improve patient

prognosis (9). Conversely, there is evidence that pTLS can

promote HCC development (13, 14). TLS found in excised

non-neoplastic liver tissue surrounding HCC is associated with

poor prognosis and increased prevalence (9, 14). In addition,

studies have shown that depletion of TLS in non-neoplastic liver

parenchyma can inhibit cancer progression (14). However, a

recent study showed that patients with HCC and higher pTLS

densities had better overall survival (OS) and relapse-free

survival (RFS) (15).

Few studies have analyzed TLS at the genetic level,

particularly in HCC. Therefore, we performed a bioinformatic

analysis in combination with hematoxylin and eosin (HE)

pathologically stained sections to explore and elucidate the

genetic characteristics of iTLS in HCC and the prognostic

implications of differential expression of genes related to iTLS

in patients. Together with previous studies, we believe that our

study will contribute to further understanding of the role of iTLS

in HCC.
2 Materials and methods

2.1 Data acquisition and processing

XENA (https://xena.ucsc.edu) is an online discovery tool for

public and private multi-omics and clinical/phenotypic data (16).

We used this tool to obtain the liver hepatocellular carcinoma

(LIHC) dataset from The Cancer Genome Atlas (TCGA) in the

RNAseq count format. The data were processed as follows: 1) data

from the same sample but from different tables were averaged; 2)

data from different samples were combined to form a genomic
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matrix; and 3) a log2(x+1) transformation was performed on all

data. Data from the International Cancer Genome Consortium

(ICGC) cohort were obtained from the official website. We

downloaded the LIRI-JP data from the ICGC along with the

corresponding clinical information of the cohort. Please refer to

Supplementary Table 1 for a summary of the relevant data.
2.2 Evaluation of iTLS in pathological
sections

We evaluated the density of lymphocyte infiltration by

retrieving HE pathologically stained sections of the corresponding

TCGA samples from the Cancer Digital Slide Archive (CDSA).

Frozen sections and formalin-fixed paraffin-embedded (FFPE)

tissue sections were used. This study used methods based on

Clarice et al. (17) for counting all forms of iTLS as follows: 1)

lymphocyte aggregates (Agg) with lymphocyte infiltration but no

lymphoid follicle formation; 2) primary follicles (FL1), with well-

defined clusters of round or oval lymphocytes or plasma cells (no

germinal centers present); and 3) secondary follicles (FL2), with

well-defined clusters of round or oval lymphocytes or plasma cells

(germinal centers present). Based on the above groupings, two

pathologists independently evaluated iTLS in all HCC samples.

Subsequently, a third pathologist assisted in identifying the

conflicting results. Then, based on the technique of Clarice et al.

(17), samples with at least one occurrence of any form of iTLS (Agg,

FL1, FL2) were categorized as the TLS-positive (TLS+) group and

the samples without any occurrence of iTLS were categorized as the

TLS-negative (TLS-) group for the next analysis.
2.3 Analysis of the impact of iTLS on the
prognosis of HCC

Previously, Li et al. (11) and Calderaro et al. (8) found the

significance of iTLS in HCC for better early stage RFS in

patients, but further validation was needed to support this

conclusion. Therefore, to verify their findings or to discover

new information, we plotted the iTLS grouping status (positive

or negative) in relation to OS, RFS, and disease-free survival

(DFS) to determine the prognostic impact of iTLS after

excluding patients with incomplete follow-up information. OS

was defined as the time from the start of follow-up until the

patient died or was lost to follow-up for any reason, RFS was

defined as the time from the start of follow-up until the patient

experienced a disease recurrence, and DFS was defined as the

time from the start of follow-up until the patient died, was lost to

follow-up, or experienced a disease recurrence for any reason.

Univariate and multivariate Cox regression analyses were

performed to determine whether the iTLS was an independent

prognostic factor. Indicators with significant results (p < 0.05) in

the univariate analysis were included in the multivariate analysis.
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2.4 Analysis of gene expression
differences

To investigate the differential gene expression between the

two groups, we selected intra-tumor pathology samples with

both HE stained sections and RNAseq expression data, and then

performed differential expression analysis using the R package

“edgeR” according to the TLS grouping (TLS+ or TLS-). First,

samples with zero expression were excluded. Differential

expression analysis was performed to explore differences

between the two groups. Finally, gene set enrichment analysis

(GSEA) was performed using the KEGG and Reactome

databases to clarify the signaling pathways in the locations of

the differential genes.
2.5 Identification of key genes associated
with iTLS

The Boruta algorithm was used to identify the key

differential genes affecting iTLS formation. Boruta is a feature

selection algorithm, which is specifically a wrapper algorithm for

random forests that filters out the set of all features correlated

with the dependent variable (18). It can manage a large number

of input variables, evaluate the importance of the variables

during processing, and has been used in many studies in

cancer-causative gene analysis (19, 20). To explore all potential

genes that may have an impact on the formation of iTLS, we

included all genes in which differential expression analysis

showed significant results (p < 0.05) in the subsequent study.

We first used the Boruta algorithm to rank the differential

genes from largest to smallest according to their effects on iTLS.

The top 20 results were selected as iTLS signature genes, which

were later used to build a logistic regression model for predicting

the presence of iTLS. The specific steps were as follows: 1) the

samples were randomly divided into training and test groups;

the training group was used to select the key genes affecting the

formation of iTLS and the test group was used to validate the

results from the training group; 2) all differential gene

expressions in the training group were characterized using the

R package “Boruta” to identify the key categorical variables; 3)

five 10-fold crossover validations were performed using the R

package “caret” to find the most accurate mtry value (mtry refers

to the number of variables randomly sampled when constructing

decision tree branches in random forest modeling, and an

appropriate mtry value can reduce the prediction error rate of

the random forest model); and 4) the final selected model was

extracted and receiver operating characteristic (ROC) curves

were created using the validation set data to verify the prediction

ability of the model situation to establish a multivariate logistic

regression model. ROC curves were plotted for all samples to

further validate the predictive ability of the model. Previous
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studies used several genetic traits relevant to TLS to assess TLS in

tissues. Results showed that these traits had different

combinations, such as the 9-TLS trait (21), 12-TLS trait (22),

40-TLS trait (23), and 50-TLS trait (24). We selected these

chemokines, developed correlation prediction models, and

compared them with our model.
2.6 Immune cell infiltration analysis

iTLS belongs to the immune structure family. Therefore, one

can hypothesize that there is a correlation between iTLS and

immune cell infiltration. Hence, we calculated the immune

infiltration score for each patient’s cancer tissue using

CIBERSORT. The relationship between the signature genes

and the immune infiltration score was then analyzed using

Spearman correlation analysis. Finally, the effect of copy

number variation (CNV) on immune cell infiltration was

explored using gene set cancer analysis (GSCA).
2.7 Biological functional analysis

The R package “clusterProfiler” supports the functional

characterization of thousands of coding and non-coding

genomic data with up-to-date gene annotations (25). It

provides a unified interface for gene function annotations

from a variety of sources and can therefore be applied to a

variety of scenarios. We used this program for gene ontology

(GO) biological processes, GO cellular composition, GO

molecular function, and disease ontology (DO) analysis.
2.8 Single nucleotide polymorphism
(SNP) and CNV analysis

To understand the mutation of signature genes within

tumors, we investigated single nucleotide polymorphism (SNP)

mutations in signature genes using the R package “maftools”,

while exploring the signaling pathways affected by the

mutations. In addition, using GSCALite, a web-based platform

for genomic cancer analysis (26), we investigated the CNV of the

signature genes.
2.9 Drug sensitivity analysis

The ultimate goal of medical research is to facilitate clinical

treatment; therefore, we explored the relationship between

signature genes and drug sensitivity using GSCA. The tool

contains data from both the GDSC and Clinical Trials

Report ing Program (CTRP) databases . GDSC (27)

characterized 1000 human cancer cell lines and screened them
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for more than 100 compounds; CTRP (28) has similar

characterization and screening of data. We further

downloaded gene expression and drug sensitivity data from

CellMiner, a web-based suite of genomics and pharmacology

tools (29). Subsequently, drug sensitivity data were screened by

selecting drugs that were validated by clinical trials and Food and

Drug Administration (FDA) approval. Finally, the expression

data of the characterized genes were subjected to the Spearman

correlation test with the drug sensitivity data to obtain and

visualize the correlation data between them.
2.10 Construction and validation of
prognostic model

To explore the prognostic value of signature genes, LASSO

regression was used to further screen genes from the signature genes

that clearly affect the prognosis of HCC. The optimal signature

model was then constructed based on the Akira pooling

information criterion (AIC), and the result with the lowest AIC

value was used to construct the signature: risk score = expression

(A) × c of (A) + expression(B) × c of (B) +. expression(n) × c of(n).

OS, DFS, and RFS curves were plotted based on risk scores using the

Kaplan-Meier method. The accuracy of the model was verified

using ROC curves. Univariate and multivariate Cox regression

analyses were used to identify the model as an independent

influence on prognosis, and heatmaps of the risk score, relevant

clinical indicators, and characteristic gene expression were plotted.

Finally, we validated the predictive power of the model using the

ICGC data as external data.
2.11 Statistical analysis

All data analysis, data visualization (graphical plots), and

statistical analysis were performed using R Studio Desktop

(version 4.1.2), unless otherwise specified. Logistic regression

analysis was performed using the R software. Gene difference

analysis was performed using R package “edgeR”. The R package

“GSVA” was used for the ssGSEA analysis. Correlation analysis

was performed using the R package “Hmisc”. SNP mutation

analysis was performed using the R package “maftools”. The R

package “Boruta” was used for random forest analysis. Survival

analysis was performed using the R package “survivor”. The R

package “survivalROC” was used to plot the time-dependent

ROC curves. RFS analysis was performed using Kaplan-Meier

plots and log-rank tests. Correlations between the two non-

normal datasets were analyzed using Spearman’s method. The

Wilcoxon signed-rank test was used to evaluate between-group

differences in pathological parameters. The cardinality test was

used to analyze the relationship between the clinicopathological

parameters and characteristics. P values below 0.05 were

considered statistically significant if not otherwise stated.
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3 Results

3.1 iTLS is associated with better RFS and
DFS in patients

A total of 365 samples were observed; 137 samples were

classified as the Agg group, 56 as the FL1 group, and 26 as the

FL2 group. The remaining 146 samples had no lymphocytic

infiltration (Figure 1). There were 218 samples in the final TLS+

group and 146 in the TLS- group (Supplementary Table 2).

Results of OS, RFS, and DFS curves showed that the TLS+ group

was associated with better RFS (p-values less than 0.001 at 1, 2,

and 5 years), DFS (p<0.001, p<0.001, p = 0.004 at 1, 2, and 5

years, respectively), and 2-year OS (p = 0.033) (Figure 2).

Univariate Cox regression results for OS were not

statistically significant (p = 0.064, Figure 3). Univariate and

multivariate Cox regression results for both RFS and DFS

showed that iTLS (TLS+) was a protective factor (Figure 4).

Interestingly, in a slight departure from the results of previous

studies (8, 11), we found that iTLS was not only associated with

early RFS. Rather, at all periods (1, 2, and 5 years), iTLS was

associated with better RFS. This further validates the beneficial

effects of iTLS in patients with HCC.
3.2 Differential genes are associated with
immune-dominated pathways

The results of the differential expression analysis showed that of

the 1057 differential genes, most (625 genes) were downregulated,
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whereas the expression of the other 432 showed varying degrees of

upregulation (Supplementary Table 3).

In the GSEA, the KEGG database showed that the

differential genes were mainly distributed in “cell adhesion

molecules”, “chemokine signaling pathway”, and “cytokine-

cytokine receptor interaction” pathways (Figure 5A).

Conversely, the Reactome database reported that the

differentially expressed genes were mainly enriched in the

“Adaptive Immune System”, “Class A/l (Rhodopsin-like

receptors)”, and “Cytokine Signaling in Immune System”

pathways. Clearly, most of these pathways are closely related

to immunity (Figure 5B).
3.3 iTLS prediction model consisting of
20 genes

Using Boruta, we selected the most suitable mtry values

(Figure 6A) and identified 24 important genes associated with

iTLS (Figure 6B). A 10-fold-5 cross-validation was then

performed on the training set, and the top 20 most important

data points affecting the iTLS profile in the training set were

selected to build the prediction model (Figure 6C). These 20

genes were: SYTL1, TMEM25, ARL4D, PITHD1, CCR7, LCK,

CCDC88B, CCL21, CORO1A, RASAL3, LIMD2, COQ3,

KCNE4, ITPRIP, DBT, CXCR3, SMIM3, CD3D, PSTPIP1,

and PLAU.

The area under the curve (AUC) of the ROC curve obtained

using the model in the validation set was 0.733 (Figure 6D). The

AUC of the ROC curve of the iTLS prediction model built using

multifactorial logistic regression was 0.782 for all samples
FIGURE 1

Observed iTLS images. The green area with the blue border marked in the figure is the iTLS. (A) Lymphocyte aggregation (Agg). (B) Primary
lymphoid follicles (FL1). (C) Secondary lymphoid follicles (FL2).
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(Figure 6E). According to the TLS grouping (positive or

negative), we plotted a gene expression heatmap of the

characteristic genes in all HCC samples (Figure 6F). As the

figure shows, with CCDC88B as the dividing line, the upper

genes were concentrated in the TLS+ group with high

expression, whereas the lower genes were concentrated in the

TLS- group.

We also built prediction models using TLS-related

chemokines to verify the accuracy of our models. The results

showed that the AUCs of the 9-TLS, 12-TLS, 40-TLS, and 50-

TLS prediction models were 0.668, 0.697, 0.771, and 0.792,

respectively. The accuracy of our results is slightly higher than

that of the 40-TLS and slightly lower than that of the 50-TLS.

However, one problem that cannot be ignored is that when using

the 40-TLS and 50-TLS features for logistic regression, the

number of independent variables is too large. Therefore, the
Frontiers in Immunology 06
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results may not be accurate. However, considering the above

factors, the predictive ability of our model remains excellent.

3.4 Further exploration around signature
genes

3.4.1 Signature genes are associated with TLS-
associated chemokines

The Spearman correlation analysis using previously reported

expression levels and the expression levels of our signature genes

was performed to further validate our signature genes. The results

showed that most of our signature genes had strong correlations

with the aforementioned features, whether it was the classical 12-

TLS feature or the 9-TLS feature proposed by Feng et al. (21), the

40-TLS feature proposed by Zhou et al. (23), or the 50-TLS feature

used by Wu et al. (24) (Figure 7).
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FIGURE 2

(A) 1-year OS curves of TLS-group vs. TLS+ group. (B) 2-year OS curves of TLS-group vs. TLS+ group. (C) 5-year OS curves of TLS-group vs.
TLS+ group. (D) 1-year RFS curves of the TLS-group versus the TLS+ group. (E) 2-year RFS curves of the TLS-group versus the TLS+ group.
(F) 5-year RFS curves of the TLS-group versus the TLS+ group. (G) 1-year DFS curves of the TLS-group versus the TLS+ group. (H) 2-year DFS
curves of TLS-group vs. TLS+ group. (I) 5-year DFS curves of TLS-group vs. TLS+ group.
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3.4.2 Signature genes are associated with
immune infiltration

We plotted a heatmap of the correlation between the

expression of the signature gene and calculated the immune

score using CIBERSORT (Supplementary Table 4 and

Figure 8A). Using CD4 T cells as the boundary, the level of

immune cell infiltration above the boundary is roughly positively

correlated with the signature gene, whereas the level of immune

cell infiltration below the boundary is roughly negatively

correlated with the signature gene (Figure 8A).

Serendipitously, using the GSCA (http://bioinfo.life.hust.edu.

cn/GSCA/), we found a large number of CNV in the signature

genes, most of which were heterozygous variants (Figure 8B).

Among them, LIMD2 had the most heterozygous amplifications,

whereas SYTL1 had the most heterozygous deletions. Based on the

relationship between signature genes and immunity, we

hypothesized that the CNV of signature genes might affect

immune infiltration. Therefore, we explored the relationship

between CNV and immune cell infiltration (Figure 8C). The

figure shows that both gene amplification and deletion increase

B-cell infiltration, whereas the infiltration levels of CD4_naïve, NK,

andMacrophage are all diminished. The figure also shows that both

amplification and deletion mutations cause a decrease in the

immune infiltration score, which in turn affects immune

infiltration (see infiltration score in Figure 8C).

In addition, we used the immune database ImmPort1 for

further analysis to explore the relationship between signature

genes and immune genes. The results showed that most of the
Frontiers in Immunology 07
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immune genes correlated with our signature genes, with the

strongest correlations being ARL4D and CCL (Supplementary

Table 5 and Supplementary Figure 1).
3.4.3 Signature genes are associated with
multiple biological functions and hepatobiliary
diseases

GO enrichment analysis showed that, in terms of biological

processes, the 20 signature genes were significantly associated with

immuneprocesses including “Tcell activation”, “positive regulationof

T cell activation”, and “positive regulation of leukocyte cell adhesion”

(p < 0.001). Additionally, cell composition was associated with

“immunological synapse”, and molecular function was associated

with “C-C chemokine receptor activity”, “C-C chemokine binding”,

and “Gprotein-coupled chemoattractant receptor activity” (p= 0.02).

The results of DO analysis were also associated with “hepatitis”,

“hepatitis C”, and “primary biliary cirrhosis” (Figure 9).

3.4.4 Mutations in signature genes can affect
cancer-related signaling pathways

SNP, mainly DNA sequence diversity caused by variants in a

single nucleotide at the genomic level, can lead to the

development of disease. We further investigated the SNP

profiles of the characteristic genes and mapped the mutations

between samples (Figure 10A).

The close relationship between cancer progression and

signaling pathways is well known. Therefore, we investigated the

signaling pathways affected by relevant signature genes in each

group of samples (Figure 10B). RTK-RAS, a pathway known to

influence cancer progression, ranked first among the affected

pathways; therefore, we mapped the RTK-RAS pathway in terms

of gene mutations (Figure 10C). Methylation is one of the first

identified and most intensively studied epigenetic regulatory

mechanisms that can influence the progression of many cancers.

We explored the correlation between methylation of characteristic

genes and mRNA expression between normal and cancer samples.

The expression of CORO1A, LCK, and ARL4D showed a

significant negative correlation with methylation (Figures 10D–F).

We further explored the relationship between signature

genes and CNV using GSCALite. We also used this tool to

investigate the effect of gene expression differences on pathway

activation, where all mutations affected more than one signaling

pathway (Figure 11).

3.4.5 Signature genes are sensitive to immune
checkpoint inhibitors

Immune checkpoint inhibitors have been approved as

conventional drugs for HCC, and the possibility of immunotherapy

should be further investigated. We explored the correlation of

signature genes with the sensitivity to GDSC and CTRP drugs in

pancreatic cancer using theGSCAwebsite. As seen in Figure 12, both

the GDSC and CTRP databases showed that RASAL3 and COROIA
FIGURE 3

Results of the univariate Cox regression analysis with two-year
OS as the outcome.
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had the highest sensitivity to immune checkpoint inhibitors,

suggesting that these genes may be potential therapeutic targets.

LIMD2, PSTPIP1, CD3D, LCK, and CCR7 were significantly

negatively correlated with the IC50 of most drugs, whereas

CCDC88B, ITPRIP, SYTL1, PLAU, TMEM25, and ARL4D were

correlated with some drugs to varying degrees. PITHD1 is not

presented in the figure because of a lack of relevant data.

Using the CellMiner database, we evaluated the relationship

between signature genes and drug IC50 (Supplementary Table 5).

From this analysis, we selected the portion of the data presented in

the figure with the most significant effect (Figure 13). The results
Frontiers in Immunology 08
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showed that 20 signature genes may be promising potential drug

targets for HCC and merit further in-depth study.

3.4.6 Signature genes have a significant impact
on the prognosis of HCC

Given the protective effect of iTLS on HCC prognosis, we

hypothesized that signature genes could be used to predict patient

prognosis. Therefore, we used the LASSO regression to build a

prognostic model based on a 20-trait gene screen (Figures 14A, B).

Twelve genes were eliminated during the screening process and the

final prognostic model was obtained as follows:
A

B

FIGURE 4

(A) Results of univariate and multivariate Cox regression analyses with 1, 2, and 5-year RFS as outcomes; (B) Results of univariate and
multivariate Cox regression analyses with 1, 2, and 5-year DFS as outcomes. Indicators with significant (p < 0.05) results in the univariate Cox
regression analysis are further included in the multivariate Cox regression analysis.
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0.109×exp(PITHD1)+-0.178×exp(RASAL3)+-0.053×exp

(CCR7)+0.171×exp(COQ3)+-0.042×exp(PSTPIP1)+0.045×exp

(KCNE4)+0.224×exp(CCDC88B)+0.106×exp(SMIM3)

After scoring each patient according to the prognostic model,

the patients were divided into high-risk and low-risk groups

according to the median score. The results showed statistically

significant differences in OS, RFS, and DFS between patients in the

high-risk and low-risk groups (p < 0.0001, p = 0.0021, and

p < 0.0001, respectively; Figures 14C–E). The predictive ability of

the model was assessed using time-dependent ROC curves, and the
Frontiers in Immunology 09
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AUC was 0.654, 0.717, and 0.718 at 1, 3, and 5 years, respectively

(Figure 14F). Univariate and multivariate Cox regression results

also showed that the risk score was an independent prognostic

factor (p < 0.001; Figure 15A).

To further validate the effect of this model, we performed an

external validation using ICGC data. The results again showed a

statistically significant difference in OS between patients in the

high- and low-risk groups (p = 0.0086; Figure 14G). The time-

dependent ROC curves had 1-, 3-, and 5-year AUCs of 0.723,

0.629, and 0.718, respectively; Figure 14H). Univariate Cox
A

B

FIGURE 5

(A) GSEA enrichment analysis results of KEGG database. (B) GSEA enrichment analysis results of Reactome database.
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regression results (p = 0.009) and multivariate Cox regression

results (p = 0.014; Figure 15B) again showed that the risk score

was an independent influencer of prognosis.

Finally, to explore the relationship between the risk score,

prognostic model gene expression, clinicopathological

parameters, and iTLS, we plotted a heatmap of gene

expression in the prognostic model (Figure 14I). As seen in

the figure, the risk score increases with higher gene expression of

PITHD1, COQ3, KCNE4, SMIM3, and CCDC88B, whereas the

opposite is true for CCR7, which may herald these genes as
Frontiers in Immunology 10
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potential promising targets for immunotherapy. In addition, the

figure clearly shows that the chance of iTLS emergence decreases

with increasing risk scores.
4 Discussion

We replicated previous studies based on pathological tissue

sections and survival data from patients with HCC; our findings

differed slightly from that of previous studies. Previously, iTLS
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FIGURE 6

(A) Key genes influencing the presence or absence of iTLS screened by Boruta algorithm, horizontal coordinates are genes and vertical
coordinates are the importance of the genes. (B) Schematic diagram of the screening process for mtry values, red points are the most
appropriate values; horizontal coordinates are mtry values and vertical coordinates are the accuracy of the value. (C) Genes screened by
Boruta’s algorithm with the relative importance of the gene in the horizontal coordinate and the gene in the vertical coordinate. (D) ROC curves
plotted using our proposed prediction model together with the previously reported TLS chemokines. (E) Expression of the 20 TLS signature
genes obtained by screening in each group. Significance marks, ns: p > 0.05; *:p <= 0.05; **:p <= 0.01; ***:p <= 0.001; ****:p <= 0.0001.
(F) Heatmap based on the expression of the 20 TLS signature genes obtained by screening in each sample, from which it can be seen that with
CCDC88B as demarcation, the upper genes are up-regulated in expression in the TLS+ group, and the lower genes are the opposite.
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was thought to be associated with improved RFS in the early

stages of HCC (8, 11). However, we found that this improvement

is not limited to the early stages, but is reflected throughout the

entire period (1, 2, and 5 years). In addition, we found a strong
Frontiers in Immunology 11
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relationship between iTLS and improvement of DFS. However,

consistent with our results, other recent studies on iTLS in HCC

did not find improvement in patient OS, and controversy

remains regarding the role of TLS in HCC Further studies are
A B
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FIGURE 7

Heatmap of correlations between the trait genes and other previously reported TLS features; the vertical axis is the signature genes obtained in the
current study, and the horizontal axis is other previously reported TLS signature genes; the magnitude of correlations is indicated by the block color;
significance is shown in the block by symbols: ns: p > 0.05 or the two items tested for correlation are the same item; *:p <= 0.05; **:p <= 0.01. (A)
Heatmap of correlations between trait genes and 9-TLS traits. (B) Heatmap of correlations between trait genes and 12-TLS traits. (C) Heatmap of
correlation between the trait genes and 40-TLS traits. (D) Heatmap of correlations between the trait genes and 50-TLS features.
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FIGURE 8

(A) Relationship between characteristic genes and immune cell infiltration, block colors represent the level of correlation. Significance markers:
*p <= 0.05; **p <= 0.01; ***p <= 0.001. (B) CNV profile of feature genes in HCC; legend meanings are as follows: Hete amp, the percentage of
samples with copy number heterozygous amplification; Hete dele, the percentage of samples with copy number heterozygous deletion; Homo
amp, the percentage of samples with copy number homozygous amplification; Homo dele, the percentage of samples with copy number
homozygous deletion. (C) Relationship between CNV and immune cell infiltration; black dots in the figure represent no effect of CNV on
immune cell infiltration, red dots represent enhanced immune cell infiltration caused by CNV, and green dots represent diminished immune cell
infiltration caused by CNV.
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required to investigate and resolve this controversy. Combined

with the gene expression data, we identified 20 genes that have

an important relationship with iTLS formation in HCC. We

demonstrated that these genes are closely related to the immune

system in terms of cellular infiltration, biological functions, and

signaling pathways. In addition, we found that most signature

genes had some degree of sensitivity to immune checkpoint

inhibitors. Considering these findings, we can speculate that

signature genes may be promising targets for future HCC

treatment and further demonstrate the protective effect of iTLS

on HCC prognosis. However, unlike our results, most previous

reports found that the number of patients in a TLS-positive

group was less than that in a TLS-negative group. We speculate

that these results were due to the inclusion of TIL in the TLS-

positive group. In fact, there is no precise method for
Frontiers in Immunology 13
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distinguishing between TLS and TIL, and the boundary

between the two definitions is blurred. Therefore, to maximize

the prognostic impact of TLS, we included TIL in the TLS-

positive group, which may have led to the difference in results.

Clarice et al., used the same method (17).

Our findings showed that the signature genes correlated with

most of the previously reported TLS signatures, highlighting the

accuracy of our signature genes. Additionally, a large number of

immune-related genes were present in the signature genes,

including SYTL1, ARL4D, PITHD1, CCR7, LCK, CCDC88B,

CCL21, RASAL3, CXCR3, CD3D, PSTPIP1, and KCNE4.

Among these, SYTL1, the gene with the highest importance in

the random forest results, may play an important role in

cytotoxic granule cytokinesis in lymphocytes (30, 31). There is

evidence that ARL4D can control T effector function by limiting
A B

DC

FIGURE 9

(A) GO enrichment results for biological processes. (B) GO enrichment results for cellular composition. (C) GO enrichment results for molecular
functions. (D) DO enrichment results.
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IL-2 production (32), and other genes, such as PITHD1, CCR7,

LCK, and CCDC88B, have also been shown to have different

effects on immunity (22, 33–36). These results corroborate the

important influence of immunity on the development of HCC.

To our knowledge, we are the first to report the associations of

TMEM25, COQ3, ITPRIP, DBT, and PLAUwith HCC. TMEM25

has been identified as a member of the immunoglobulin

superfamily, which is a target of pharmacogenomics in oncology

and regenerative medicine (37). PLAU is of great importance in

renal cell carcinoma (38). COQ3 has been shown to have an

important role in the prognosis of esophageal cancer (39). ITPRIP

has also been reported in patients with colon cancer (40). DBT has

been shown to have an important effect on primary biliary

cirrhosis (41).
Frontiers in Immunology 14
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As an immune s t ruc ture , the tumor immune

microenvironment to which TLS is directly exposed is

important for its formation. We explored TLS signature genes

within HCC tumors from the perspectives of signaling pathways

and immune cell infiltration using GSEA, CIBERSORT, GSCA,

and GO enrichment analysis. The results of GSEA, using both

the KEGG and Reactome databases, demonstrated that

differentially expressed genes between TLS+ and TLS-group

samples are associated with a large number of immune

pathways, which can be further verified by GO analysis. The

immune infiltration score showed that our signature genes are

closely associated with the infiltration of immune cells, such as

CD8T, Tregs, CD4T, and NK. These cells play different roles in

the progression of the disease during the fight against HCC
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FIGURE 10

(A) SNP mutations in all samples. (B) Signaling pathways affected by feature genes in all samples. (C) Mutations in RTK-RAS pathway in all
samples, blue font represents cancer-promoting mutations, red font represents cancer-suppressing mutations. (D) Heterozygous CNV
mutations in the TCGA-LIHC cohort for the signature gene. (E) Pure-zygous CNV mutations in the TCGA-LIHC cohort for the signature gene.
(F) Relationship between mRNA expression of the signature gene and methylation.
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(42, 43), which also implies that the signature genes can

influence the development of HCC through immunity. We

found that CNV with signature genes, regardless of type,

caused a decrease in immune infiltration, which may

demonstrate that signature genes have an important role in

immune cell recruitment. Understanding gene mutations in

different samples and exploring the upstream and downstream

signaling pathways affected by mutated genes is important for

the development of targeted cancer therapies. We discovered

that most of the mutations in iTLS-related signature genes were

concentrated in the RTK-RAS pathway, and that overactivation

of this pathway was closely related to HCC (44). After exploring

the drug sensitivity of the signature genes, we found that

RASAL3 and CORO1A had strong sensitivity to most of the

drugs. This finding may lead to potential improvement and/or

new development of targeted therapies.

The purpose of medical research is ultimately clinical, and

our prognostic model may improve the assessment of patient

prognosis. More importantly, this study provides further
Frontiers in Immunology 15
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support for the protective role of iTLS in HCC. However, for

several reasons, we were unable to perform basic experiments to

further validate our findings, which is one of the limitations of

this study. Research of iTLS in HCC is currently at an early stage,

and presently a lack of evidence is common. Therefore, more in-

depth study is urgently needed to demonstrate the effect of iTLS

on HCC. iTLS’ positive effect in HCC has been repeatedly

reported and was validated in this study. However, additional

large multicenter studies and emphasis on the importance of

continued investment in research are required to elucidate the

specific functional mechanisms of iTLS. A key issue to consider

before conducting further studies is to unify the evaluation

criteria for TLS. Currently, scholars use different criteria to

define TLS, which inevitably causes errors in research results.

Predictably, in the near future, the development of artificial

intelligence and improved computer technology will make

standardization of TLS identification possible. With improved

standardization, TLS will be a promising tool to add to the

arsenal in the clinical fight against cancer.
A B

FIGURE 11

(A) Characteristic genes affect the activation or inhibition of the pathway, where red represents the pathway being activated and green
represents the pathway being inhibited. (B) Interaction between the characteristic genes and the pathway, where the solid line is the pathway
being activated and the dashed line is the pathway being inhibited.
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FIGURE 12

(A) Drug sensitivity of signature genes in GDSC. (B) Drug sensitivity of signature genes in CTRP.
A B

FIGURE 13

Top 16 drug effects with the highest correlation in the CellMiner database for characteristic genes, gene and drug names are identified in the
figure by chart title or vertical coordinate. (A) Horizontal axis is gene expression, vertical axis is drug IC50. (B) Horizontal axis is gene expression
along median dichotomous classification, vertical axis is drug IC50. significance markers, ns: p > 0.05; *p <= 0.05; **p <= 0.01; ***p <= 0.001.
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5 Conclusion

We found that the improvement of RFS in patients with HCC

due to iTLS is not limited to the early period as previously reported

but is reflected throughout the entire period. In addition, we found
Frontiers in Immunology 17
208
that iTLS could improve DFS. Combined with the gene expression

data, we identified 20 genes that have an important relationship

with iTLS formation in HCC.We demonstrated that these genes are

closely related to immunity in terms of cellular infiltration,

biological functions, and signaling pathways. In addition, we
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FIGURE 14

(A, B) Schematic diagram of the LASSO regression variable shrinkage screening process. (C) OS of the prognostic model in the TCGA cohort.
(D) RFS of the prognostic model in the TCGA cohort. (E) DFS of the prognostic model in the TCGA cohort. (F) Time-dependent ROC curve of
the prognostic model in the TCGA cohort. (G) OS curve of the prognostic model in the ICGC cohort. (H) Prognostic model in the ICGC cohort
with time-dependent ROC curves. (I) Heatmap of risk scores, clinical features and expression of signature genes.
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found that the majority of the signature genes had some degree of

sensitivity to immune checkpoint inhibitors. Considering these

findings, we speculate that signature genes may be promising

targets for future HCC therapy and further demonstrate the

protective effect of iTLS on HCC prognosis.
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Regulatory T-cells-related
signature for identifying a
prognostic subtype of
hepatocellular carcinoma
with an exhausted tumor
microenvironment

Genhao Zhang*

Department of Blood transfusion, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Regulatory T-Cells (Tregs) are important in the progression of hepatocellular

cancer (HCC). The goal of this work was to look into Tregs-related genes and

develop a Tregs-related prognostic model. We used the weighted gene co-

expression network analysis (WGCNA) to look for Tregs-related genes in the

TCGA, ICGC, and GSE14520 cohorts and then used the non-negative matrix

factorization (NMF) algorithm to find Tregs-related subpopulations. The

LASSO-Cox regression approach was used to determine Tregs-related

genes, which were then condensed into a risk score. A total of 153

overlapping genes among the three cohorts were considered Tregs-related

genes. Based on these genes, two Tregs-associated clusters that varied in both

prognostic and biological characteristics were identified. When compared with

Cluster 1, Cluster 2 was a TME-exhausted HCC subpopulation with substantial

immune cell infiltration but a poor prognosis. Five Tregs-related genes

including HMOX1, MMP9, CTSC, SDC3, and TNFRSF11B were finally used to

construct a prognostic model, which could accurately predict the prognosis of

HCC patients in the three datasets. Patients in the high-risk scores group with

bad survival outcomes were replete with immune/inflammatory responses, but

exhausted T cells and elevated PD-1 and PD-L1 expression. The results of qRT-

PCR and immunohistochemical staining (IHC) analysis in clinical tissue samples

confirmed the above findings. Moreover, the signature also accurately

predicted anti-PD-L1 antibody responses in the IMvigor210 dataset. Finally,

HMOX1,MMP9, and TNFRSF11B were expressed differently in Hep3B and Huh7

cells after being treated with a PD1/PD-L1 inhibitor. In conclusion, our study

uncovered a Tregs-related prognostic model that could identify TME-

exhausted subpopulations and revealed that PD1/PD-L1 inhibitors could alter

the expression levels of HMOX1, MMP9, and TNFRSF11B in Hep3B and Huh7

cells, which might help us better understand Tregs infiltration and develop

personalized immunotherapy treatments for HCC patients.
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Introduction

Chronic liver inflammation caused by HBV or HCV

infection, alcoholism, or nonalcoholic fatty liver disease

(NAFLD) can result in an aberrant concentration of immune

cells in tumors and adjacent tissues, including T lymphocytes,

macrophages, and dendritic cells (1). These immune cells,

together with other non-immune components (fibroblasts,

extracellular matrix), comprise the tumor microenvironment

(TME) surrounding cancer cells (2). The dynamic interaction

between cancer cells and TME can disrupt tumor cells’ immune

surveillance, accelerate tumor cell proliferation, clonal evolution,

immune evasion, and treatment resistance, and play a key role in

tumor genesis and progression (3). TME potentially causes tissue

remodeling and functional impairment by generating local

hypoxia in tumor tissue and ultimately promoting tumor

metastasis (4). In addition, TME can impact the delivery of

anticancer medications to the tumor location by interacting with

mesenchymal stem cells (5). CD4+CD25+FoxP3+ T regulatory

lymphocytes (Tregs), as an important heterogeneous T cell

subset, have been identified to participate in the development

of HCC by promoting immune tolerance (6). Treg cells are

abundant in tumors and can make up 10 to 50 percent of the

CD4+ T cells there (7). Notably, the proportion of Treg cells in

the peripheral blood did not match the density of Treg cells in

the TME, indicating that the study of the function of Treg cells in

the TME is more crucial in the field of cancer immunology.

Depletion of T-reg cells encourages the growth of high

endothelial venules, which are crucial for lymphocyte

recruitment (8). Tregs can block cytotoxic CD8+ T

lymphocytes (CTLs) cytotoxic and proliferative capabilities, aid

in the creation of an immunosuppressive TME, and are linked to

the advancement of HCC (9), while CD8+ T cells specific for

neoantigens are more resistant to Treg cell-mediated immune

suppression (10). Crosstalk between Tregs and neutrophil

extracellular traps promotes the transition of NAFLD to HCC

(11). TGFb-activated stromal cells reduce the recruitment of

Tregs in TME, thereby regulating the balance between anti-

tumor and pro-tumor immune cells (12). High Tregs infiltration

is also linked to poor outcomes and recurrence in HCC patients

(13, 14). In recent years, immunotherapy using immune

checkpoint inhibitors (ICIs), such as anti-PD1 antibody

nivolumab and anti-PD-L1 agents atezolizumab, has shown

strong antitumor activity in a subset of HCC patients by

blocking the interaction of PD1 with its ligands, thereby

preventing exhaustion or dysfunction of effector T cells (15).

Interestingly, there is a close and complex relationship

between Tregs infiltration and PD1 expression. Tregs

expressing PD1 in the TME can impact immunosuppressive

function and are associated with progression in cancer patients

(16). PD1 blockade induces enhanced PD1+ Tregs-mediated
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immunosuppression (17). In addition, Lenvatinib can improve

anti-PD1 effectiveness by reducing tumor PD-L1 levels and

Tregs differentiation (18). Therefore, exploring them more

deeply can help us gain a deeper understanding of the

complex mechanisms of the TME in HCC development, and

help clinicians to formulate strategies for the use of ICIs in

cancer treatment.

Given the difficulty in collecting enough tumor tissue for

tumor-infiltrating lymphocyte (TIL) assay analysis by flow

cytometry (FCM) and the fact that crosstalk between Tregs

and cancer is a complex process involving multiple genes, we

built and validated a prognostic stratification model based on

Tregs-related genes in public datasets that could be used to

efficiently categorize HCC patients prognostically and predict

their response to anti-PD-L1 immunotherapy.
Materials and methods

Acquisition of public datasets and clinical
sample processing

Transcriptome expression data from HCC patients were

gathered from three public databases, including the TCGA-

LIHC (2022.04), the ICGC (LIRI-JP, 2019.11), and the

GSE14520 (2010.12) cohorts. The clinical characteristics of

HCC patients in the three cohorts were displayed in Table S1.

Patients with incomplete survival data or who lived for less

than one month were eliminated from the study. Clinically

verified samples for qRT-PCR research were fresh frozen

tumor biopsies and their surrounding normal tissues from 20

previously collected HCC patients. The primer sequences are

shown in Table S2. Zhengzhou University’s Ethics Committees

gave its approval to this work. Written informed consent

was taken.
Estimation of immune cell infiltration and
TME scores

The relative abundance of 28 immune cell subtypes in the

three datasets was assessed by the ssGSEA algorithm, and the

immune cell abundance identifier (ImmuCellAI, 2020.02) was

further utilized to specifically assess the abundance of

comprehensive T cell subsets (19). ESTIMATE algorithm was

used to calculate stromal and immunological scores in tumor

tissue based on gene expression patterns of HCC samples to

determine the quantity of stromal and immune cells inside the

tumor (20). Immunohistochemical staining (IHC) was

performed to explore the infiltration of Tregs and CD8+ T

cells in HCC tissues. Two competent pathologists performed
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IHC findings assessment using a single-blind and uniform

standard procedure.
Tregs-related genes identification by the
weighted gene co-expression
network analysis

The WGCNA was used to create a scale-free co-expression

network based on transcriptome expression data from the three

datasets to find the gene modules most relevant for Tregs

infiltration abundance. Standard deviation (SD > 50%) was

used to screen for highly variable genes. Module membership

represented the link between module characteristic genes and

gene expression patterns, whereas gene significance (GS) was

utilized to assess the relationship between individual genes and

Tregs infiltration abundance. The genes identified from the

modules most linked with Tregs infiltration abundance were

appraised as candidate genes using a p-value threshold of GS <

0.0001 and a significance level of univariate Cox regression of p <

0.01. The overlapping genes of the candidate genes in the three

datasets were finally confirmed as Tregs-related genes and used

for subsequent analysis.
Identification of prognostic molecular
subtypes by the non-negative matrix
factorization algorithm

Based on the Tregs-related genes obtained above, patients

were clustered using the NMF algorithm, the standard was

“brunet”, and the iterations were 50 times. The number of

clusters varies from 2 to 6, and the optimal number of clusters

is determined based on cophenetic, dispersion, and contour.

Kaplan-Meier survival analyses were further performed to assess

differences in patients’ survival rates between different subtypes.
DEG identification and functional
enrichment analysis

Gene Expression Profile Interaction Analysis (GEPIA,

2017.07) (21) (http://gepia.cancer-pku.cn/) was used to

investigate the expression levels of Tregs-related genes, and

genes with statistically significant differences were defined as

differentially expressed genes (DEGs) with a P-value < 0.05 and a

|log2FC| cutoff criterion of ≥0.5. The Metascape database (22)

(http://metascape.org/, 2019.04) was then used to investigate the

functional annotation of DEGs for GO and KEGG pathway

analysis. With a significant threshold of |normalized enrichment

score|>1 and a nominal p-value of < 0.05, Gene set enrichment

analysis (GSEA) was used to investigate changes in Hallmarks.
Frontiers in Immunology 03
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Formation and validation of Tregs-
related prognostic risk scoring model

The correlation between Tregs-related genes and HCC

patient survival outcomes was calculated using univariate Cox

regression with a P-value < 0.01. The Tregs-related genes with

prognostic significance were then investigated using the LASSO-

Cox regression technique and a classifier linked with prognosis

was established. The multivariate Cox relapse coefficient (b) was
used to create a risk score based on the concept of directly

mixing the equation below with the mRNA expression level. The

risk score = ∑iCoefficient (mRNAi)*Expression (mRNAi). Due

to the optimal hazard score edge, we divided the HCC patients

into two categories. ROC analysis, Kaplan-Meier survival

analysis, and cox relative risks relapse investigation were used

to assess the prognostic signature’s predictive autonomy. The

ICGC and GSE14520 datasets were used as validation cohorts

for validating our constructed Tregs-related signature.
Genetic alterations and drug
susceptibility analysis

The R package “maftools” was used to assess the differences

in genetic variations between various subgroups using the

mutation and CNA data of 342 HCC patients acquired from

the TCGA dataset. The association between anticancer drug

sensitivity and mRNA molecules in our risk model was directly

explored in the CellMiner database (2012.07) (23) with cutoff

criteria of adjusted P-values <0.001 and Pearson’s correlation

coefficients >0.4.
Immunohistochemistry staining analysis

The paraffin samples were cut into 4 mm slides and

soaked for the identification of Tregs and CD8+ T cells. The

tissue fragments were progressively hydrated in graded

alcohol after being deparaffinized in xylene. By heating 0.01

mol/L citrate buffer in a steam cooker for 10 minutes, antigen

retrieval was accomplished. To suppress endogenous

peroxidase activity, slides were washed with PBS and then

incubated for 20 minutes at 37°C with a 0.3 percent H2O2

solution. Slides were then blocked with bovine serum albumin

(BSA), and continuously incubated with anti-FOXP3 and

CD8 antibodies overnight at 4°C, respectively. After being

washed with PBS, slides were continuously incubated with

secondary antibodies coupled to horseradish peroxidase

(HRP) for 30 minutes. Utilizing HRP’s routine substrate

detection, immune complexes were found. Slides were then

dehydrated in graded alcohols and xylene after being stained

with hematoxylin.
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Cell culture and PD1/PD-L1
inhibitor treatment

Hep3B and Huh7 cells from the Cell Bank of the Shanghai

Institute of Cell Research, Chinese Academy of Sciences

(Shanghai, China) were cultured in the suggested DMEM

medium (Sangon Biotech, China) containing 10% fetal bovine

serum (FBS, Sangon Biotech, Shanghai, China) at 100%

humidity, 37°C, and 5% CO2. Cells were incubated for 4 hours

at room temperature in the DMEM medium containing 4 mg/

mL PD1/PD-L1 inhibitor (Abcam, ab230369, UK) for PD1/PD-

L1 blockade.
Statistical analysis

Categorical data were compared using Pearson’s chi-square

test or Fisher’s exact test when appropriate, and quantitative data

between two groups were compared using the t-test. The

examination of data from three or more groups was done

using a one-way analysis of variance (ANOVA). R software

(Version 4.0.3) was used to analyze the prediction performance

of survival outcomes using receiver operating characteristic

(ROC) curve analysis and Kaplan-Meier survival analysis. The

association between a prognostic classifier and survival

outcomes was investigated using a Cox proportional model.

When the P-value < 0.05, the results were considered statistically

significant. The flowchart of this study is shown in Figure S1.
Results

Identification genes associated with
Tregs infiltration

After removing outliers (Figure S2), 9, 11, and 17 non-grey

modules were created in the three datasets, respectively,

according to the results of WGCNA (Figure 1A). As shown in

Figures 1B, C, the yellow module was the most significantly

related to Tregs infiltration in the TCGA cohort (R2 = 0.82, P =

2e−53), and the yellow module was the most significantly related

to Tregs infiltration in the ICGC cohort (R2 = 0.83, P = 2e−51),

and the brown module was the most significantly related to

Tregs infiltration in the GSE14520 cohort (R2 = 0.95, P = 2e−70),

respectively. 153 overlapping genes among the three cohorts

were identified as Tregs-related genes (Figure 1D). The

biological importance of these Tregs-related genes was mainly

enriched in the immune-inflammatory response and regulation

of lymphocytes (Figure 1E). When expression in normal tissues

was considered, out of 153 genes, only 16 were identified as

differentially expressed genes (DEGs) (Figure S3A). Then, a PPI

network was performed to explore the potential interactions
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between these DEGs (Figure S3B), and the biological importance

of these Tregs-related DEGs was mainly enriched in Cytokine

signaling and regulation of leukocytes (Figure S3C).
Identification of prognostic
molecular subtypes

To further explore the mechanism of these 153 Tregs-related

genes in HCC, the NMF algorithm was performed. Due to the

cophenetic, dispersion, and profile (Figure S4), number two was

identified as the optimal number of clusters (Figure 2A). Patients

in Cluster 2 had better survival outcomes when compared with

patients in Cluster 1 (Figure 2B). Subsequently, we found that the

mutation rates of mutated genes in the two subgroups were also

significantly different. The most commonly mutated gene in the

Cluster 1 was CTNNB1 (29%, Figure 2C), while it was TP53 (34%,

Figure 2D) in Cluster 2. After the tumor mutation burden (TMB)

was estimated, patients in Cluster 1 had a higher TMB value,

compared with patients in Cluster 2 (Figure 2E). Finally, we found

that patients in Cluster 2 with high TMB values had the worst

survival outcomes when compared with others (Figure 2F).
Patients in Cluster 2 had an exhausted
immune microenvironment

Patients in Cluster 2 had higher immune, stromal, and

ESTIMATE scores compared with patients in Cluster 1, as

shown in Figure 3A. According to the ssGSEA algorithm,

almost all types of immune cells were higher in Cluster 2 than

those in Cluster 1 except for CD56bright natural killer cell,

CD56dim natural killer cell, eosinophil, neutrophil, and Type 17

T helper cell (Figure 3B). Interestingly, we found that patients in

Cluster 2 had poor survival outcomes but a higher abundance of

CD8+ T cells infiltration. Considering that decreased infiltration

levels of CD8+ T cells were often associated with poor survival

rates, therefore, we assumed that these CD8+ T cells in Cluster 2

were exhausted T cells. To test this conjecture, we then analyzed

genes involved in immune/inflammatory responses, including

CD8A, GZMB, IFNG, TBX2, and TNF, and found that these

genes were significantly up-regulated in Cluster 2 (Figure 4A).

We also found that the expression of PD1, a marker of exhausted

T cells, was also significantly up-regulated in Cluster 2 (Figure

4B), as was the expression level of PD-L1 (Figure 4C). In

addition, exhausted T cells were significantly enriched in

Cluster 2, according to the results of ImmuCellAI analysis

(Figure 4D). Finally, the GSEA results indicated that Cluster 1

displayed an attenuated IFN-g response (Figure 4E), which can

directly increase PD-L1 expression and activate the PD-1/PD-L1

signaling axis. Together, the aforementioned findings showed

that Cluster 2 had a robust immunological and inflammatory

response, but the elevated PD1 and PD-L1 in this group might
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A

B

D E

C

FIGURE 1

WGCNA for Tregs-related genes. (A) The coexpression network was established in the TCGA, the GSE14520, and the ICGC cohorts. (B)
Heatmap demonstrating the correlation between module eigengenes and Tregs. (C) Determination of modules most significantly associated
with Tregs infiltration. (D) 153 overlapping genes among the three cohorts were identified as Tregs-related genes. (E) The biological importance
of these Tregs-related genes was mainly enriched in the immune-inflammatory response and regulation of lymphocytes.
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result in an exhausted TME and eventually have a negative

impact on the survival of HCC patients.
Formation of Tregs-related prognostic
signature in HCC

Among the 153 overlapping genes in the three cohorts

obtained by WGCNA, 15 prognosis-associated genes were

identified by univariate Cox regression with a p-value less

than 0.01 (Figure 5A). These genes were then selected by

using the LASSO-Cox regression model based on the minimum

value of l (Figure 5B). Five genes including HMOX1, MMP9,

CTSC, SDC3, and TNFRSF11B were screened out and

were then put into a multivariate Cox proportional model,

andfinally, a prognostic Tregs-related signature was formatted.

Risk score = (0.16468758×HMOX1) + (0.04918601×MMP9) +

( 0 . 1 6 5 9 2 3 6 5 × C T S C ) + ( 0 . 0 6 0 1 7 5 3 8 × S D C 3 ) +

(0.09164677×TNFRSF11B). Patients were divided into high- or

low-risk scores subgroups with the median of scores after patients’

risk scores were calculated with the above formula (Figure 5C).

We found that patients with lower risk scores were remarkably
Frontiers in Immunology 06
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relevant to better survival outcomes (Figure 5D) and this Tregs-

related signature had a good prognostic performance with AUCs

at 1-, 3-, 5-year of 0.698, 0.643, 0.680 (Figure 5E). In addition,

patients in Cluster 2 had higher risk scores compared with

patients in Cluster 1, as shown in Figure 5F. Finally, after

controlling for other clinical parameters, this Tregs-related

signature might be used as an independent predictive factor for

HCC patients (HR=2.566, 95 percent CI 1.4401 -4.5742, P =

0.0013). Only MMP9 and CSTC were significantly correlated with

overall survival rates, despite the five Tregs-associated gene

expression levels in the GEPIA database varied between normal

and malignant tissues (Figure S5). Additionally, the five Tregs-

related genes’ protein expression in both normal and HCC was

examined in the Human Protein Atlas database (24) (HPA, www.

proteinatlas.org), as shown in Figure S6.
Functional enrichment and genetic
alterations analysis

GSEA analysis revealed that the immunological response,

controlling lymphocyte activity, and production and metabolism
A B

D E F

C

FIGURE 2

Identification of prognostic molecular subtypes by the NMF algorithm. (A) Number two was identified as the optimal number of clusters. (B)
Patients in Cluster 2 had better survival outcomes when compared with patients in Cluster 1. (C, D) The mutation rates of mutated genes in the
two subgroups. (E) Patients in Cluster 1 had a higher TMB value, compared with patients in Cluster 2. (F) Patients in Cluster 2 with high TMB
values had the worst survival outcomes when compared with others.
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of cytokines were the three primary areas of changed GO and

KEGG items between high- and low-risk score groups (Figure

S7). We next discovered that the two subgroups had dramatically

differing mutation rates for the affected genes. TP53 (40%) and

CTNNB1 (30%) were the most frequently altered genes in the

groups with high and low risk scores, respectively (Figure S8A).

Finally, we discovered that patients with high TMB levels who

had high risk scores had the lowest survival rates (Figure S8B).
Verification of the Tregs-related
signature in external cohorts

The ICGC and GSE14520 datasets were used as validation

cohorts to verify this Tregs-related signature. In the ICGC

cohort (Figure 6A) and GSE14520 cohort (Figure 6E), patients’

risk scores were computed using the same formula, and patients

were then split into high- or low-risk categories. No matter

whether we looked at the ICGC cohort (Figure 6B) or the

GSE14520 cohort (Figure 6F), we discovered that patients in
Frontiers in Immunology 07
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the later TNM stage had greater risk ratings than patients in the

early stage. Additionally, both in the ICGC cohort (Figure 6C)

and the GSE14520 cohort (Figure 6G), patients with lower risk

scores were strongly associated with higher OS rates. ROC

analysis showed that this Tregs-related signature had a good

prognostic performance with AUCs at 1-, 2-, 3-year of 0.650,

0.591, 0.629 in the ICGC cohort (Figure 6D) and at 1-, 3-, 5-year

of 0.620, 0.631, 0.673 in the GSE14520 cohort (Figure 6H),

respectively. Finally, after controlling for other clinical

parameters, this Tregs-related signature might be used as an

independent predictive factor for HCC patients in the GSE14520

cohort (HR=1.608, 95%CI 1.006-2.569, P = 0.046) but not in the

ICGC cohort, which may be related to tumor heterogeneity.
Patients in the high-risk score group had
an exhausted immune microenvironment

Patients in the high-risk scores group had higher immune,

stromal, and ESTIMATE scores compared with patients in the
A

B

FIGURE 3

Estimation of immune cell infiltration in different clusters. (A) Patients in Cluster 2 had higher immune, stromal, and ESTIMATE scores compared
with patients in Cluster 1. (B) Almost all types of immune cells were higher in Cluster 2 than those in Cluster 1 except for CD56bright natural
killer cell, CD56dim natural killer cell, eosinophil, neutrophil, and Type 17 T helper cell. ns, not significant; *p < 0.05; **p <0.01; ***p < 0.001.
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low-risk scores group, as seen in Figure 7A. According to the

ssGSEA algorithm, almost all types of immune cells were

higher in the high-risk scores group than those in the low-

risk scores group except for CD56bright natural killer cell,

memory B cell, neutrophil, and eosinophil (Figure 7B). In

addition, we also assessed the abundance of immune cell

infiltration in HCC patients using various methods

including TIMER (25), CIBERSORT (26), and MCP-counter

(27) algorithms, and the results were consistent with the

analysis results of the ssGSEA algorithm, as shown in Figure

S9. Interestingly, we found that patients in the high-risk scores

group had poor survival outcomes but a higher abundance of

CD8+ T cells infiltration. Considering that decreased

infiltration levels of CD8+ T cells were often associated with

poor survival rates, therefore, we assumed that these CD8+ T

cells in the high-risk scores group were exhausted T cells. To

test this conjecture, we then analyzed genes involved in

immune/inflammatory responses, including CD8A, GZMB,

IFNG, TBX2, and TNF, and found that these genes were

significantly up-regulated in the high-risk scores group

(Figure 8A). We also found that the expression of PD1 was

significantly up-regulated in the high-risk scores group

(Figure 8B), as was the expression level of PD-L1 (Figure

8C). In addition, exhausted T cells were significantly enriched

in the high-risk scores group, according to the results of the
Frontiers in Immunology 08
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ImmuCellAI analysis (Figure 8D). Finally, the GSEA results

indicated that the low-risk scores group displayed an

attenuated IFN-g response (Figure 8E). Together, the

aforementioned findings showed that the high-risk scores

group had a robust immunological and inflammatory

response, but the elevated PD1 and PD-L1 in this group

might result in an exhausted TME and eventually have a

negative impact on the survival of HCC patients.
Formation of a nomogram model and
drug susceptibility analysis

A nomogram model was built in the TCGA dataset to

investigate the coefficient prediction efficiency of this Tregs-

related signature, and the results revealed that the nomogram

with a C-index of 0.758 could help us provide a quantitative

method for accurately predicting the 1-, 3-, and 5-year survival

rate (Figure S10A). The calibration curves showed good

agreement between the anticipated and actual probability of

1-, 3-, and 5-year survival rates (Figure S10B). We also

uncovered 54 tumor-sensitive medications that target the

five Tregs-related genes (Table S3), with the top 16 most

important tumor-sensit ive compounds indicated in

Figure S11.
A B

D EC

FIGURE 4

Patients in Cluster 2 had an Exhausted Immune Microenvironment. (A) Differential analysis of inflammation/immune response-related genes. (B,
C) Differential analysis of PD1 and PD-L1 expression. (D) Exhausted T cells were significantly enriched in Cluster 2. (E) Cluster 1 displayed an
attenuated IFN-g response. ***p < 0.001.
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Forecasting response to anti-PD-L1
therapy using the Tregs-related signature

We discovered that the tumor immune dysfunction and

exclusion (TIDE) scores in the high-risk scores group were much

greater than that in the low-risk scores group using the TIDE

algorithm (Figure 9A). T-cell exclusion scores did not differ

significantly between the two groups (Figure 9B), but T-cell

dysfunction scores were greater in the high-risk scores group

than in the low-risk scores group (Figure 9C). In addition, due to

a shortage of data on HCC patients undergoing anti-PD-L1

medication, the IMvigor210 database was utilized as an external
Frontiers in Immunology 09
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anti-PD-L1 cohort to investigate the possible predictive

usefulness of the Tregs-related signature. This research

comprised 298 individuals who exhibited an objective

response. We discovered that patients with low risk ratings

had a significant survival advantage over those with high risk

scores (Figure 9D). As demonstrated in Figure 9E, patients who

had a complete response/partial response (CR/PR) had lower

risk scores than patients who had stable disease/progressive

disease (SD/PD). Finally, in the GSE109211 cohort, we looked

at the link between Sorafenib treatment efficacy and risk scores

and discovered that patients in the high-risk scores group had

worse treatment results (Figure 9F).
A B
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C

FIGURE 5

Formation of Tregs-related prognostic signature in HCC. (A) 15 prognosis-associated genes were identified by univariate Cox regression with a
p-value less than 0.01. (B) Tregs-related genes were screened by the LASSO-Cox regression model. (C) Patients were divided into high- or low-
risk scores subgroups with an optimal threshold after patients’ risk scores were calculated with the above formula. (D) Patients with lower risk
scores were remarkably relevant to better survival outcomes. (E) This Tregs-related signature had a good prognostic performance. (F) Patients in
Cluster 2 had higher risk scores compared with patients in Cluster 1.
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FIGURE 6

Verification of the Tregs-related signature in external cohorts. Patients were split into high- or low-risk categories in ICGC (A) and GSE14520 (E)
cohorts. Patients in the later TNM stage had greater risk ratings than patients in the early stage, no matter whether we looked at the ICGC
cohort (B) or the GSE14520 cohort (F). Patients with lower risk scores were strongly associated with higher OS rates both in the ICGC cohort
(C) and the GSE14520 cohort (G). This Tregs-related signature had a good prognostic performance no matter in the ICGC cohort (D) or the
GSE14520 cohort (H).
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Verification of the Tregs-related
signature in clinical samples

All five Tregs-related genes revealed differential expression

between normal and tumor tissues, according to the results of

the qRT-PCR investigation (Figure 10A). After risk scores were

determined using the same formula, patients were split into

high-risk and low-risk groups according to the mean of the risk

score. IHC was then used to analyze the infiltration of Tregs and

CD8+ T cells in the tissues of patients in high- and low-risk

scores groups. Patients in the high-risk scores group had a higher

abundance of Tregs and CD8+ T cells infiltration (Figure 10B).

Finally, expression levels of CD8A, GZMB, IFNG, TBX2, TNF,

PD1, and PD-L1 genes were analyzed and all of these genes were

significantly up-regulated in the high-risk scores group (Figure

10C). Taken together, the aforementioned findings showed that

the high-risk scores group had a robust immunological and
Frontiers in Immunology 11
222
inflammatory response, but the elevated PD1 and PD-L1 in this

group might result in an exhausted TME and eventually have a

negative impact on the survival of HCC patients.
Verification of the Tregs-related
signature after PD1/PD-L1 blockade

As shown in Figure 11A, we found that all five genes in the

Tregs-associated signature were significantly associated with

PD1 and PD-L1 expression not only in the TCGA cohort but

also in 20 clinical HCC samples, suggesting that these genes may

be targets for anti-PD1/PD-L1 immunotherapy. To further

explore their relationship, we treated cells with a small

molecule PD1/PD-L1 inhibitor and found that the expression

levels of HMOX1, MMP9, CTSC, and TNFRSF11B were

significantly reduced in Hep3B cells, while only HMOX1,
A

B

FIGURE 7

Estimation of immune cell infiltration in different risk scores groups. (A) Patients in the high-risk scores group had higher immune, stromal, and
ESTIMATE scores compared with patients in the low-risk scores group. (B) Almost all types of immune cells were higher in the high-risk scores
group than those in the low-risk scores group except for CD56bright natural killer cell, memory B cell, neutrophil, and eosinophil. ns, not
significant; *p < 0.05; **p <0.01; ***p < 0.001.
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MMP9, and TNFRSF11B were expressed differently in Huh7

cells (Figure 11B). These confirmed our hypothesis that

HMOX1, MMP9, and TNFRSF11B could be targeted for anti-

PD1/PD-L1 immunotherapy.
Discussion

The interaction between tumors and TME has been a hot

topic in recent years (3, 28–30). On the one hand, TME plays a

role in immune surveillance and immune defense of tumor cells.

On the other hand, tumor-related inflammation can cause

abnormal infiltration of immune cells in tumor tissue and

surrounding areas, resulting in an imbalance in the production

of chemokines and cytokines, helping tumor cells to adapt to

immune evasion, and ultimately promote tumor development.

Increasing evidence suggests that TME is involved in the

occurrence and progression of HCC, the development of drug

resistance, and the efficacy of immunotherapy (31, 32).

Therefore, a deeper understanding of the specific mechanism

of TME in HCC progression is extremely important for planning

and formulating targeted therapy for HCC. According to the

proportion of immune cells in the TME, HCC patients can be

divided into four different subgroups: immune desert type,

immunogenic type, innate immune type, and mesenchymal
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type (33). Among them, the immune desert type has the best

prognosis due to the lack of immune cell infiltration, while the

innate immune type has the worst prognosis due to the presence

of a large number of immune cell infiltration and activated

immune suppression. Interestingly, although cytotoxic CD8+ T

lymphocytes (CTLs) have antitumor properties, which can

induce apoptosis of tumor cells by recognizing tumor-specific

antigens on target cells and releasing cytotoxic enzymes and

cytokines, HCC patients with highly CTLs infiltration

sometimes have poorer survival outcomes because these CTLs

are exhausted (9). Various cancer cell-secreted metabolites, such

as Kynurenine, S-adenosyl-L-methionine (SAM), and

methylthioadenosine (MTA), have been reported to lead to T

cell exhaustion (34–36). Exhaustion CD8+ T cells may serve as a

novel biomarker for efficacy monitoring during immunotherapy

in HCC patients (37). Therefore, reducing the proportion of

exhausted T cells in the TME or relieving the exhausted state of

T cells may become the next frontier of HCC immunotherapy.

In this research, after the relative abundance of 28 immune cell

subtypes was assessed by the ssGSEA algorithm in the TCGA,

ICGC, and GSE14520 cohorts, we used WGCNA to create a scale-

free co-expression network to find the gene modules most relevant

for Tregs infiltration abundance. The overlapping genes of the

candidate genes in the three datasets were finally confirmed as

Tregs-related genes and mainly enriched in the immune-
A B

D EC

FIGURE 8

Patients in the high-risk score group had an Exhausted Immune Microenvironment. (A) Differential analysis of inflammation/immune response-
related genes. (B, C) Differential analysis of PD1 and PD-L1 expression. (D) Exhausted T cells were significantly enriched in the high-risk scores
group. (E) The low-risk scores group displayed an attenuated IFN-g response. ***p < 0.001.
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inflammatory response and regulation of lymphocytes. Based on

these Tregs-related genes, we divided patients into two clusters with

differences in survival rates and mutation rates of mutated genes

using the NMF algorithm. Compared with patients in Cluster 1,

patients in Cluster 2 not only had higher immune, stroma, and

estimated scores but also had higher proportions of almost all types

of immune cells. Interestingly, we found that CD8+ T cells in

Cluster 2 were exhausted T cells and subsequently confirmed this

finding by analyzing the expression levels of PD1, PD-L1, and genes

involved in immune/inflammatory responses and performing

GSEA enrichment analysis. To further explore the specific

mechanisms of these Tregs-related genes in HCC, we constructed

a Tregs-related prognostic score model using LASSO-Cox

regression. The model can not only stratify the prognosis of HCC

patients well, but also effectively predict the 1-, 3-, and 5-year

survival rates of patients. This Tregs-related signature was also

verified in external ICGC and GSE14520 datasets. In addition, we

found that CD8+ T cells in the high-risk scores group were

exhausted T cells and subsequently confirmed this finding by

analyzing the expression levels of PD1, PD-L1, and genes

involved in immune/inflammatory responses and performing

GSEA enrichment analysis. Finally, the Tregs-related prognostic

score model was verified in collected fresh frozen tumor biopsies

and their surrounding normal tissues by qRT-PCR and IHC
Frontiers in Immunology 13
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analysis. Excitingly, we also observed an exhausted state of T cells

in the tissue of HCC patients with high risk scores.

As a target gene of miRNA-15a-3p, heme oxygenase 1

(HMOX1) may play a role in the development and

progression of HCC and is strongly correlated with the poor

prognosis of HCC patients (38). HMOX1 worked in conjunction

with genes involved in iron metabolism and the hypoxia

phenotype to forecast patient outcomes and the effectiveness

of immunotherapy (39, 40). In addition, HMOX1 has

been linked to the recurrence of cancer in rats following

ischemic liver transplantation (41) and can inhibit the

immunomodulatory effect of Treg cells through carbon

monoxide produced during metabolism (42). HMOX1

inhibitors enhance the anti-tumor effects of anti-PD-L1

antibodies in mouse melanoma and also reduce tumor size by

abolishing resistance to anti-PD1 immunotherapy in female

mice bearing E0771 mammary tumors (43). HMOX1 has also

been implicated in PD1-involved exhausted T-cell metabolic

regulation in melanoma (44). The overexpressed receptor

tyrosine kinase c-Mett in renal cancer cells can inhibit cancer

cell apoptosis by regulating the synergistic effect between

HMOX1 and PD-L1 (45). The poor prognosis of NAFLD

patients as well as HCC patients is impacted by MMP9

overexpression (46–48). Additionally, MMP9 can work with
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FIGURE 9

Forecasting response to anti-PD-L1 therapy using the Tregs-related signature. (A) TIDE scores in the high-risk scores group were much greater
than that in the low-risk scores group. (B) T-cell exclusion scores did not differ significantly between the two groups. (C) T-cell dysfunction
scores were greater in the high-risk scores group than in the low-risk scores group. (D) Patients with low risk ratings had a significant survival
advantage over those with high risk scores. (E) Patients who had a complete response/partial response (CR/PR) had lower risk scores than
patients who had stable disease/progressive disease (SD/PD). (F) Patients in the high-risk scores group had worse Sorafenib treatment efficacy.
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several signaling pathways to encourage the development and

spread of HCC (49–52). As a crucial cytokine, MMP9 can play a

role in the control of the Th17/Treg immunological imbalance

(53). MMP9 was significantly positively correlated with PD-L1

and promoted poor prognosis in patients with tongue squamous

cell carcinoma and colorectal cancer (54, 55). MMP9 can

significantly increase PD-L1 expression by activating TGF-b-
induced epithelial-to-mesenchymal (EMT) (56, 57). By raising

CD8+ T cell cytotoxicity, MMP9 inhibitors can boost the

therapeutic efficacy of PD-1 inhibition (58). Ayse identified

significant changes in intratumoral MMP9 expression during

anti-PD1 therapy in breast cancer patients using single-cell

sequencing technology (59). Cathepsin C (CTSC), a lysosomal

cysteine protease that is highly expressed in several tissues and a

member of the papain superfamily, is essential for many

biological activities. According to reports, CTSC speeds up the

growth of some tumor types (60). Through the TNF-/MAPK

(p38) pathway, up-regulated CTSCs in HCC have been
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demonstrated to promote HCC proliferation and metastasis

(61). By controlling neutrophil infi ltration and the

development of neutrophil extracellular traps, CTSC facilitates

breast cancer lung metastases (62). Gastric and colon cancer

growth can be slowed down by CTSC silencing by promoting

apoptosis (63, 64). A vital member of the SDC family, syndecan

3 (SDC3) is essential for cell adhesion, migration, and

development. SDC3 expression is boosted by hypoxia in the

tumor microenvironment, which influences pro-inflammatory

reactions and the overall survival of melanoma patients (65).

Additionally, SDC3 was linked to more dangerous tumors and a

worse prognosis in prostate cancer (66). As a gene associated

with dendritic cells, SDC3 is also important in developing a risk

model for predicting the prognosis of HCC (67). The anti-

apoptotic activity of TNF receptor superfamily member 11B

(TNFRSF11B) can bind to and suppress TRAIL (TNF-related

apoptosis-inducing ligand), which inhibits the spread of HCC

and improves patient prognosis (68, 69). TNFRSF11B is
A

B

C

FIGURE 10

Verification of the Tregs-related signature in clinical samples. (A) All five Tregs-related genes revealed differential expression between normal
and tumor tissues. (B) Patients in the high-risk scores group had a higher abundance of Tregs and CD8+ T cells infiltration. (C) Differential
analysis of inflammation/immune response-related genes. ***p < 0.001.
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significantly upregulated in peripheral blood mononuclear cells

of chronic hepatitis C virus-infected patients and has been

implicated in PD1-mediated T cell exhaustion and biological

processes related to apoptotic signaling (70).

In this study, we found that all five genes can be acted as Treg

cell-related genes to predict the prognosis and immunotherapy

effect of HCC patients, and the expressions of HMOX1, MMP9,

and TNFRSF11B were significantly reduced in both Hep3B and

Huh7 cells after PD1/PD-L1 inhibitor treatment, suggesting that

there is a certain synergy between these genes and anti- PD1/

PD-L1 antibodies effect. Of course, more in vitro and in vivo

studies are needed to verify the relationship and mechanism

between HMOX1, MMP9, and TNFRSF11B and anti-PD1/PD-

L1 therapy in HCC. In future work, we will construct a

subcutaneous tumor model in C57 mice. In a nutshell, mice

received subcutaneous injections of 1 x 105 Hep3B and Huh7

tumor cells. After that, mice with tumors measuring 100 mm3 or

larger were divided into four groups and given various

treatments: control treatment with the PD1/PD-L1 inhibitor,

treatment with HMOX1/MMP9/TNFRSF11B antibody, and the

combination treatment of PD1/PD-L1 inhibitor and HMOX1/

MMP9/TNFRSF11B antibody. Tumor development was
Frontiers in Immunology 15
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monitored every three days while anti- PD1/PD-L1 therapies

were given every three days and HMOX1/MMP9/TNFRSF11B

antibody treatments were given every day until tumor capture on

the ninth day. Finally, we observe the changes in tumor volume,

the expression of inflammation-related genes, and tumor

immune cell infiltration in the tumor to explore the synergistic

mechanism of HMOX1/MMP9/TNFRSF11B and PD1/PD-L1 in

HCC. Therefore, a deeper understanding of their mechanisms

can help us dissect the complex relationship between the tumor

microenvironment, the efficacy of anti-PD1/PD-L1antibody

immunotherapy, and HCC.

Immune checkpoint blockade response in HCC patients can

be predicted using the TIDE score. Patients in the low-risk score

group had lower TIDE scores, which suggests that they may

respond to ICIs better (71). In various cancer types, ICIs-related

immunotherapy, particularly PD-1/PD-L1, has shown good

therapeutic effectiveness in reversing local immunosuppression

in the TME. For tumor patients with significant immune cell

infiltration but compromised immunity, such as those in our

study’s low-risk score group, PD-1/PD-L1 inhibitors are

appropriate. The IMvigor210 dataset was utilized as an

external anti-PD-L1 cohort for this study to see if our created
A

B

FIGURE 11

Verification of the Tregs-related signature after PD-L1 blockade. (A) All five Tregs-related genes were related to PD1 and PD-L1 expression. (B)
Differential expression of the five Tregs-related genes after PD-L1 blockade. ns, not significant; **p <0.01.
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Tregs-related risk score can predict patient response to anti-PD-

L1 medication. When compared to patients in the high-risk

scores group, we discovered that patients in the low-risk scores

group had substantial clinical and survival advantages. Finally,

we evaluated how well Tregs-related risk scores predicted the

effectiveness of sorafenib in patients with HCC. Patients with

low risk scores performed better with sorafenib, according to our

research. Anti-PD1/PD-L1 with sorafenib may be a viable option

for HCC patients in the low-risk score category to improve

their prognosis.

The efficacy and prognosis of HCC patients receiving

immunotherapy are significantly impacted by drug resistance,

which is mostly caused by the complexity and diversity of TME

components. Promising treatment now involves reducing the

number of tumor-associated macrophages (TAMs) by

preventing monocyte recruitment to the TME, eliminating

invading TAMs, or re-educating TAMs to the more pro-

inflammatory M1 subtype (72). By attracting macrophages and

Tregs to the TME of HCC, tumor-associated neutrophils

(TANs) cause sorafenib resistance in HCC patients,

encouraging cancer development and post-treatment

recurrence (73). Targeting Tregs may modify TME

composition and speed tumor remission, but it may also result

in significant systemic autoimmunity and inflammation (74).

Immune-checkpoint molecules, such as PD1, are expressed by

tumor-infiltrating Tregs at levels that rely on the TME,

suggesting that PD1 inhibitors may have an impact on Tregs

infiltration (75). It is clear that PD1 signaling lessens the

immunosuppressive effect of Tregs since PD1-deficient Tregs

or PD1 inhibition had enhanced immunosuppressive activity

that was sufficient to reverse the auto-immune phenotype (76).

Furthermore, human glioblastoma tissues with high PD1

expression levels in Tregs have a fatigued phenotype, which is

linked to diminished immunosuppressive activity (77). When

PD1 on Tregs interacts directly with PD-L1 on CD8+ T cells,

immunosuppressive effects are directly mediated, and PD1

inhibitors can drastically reduce these effects (78). Monitoring

tumor-infiltrating Tregs alterations in patients taking PD1

inhibitors may be important since PD1 appears to have a

detrimental influence on Tregs-mediated immunosuppression

in tumors and anti-PD1 medication appears to increase Tregs

activity (79). For HCC patients, comprehensive immunotherapy

targeting both tumor cells and immunosuppressive cells in the

TME may become the treatment of choice, and it will likely play

a significant guiding role in the choice of patient-specific

immunotherapy regimens in the future.

Undoubtedly, our study has certain flaws. First off, it was

hard to fully investigate the effect of our Tregs-related signature

on the prognosis of HCC patients due to the small number of

HCC tissues we gathered and the paucity of survival data. To

verify the precision of our prognostic model, we require a

prospective multicenter investigation with a bigger sample size.

Additionally, the outcomes of single-cell sequencing can aid in
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our understanding of how the Tregs-related genes have changed

in the TME. Finally, to further understand the molecular

processes by which Tregs-related genes influence HCC

development, functional tests (in vitro and in vivo) should be

carried out in the future.
Conclusions

In summary, our study uncovered and validated a Tregs-

related prognostic model that could identify TME- exhausted

subpopulations and revealed that PD1/PD-L1 inhibitors could

alter the expression levels of HMOX1, MMP9, and TNFRSF11B

in Hep3B and Huh7 cells, which might help us better understand

Tregs infiltration and develop personalized immunotherapy

treatments for HCC patients.
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Applications of
machine learning in tumor-
associated macrophages

Zhen Li1†, Qijun Yu2,3†, Qingyuan Zhu1, Xiaojing Yang1,
Zhaobin Li1 and Jie Fu1*
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Shanghai, China, 2Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai
Jiao Tong University, Shanghai, China, 3Institute of Respiratory Diseases, School of Medicine,
Shanghai Jiao Tong University, Shanghai, China
Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor

microenvironment (TME) is gaining increasing attention in modern cancer

therapies because it can reveal unique information about the tumor status. As

tumor-associated macrophages (TAMs) are the major immune cells infiltrating in

TME, a better understanding of TAMs could help us further elucidate the cellular

and molecular mechanisms responsible for cancer development. However, the

high-dimensional and heterogeneous data in biology limit the extensive integrative

analysis of cancer research. Machine learning algorithms are particularly suitable

for oncology data analysis due to their flexibility and scalability to analyze diverse

data types and strong computation power to learn underlying patterns from

massive data sets. With the application of machine learning in analyzing TME,

especially TAM’s traceable status, we could better understand the role of TAMs in

tumor biology. Furthermore, we envision that the promotion of machine learning

in this field could revolutionize tumor diagnosis, treatment stratification, and

survival predictions in cancer research. In this article, we described key terms

and concepts ofmachine learning, reviewed the applications of commonmethods

in TAMs, and highlighted the challenges and future direction for TAMs in

machine learning.

KEYWORDS

machine learning, tumor microenvironment, tumor-associated macrophages (TAMs),
deep learning, artificial intelligence
1 Introduction

The tumor microenvironment (TME) is a complex system consisting of various

components that would shape tumorigenesis, progression and metastasis. In addition to

cancer cells, numerous innate immune cells reside within the TME, for instance,

macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, etc. In the

complex environment, tumor-associated macrophages (TAMs), the major immune cells
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infiltrating tumors, can orchestrate various aspects of tumor

biology, such as tumor initiation, progression, metastasis, and

even anti-tumor immunosuppression. As crucial drivers in

fostering tumor progression, TAMs are standing out as

promising targets for diagnosis and new treatments in

malignant tumors.

Machine Learning (ML) is a group of data-analytical

methods to build predictive models by summarizing past

empirical or theoretical literature. Deep learning (DL) is

considered an evolution of machine learning. It uses a

programmable artificial neural network (ANN) which is

inspired by a biological nervous system to make accurate

decisions. Recently, ML, DL, in particular, has exhibited a

remarkable development with the support of the rapid

increase in the storage capacity and processing power of

computers. In the era of big data, ML methods have come to

attention as their extraordinary ability to process large and

heterogeneous data sets in complex biological systems. As P4

(Predictive, Preventive, Personalized, and Participatory) and

precision medicine are emerging and gaining traction (1), ML

has become integral to modern biological research for its ability

to solve challenges not well addressed by traditional methods.

There have been many applications of ML in medical research

ranging from cancer classification, subtyping, new biomarker

discovery, and drug discovery (2–5). Considering the crucial role

of TAMs in TME and tumor biology, ML has been widely

employed in TAMs-related studies and has achieved

successful outcomes.

This review is intended for readers with little knowledge of

ML algorithms. Firstly, we briefly review the origins, types, and

functions of TAMs. Secondly, we introduce the basic principles

and key concepts needed to understand how ML methods could
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be applied and utilized in cancer research. Thirdly, we discuss

the methods and applications at the intersection of ML and

TME, especially TAMs. In the end, we highlight the current

challenges in ML that need to be addressed, as well as the future

directions that could be used to fully realize the potential

applications in cancer therapy.
2 Origins and types of TAMs

TAMs comprise almost 50% of immune cells infiltrating

tumors. They are highly heterogeneous cells that can be divided

into two main origins: bone-marrow-derived macrophages

(BMDMs) developing from hematopoietic stem cells and

tissue-resident macrophages (TRMs) from progenitors seeded

into tissues during embryonic development. For a long time,

BMDMs have been considered the main effectors in TAMs, but

nowadays, TRMs have emerged as an inseparable and essential

component in TME (6).

In a simplified view, there are two distinct populations of

polarized macrophages, the classical M1 [upon lipopolysaccharide

(LPS) and IFNG stimulation] and the alternative M2 (upon IL4 or

IL13 stimulation) phenotypes macrophages. Macrophages

undergo polarization and get activated in multiple processes

during physiological and disease processes (7, 8). M1 and M2

macrophages have different markers, including CD surface

receptors, cytokines, chemokines, transcription profiles, etc.

(Table 1). We have listed the characterized biomarkers, CDs,

and cytokines for TAMs identification. M2 macrophages can be

further classified into different subtypes, namely M2a (mediated

by IL4 and IL13), M2b (mediated by immune complexes (IC) with

LPS or IL1R ligand), M2c (mediated by TGFB1, IL10, and
TABLE 1 M1 and M2 macrophages markers.

Characteristics M1 (classical) Reference M2(alternative) Reference

Stimuli LPS/IFNG/CSF2 (9, 10) IL4/IL13/CSF1 (10, 11)

CDs and MHC CD68, CD80, CD86, MHC-II (12–14) CD68, CD204, CD163, CD206 (15)

Cytokines and Chemokines IL1B, IL6, IL12, TNF, IFNG
CXCL9, CXCL10, CXCL11, CXCL16

(9, 11)
(9, 16),

IL10, VEGFA/C, TGFB1
CCL17, CCL18, CCL22, CCL24

(9, 15)

Non-coding RNAs miR-125b-2 (17) miR-375 (18)

miR-16 (19) miR-34a (20)

miR-9 (21) miR-301a (22)

lncRNA-PVT1 (23) miR-934 (24)

lncRNA-MEG8 (25) miR-940 (26)

lncRNA-GAS5 (27) let-7b (28)

miR-155 (29, 30) let-7c (31)

miR-142-3p (32) let-7d-5p (33)

miR-146a (14) miR-19b-3p (34)

lncRNA-MM2P (35)

Others NOS2, ROS, HMGB1 (11, 14, 36–38), PD-1/PD-L1, MMP1/2/9, Arg1,
Chil3, Retnla

(39–43)
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glucocorticoids), and M2d (activated by tumor-associated factors,

the major part of TAMs) (44, 45). In contrast to proinflammatory,

antibacterial, and anti-angiogenic M1 macrophages, M2

macrophages suppress inflammation, facilitate tissue repair,

remodeling, angiogenesis, and retain homeostasis under

physiological conditions (46, 47).

In general, TAMs contain M2 and small populations of M1

cells (48). However, the distinction between the M1 and M2

states is less clear in TME since TAMs probably display

phenotypes anywhere in between these two extremes.

Moreover, the phenotype of TAMs dynamically changes with

the development and progression of tumors. Each macrophage

in TME might show anti- or pro-tumorigenic properties to form

a plastic and heterogeneous tumor-promoting totality in

response to diverse microenvironmental signals (a mixed M1–

M2 phenotype). In a word, the M1 or M2 only phenotype is too

simple to elucidate the intricate roles of TAMs in the TME

(49–53).
3 Roles of TAMs in tumor

Macrophages are considered essential components in

immune defense and immune sentinels combating tumor

growth; however, accumulated evidence supports a new

tumor-promoting role of macrophages as well. Different from

the basic functions of phagocytizing pathogens and apoptotic

cell debris, TAMs are equipped to execute a broad repertoire of

pro-tumorigenic functions as heterogeneous effectors (Figure 1).
3.1 TAMs in tumor initiation
and development

TAMs profusely infiltrate TME with the ability to suppress

anti-tumoral immune surveillance. Accumulating evidence has

suggested that TAMs can express a variety of immunosuppressive

chemokines and factors which promote tumor cell proliferation

and survival, including platelet-derived growth factor (PDGF),

epithelial growth factor (EGF), and transforming growth factor

beta 1 (TGFB1) (54, 55). The abovementioned chemokines and

factors lead to immune cell–cell interactions as well. For instance,

TAMs can inhibit anti-tumor immunity by restraining antigen

presentation and blocking T cells function, in which case T cells

lose their capacity in recognizing and even killing tumor cells (45).

Usually, activated cytotoxic T lymphocytes (CTLs) can attack

cancer cells to suppress tumor growth, while TAMs express

immunosuppressive cytokines, chemokines, and growth factors

like IL10 and TGFB1 to make CTLs hyporesponsive (6). As a

distinct T-cell subpopulation, regulatory T cells (Tregs) are

actively engaged in the maintenance of immunological self-

tolerance (56). IL10 and TGFB1 from TAMs can also induce

Tregs-mediated immunosuppression (57). Besides, TAMs are able
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to recruit Tregs via CCL22 production, which further suppresses

the antitumor immune response of T-cells and fosters tumor

growth (58). Moreover, it is worth noting that cancer cells can

strongly induce TAMs into pro-tumorigenic phenotype by

secreting colony-stimulated factor 1, mucins and exosomes (59–

61). To sum up, all these factors work together and make the TME

a hospitable site.
3.2 TAMs in tumor angiogenesis

Angiogenesis can be briefly defined as the formation of new

capillaries from pre-existing blood vessels. It is generally

accepted that tumor growth largely depends on angiogenesis

since new vessels can supply fresh oxygen and nutrients as well

as remove wastes and metabolites. Furthermore, angiogenesis is

a vital event in hematogenous metastasis (62). Angiogenesis is

activated when pro-angiogenic factors predominate over anti-

angiogenic factors (63). As shown in Table 1, TAMs can produce

diverse pro-angiogenic molecules (VEGF family, PDFG, TGFB1,

etc.) and matrix metalloproteinases (MMP) to facilitate

angiogenesis. In particular, developing tumors consume

oxygen supply rapidly and tend to create an oxygen deficiency

condition (hypoxia). It has been increasingly recognized that

TAMs massively infiltrate hypoxic regions in tumors and

hypoxic macrophages achieve a pro-angiogenic response by

directly upregulating the abovementioned pro-angiogenic

molecules through hypoxia-inducible factor-1 alpha (HIF1A)

(64–67).
3.3 TAMs in tumor metastasis

TAMs demonstrate lots of essential functions in tumor

biology. In tumor metastasis, it is still a puzzling question how

TAMs facilitate tumor spread specifically, though TAMs get

involved in almost every process of metastasis. Herein, we

provide a quick summary of the fundamental mechanics. First,

TAMs within the TME can enhance tumor cell migration and

invasion, thereby enabling the escape of tumor cell from the

confines of the basement membrane into the surrounding

tissues. Second, TAMs are associated with tumor angiogenesis,

which, as was previously mentioned, results in tumor

intravasation and vasculature-based tumor spread (68). Third,

in the immunosuppressive TME, cancer cells can escape from

being killed by T cells and prolong cell survival, which make it

easier to spread to farther tissues and organs (69). It should be

highlighted that tumor metastasis is a process that starts at a very

early stage rather than a late event initiated and shaped in

advanced cancers. Distant organs are conducive to the survival

and outgrowth of primary cancer cells before their arrival. Those

‘primed’ sites are known as ‘pre-metastatic niches’ (PMNs) (70)

and special attention has been given to the key role of TAMs in
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PMNs from clinical evidence (71). Upon the induction of many

tumor-secreted factors, TAMs are recruited into the blood and

then gather at the pre-metastatic sites (70, 72–74). Meanwhile,

TRMs stemming from yolk sac progenitors, like cerebral

microglia, liver Kupffer cells, pulmonary alveolar macrophages,

and osteoclasts, have been resident in the distant sites before

tumorigenesis and get involved in orchestrating PMNs

formation following diverse stimulation as well. These

macrophages guide circulating tumor cells (CTCs) into the

PMNs through enhancing the expression of chemokines and

remodeling the extracellular matrix (ECM) into more tumor-

favorable structures (75).
3.4 TAMs enhance resistance
to chemotherapy, radiotherapy
and immunotherapy

Emerging cancer research depicts that a high proportion of

TAMs infiltration in tumor samples is often associated with

shortened survival and poor prognosis in many tumors (76–79).

Furthermore, TAMs infiltration is thought to offset therapeutic

response to radiotherapy, chemotherapy and targeted therapy,

even leading to treatment failure (80, 81). Regarding underlying

mechanisms, TAMs can reduce the efficacy of radiotherapy by

triggering the anti-apoptotic programs in cancer cells that are
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resistant to radiotherapy. They also secrete a variety of cytokines

and survival factors to mediate the resistance of the solid tumor

to many chemotherapy drugs, including IL6 and milk-fat

globule-epidermal growth factor-VIII (82, 83). Programmed

death ligand 1 (PD-L1), which is thought to be carried by

TAMs and is upregulated in response to stimulation of TME-

derived factors, has been linked to immune exhaustion via the

checkpoint ligand/receptor interaction. However, existing

studies do not depict a comprehensive picture since another

study comes to a contrary conclusion that PD-L1 expression on

TAMs, instead of cancer cells, is positively associated with

patients’ overall survival (84). Thus, further studies addressing

the precise mechanisms involved are urgently needed.

Considering all these functions of TAMs, it is essential to

comprehend heterogeneous TAMs and their roles in tumor

biology to create and enhance more potent treatments. To

date, various molecular strategies against TAMs are currently

in preclinical or clinical trials, trying to overcome the knotty

problem of immune suppression, such as TAMs recruitment,

TAMs depletion and TAMs reprogramming (85).
4 Basics of machine learning

The term machine learning was first coined in the 1950s by

Arthur Samuel, a computer scientist at IBM (86). Since then, ML
FIGURE 1

Roles of TAMs in tumor progression. Overview of TAMs in tumor progression. TAMs can derive from BMDMs and TRMs. TAMs provide a niche
for tumor initiation and development, participate in angiogenesis, promote tumor metastasis, and enhance resistance to chemotherapy,
radiotherapy and immunotherapy. (Created with BioRender.com).
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has evolved considerably and now is playing a critical role in

modern medical science. ML is a subdivision of artificial

intelligence and can be briefly defined as enabling algorithms

to make accurate predictions based on prior experiences (87).

The boundary between conventional statistical techniques and

ML is obscure, whilst some terms in ML have similar functions

to statistical methods. Some conventional statistical techniques,

such as ridge regression can be combined with ML algorithms

for prediction (88). One key distinction between ML and

traditional statistical methods is that conventional statistic

methods focus on the relationship between variables (89).

However, ML contributes to identifying patterns from massive

data and then performing predictions. Moreover, ML aims to

solve more complicated problems, often dealing with high

dimensional variables with the technique of feature selection,

pattern analysis and dimensionality reduction. As a result, it

extends and supplements existing statistical methods by offering

tools and algorithms to decipher patterns in enormous, intricate

and heterogeneous data sets. Common terminologies and

explanations in ML can be seen in Table 2.

In oncology studies, ML can analyze large-scale data in

different format and combine them into predictions for tumor

staging, cancer susceptibility, tumor recurrence, and patient
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survival (90). The process of ML is to extract knowledge from

massive data sets, identify the underlying patterns, build

predictive models, and finally make predictions on unseen

data. A basic explanation of ML in cancer research can be

achieved by considering the example of tumor recurrence

prediction. Features from heterogeneous sources of data

(clinical, imaging and genomic) are extracted by the ML

algorithm. ML algorithm identify the combinations of specific

features and tumor recurrence risk, and then build a prediction

model. After that, when presented with a new case, the algorithm

could provide the likelihood of recurrence for the new case.
4.1 Categories in machine learning

ML techniques can be generally categorized into three main

groups based on whether the labels are required in the training

data (91). Common categories of supervised and unsupervised

learning can be found in Table 3.

4.1.1 Supervised learning
The term ‘supervised’ refers to the technique where a model

is supplied with labels, which are desired outcomes of the

learning target (e.g., correct segmentation or classification

results) (92). Generally, supervised learning is used to build a

model to predict or categorize future events. It primarily focuses

on classification (e.g., classifying benign or malignant tumors)

and regression (calculating the risk of tumor relapse, estimating

individualized disease-free survival, or predicting the length of

patient life) (88).

4.1.2 Unsupervised learning
Unsupervised learning is used when the input data has no

labels. Hence, it learns the relationship between variables and

uncovers patterns in unlabeled data. Supervised learning

primarily addresses classification and regression issues, while

unsupervised learning focuses more on dimensionality

reduction and clustering (88). Clustering refers to identifying

groups of similar cases within a data set based on some specific
TABLE 3 Categories of supervised learning and unsupervised
learning for common algorithms.

Supervised Learning Unsupervised Learning

Ordinary Least Square Regression K-Means

Logistic Regression Principal Component Analysis

Least Absolute Shrinkage Selection Operator
Regression

Information Maximizing
Component

Linear Discriminant Analysis Self-organizing Maps

Ridge Regression Topological Data Analysis

Elastic Net Regression

Support Vector Machines

Bayesian Networks

Naïve Bayes Classifiers

Random Forests
TABLE 2 Common terminologies and explanations in ML.

Artificial
Intelligence

Artificial intelligence is the capability of a computer to perform tasks that are generally completed by humans because they require human
intelligence and conception.

Features Features are the observable quantities and characteristics across all samples in the data set, either raw or mathematically transformed.

Feature selection Feature selection is the process of selecting the most relevant features in developing a predictive model and can reduce the computational cost of
modeling as well as improve the performance of the model.

Data
augmentation

Data augmentation refers to techniques that can increase the diversity of training sets by applying random (but realistic) transformations, such as
image rotation, flipping, scaling, etc.

Overfitting Overfitting refers to a model that performs pretty well on the training data and fails to generalize and perform well in the case of unseen data
scenarios.

Underfitting Underfitting refers to a model that does not work correctly in the training data and also has poor performance in the new data.

Dimensionality
reduction

Dimensionality reduction refers to techniques that reduce the number of random variables to the principal component of a data set.
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features; dimensionality reduction is used to reduce the

complexity and heterogeneity of features extracted from

massive biomedical data sets.

4.1.3 Semi-supervised learning
Semi-supervised learning combines supervised and

unsupervised ML. It can be helpful when only a tiny fraction

of the data is labeled, or the labels on the input data are

incomplete (93). A lack of sufficient labeled data frequently

occurs in medical contexts because, given the complexity and

variability of biomedical data, labeling information (e.g.,

correctly delineating the target in auto-segmentation) can be

labor- and time-consuming. From this respective, semi-

supervised learning can improve the efficiency and accuracy of

information extraction for large data sets.
4.2 General workflow

4.2.1 Data preparation
ML workflow usually starts with data acquisition and pre-

processing. Data sets are typically split into training, validation,

and evaluation sets. The predictive model is constructed on the

basis of the training set and tuned by the validation set; finally,

the model performance is assessed by the held-out evaluation set

(89). In practice, the training set usually accounts for a larger

fraction of the data (70%), whereas validation and evaluation sets

usually make up 15%, respectively.

The prerequisites of ML success are a sufficient number of

samples and high-quality data. To make the most of ML, enough

training data size should be ensured to extract more generic

features from the whole data set without over-emphasizing the

impact from a few certain samples. Besides, the data quality

should be checked to ensure input data’s appropriateness,

reproducibility, and versatility. Specifically, for supervised

learning, the correctness of the ground truth labels is also

quite essential. Incorrect labels can significantly downgrade the

model performance and are difficult to detect during

training (86).

4.2.2 Training and validation
The proper performance of the model relies heavily on

features across sample sets, and model refinement can be

achieved using the technique of feature select ion.

Inappropriate feature selection would undermine the training

performance by straining computational resources, including

time and memory. For ML application in TAMs, thousands of

features can be used to predict the output variables (94), e.g., cell

morphology, the molecular feature of TAMs, immune-related

gene-based novel subtypes, patient characteristics, tumor

infiltration, etc. After feature selection, ML would search for

the optimal parameters and translate the features into accurate
Frontiers in Immunology 06
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predictions. The parameters are created through a complicated

calculation process.

After that, a validation set is also needed to optimize the

parameters of the algorithm. In validation, a preliminary

estimate of the model’s generalizability and accuracy is

obtained; errors can be detected and corrected in this phase,

and the process is then repeated (95). In other words, validation

serves as a supplemental role in identifying the errors in a model

in an early phase.

The input data is usually partitioned into k subsets of equal

size. A single subset is retained as the validation set, and the

remaining k-1 subsets are used as training data. The process of

training and validation will continue until there is no further

improvement in model performance.

4.2.3 Evaluation
The evaluation data is used to assess the performance of the

final model on samples outside the input data set (training and

validation set). This process aims to estimate the model

performance in the real-world. The evaluation set should be

utilized at the very end of the research, avoiding the model being

tuned to fit the evaluation set (96). The performance of a specific

model relies on many factors, such as the data size and quality of

training data, as mentioned above. The complexity and the

relationship between the input and output variables, as well as

the computational resources such as available training time and

memory, all play essential roles in achieving high model

performance (94).
5 ML algorithms used in TAMs

In this section, we are going to introduce the most common

utilized ML algorithms applied in cancer research, especially,

TAMs. We also compared the advantages and disadvantages of

different algorithms in Table 4 (97–101). Since the combination

of ML and TAMs is an emerging cross-cutting research field,

most studies were published in the last five years. All the matches

were reviewed for suitability and significance for this review.

Table 5 depicts the publications we found most pertinent to our

topic. Cancer type, sample size, research purpose, as well as the

ML applications are presented in the table.
5.1 Dimensionality reduction

Dimensionality reduction refers to techniques that

transform data in high dimensions into a lower-dimensional

form while preserving the relationships between the data points

as much as possible. In a nutshell, it is a data preparation

technique used for downsizing the input variables and

performed before modeling. By far, Principal Component
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Analysis (PCA) is the most popular multidimensional data

analysis technique (126). It reduces the dimensionality by

eliminating less important components to omit the redundant

dimensions and focusing only on the most important

components that could best explain the heterogeneity in the

data (Figure 2A). Other dimensionality reduction algorithms

include t-distributed stochastic neighbor embedding and

uniform manifold approximation and projection.

PCA is primarily applied to problems where there are a large

number of features, which are referred to as high-dimensional

problems (127). Generally, there are many important applications

of PCA in cancer research because the input variables in oncology

data are complex and massive. For example, PCA is used to
Frontiers in Immunology 07
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extract principal components as signature score to calculate the

patients’ risk scores based on meaningful macrophage-related

genes (105, 106). Zhang et al. performed PCA on 487 patients

to reduce the feature dimensions and clearly distinguished high-

risk and low-risk patients (107). Autoencoder in deep learning

neural networks is another method to perform dimensionality

reduction. Encoder is the part of the model prior to the bottleneck.

It aims to compress the data dimension to a bottleneck layer that

is much smaller than the initial input data. Shen et al. developed a

deep learning model through self-supervised feature

representation learning to characterize immune infiltration from

transcriptome (116). The developed model was used to distill

expression signatures of the transcriptome in brain tumor
TABLE 4 Pros and cos of common machine learning algorithms.

Pros Cons

Support Vector
Machine

• Good performance with high dimensional data
• Good performance when classes are separable

• Slow
• Cannot deal with overlapped classes
• Selecting appropriate hyperparameters is essential
• Selecting the appropriate kernel

Principal Components
Analysis

• Reduce overfitting
• Improve visualization
• Improve model performance

• Independent variables become less interpretable
• Data standardization is necessary
• Lose information

Naive Bayes • Fast prediction
• Insensitive to irrelevant features
• Can be used for multi-class prediction
• Perform well with high dimensional data
• Less dependent to data size

• Independence of features does not hold
• Relatively low prediction accuracy
• Zero Frequency

Logistic Regression • Simple to implement and interpret
• Feature scaling is unnecessary
• Perform well for linearly separable dataset
• Tuning of hyperparameters is unnecessary
• Fast at classifying unknown records

• Assumption of linearity between the dependent variable and the
independent variables

• Requires average or no multicollinearity between independent
variables

• High reliance on proper presentation of data

Random Forest • Reduced error with high accuracy (balance the bias-variance
well with multiple trees)

• Good performance on imbalanced datasets
• Can handle linear and non-linear relationships well
• Little impact of outliers
• Not prone to overfitting
• Useful for feature selection

• Features need to have some predictive power
• Predictions of the trees need to be uncorrelated
• Not easily interpretable
• Computationally intensive for large datasets
• Black box nature

Decision Tree • Normalization or data scaling is unnecessary
• Can handle huge amount of data
• Easy to explain
• Easy visualization
• Automatic Feature selection
• Missing values does not affect building decision tree

• Prone to overfitting
• A small change in data can cause large change in structure of

decision tree
• Long training time
• Inadequate for applying regression and predicting continuous

values

K-Nearest Neighbor • Simple to understand and implement
• No assumptions about data
• Constantly evolving model
• Can handle multi-class problem
• One hyper-parameter(k)

• Slow
• Poor performance on datasets with large number of features
• Scaling is necessary
• Imbalanced data causes problems
• Outlier sensitivity
• No capability of dealing with missing values

Artificial Neural
Network

• High Efficiency
• High accuracy
• Multi-tasking
• Able to deal with incomplete information
• Having fault tolerance

• Hardware dependence
• Black Box Nature
• Complex algorithm compared to traditional machine learning

algorithms
• Need large data set
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TABLE 5 ML algorithms and their applications in TAMs.

Authors
and
Years

Cancer Types Sample
Size

ML
Algorithms

Research Purposes ML Applications

Chang
et al. (102)
(2021)

Ovarian cancer 1566 Cox, LASSO To construct macrophage related
prognostic model for ovarian cancer

identify multiple features related to survival (uni-and
multi-variate Cox) and construct the macrophage-
related prognostic model (LASSO)

Rostam
et al. (103)
(2017)

/ Orange Data
Mining Toolbox

To identify different macrophage
functional phenotypes

auto-identification of phenotypes based on cell size and
morphology (Orange)

Zhu et al.
(104)
(2019)

Rectal cancer 46 SVM To investigate the role of tumor-
infiltrating leukocyte cell composition in
the prognosis of radiotherapy for rectal
cancer

classify responsive and non-responsive patients (SVM)

Zhang et al
(105)
(2021)

Glioma 2405 NN, SVM
ER, PCA

To investigate the predictive value of
monocytes in the immune
microenvironment
and prognosis in glioma patients

validate clustering results (NN, SVM) and calculate the
risk scores of patients (ER, PCA)

Zhang
et al. (106)
(2021)

Glioma 2365 Pamr, NN, SVM
ER, PCA

To build a prognostic model based on
the molecular feature of TAMs for
gliomas

validate the clustering results (Pamr, SVM, and NN),
construct risk scores (ER, PCA) and further validate the
clustering results (SVM, NN)

Zhang
et al. (107)
(2020)

Prostate cancer 487 LASSO, PCA To build a model to predict the risk of
prostate cancer based on immune-related
gene-based novel subtypes

determine the properties of the subtypes (PCA) and
build the risk predictive model (LASSO)

Yin et al.
(108)
(2022)

Cervical squamous
cell carcinoma

78 Cox, LASSO, LR,
GMM

To investigate the roles of TAMs in the
development of cervical squamous cell
carcinoma

select immune‐related genes (Univariate Cox and
LASSO), construct the risk score model (multi-variate
Cox), build a diagnosis signature (LR), and then select
the best models (GMM)

Yan et al.
(109)
(2020)

Ovarian cancer 365 Cox, LASSO,
SVM, SVM-RFE

To explore prognostic genes associated
with immune infiltration in ovarian
cancer

identify the most valuable genes related to immune
infiltration (LASSO, Cox), distinguish two different
standards of immune infiltration (SVM), and work out
the most valuable variables of immune infiltration
(SVM-RFE)

Wu et al.
(110)
(2022)

Non-small cell lung
cancer

681 RF To develop a macrophages-based
immune-related risk score model for
relapse prediction in stage I–III non-
small cell lung cancer

screen the robust prognostic markers and construct risk
score to predict disease-free survival (RF)

Wei et al.
(111)
(2020)

Gastric cancer 407 SVM, LASSO,
SVM-RFE

To investigate the effect of various
components in gastric cancer TME and
identify mechanisms exhibiting potential
therapeutic targets

minimize the redundancy of features (LASSO) and rank
the features (SVM, SVM-RFE)

Wang et al.
(112)
(2021)

Lung cancer 507 Mask R-CNN To develop a prognostic model for the
prediction of high- and low- risk lung
adenocarcinoma

segment the nuclei of tumor, stroma, lymphocyte,
macrophage, karyorrhexis and red blood cells (Mask R-
CNN)

Vayrynen
et al. (113)
(2020)

Colorectal cancer 931 inform To investigate the prognostic role of
macrophage polarization in the colorectal
cancer microenvironment

identify macrophages in tumor intraepithelial and
stromal regions (inForm)

Ugai et al.
(114)
(2021)

Colorectal cancer 3092 inform To investigate if the relationship between
smoking and colorectal cancer incidence
varies depending on macrophage
infiltration

perform tissue category segmentation, cell segmentation,
and cell type classification

Starosolski
et al. (115)
(2020)

Transgenic mouse
models of
neuroblastoma

16 Non-parametric
neighborhood
component
analysis

To investigate if nanoradiomics can
differentiate tumors based on TAM
burden

radiomic features selection (the non-parametric
neighborhood component method)

Shen et al.
(116)
(2021)

Brian tumor 3810 A self-developed
deep learning
algorithm based
on contrastive
learning

To stratify brain tumors for better
clinical decision-making and prognosis
prediction

distill expression signatures of transcriptome (DL)

(Continued)
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samples. The application of PCA in TAMs research could

potentially be promising in enhancing predictive accuracy when

inpu t va r i ab l e s and the i r in t e r - connec t i ons a r e

remarkably complicated.
5.2 Regression

Regression analysis is a method to mathematically describe

the relationships between the outcome of interest (e.g., patient

survival or relapse risk) and one or more features, also termed as

variables (Figure 2B) (128). It answers the questions: Which

variable is the most significant? What’s the connection among

these variables? And, perhaps most importantly, how certain are

we about all of these variables? Regression analysis has been
Frontiers in Immunology 09
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applied to cancer research for decades, from survival analysis

with Cox’s proportional hazard regression to Least Absolute

Shrinkage Selection Operator Regression (LASSO) regression for

significant feature selection.

Linear regression is the most common and simplest model

for discovering how one or more explanatory variables

determine the dependent variable (129). Logistic regression is

extended by a linear regression model for classification

problems. However, it differs from linear regression by being

employed when the outcome variable is binary. Yin et al. built a

diagnosis signature by logistic regression based on selected

significant factors correlated with TAMs. They found that

these factors were conducive to distinguish normal tissues

from tumor (108). Cox proportional hazard is generally used

when the outcome is the time to an occurrence (for example,
TABLE 5 Continued

Authors
and
Years

Cancer Types Sample
Size

ML
Algorithms

Research Purposes ML Applications

Nakamura
et al. (117)
(2019)

Ovarian carcinoma 1656 SVM, RF, NN,
LDA

To identify relationships between the
expression of immune and inflammatory
mediators and patient outcomes

classify ovarian cancer and normal tissue (SVM, RF, and
NN) and map high-dimensional input data into a two-
dimensional space (LDA)

Liang et al.
(118)
(2021)

Various cancers 9881 CART, LR, LDA,
K-Neighbors
Classifier,
Gaussian Naive
Bayes, SVM

To investigate the inflammasome
signaling status to clarify its clinical and
therapeutic significance

classify samples and validate gene set enrichment (all 6
ML methods)

Li et al.
(119)
(2021)

Bone-related
malignancies

1675 RF To investigate if a distinct immune
infiltrative microenvironment exists in
malignant bone-associated tumors and
build a model for tumor diagnosis and
prognosis

develop a bone-related tumor differential diagnosis
model (RF)

Li et al.
(120)
(2022)

Gliomas 652 NN, LSTM, Cox,
LASSO,
RF

To predict survival and tumor-infiltrating
macrophages in gliomas using MRI
radiomics

extract significant radiomic features to construct a
prediction model (NN, LSTM, Cox, LASSO, RF)

Kuang
et al. (121)
(2021)

Hodgkin
lymphoma

130 LASSO, Cox,
RF

To investigate potential markers for the
diagnosis and prediction of classic
Hodgkin lymphoma prognosis

identify prognostic genes and build a model for
prognosis (LASSO, Cox, RF)

Hagos et al.
(122)
(2022)

Follicular
lymphoma

32 ConCORDe-Net To identify cell phenotypes and spatial
distribution of immune cell subsets in the
inter‐follicular area of follicular
lymphoma TME

detect different immune cells within and outside
neoplastic follicles (ConCORDe-Net)

Guo et al.
(123)
(2021)

Pulmonary
sarcomatoid
carcinoma

97 Cox, RF To build an immune-based risk-
stratification system for prognosis in
pulmonary sarcomatoid carcinoma

construct a predictive model and rank the predictive
ability of each variable (Cox, RF)

Lange et al.
(124)
(2018)

Uveal melanoma 64 HCA, PCA To study the immune environment and
explore whether absolute T-cell
quantification and expression profiles can
dissect disparate immune components

reveal cell-specific expression patterns in gene selection
(HCA, PCA)

Lin et al.
(125)
(2022)

Adamantinomatous
craniopharyngioma
(ACP)

57 RF, LASSO To study the molecular immune
mechanism in ACP and find potential
biomarkers for the targeted therapy for
ACP

screen diagnostic markers (RF, LASSO)
Cox, Cox Proportional-hazards Regression; LSSO, Least Absolute Shrinkage and Selection Operator; PCA, Principal Component Analysis; ER, Elastic Regression; SVM, Support Vector
Machine; Pamr, Prediction Analysis for Microarrays; LR, Logistic Regression; GMM, Gaussian Mixture Model; LDA, Linear Discriminant Analysis; SVM-RFE, Support Vector Machine
Recursive Feature Elimination; NN, Neural Network; RF, Random Forest; CART, Classification and Regression Trees; ConCORDe-Net, Cell Count Regularized Convolutional Neural
Networks; HCA, Hierarchical Cluster Analysis; LSTM, Long short-term memory; MLP, Multi-layer perceptron; Weka, Waikato Environment for Knowledge Analysis; ROF,
Rudin-Osher-Fatemi.
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time to death, time to relapse). The results of Cox are explained

in terms of a hazard ratio, indicating the risk of an event at a

given time. Ridge regression and LASSO regression are variants

of linear regression (linear regression appended with a

regularization term) introduced for more accurate prediction.

Ridge and LASSO are commonly used to reduce model

complexity and prevent potential over-fitting. Typically,

LASSO and Cox are combined together for disease prognosis.

These studies generally use univariate Cox regression and

LASSO regression to identify the significant characteristics and

multivariate Cox regression to build risk score models (108).

Another variant of linear regression is elastic net regression.

It integrates the LASSO and ridge regression methods by

learning from their drawbacks to improve the regularization of

statistical models. Thus, it achieves a more stable and better

prediction than LASSO and ridge regression in less training

samples. In two studies that intended to develop a prognostic

model based on the molecular feature of TAMs, they both used

elastic net to construct risk scores (105, 106). Especially, in

Zhang et al’s study, they found that glioma with higher risk

scores is populated by macrophages comprising both the

traditional M1 and M2 phenotypes, which further indicates

that M0/M1/M2 is a continuum rather than two extremes (106).
5.3 Classification

5.3.1 Support vector machine
Support Vector Machine (SVM) is a powerful method that

can be used for both regression and classification tasks (130).

However, it mostly works as a classifier and aims to create a

decision boundary, also termed as hyperplane, between two

classes that distinctly classifies the data into different categories

(131). The objective of SVM is to maximize the margin to select

the best hyperplane, which offers some reinforcement so that

subsequent data points can be classified with greater confidence.

The margin is determined by a series of hyperplanes parallel to

the decision boundary whose distance to the nearest data point is

the largest in either the positive or negative class, as depicted

in Figure 2C.

As a classifier, SVM is frequently used in TAMs. Patients can

be classified into different groups based on the significant tumor-

infiltrating immune cell proportions. For instance, patients with

rectal cancer can be classified into responsive and non-

responsive groups through the ML method based on the

tumor-infiltrating immune cell composition and achieved an

accuracy of 65% (104). Nakamura et al. applied SVM to

discriminate between malignant and non-malignant tissues in

ovarian cancer patients and malignant ovary samples through

the immune signatures including M1 macrophage mediator

signatures (117). Yan et al. used SVM to explore prognostic

genes associated with immune infiltration and the classification

accuracy reached as high as 0.934. Also of note, the high and
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low-risk groups exhibited significantly different proportions of

TAMs (104). Some researchers used SVM to further validate the

clustering results (105, 106). In an article by Liang, the authors

applied six ML algorithms to predict inflammasome clusters, in

which macrophages were the major immune cell population

enriched in inflammasome complexMid and inflammasome

complexHigh clusters. In this paper, SVM achieved a highest

prediction accuracy of 96% (118). Some researchers also use

SVM-RFE, a feature selection algorithm that ranks the features

according to the recursive feature deletion sequence, to identify

prognostic genes associated with TAMs infiltration (109, 111).

The strength of SVM is that it can be used for complex data

sets with many variables or dimensions. However, when it comes

to high dimensions, SVM achieves a powerful model at the cost

of easy interpretation of which features are influencing

the model.

5.3.2 Random forest
Random forest (RF) is an ensemble decision tree classifier

combining multiple tree predictors introduced by Leo Breiman

(132). As an ML algorithm near the top of the classifier

hierarchy, the RF classifier is capable of ranking the predictive

ability of each variable and constructing a predictive model

(110). Generally, RF is based on the aggregation of a large

number of uncorrelated and weak decision trees, and each

uncorrelated tree casts an individual prediction. The final

decision is made by majority voting of all trees, which

outperform any single classifier (Figure 2D). RF models are

considered less vulnerable to overfit the training data set given

the large number of trees built, making each tree an independent

model. Given a large number of trees ensembled and each tree

indicating an independent model, random forest models are

thought to be less susceptible to overfitting. The ability of RF to

precisely classify observations is extremely valuable in oncology

applications, such as predicting patient death or tumor relapse.

So far, RF has been applied to many TAMs studies for

classification. They are generally used to screen TAMs-related

markers and construct an immune-related risk score for risk

prediction (110, 121, 123, 125). By utilizing RFs, a diagnostic

model based on immune infiltration can accurately perform the

differential diagnosis of bone-related malignancies (119).

Nakamura et al. used RF to investigate whether genes

identified by literature search or other analysis can distinguish

between normal tissues and cancer tissues (117). In many

studies, RFs also worked with other algorithms to screen the

overlapping markers, e.g., LASSO (121, 125).

Overall, the advantage of RF is that it is an ensemble

algorithm which has more accuracy than any individual

prediction, especially when multi-modality variables are

combined (133). However, the high dimension of all the

features in cancer research and their complex interactions

make it very difficult for humans to interpret the model

and results.
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5.4 Neural networks and deep learning

Deep learning (DL) is a notable sub-class of ML which has

a remarkable ability to learn patterns from raw, unstructured

input data by incorporating artificial neural networks (ANN)

(134). ANN is inspired by the structure and function of the

brain. It attempts to use multiple layers of calculation units to

imitate how the human brain processes input information. It is

essentially a mathematical model consisting of an input layer,

multiple hidden layers, and an output layer, as shown in

Figure 2E. Each layer has multiple artificial neurons, also

known as nodes in neural network. The nodes in input layers

gather source material such as image pixels and numerical data.

Hidden layers in the middle connect nodes to the next layer,

creating non-linear representations between source data and

the output layer (135).

Despite deriving from ANN, the DL framework differs from a

straightforward neural network. Overall, DL networks are larger

and consist of more layers and nodes, making it possible to reflect

complicated interrelationships precisely. DL is able to process

plenty of features across a large number of samples and derive

neural network-based ‘representations’ quickly. Many specialized

DL models have outperformed traditional ML models for various
Frontiers in Immunology 11
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tasks, such as medical image segmentation and image-based

tumor staging. Classical DL algorithms include Convolutional

Neural Network (136), Recurrent Neural Networks (137), Radial

Basis Function Networks (138), Long Short-Term Memory

Networks (LSTMs) (139), Self-Organizing Maps (140),

Autoencoders (141), etc., which have been proved to achieve

state-of-the-art performance in specific applications (142–144).

Applications of neural networks and DL in TAMs focusmore on

classification and medical image segmentation. Li et al. developed an

MRI radiomics approach to predict survival and tumor-infiltrating

macrophages in gliomas (120). They used two neural networkmodels

and one long short-term memory DL model to divide patients into

long and short-term survival clusters. In research conducted byWang

et al. (112),Mask R-CNN, a DL-basedmodel, was applied to segment

the nuclei of the tumor, lymphocyte, stroma, karyorrhexis, red blood

cells and macrophage from pathology images. In addition to the

existing segmentation algorithms, some studies developed their own

DL segmentation models to characterize immune infiltration. Risom

et al. segmented cell nuclei using Msmer, a DL-based algorithm

developed in their lab (145), and Hagos et al. used ConCORDe-Net

to detect cells in multiplex immunohistochemistry images (122).

Meanwhile, commercial and Open-source software could also be

used for segmentation in cancer research. For example, inForm
B C

D E

A

FIGURE 2

Basic principles of standard ML algorithms. (A) PCA reduces the dimensionality of a data set consisting of plenty of interrelated variables. (A)
illustrates a series of data points viewed from another angle with approximately the same value on that dimension. It shows that the distinction
between the data points can be represented by a principal component. (B) Regression analysis determines the relationship between factors and
disease outcomes or identifies relevant prognostic factors for diseases. (B) illustrates regression estimating a mathematical formula that relates
input variables to the output variable. (C) SVM generates a hyperplane in higher-dimensional feature space and maximizes the margin of error to
select the best hyperplane. The best hyperplane would serve as a decision boundary for classification. (D) RF model ensembles a large number
of small decision trees. Each tree is capable of making an individual prediction. (E) Neural networks tend to resemble the connections of
neurons and synapses in human brain. The input data is assigned initial weights and transferred to output layers for classification. Hidden layers
would tune the initial wrights to minimize the neural network’s prediction error.
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software package (Akoya Biosciences) has been applied in some

studies to automatically perform tissue category segmentation, cell

segmentation, and cell type classification (113, 114). InForm software

is a powerful software that enables per-cell analysis of

immunohistochemistry and immunofluorescence. It allows the

separation and measurement of weak and spectrally overlapping

markers and automatic detection and segmentation of specific tissues.

Orange Data Mining Toolbox is another open-source software.

Rostam et al. used it to automatically identify different macrophage

functional phenotypes based on cell size and morphology (103).

Interest in DL models has grown in recent decades owing to rapid

advances in high-performance computing infrastructure, such as cloud

andGPUcomputing (146).However, it is still far frommeeting the vast

amounts of data needed for medical research. Developing deep neural

networks and then training is time-consuming and computationally

expensive compared with traditional ML methods.
6. Challenges

Despite such exciting research, various limitations or

requirements must be addressed before ML can realize its full

potential in the studies focusing on TAMs. As most ML models

are data-driven, the most critical challenge is the requirement of

tremendous and valuable data sets (147). Generally, data related

to TAMs can be incredibly complex, with thousands of variables

capturing different facets of the TME system. However, these

data sets are still too small for ML modeling, especially for

unsupervised learning. The lack of sample size might lead to

poor model performance or overfitting. Deep neural networks

are especially vulnerable to overfitting because they have

thousands to millions of parameters.

Moreover, data quality and completeness are also

challenging in the studies of tumor prognosis, in which patient

follow-up might be irregularly collected or lost, and different

institutions may use various standards of testing. In response to

the challenge of massive clinical data acquisition, some cloud-

based cancer repositories such as Gene Expression Omnibus

(GEO) and The Cancer Genome Atlas (TCGA) have been

created to enable cross-institution data sharing and data

quality assurance. We hope with the emergence of more open-

source data sets and data standardization, these restrictions will

be less of an issue in the future.

Clinical translation is also a challenge for ML. Many trials are

still in the stage of by-proof-test. Research groups and companies

are facing the challenges of making their products more reliable

and practical in large-scale implementations or even real usage

scenarios. Similarly, many innovative solutions, generated from

the frontiers of ML research and shown to be theoretically

powerful, have yet to integrate into day-to-day clinical use. In

modeling, most models take fixed training and testing data set,

which is impractical in real clinical practice. Considering the rapid
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changes in tumor data, continuous updating and reevaluation are

required to monitor the model performance and guarantee model

consistency. In addition, most of the current ML-based tumor

models are single-center studies. There are considerably fewer

external validation studies of TAMs in the published papers.

Future studies should involve external or cross-institution

validation to ensure the test set is diversified enough with

different clinic scenarios involved. We believe the robust

external validation and improvements in interpretability and

generalizability may boost clinician confidence in ML and

facilitate further incorporation ofMLmodels into clinical practice.

Furthermore, after reviewing papers combining ML with

TAMs, we come to realize that the complexity and heterogeneity

of TAMs in TME are far from being fully elucidated. As discussed

above, the dichotomy of TAMs is too simple to clarify macrophage

activation states in vivo. What should be noted is that M0/M1/M2 is

a continuum in vivo instead of well-delineated categories. TAMs are

characterized by its remarkable plasticity. The phenotypes can

switch between the two extremes, while most existing studies still

regard TAMs as two distinct extremes. Besides, subtypes of M2-

TAMs can be further identified and classified as M2a, M2b, M2c

(148, 149), and M2d in TME. Identifying complexity and

heterogeneity of TAMs in vivo and the subtypes of M2

macrophages more precisely to reduce side effects of cancer

therapy using ML methods can be challenging but promising.

Therapies addressing the recruitment, depletion and

repolarization of M2 are promising strategies for tumor

treatment. With the help of ML, many studies are enabled to

identify specific molecules involved in polarization of M0

macrophages towards M1/M2 macrophages and TAMs

recruitment. However, the key biomarkers in depletion and

repolarization of M2 based on ML have not received a lot of

attention. By integrating more medical images and omics data, it is

anticipated that ML will have broader prospects on exploring,

validating and implementing critical genes in the repolarization of

TAMs to further facilitate precision oncology.
7. Future directions

ML in cancer research is still in the early stage of exploration.

More investigations and efforts are required to break through

current limitations. In terms of reducing the need for a large data

set, Generative Adversarial Networks (GAN) are receiving

attention. GAN has two neural networks, which are generative

and discriminator networks. They contest with each other in a

zero-sum game and generate new and synthetic instances of data

that can ‘fool’ the discriminator network.

Precision medicine is the future direction of cancer therapy, in

which case patients can get optimized management and treatment to

improve survival. An important part of precision oncology involves

understanding cancer genomics, radiomics and the complex

heterogeneity of TME. With the help of ML, scientists are able to
frontiersin.org

https://doi.org/10.3389/fimmu.2022.985863
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.985863
disentangle more cancer characteristics, enabling precision oncology.

One of the popular and evolutionary directions in ML is

reinforcement learning. It learns to achieve goals in an uncertain

and complex environment. Due to the non-stationary tumor

environment with changing conditions and stimuli, reinforcement

learning has the potential to offer computer-guided decision support

for personalized treatment. Currently, its applications in medicine are

mainly focus on medical image analysis, disease screening and

personalized treatment recommendations. In the future, we

envision that it could be employed for dynamic cancer treatment

regimens after personalized tumor prognosis, tailoring the treatment

for each individual.

Overall, the combination of ML and TAMs is relatively

young and far from fulfilling its potential in cancer research.

The distinctive nature of cancer studies makes accuracy and

interpretability extremely crucial. We still have a long way to go

to uncover and harness the intricacies of ML and the

complexities of TME. Hopefully, with ever-evolving

algorithms, more potent supercomputers, and substantial

investment being involved in this field, these applications will

be more intelligent, cost-effective, and time-efficient. In the

future, ML is expected to play a more critical role in TAMs

analysis and precision oncology.
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Head and neck squamous cell carcinoma (HNSCC) is one of the most common

malignant cancers, and patients with HNSCC possess early metastases and poor

prognosis. Systematic therapies (including chemotherapy, targeted therapy, and

immunotherapy) are generally applied in the advanced/late stages of HNSCC,

but primary and acquired resistance eventually occurs. At present, reliable

biomarkers to predict the prognosis of HNSCC have not been completely

identified. Recent studies have shown that neutrophil extracellular traps (NETs)

are implicated in cancer progression, metastasis and cancer immune response,

and NET-related gene signatures are associated with the prognosis of patients

with several human cancers. To explore whether NET-related genes play crucial

roles in HNSCC, we have performed systematic analysis and reported several

findings in the current study. Firstly, we identified seven novel NET-related genes

and developed a NET-score signature, which was highly associated with the

clinicopathological and immune traits of the HNSCC patients. Then, we, for the

first time, found that NIFK was significantly upregulated in HNSCC patient

samples, and its levels were significantly linked to tumor malignancy and

immune status. Moreover, functional experiments confirmed that NIFK was

required for HNSCC cell proliferation and metastasis. Altogether, this study has

identified a novel NET-score signature based on seven novel NET-related genes

to predict the prognosis of HNSCC andNIFK has also explored a newmethod for

personalized chemo-/immuno-therapy of HNSCC.

KEYWORDS

head and neck squamous cell carcinoma, neutrophil extracellular traps, immune cells
(ICs), immunotherapy, prognosis
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Introduction

Head and neck cancer (HNC) ranks sixth in terms of

malignancy worldwide, and about 90% of HNCs are classified

as head and neck squamous cell carcinomas (HNSCC) (1).

HNSCC possesses a high incidence of cervical lymph node

metastases, increased capacities of invasive and recurrence,

and contributes to the poor prognosis (2, 3). The main

treatment options for HNSCC include surgery, chemotherapy,

radiotherapy, molecular targeted therapy, and multimethod in

conjunction with surgical excision of tumor tissue, but the

effectiveness of these approaches is limited due to tumor

heterogeneity (4, 5).

Cancer immunotherapy is based on harnessing the immune

system to detect and eliminate tumor cells, and the field of

cancer immunotherapy has been growing with an increasing rate

in modern oncology since it was first mentioned in 1985 (6–8).

Active immunotherapy, passive immunotherapy, and immune

checkpoint blockade are the major strategies of cancer

immunotherapy (9, 10). For HNSCC immunotherapy, two

immune checkpoint blockade agents, pembrolizumab and

nivolumab, have been applied in clinical trials for patients

with platinum-refractory HNSCC (11, 12). However, most

HNSCC patients are non-responders and have acquired drug

resistance (13–15). Recent studies have indicated that cancer

immunotherapy may be hindered by immunosuppressive cells

of the tumor microenvironment (TME), leading to the failure of

antitumor immunity (16, 17).

Neutrophils are the most abundant immune cells in the TME,

and increased neutrophil infiltration and high neutrophil-to-

lymphocyte ratios were reported to be associated with poor

patient outcomes of the patients with HNSCC (18–20). In

activating neutrophils, DNA fibers decorated with histones and

antimicrobial proteins found originally within neutrophil granules

are released as neutrophil extracellular traps (NETs) (21, 22).

NETs have been found as a new form of innate immunity and

mediate the response of the host as a first line of defense (23). The

development of NETs is a potential mechanism that contributes to

tumor progression. Additionally, tumor cells can also escape

immune surveillance through NETs (24). While the pro-

oncogenic evidence of NETs is growing, the role of NETs in

cancer immunotherapy remains unclear, particularly in HNSCC.

In this study, we have developed a novel NETs-score

signature consisting of seven NETs-related genes, and we have

found that NETs-score could reflect the response of HNSCC

patients to chemotherapy and immunotherapy. Lastly, we have

further identified the NET-related gene NIFK as a potentially

carcinogenic factor for patients with HNSCC.
Frontiers in Immunology 02
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Methods and material

HNSCC database handling

HNSCC-related clinical information has been downloaded

and collected from the TCGA database (519 patients, https://

xenabrowser.net/) and GEO database (ID: GSE41613 n = 97,

GSE42743 n = 103, GSE65858 n = 270, https://www.ncbi.nlm.

nih.gov/geo/). Transcriptional profiles of 989 HNSCC patients

were obtained from four cohorts, and the patients with

insufficient OS information were excluded (Table S1).

The Affymetrix and Illumina platforms were used to

generate raw data from the TCGA and GEO databases.

Background correction and normalization are achieved using a

robust multi-chip averaging (RMA) algorithm. The TCGA

database provides RNA sequencing data. The fragment per

kilobase (FPKM) values were converted to transcripts per

kilobase (TPM) values with signal intensities similar to the

RMA treatment.
Establishment of NET enrichment score

According to a recent study, we obtained a list of published

NET gene sets and the descriptions of the gene sets (25–27)

(Tables S2, S3). This NET-related gene set has a total of 69-gene

with NET-initial biomarkers. We first performed univariate cox

analysis to screen out the NET gene set associated with the

prognosis of HNSCC patients for subsequent enrichment score

calculation. NET-enrichment-score was calculated with single

sample Gene Set Enrichment Analysis (ssGSEA) for HNSCC

patients using the NET gene set associated with prognosis for

further analysis.
Establishment of a NET-related signature

We employed Spearman correlation analysis to identify genes

that were significantly positively correlated with NET-enrichment-

score (correlation coefficient >0.4 and P-value <0.05, termed NET-

related genes) and were selected for further analysis. Subsequently,

we performed univariate Cox regression analysis to identify NET-

related genes associated with the prognosis of HNSCC patients (P-

value <0.05). We then screened out more valuable NET-related

genes with prognostic potential by applying machine learning

algorithms through the R “CoxBoost” and “randomForestSRC”

packages. The NET-related signature named NET-score was

constructed from the list of NET-related genes with prognostic
frontiersin.org
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potential and weighted by their estimated regression coefficients in

the Lasso regression analysis. Finally, we verified the prognostic

evaluation performance of the NET-score. We estimated the NETs-

score of 519 patients in the TCGA–HNSCC dataset, and then

divided the patients into high and low NET-score groups based on

the P value of the best cut-off. Kaplan–Meier curve analysis of the

association between OS and NET-score. Time-ROC was used to

validate the efficiency and accuracy of the NET-score for 1-year, 3-

year, and 5-year prognosis prediction. Univariate and multivariate

cox regression analyses were performed on the NET-score.
Genomic alteration

Somatic mutation and somatic copy number variation

(CNV) data were collected from the TCGA dataset. Genomic

Identification of Important Targets in Cancer (GISTIC) analysis

was used to assess genomic signatures. The CNV landscape and

the copy number gain or loss of amplified or deleted peaks were

assessed by GISTIC 2.0 analysis (https://gatk.broadinstitute.org).
Assessing the immunological
profile of the TME

We first used the ESTIMATE (The Estimation of Stromal

and Immune cells in Malignant Tumor tissues using Expression)

algorithm to estimate the abundance of immune cells and the

infiltration level of stromal cells in HNSCC tumor tissue, which

were reflected by immune score, stromal score, and estimated

score, respectively. The Tumor Immune Estimation Resource2.0

(TIMER2.0, http://timer.cistrome.org/) web server was used to

comprehensively analyze the level of immune-infiltrating cells in

HNSC. Then, the relative proportions of 10 immune cells in the

tumor were estimated using the MCPcounter algorithm. The

infiltration levels of the 28 immune cells were represented by the

enrichment scores based on the corresponding features.

Enrichment scores were calculated using Single-Sample

Genomic Enrichment Analysis (ssGSEA) implemented using

the R Genomic Variation Analysis (GSVA) package. The

response of HNSCs to anti-PD1 and anti-CTLA4 therapy was

assessed by the submap algorithm. Response to anti-immune

checkpoint therapy was assessed by the TIDE algorithm (28).
Functional annotation of differently
expressed NET-related genes

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) gene sets were downloaded from the

MSigDB database (29). Gene Set Enrichment Analysis (GSEA)

and Gene Set Enrichment Analysis (GSEA) and GSVA are

implemented by the clusterProfiler R package and the GSVA R

package (30).
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Prediction of drug response

We first used the Pharmacogenomics Data of Cancer Drug

Sensitivity Genomics (GDSC, https://www.cancerrxgene.org/) to

predict drug susceptibility in the included HNSCC cases (31).

Drug responses were calculated with the oncoPredict R software

package for drug sensitivity (32).
Plate clone formation assay

The Cal27 and SCC25 cells were digested and then

resuspended in serum-free medium, and the cells were seeded

into a 6-well culture plate at a density of 103 cells per well.

Fourteen days later, the cells were continually cultured. Every 3

days, cells and clones were observed microscopically and sub-

cultured. After colony formation was completed, the colonies

formed by cells were photographed under a microscope and

washed three times with PBS. Then, add 1 ml of crystal violet

staining solution to each well and stain for 10–20 min. Finally,

the six-well plate that formed the clones was scanned.
Transwell assay

Cal27 and SCC25 cells were added to the upper chamber with

200 ml of serum-free medium. In the lower chamber, 650 ml of
medium containing 10% fetal serum was added. In the upper

chamber, the rest of the cells were removed with a cotton swab, and

those on the surface of the lower chamber were treated with 4%

paraformaldehyde for 15min at room temperature and stained with

0.1% gentian violet for 30 min. Cells from the lower chamber

(migrated cells) were imaged under an inverted microscope.
RNA interference assay

Short hairpin RNA (sh-RNA) sequences of NIFK were

synthesized by RiboBio (Guangzhou, China), and the target

sequences of sh-NIFK are as follows: sh-NIFK#1: CATCAGT

GAAACGGTATAATC, sh-NIFK#2:CGGATGGAGGA

GCGATTTAAA. Based on our previous study (30), lentivirus

vectors including short hairpin RNA were used for the RNA

interference assay.
Statistical analysis

TheWilcoxon test was used for data that did not conform to a

normal distribution. A t-test was used for normally distributed

data. Kaplan–Meier survival plots were used to estimate OS

between the two groups using the R package “survminer.” Cox
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regression for survival analysis was performed using the R package

“survival.” Time-dependent receiver operating characteristic

(ROC) curves were plotted using the R package “timeROC.” All

heatmaps were performed via the R “pheatmap” package. Data

were primarily visualized using ggplot2 R software (v4.1.2). A P-

value of <0.05 was considered statistically significant.
Results

Identification of NET-enrichment-scores
for the patients with HNSCC

Previous studies have applied 69 genes as the neutrophil

extracellular trap (NET)-initial biomarkers. To identify a NET-

relevant signature for HNSCC, the 69-gene NET-initial

biomarkers were applied in the uniCox regression analysis in

the TCGA-HNSCC training set, and we found 12 NET-

associated genes with prognostic potential in HNSCC,

including KCNJ15, CREB5, MME, F3, IL6, CXCL8, SELP,

VNN3, CTSG, KCNN3, SELPLG, and IL17A, where the

hazard ratio (HR) originated from uniCox regression analysis

for each gene was included (Figure 1A). The ssGSEA was then

applied to the TCGA-HNSCC with the 12 NET-associated

genes, and a NETs-enrichment-score was established on the

basis of their expression levels. Moreover, the correlation

analysis showed that there was a strong correlation between

the 12 NET-related genes (Figure 1B). Furthermore, the Kaplan–

Meier analysis of the 12 NET-related genes showed that the

survival of HNSCC patients was inversely correlated with the

NET-enrichment-score, implying that HNSCC patients with

high levels of the NET-enrichment-score may have a worse

prognosis (Figure 1C). Finally, a heatmap displayed the

correlation between the NET-enrichment-scores and the

clinical characteristics of HNSCC samples, referring to the

clinical stages, grade, gender, and age (Figure 1D). The results

showed that each of the NET-associated genes exhibited a strong

correlation with NET-enrichment-scores, which correlated with

the clinical characteristics of HNSCC patients.
Establishment of a 7-gene NET related
signature for HNSCC

Spearman correlation analysis identified 38 NET-related genes

were positively correlated with NET-enrichment-scores, based on

the criteria with correlation coefficient >0.4 and P-value <0.05.

Heatmap showed that these 38 NET-associated genes correlated

with NET-enrichment-scores and clinical futures of the HNSCC

patients (Figure 2A). To further screen out the more valuable NET-

related genes, univariate Cox regression analysis was performed to

further select out 34 NET-related genes of potential prognostic

value for HNSCC patients (P-value <0.05), and the univariate Cox
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analysis forest plot showed the HR of each single gene of the 34

NET genes for their prognosis (Figure 2B). Moreover, we used

machine learning algorithms by applying the R “CoxBoost” to

further select out nine NET-related genes (Figure 2C). Interestingly,

the randomForestSRC (RFC) enabled us to further screen out seven

NET-related genes, including NIFK, LINC00460, NUTF2,

LINC02454, ITGA5, TNFRSF12a, and PDGFa (Figure 2D).

Finally, the Lasso regression analysis was performed to calculate

new NET-scores using these seven prognostic and NET-related

genes based on their estimated regression coefficients (Figure 2E).

Each estimated regression coefficients of the prognostic-related

NET gene were following, 0.1936 ∗ ITGA5 + 0.4588 ∗
LINC00460 + 0.0361 ∗ LINC02454 + 1.1349 ∗ NIFK + 0.4079 ∗
NUTF2 + 0.4611 ∗ PDGF a + 0.2251 ∗ TNFRSF12 a.
Validation of the NET-scores for clinical
predicting the survival in HNSCC

To test if the 7-gene NET-score signature predicted the

clinical characteristics of the HNSCC patients, Kaplan–Meier

analysis revealed that HNSCC patients with higher NET-scores

had poor survival curves (Figure 3A). Additionally, both

univariate Cox and multivariate Cox regression analysis

showed that the NET-score of HNSCC patients was an

independent risk factor compared with other clinical factors,

such as tumor grade and gender (Figure 3B). As shown in

Figure 3C, the time-dependent ROC curves at 1 year, 3 years,

and 5 years of OS had AUC values of 0.685, 0.712, and 0.746,

respectively, and these results indicated that our NET-score

signature was of prognostic value. Furthermore, we used three

independent cohorts in the GEO database (ID: GSE41613,

GSE42743, and GSE65858) and further verified that HNSCC

patients with higher NET-scores had worse prognosis and

survival disadvantages (Figures 3D–F).
The NET-score was relevant to distinct
genomic alterations of HNSCC patients

To check if somatic mutations are linked to the NET-scores, we

conducted the Genomic Identification of Important Targets in

Cancer (GISTIC) analysis and the results showed that HNSCC

patients with either high or low NET-scores manifested respective

somatic mutations, including TP53, PIK3CA, NOTCH1, and

MUC17 (Figures 4A, B). Nevertheless, HNSCC patients with high

NET-scores appeared to have a higher trend of TP53 mutations as

compared to patients with low NET-scores, i.e., 71% vs. 63%,

respectively (Figures 4A, B). Moreover, analysis of the copy

number alterations showed that HNSCC patients with either high

or low NET scores displayed copy number changes significantly at

multiple chromosome loci (Figure 4C), probably related to the

clinicopathological features of the HNSCC patients.
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FIGURE 1

Characteristics of NET-enrichment in HNSC (TCGA). (A) Univariate Cox analysis results of 12 prognostic related NET genes in TCGA-HNSCC.
(B) Correlation map of 12 prognosis-related NET gene sets in TCGA-HNSCC. (C) Kaplan–Meier curve showing the correlation of NET-enrichment-
score with OS. (D) Heatmap showing the correlation of the NET-enrichment-score with 12 prognosis-related NET genes and their clinical features.
****,p<0.001.
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The NET-scores are conversely related
to immune infiltration for patients with
HNSCC in TCGA cohorts

To examine the relationship between NET-scores and the

immune status in patients with HNSCC in TCGA cohorts, we
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applied the ESTIMATE algorithm and found that HNSCC

patients with low-NET scores had significantly higher

ESTIMATE scores, higher immune scores, and higher stromal

cells than those with high-NET scores (Figure 5A), indicating

that the levels of NET scores are reversely correlated with

immune status in HNSCC patients. To confirm this
B
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FIGURE 2

Establishment of the NET score signature. (A) Heatmap of 38 NET-related genes significantly positively correlated with NET-enrichment-score.
(B) Univariate Cox analysis forest plot of 34 prognosis-related NET-related genes. (C) The machine learning method CoxBoost further screened
NET-related genes (34 dimensionality reduction to 9). (D) Machine learning method for survival random forest to further screen NET related
genes (reduced from 9 to 7). (E) Lasso regression method to calculate NET scores. ****,p<0.001.
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FIGURE 3

Predictive potential of the NET score for prognosis in HNSCC patients. (A) Kaplan–Meier curves of high and low NET scores in TCGA-HNSCC.
(B) Forest plot of univariate and multivariate Cox regression of NET-score based on TCGA dataset. (C) Time-dependent ROC of NET-score in
TCGA. (D–F) Kaplan–Meier curves of overall survival in HNSCC patients based on an external validation dataset.
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phenotype, the MCPcounter, ssGSEA, and TIMER algorithms

were independently used to reveal the abundance of immune

infiltrating cell populations based on the NET-scores, tumor

stages, tumor grade, gender, and age (Figure 5B). As a result, the

heatmap showed that many immune-infiltrating cells were
Frontiers in Immunology 08
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enriched in HNSCC patients with low NET-scores, including

CD8 T cells, cytotoxic lymphocytes, NK cells, and neutrophils

(Figure 5B). Additionally, the correlation analysis implied that

the NET-scores were negatively associated with the abundance

of neutrophils in HNSCC patients (Figures 5C, D). Moreover,
B

C

A

FIGURE 4

Genomic alterations associated with NET scores in HNSCC samples. (A,B) Waterfall plot of somatic mutations in HNSCCs between high and low
NET-score groups. (C) Copy number changes of HNSCCs between NET-score high and low groups.
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FIGURE 5

NET scores in relation to immunity in the TCGA cohort. (A) Changes in ESTIMATE among HNSCC patients with high and low NET scores. (B)
Heatmap showing the abundance of infiltrating immune cell populations for different NET scores according to MCPcounter, ssGSEA, and TIMER
algorithms. (C,D) Correlation of NET scores with Neutrophil_ssGSEA and Neutrophil_TIMER. (E) GSEA showing immune related pathways
potentially related by NET-score. ****,p<0.001.
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GSEA showed that several important immune-related pathways

were more involved in HNSCC patients with low NET-scores,

such as adaptive immune response, immune response, T-cell

receptor signaling pathways, and T-cell activation (Figure 5E).

Thus, our data revealed that the NET-scores for HNSCC patients

may be highly linked to the tumor immune microenvironment.
The potential immunotherapeutic and
chemotherapeutic response associated
with NET-score of HNSCC patients

Recent developments in immunotherapy, particularly PD-1

inhibitors, have led to the outperformance of traditional

chemotherapy in HNSCC at the recurrent and metastatic stages.

Using chemo-immunotherapy, chemotherapy interacts with

immune cell mechanisms to enhance current cancer treatment

strategies (33). To explore the therapeutic responsiveness based on

NET-scores, we first checked the correlation between the NET-

scores and the immune checkpoint levels in HNSCC patients. The

heatmap showed that HNSCC patients with low NET scores

tended to have higher levels of immune checkpoints, including

CD274 and CTLA4 (Figure 6A). Subsequent analysis of drug

sensitivity revealed that HNSCC patients with low NET-scores

were further enriched in the responders, but not in the non-

responders, when immune checkpoint inhibitors were performed

(Figures 6B, C). In contrast, patients with high NET-scores were

probably more non-responders as the immunotherapies were

applied (Figures 6B, C). Moreover, NET-scores were

significantly linked to the targeted therapies, including

afatinib, lapatinib, erlotinib, and ibrutinib, indicating that

patients with low NET-scores had a better response to the

targeted therapies (Figure 6D).
NIFK is a potentially prognostic factor
and oncogene for HNSCC patients

As shown in Figure 2D, NIFK was ranked at the top of the 7-

gene signature as per their variable importance. NIFK, a

nucleolar protein interacting with the fork head associated

(FHA) domain of Ki67, may play a role in cell cycle

progression and mitosis. However, the function of NIFK in

human cancer development is not clear. We therefore examined

the expression of NIFK in HNSCC samples and their matched

benign or normal tissues, and found that NIFK was significantly

expressed in the tumorous samples as compared to their normal

counterparts (Figure 7A). Further Kaplan–Meier analysis

implied that NIFK level is reversely correlated with the

survival of HNSCC patients using TCGA cohorts, showing

that HNSCC patients with high a level of NIFK had a worse

prognosis (Figure 7B). In addition, the GSVA heatmap showed

several NIFK associated pathways, such as GO immune-related
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functions and KEGG tumor-related pathways (Figure 7C). For

example, a high level of NIFK was closely linked to KEGG

pathways regulating cell cycle, DNA replication, and

proteasome, while a low level of NIFK was associated with

immune-related pathways involving natural killer cell

differentiation, leukocyte proliferation, and immune response

(Figure 7C). Subsequent analysis hinted that low levels of NIFK

were pertinent to levels of immune checkpoint in TCGA

(Figure 7D). Additionally, to address the oncogenic role of

NIFK in HNSCC, shRNA was used to knock down the mRNA

expression levels of NIFK in two HNSCC cell lines that are

widely used, such as Cal27 and SCC25. Using Transwell assay in

Cal27/SCC25 control, sh-NIFK#1 and sh-NIFK#2 cells, and the

results revealed that cell metastasis capacity in Cal27 and SCC25

cells was inhibited by NIFK shRNA (Figures 8A–D).

Subsequently, to investigate the effect of NIFK on the

proliferation of HNSCC, we conducted the plate cloning assay

with Cal27/SCC25 control, sh-NIFK#1, and sh-NIFK#2 cells,

and the results revealed that colony formation in Cal27 and

SCC25 cells was inhibited by NIFK shRNA (Figures 8E–H).

Thus, these data demonstrate that NIFK is a promising factor for

predicting the prognosis of HNSCC patients.
Discussion

Head and neck squamous cell carcinomas (HNSCCs) are

one of the most common malignant cancers (1, 34, 35). The

mainstay treatments for HNSCC at the early stage are surgery

and/or radiation, which benefit most patients with a good

prognosis (4, 36, 37). For HNSCC patients at the advanced or

late stages, systematic therapies are recommended, including

chemotherapy, targeted therapy, and immunotherapy (12, 38,

39). Although many HNSCC patients at the advanced/late stages

initially respond well to these treatments, most of them will

eventually fail and progress to recurrent and/or metastatic

diseases (2, 4, 40). For example, a randomized phase III

clinical trial to compare the efficacy between different

strategies of chemotherapy in advanced HNSCC showed that

patients treated by cisplatin and fluorouracil (CF) had a median

survival of 8.7 months, as compared to patients administered by

cisplatin and paclitaxel (CP) with a median survival of 8.1

months (41). Further studies have revealed that cetuximab (a

regimen of targeted therapy) plus platinum-fluorouracil

chemotherapy significantly improved overall survival (OS) of

recurrent or metastatic HNSCC to 10.1 months, as compared to

the OS of patients of 7.4 months treated by platinum-

fluorourac i l chemothe rapy a lone (42 ) . Recen t l y ,

immunotherapy has been widely used in a variety of human

cancers, including the recurrent or metastatic HNSCC (43, 44).

Emerging evidence has demonstrated that the immune

checkpoint targeting agent (such as Pembrolizumab) either

alone or combined with chemotherapy significantly prolongs
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FIGURE 6

Immunotherapy and chemotherapy of NET scores involved in TCGA-HNSCC. (A) Correlation of NET scores and immune checkpoint levels in
HNSCC. (B) Submap analysis of NET scores in TCGA-HNSCC. (C) TIDE analysis of NETs scores in TCGA-HNSCC. (D) Boxplots of estimated drug
sensitivities for several GDSC chemotherapeutics in the high and low NET scores groups. ****,p<0.001.
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OS of the recurrent/metastatic HNSCC with a CPS (the PD-L1

combined positive score) of ≥20, as compared to cetuximab with

chemotherapy (45, 46). Therefore, immunotherapy has been

recommended as the first-line therapy for recurrent,
Frontiers in Immunology 12
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unresectable, or metastatic head and neck cancers.

Nevertheless, either primary or acquired resistance will

eventually occur after treatment with immunotherapy. At

present, several mechanisms have been proposed to explain
B
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A

FIGURE 7

NIFK has an important role in TCGA-HNSCC. (A) NIFK levels in HNSCC samples grouped by cancer and para-cancerous status in TCGA. (B)
Kaplan–Meier curves of TCGA high and low NIFK groups. (C) GSVA heatmap showing functional pathways significantly associated with NIFK in
TCGA (GO immune-related functions and KEGG cancer-related pathways). (D) Association analysis showed that NIFK levels were related to
immune checkpoints in TCGA. ***,p<0.001; ****,p<0.0001.
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these resistant phenotypes, including tumors failing to produce

robust T-cell infiltration or tumors excluding T cells. However,

the exact mechanisms for the resistance are not completely

understood, which will continue to be the future direction in

the field (44, 47). Thus, a major hurdle emerging in the field of

cancer immunotherapy is the lack of reliable and predictable

biomarkers for many cancer patients, including HNSCC (48).

Neutrophil extracellular traps (NETs) participate in the

regulation of neutrophil development. They are web-like

structures consisting of chromatin and granule proteins (49,

50). NETs have been demonstrated to be linked with different

conditions via distinct mechanisms, such as inflammation, cell

damage, and vascular thrombosis (27, 51). Recently, increasing
Frontiers in Immunology 13
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evidence has shown that neutrophil extracellular traps (NETs)

play vital roles in tumor initiation, progression, recurrence, and

metastasis (27, 44). In particular, NETs may play essential roles

in the tumor microenvironment and are crucial to cancer

immunotherapy (52, 53). Additionally, several prognostic

models based on NETs have been shown in various human

cancers. However, whether NETs are also implicated in HNSCC

development and if NETs offer prognostic and predicative value

for HNSCC is not understood. Li et al. have shown that oral

squamous cell carcinoma (OSCC) patients with late stages (III/

IV) had a higher level of NETs compared to early stages (I/II),

and NETs dictate a procoagulant phenotype that can be partially

dampened by DNase I (54). Moreover, a recent study has
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FIGURE 8

NIFK promotes tumor cell proliferation and metastasis in HNSCC. (A) Transwell migration assay in Cal27 cells silenced with control (sh-NC) or
NIFK sh-RNA (#1 and #2). (B) Quantitative analysis of Transwell assay in Cal27 control and sh-NIFK#1 and sh-NIFK#2 cells. (C) Transwell assay
in SCC25 control and sh-NIFK#1 and sh-NIFK#2 cells. (D) Quantitative analysis of Transwell assay in SCC25 control and sh-NIFK#1 and sh-
NIFK#2 cells. (E) Plate cloning assay in Cal27 control and sh-NIFK#1 and sh-NIFK#2 cells. (F) Quantitative analysis of plate cloning assay in
Cal27 control and sh-NIFK#1 and sh-NIFK#2 cells. (G) Plate cloning assay in SCC25 control and sh-NIFK#1 and sh-NIFK#2 cells.
(H) Quantitative analysis of plate cloning assay in SCC25 control and sh-NIFK#1 and sh-NIFK#2 cells. ***P <0.001.
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identified a 6-gene signature associated with NETs, consisting of

LTF, CYBB, SELPLG, GAPDH, ANXA3, and CSF2, which

contributes to a clinical prognostic model for HNSCC (55).

To explore the prognostic biomarkers for HNSCC, we have

conducted a series of analyses and validations in the current

study, and our findings have novel points. First, we

systematically applied 69 NET-initial biomarkers using TCGA-

HNSCC datasets and identified 12 NET-related genes potentially

predictive of prognosis for HNSCC. Second, further analysis has

identified seven NET-related genes, including NIFK,

LINC00460, NUTF2, and LINC02454, some of which are

potentially predictive biomarkers for human cancers. For

instance, NUTF2 has been reported to be highly expressed in

HNSCC, associated with a poor prognosis and related to

immune cells, which may serve as a potential biomarker and

target for HNSCC (56–58). Additionally, previous studies have

established a 12-gene signature based on the fatty acid

metabolism to predict the prognosis of HNSCC, which contain

the long non-coding RNA, LINC00460, indicating its predictive

role for HNSCC (36, 59, 60). Also, another long non-coding

RNA, LINC02454, is linked to predicting the prognosis of

thyroid cancer (61, 62). In our study, we set up NET scores

based on the seven prognostic-related NET genes, and HNSCC

with low-NET scores was related to better prognosis and survival

of patients. Importantly, our data hinted that the NET scores for

HNSCC patients may be correlated with clinical traits for

prognostic prediction (Figures 3, 4). Third, HNSCC patients

with low-NET scores had higher immune scores, higher stromal

cells, and immune-related pathways, which responded well to

immunotherapy and targeted therapies (such as afatinib and

lapatinib). Thus, our findings suggest that the seven NET-related

gene signatures are predictive of prognosis for HNSCC.

In the current study, we identified that NIFK was highly

upregulated in HNSCC patient samples as compared to normal

tissues, and HNSCC patients with a high level of NIFK had a

worse prognosis and a shortened life span, indicating that NIFK

is a potential prognostic biomarker for HNSCC, although

further functional validation is required. In Figure 7, our

characterizations have found that levels of NIFK were related

to cell cycle and DNA replication as well as WNT and P53

signaling pathways. In support of the previous reports showing

that NIFK is vital for cell cycle progression via RNA recognition

motif dependent pre-rRNA maturation (63). Nevertheless, how

NIFK functions in human cancers is largely unknown. Recent

studies have shown that NIFK is indispensable for lung cancer

development through Ki-67 dependent cell proliferation and

CK1a/b-catenin activated metastasis (64). Whether NIFK plays

a similar role in HNSCC development is not clear, and more

work is needed for its verification. Our present study has also

found that NIFK involvement in HNSCC progression is linked
Frontiers in Immunology 14
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with immune response and immune associated pathways

(Figure 7), hinting that NIFK is also a potential therapeutic

target for immunotherapy for HNSCC, although future work is

required to validate this conjecture.

However, our current study has potential limitations. For

instance, detailed experimental studies must be added to explore

the possible mechanisms of NIFK regulation in HNSCC using

cell lines, animal models, and human samples. Furthermore, our

seven NET-related gene signatures and our NET scores must be

validated in the clinics via large-cohort and multicenter studies.

Moreover, there exist several gene signatures (including this

study) to predict the prognosis of HNSCC. Future studies should

be considered to compare the similarities and differences among

these signatures and to select the representative targets for

HNSCC treatment.
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Machine learning reveals two
heterogeneous subtypes to
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lipid metabolism in
lung adenocarcinoma

Xuyu Gu1, Shiyou Wei2, Zhixin Li3* and Huan Xu2*

1School of Medicine, Southeast University, Nanjing, China, 2Department of Anesthesiology,
Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China,
3Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji
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Background: Lipid metabolism pivotally contributes to the incidence and

development of lung adenocarcinoma (LUAD). The interaction of lipid metabolism

and tumor microenvironment (TME) has become a new research direction.

Methods: Using the 1107 LUAD records from the Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases, a comprehensive exploration

was performed on the heterogeneous lipid metabolism subtypes based on lipid

metabolism genes (LMGs) and immune-related genes (LRGs). The clinical

significance, functional status, TME interaction and genomic changes of

different subtypes were further studied. A new scoring system, lipid-immune

score (LIS), was developed and validated.

Results: Two heterogeneous subtypes, which express more LMGs and show

the characteristics of tumor metabolism and proliferation, are defined as lipid

metabolism phenotypes. The prognosis of lipid metabolism phenotype is poor,

and it is more common in patients with tumor progression. Expressing more

IRGs, enrichment of immunoactive pathways and infiltration of effector

immune cells are defined as immunoactive phenotypes. The immunoactive

phenotype has a better prognosis and stronger anti-tumor immunity and is

more sensitive to immunotherapy. In addition, KEAP1 is a driving mutant gene

in the lipid metabolism subtype. Finally, LIS was developed and confirmed to be

a robust predictor of overall survival (OS) and immunotherapy in LUAD patients.

Conclusion: Two heterogeneous subtypes of LUAD (lipid metabolism subtype

and immune activity subtype) were identified to evaluate prognosis and

immunotherapy sensitivity. Our research promotes the understanding of the

interaction between lipid metabolism and TME and offers a novel direction for

clinical management and precision therapy aimed to LUAD patients.
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Introduction

As the most frequent malignancy, lung cancer causes the

highest cancer-related deaths around the world (1). Lung cancer

can appear in different histological types among which, non-

small cell lung cancer (NSCLC) is the most common type with

about 85% proportion of all lung cancer patients (2). Lung

adenocarcinoma (LUAD) is the most abundant subtype of

NSCLC, accounting for about 55% (3). LUAD is a

heterogeneous disease with different clinical prognosis and

drug response results. It is worth noting that despite the great

progress in clinical diagnostic methods and multimodal treating

approaches, the 5-year overall survival (OS) rate of patients with

advanced lung cancer has remained very low (4). Therefore,

LUAD patients are still in an urgent need for new early diagnosis

and clinical intervention methods.

During cancer occurrence and progression, the immune

system and the tumor cells are in complex interaction. On one

hand, demand for local nutrition and oxygen highly increases

due to fast proliferation of tumor cells. On the other hand, the

same reason causes poor local vascularization, resulting in

acidosis and hypoxia in the tumor microenvironment (TME)

as well as local glucose deficient (5–7). Eventually, lipids existing

in the TME begin to be used main as the alternative source of

energy in both tumor tissues and immune cells to compensate

for the energy shortages (8). Lipids also contribute to the biofilm

formation, supplying the biomass production, and mediating

some complex signaling pathways contributing to the growth

and migration of cancer cells (9). In addition, the affinity of

cancerous cells for lipids and cholesterol increases, directly

leading to lipid accumulation in the TME and developing

malignancy in the tumor tissues (10). Although, the lipid

metabolic reprogramming and dysfunction as well as its dual

impact in the TME and immune responses to tumor is not

exactly recognized yet. Such further elaboration is essentially

required for developing specific treatments based on the anti-

tumor immune responses.

The present study aimed to survey the crosstalk between

lipid metabolism and tumor immune response in LUAD

patients and identified two heterogeneous subtypes (lipid

metabolism subtype and immune activity subtype). These two

subtypes show specific differences in clinical outcomes,

biological functions, immune infiltration and genomic

variation. In addition, a lipid-immune score (LIS) was

developed and validated, which shows significant advantages
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in predicting prognosis and immunotherapy response. In

conclusion, our work strengthens the understanding of the

complex role between lipid metabolism and immune system in

LUAD and provides a new perspective and reference for the

accurate prediction and immunotherapy of LUAD patients.
Methods

Data extraction

Transcriptome RNA-seq data (HT-seq FPKM), mutation

data (mutect2 tool), copy number variation (CNV), and their

corresponding clinical information (from Cancer Genome

Atlas-lung adenocarcinoma, tcga-LUAD queue) were obtained

(https://portal.gdc.cancer.gov/repository). After excluding

patients who lost follow-up and clinical information, 492

LUAD samples were collected. These data were used as

discovery queues after Transcripts per million (TPM)

standardization. In addition, three independent data sets from

the GEO database were collected, including GSE30219 from

GPL570 platform, GSE42127 from GPL6884 platform, and

GSE72094 from GPL15048 platform. In order to prevent the

batch effect of chips, three GEO data sets were combined

through the combat function of the “sva” package and the data

were log2 standardized (11). Finally, a total of 615 GEO meta

queues containing LUAD samples with complete clinical

information were used as external validation queues. Finally,

two immunotherapy cohorts were collected to verify the model’s

prognostic power: NSCLC cohort GSE135222 receiving

Programmed Death-1(PD-1) treatment, including 27 patients

(12) and Imvigor210, a cohort of advanced urothelial carcinoma

cases undergoing anti-Programmed Cell Death-Ligand 1 (PD-

L1) immunotherapy, including 298 patients (13).
Identification of lipid and immune
subtypes of LUAD

Lipid metabolism genes (LMGs) were obtained from the

Molecular Signatures Database (MSigDB) (http://www.gsea-

msigdb.org/gsea/index.jsp), containing 1426 LMGs (14). The

immune-related genes (IRGs) were obtained from the

“ImmPort” database (https://www.immport.org/resources)

(15). It contains a total of 1638 IRGs defined as functional and
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immune related. A detailed list in Table S1 to indicate the lipid

genes and immune genes we used. First, LMGs and IRGs with

independent prognostic efficacy were evaluated by univariate

Cox regression analysis, and candidate genes were identified

according to the threshold of p < 0.05. According to the

transcriptional map of candidate genes, consensus clustering

was conducted in the discovery queue and validation queue

through the ConsensusClusterPlus package (16). Pam

unsupervised clustering algorithm was adopted in this analysis,

and 1000 iterations were carried out based on Euclidean

distance. Eighty per cent of the samples were randomly

selected in each iteration. The number of clusters was set to 2-

5, and the optimal cluster number was jointly determined using

the consensus matrix and cumulat ive distr ibut ion

function (CDF).
Functional enrichment and immune
infiltration analysis

Significant differentially expressed genes (DEGs) between

subgroups were identified by ‘limma’ package in R program

according to the threshold of False Discovery Rate (FDR) < 0.05

and fold change (FC) > 2. The functional enrichment of DEGs

was achieved using metascape (www.metascape.org/) database.

Gene Set Enrichment Analysis (GSEA) was conducted among

subgroups and significantly altered pathways were selected using

Kyoto Encyclopedia of Genes and Genomes (KEGG) by p < 0.05.

Based on the previously published molecular markers,

ssGSEA analysis was performed using the ‘gsva’ package in R

program to evaluate the biological pathway activity of the

samples which included angiogenesis, epithelial-mesenchymal

transition (EMT), myoid inflammation, and molecular markers

of other immune related pathways (17–20). Molecular markers

of hypoxia were collected from MSigDB (14). Detailed pathway

gene markers were displayed in Table S2. The relative infiltration

abundance of 22 different immune cell types was evaluated by

‘cibersoft’ package in R program (21). The immune activity and

tumor purity of tumor samples were evaluated by Estimate

algorithm (22). Finally, the microsatellite instability (MSI)

score, indel neoantigens and SNV neoantigens of samples

from the study of Thorsson et al. (23).
Analysis of the genome variation map
between subgroups

The mutation data was processed with ‘maftools’ package in

R package. First, the total number of mutations in the sample

was measured, and then, the genes with the minimum mutation

number > 30 were identified. The difference of mutation

frequency of high-frequency mutation genes between the two
Frontiers in Immunology 03
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subgroups was compared using the chi square test and visualized

with maftools (24). CNV data were processed by Gistic 2.0

software. Based on the threshold of 0.2, significantly amplified

and deleted chromosome segments were identified, and CNV

differences on chromosome arms were evaluated. The CNV

results were visualized by ‘ggplot2’ R package.
Constructing lipid-immune score

DEGs contained in all cohorts were selected for further

analysis based on the above identified DEGs between the two

subtypes. Univariate Cox regression analysis revealed the

prognostic value of these genes. Subsequently, genes with

statistical significance (p < 0.05) were incorporated into the

Cox proportional hazard model with Least absolute shrinkage

and selection operator (Lasso) penalty, and 300 iterative searches

were carried out to find the most robust model. In order to

prevent over fitting, five-cross validation was set up. The model

with the highest frequency in 300 iterations was used as the final

prognostic model and the lipid-immune score (LIS) was

generated according to the formula: LIS = ∑iCoefficient

(mRNAi) × Expression(mRNAi). The ‘survcomp’ package in R

program was used to calculate the consistency C index and

evaluate the prognostic value of the risk score (RS) in the

training and verification sets. The higher C index indicates the

more accurate prognostic power of the model (25). The high-risk

group and low-risk group were divided based on their median

FRS, and the prognostic value of the risk model was calculated

using Kaplan-Meier (KM) survival curve, univariate and

multivariate Cox regression, time-dependent ROC curve

(tROC), and subgroup analysis system.
Predicting immunotherapy response

According to previous studies, the immunophenoscore (IPS)

of the sample was calculated. Briefly, IPS is calculated from

transcriptomic data of representative genes for different

immunophenotypes and normalizes the final result to 0-10.

Samples were positively weighted according to effective

immune cells and negatively weighted according to

suppressive immune cells, and then applied Z-score averaged.

Z-score ≥ 3 was defined as IPS10 and Z-score ≤ 0 was defined as

IPS0. The higher the IPS, the better the immunotherapy

response (26). The Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu) was

applied to predict the patients’ response to the anti-PD-1 and

anti-CTLA-4 treatments (27–30). Finally, the predictive power

of LIS was evaluated in two external immunotherapy cohorts

(GSE135222 and Imvigor210).
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Statistical analysis

Pearson chi square or Fisher exact tests were applied to

compare categorical variables. The continuous variables were

compared between the two groups by Wilcoxon rank sum test.

The KM curve was drawn by ‘survminer’ package and the

tROC analysis was carried out by ‘survivalROC’ package both

in R program. The univariate and multivariate Cox regression

was completed by ‘survival’ package in R program. The ‘rms’

package in R was used to draw nomograms and calibration

curves, and decision curve analysis (DCA) was carried out

through DCA package (31). The ROC curve used to predict

immunotherapy was performed by the ‘pROC’ package. Two

tailed p < 0.05 was considered statistically significant unless

otherwise specified.
Frontiers in Immunology 04
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Results

Parsing LMGs and IRGs in LUAD

The design of our study is shown in Figure S1. Univariate

Cox regression analysis displayed 155 LMGs and IRGs with

prognostic value (p < 0.05). The forest map showed the

prognostic candidate genes of top15 (Figure 1A). Detailed Cox

results are provided in Table S3. Figure 1B summarizes the

mutation of top15 candidate genes. Specifically, the mutation

type is single nucleotide mutation, and the genes with the highest

mutation frequency are VEGFC (24%) and tnfrsf11a (10%). The

waterfall diagram shows their mutation map in the tcga-LUAD

cohort (Figure 1C). The histogram summarizes the CNV of the

top15 candidate genes in tcga-LUAD, and the results show that
B
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FIGURE 1

Genomic map of LMGs in LUAD. (A) univariate Cox regression analysis revealed the prognostic LMGs of Top15. (B) Summary of LMGs mutation
events in tcga-LUAD. (C) Oncoplot showed the mutation map of LMGs. (D) Summary of CNV events of LMGs in tcga-LUAD. (E) The circle
diagram shows the overall CNV characteristics of LMGs on chromosomes. (F) Correlation network of LMGs.
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they have a wide range of CNV events. Lpgat1 was the most

amplified gene, and raet1e was the most deleted gene

(Figure 1D). The circle chart shows the overall CNV of the

top15 candidate gene on the chromosome (Figure 1E). Finally,

the interaction of top15 candidate genes was analyzed, and the

correlation network showed that they were highly positively

correlated (Figure 1F).
Identification of lipid and immune
subtypes

Consensus clustering was performed on the discovery queue

and GEOmeta queue from tcga-LUAD by ConsensusClusterPlus.

According to the CDF curve of consensus score, k = 2 was found

to be the best choice (Figure 2A, Figure S2A). The consensus

matrix also confirmed this result (Figure 2B, Figure S2B). Based

on the transcriptional profiles of candidate LMGs and IRGs, lipid

metabolism subtypes and immune activity subtypes were defined
Frontiers in Immunology 05
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(Figure 2C, Figure S2C). IRGs were significantly increased in

immunoactive subtypes, while LMGs were significantly increased

in lipid metabolism subtypes. According to the survival analysis,

lipid metabolism subtypes in the cohort was significantly worse

compared to that of immune activity subtypes (p = 0.001,

Figure 2D). A worse clinical outcome of lipid metabolism

subtypes was confirmed in the validation cohort (p < 0.001,

Figure S2D). In addition, the tcga-LUAD cohort had more

detailed clinical follow-up information. There was a significant

increase in patients with disease progression in the lipid

metabolism subtype (Figures 2E, F).
Biological function difference between
two subtypes

First, the DEGs between the two subtypes were identified

by limma package. According to the threshold of FDR < 0.05

and FC > 2, a total of 1597 DEGs were identified, of which
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FIGURE 2

Identification of lipid and immune subtypes. (A) CDF curve of consensus matrix of different K (B) Consensus matrix when k = 2. (C) Expression
heat maps of LMGs and IRGs in the two subtypes. (D) Survival curve of two subtypes in TCGA cohort. (E) The proportion of subtypes in LUAD
patients with different outcomes. (F) Clinical outcomes of patients with different subtypes of LUAD.
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1233 were up-regulated in immunoactive subtypes and 362

were up-regulated in lipid metabolism subtypes. Detailed

results are provided in Table S4. Based on the functional

enrichment analysis, the up-regulated genes in immunoactive

subtypes mainly regulate cell activation, inflammatory

response, cel l adhesion and lymphocyte migrat ion

(Figure 3A), and Figure 3C showed the functional

interaction network of immunoactive subtypes. The up-

regulated genes in lipid metabolism subtypes mainly

regulate biological oxidation, epithelial cell differentiation

and glucose homeostasis (Figure 3B). Figure 3D shows the

functional interaction network of lipid metabolism subtypes.

GSEA analysis showed that the pathways enriched in

immunoactive subtypes were mainly B-cells receptor, T-

cells receptor, Toll-like receptor signal pathway and NK-

cells killing activity (Figure 3E). The pathways enriched in

lipid metabolism subtypes were fatty acid metabolism,

protein secretion and TCA cycle pathway (Figure 3F). In

conclusion, these results confirm that the immunocompetent

subtype has stronger antitumor immune activity, while the

tumor cells of the lipid metabolism subtype have stronger

metabolic and proliferative activity, which may lead to the

difference in prognosis between the two.
Frontiers in Immunology 06
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Difference of immune infiltration
between two subtypes

The immune infiltration degrees were systematically

compared between the two subtypes. First, the estimate

algorithm showed that the immune activity subtype had a

higher immune score, while the lipid metabolism subtype had a

higher tumor purity (Figure 4A), which was confirmed in the

validation queue (Figure S3A). The expression differences between

five classical immune checkpoints and therapeutic targets (PD-L1,

CD8A, CTLA-4, LAG-3, PD-1) were then examined. The results

showed that the five checkpoints were significantly up-regulated

in immunoactive subtypes (Figure 4B), and the validation cohort

(Figure S3B). Through ssGSEA algorithm, we found that except

for myeloid inflammation, other immune pathways were up-

regulated in the immune activity subgroups. In particular, the

activity of EMT pathway in the immunoactive pathway was also

up-regulated (Figure 4C). Similar results were observed in the

validation cohort. It is worth noting that the activity of

angiogenesis pathway in lipid metabolism subtypes was up-

regulated in the validation cohort (Figure S3C). Finally,

cibersort results showed that NK cells, plasma cells and natural

B cells increased in immunoactive subtypes, while Tregs increased
B
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FIGURE 3

Functional enrichment of different subtypes. (A) Functional enrichment of characteristic genes of immune activity subtypes. (B) Functional
enrichment of lipid metabolism subtype characteristic genes. (C) Functional network of immunoactive subtypes. (D) Functional network of lipid
metabolism subtypes. (E) KEGG pathway enriched in immunocompetent subtypes. (F) KEGG pathway enriched in lipid metabolism subtypes.
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in lipid metabolism subtypes (Figure 4D). In addition, higher

Tregs in lipid metabolism subtypes were also confirmed in the

validation cohort (Figure S3D). In conclusion, these results convey

that the immunoactive subtype has more antitumor immune

activity and effector immune cells, while the lipid metabolism

subtype is inhibited by higher Tregs infiltration.
Analysis of genome changes among
subtypes

The original mutation data were processed with maftools

package. Chi square test showed that the mutation frequency of
Frontiers in Immunology 07
268
KEAP1, KRAS and SPTA1 in lipid metabolism subtypes

increased, especially KEAP1 (Figure 5A). The waterfall

diagram shows the mutation map difference of a total of 32

high-frequency mutant genes between the two subtypes

(Figure 5B). The TMB of each patient was calculated, and the

results showed that the lipid metabolism subtype had a higher

TMB, but the difference between the two subtypes was not

significant (Figure 5C). CNV leads to chromosome variation in

another way. We then evaluated the correlation between FRS

and CNV and found that the amplification and deletion levels of

immunoactive subtypes were significantly higher at the

chromosome arm level (Figure 5D). The box diagram showed

no significant difference in the total number of chromosome
B
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FIGURE 4

Immune infiltration analysis of different subtypes. (A) The difference of Estimate score between the two subtypes. (B) Differences in the
expression of six typical immune checkpoints (PD-L1, CD8A, CTLA-4, LAG-3, PD-1) between the two subtypes. (C) Differences in the activity of
immune related pathways between the two subtypes. (D) The difference of immune cell infiltration between the two subtypes. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001; ns p > 0.05.
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amplification between the two subtypes (Figure 5E), and the

number of chromosome deletions in the lipid metabolism

subtype increased significantly (Figure 5F).
Immunoactive subtypes that are more
sensitive to immunotherapy

The functional differences and immune landscape among

subgroups suggest that patients with immunoactive subtypes

may have better immune treatment response. According to the

literature, better immunotherapeutic efficacy is in close relation to

the increase in the number of neoantigens (32, 33). Therefore, we

first evaluated the difference in the number of neoantigens

between the two subtypes, and the results showed that the

immunoactive subtypes have more SNV neoantigens and Indel

neoantigens (Figures 6A, B). Recent studies have shown that MSI

score is expected to become a new predictor of immunotherapy

(34). However, there is no significant difference in MSI score

between the two subtypes (Figure 6C). IPS can systematically

evaluate the activity of effector immune cells and immune

treatment response of patients. The discovery queue showed
Frontiers in Immunology 08
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that IPS of immunoactive subtypes was significantly higher than

that of lipid metabolism subtypes (Figure 6D), and the response

rate of immunoactive subtypes to immunotherapy predicted by

TIDE algorithmwas higher than that of lipid metabolism subtypes

(Figure 6E). Although there was no significant difference in IPS

between the two subtypes in the validation cohort, the

immunoactive subtypes in the validation cohort also had a

higher response to immunotherapy (Figures 6E, F). In

conclusion, our results suggest that immunoactive subtypes are

more sensitive to immunotherapy.
Constructing and validating LIS

First, 1597 DEGs were analyzed by univariate Cox regression

to identify the prognostic valuable DEGs. According to the

threshold of p < 0.001, a total of 88 DEGs with prognostic

significance were identified. Then, these 88 DEGs were recruited

for Lasso regression to simplify the model. After 300 iterations,

the model with 22 DEGs was the most stable showing a suitable

efficacy in the training queue as well as the validation queue (C

index > 0.6, Figure 7A). According to the best l (0.02631), the
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FIGURE 5

Genome driven events of different subtypes. (A) The forest map shows the genes with significant mutation differences between the two
subtypes. (B) Oncoplot showed the mutation landscape of top25 mutation driver gene among subtypes. (C) The difference of TMB between the
two subtypes. (D) The histogram analyzed the CNV events on the chromosome arm among subtypes. (E) Differences in overall amplification
events among subtypes. (F) Differences in overall missing events among subtypes. *p < 0.05; ***p < 0.001;
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best model of 22 genes was identified (Figure 7B), and LIS was

generated according to the formula: LIS = ∑iCoefficient(mRNAi)

× Expression(mRNAi), detailed coefficients of 22 LIS genes can

be found in Table S5. According to the survival analysis, patients

with high LIS showed significantly less survival rate compared to

the patients with low LIS (p < 0.001, Figure 7C), which was

confirmed in the validation cohort (p < 0.001, Figure S4A).

Based on the ROC analysis, the AUC values of the model in 1

year, 3 years, and 5 years were 0.792, 0.714, and 0.711,

respectively (Figure 7D). In the external validation queue, LIS

also had satisfactory prediction efficiency, specifically, 0.68 in 1

year, 0.69 in 3 years, 0.69 in 5 years and 0.71 in 8 years (Figure

S4B). Figure 7E shows that the survival status of patients with

high LIS were significantly worse compared that of patients with

low LIS, and similar results were observed in the validation

cohort (Figure S4C). TROC analysis showed that LIS was the
Frontiers in Immunology 09
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best predictor of OS (Figure 7F), and the effectiveness of LIS and

Stage was equivalent in the validation queue (Figure S4D).

Finally, univariate Cox regression confirmed that LIS was an

independent prognostic indicator in both training and validation

sets (p < 0.0001, Figure 7G). Multivariate Cox regression showed

that LIS was still an independent prognosticator for OS in the

training and validation cohorts after correcting for other factors

(p < 0.0001, Figure 7H).
Quantifying the risk of individual LUAD
patients

Subgroup analysis showed that LIS in the training cohort

showed excellent predictive ability in different clinical subgroups

except patients in stage 3 and stage 4 (p < 0.001, Figure 8A). In the
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FIGURE 6

Immunotherapeutic sensitivity of different subtypes. (A) Differences in SNV neoantigens between the two subtypes. (B) The difference of indel
neoantigens between the two subtypes. (C) The difference of MSI score between the two subtypes. (D) IPS differences between subtypes in
TCGA cohort and (F) GEO cohort. The TIDE algorithm predicts the immune treatment responses of different subtypes in (E) TCGA queue and
(G) GEO queue.
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validation cohort, LIS was able to distinguish patients with poor

survival except for patients in stage 2-4 (p < 0.05, Figure S4E). These

results suggest that LIS shows better performance in predicting early

LUAD patients. For better quantifying of the death risk in

individual LUAD patients, nomograms were constructed based

on LIS (Figure 8B). Nomogram correction curve shows that

nomogram model has good stability and accuracy in 1, 3 and 5

years (Figure 8C). TROC analysis showed that compared with

clinical characteristics, nomogram model was the best predictor

(Figure 8D). DCA was then performed to calculate the decision-

making benefits of nomogram model. The results showed that

nomogram was suitable for risk assessment of LUAD patients in 1,

3 and 5 years (Figure 8E).
LIS in predicting immunotherapy

First, TIDE was used to evaluate the difference of

immunotherapy response between patients with high LIS and
Frontiers in Immunology 10
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patients with low LIS. According to the results, patients with low

LIS showed to be more benefitting from immunotherapy

(F igure 9A , F igure S5A) . Then five wide ly used

immunotherapy biomarkers were calculated, including MDSC,

MSI score, IFNG, CD8 and CD274. In the training cohort and

validation cohort, LIS provided higher accuracy in predicting

immunotherapy (Figure 9B, Figure S5B). Then, two

immunotherapy cohorts were included to further study

whether LIS cou ld pred ic t pa t i en t s ’ re sponse to

immunotherapy. Consistent with the above, patients with high

LIS showed worse survival in these two immunotherapy cohorts

(Figures 9C, D). Finally, the relationship between LIS and

neoantigens and TMB in Imvigor210 cohort was evaluated.

The results showed that LIS had no strong correlation with

neoantigens and TMB. However, patients with low LIS had

higher neoantigens (Figures 9E, F). Overall, our study strongly

confi rms LIS a s a prognos i s f a c to r fo r OS and

immunotherapeutic response of patients, and is superior to

widely used biomarkers.
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FIGURE 7

Building and verifying LIS. (A) Identifying the best Lasso model. Left: the frequency of different gene combinations in Lasso Cox regression
model; Right: the best model is C-index in TCGA and GEO queues. (B) According to the best l = 0.02631, the best 22-genes model was
selected. (C) Survival curve of high and low LIS subgroups. (D) ROC analysis of LIS in TCGA queue. (E) The scatter plot shows the survival status
of patients with different LIS in the TCGA cohort. (F) TROC curve of LIS in TCGA queue. (G) Univariate Cox regression analysis of OS in TCGA
and GEO cohorts. (H) Multivariate Cox regression analysis of OS in TCGA and GEO cohorts.
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Discussion

Lung cancer is themain cause of cancer-related death and LUAD

is themost common histological subtype with themost patients at the

advanced stage on the initial diagnosis (35, 36). Although a variety of

targeted therapies and new chemotherapeutic drugs have been
Frontiers in Immunology 11
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approved, the OS of advanced patients is still not ideal (4). Lipid

metabolism has long been reported as the main energy source of

cancer cells and is involved in the incidence and development of

cancer (8). Recently, the dual regulation of lipid metabolism on

immune response in TME has attracted extensive attention and has

become a promising target for targeted therapy (6, 10). Our study
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FIGURE 8

Quantifying individual LIS related risks. (A) Subgroup analysis of LIS in patients with different clinical characteristics. (B) LIS based nomograms
were used to quantify individual patient risks. (C) Nomogram calibration curves at 1, 3 and 5 years. (D) TROC curve of nomogram. (E)
Nomogram DCA curve in 1, 3 and 5 years.
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identified and verified two heterogeneous subtypes in LUAD, one of

which was an effector immune cell with more expression of IRGs,

enrichment of immunoactive pathways and high abundance, which

was defined as an immunoactive subtype. Another kind of

suppressive immune cells expressing more LMGs and high

abundance, showing the characteristics of tumor metabolism and

proliferation, was defined as lipid metabolism subtype. We verified

the stability and repeatability of the two subtypes in a GEO meta

cohort. These two subtypes also showed heterogeneity in genome

driven events, clinical outcomes, and immunotherapy responses. In

addition, a robust prognostic feature was proposed based on these

two subtypes: LIS. Further analysis showed that LIS shows a leading

advantage in predicting the immunotherapy of LUADpatients. These

results promote the understanding of the interaction between lipid

metabolism and TME and offer a new direction for clinical

management and precision treatment of LUAD patients. These two

subtypes showed different clinical characteristics. The survival of

immunoactive phenotype was significantly better than that of lipid

metabolism phenotype, and patients with more disease progression

were in lipid metabolism phenotype. Functional enrichment

indicated that metabolic related pathways and cell-cycle related

pathways were enriched in the lipid metabolism phenotype, while

effector immune cell receptor signaling pathways and immune related

pathways were enriched in the immunoactive phenotype. In addition,

immune infiltration analysis also suggested that there was higher

effector immune cell infiltration in the immunoactive phenotype, and

more tumor cells and inhibitory immune cells in the lipidmetabolism

subtype. These results suggest the hypermetabolism and proliferation
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of tumors in the lipid metabolism subtype and explain the worse

survival rate and tumor progression of patients with this subtype (37).

More effector immune cells and stronger immune activity in the

immunoactive phenotype play an anti-tumor role, resulting in better

survival and tumor remission of patients (38).

Next, in order to elaborate the molecular characteristics of

the two subtypes, the genomic alterations of the two subtypes

were compared. In general, there was a higher TMB in the lipid

metabolism subtype. It is worth noting that the mutation

frequency of KEAP1 gene in the lipid subtype was significantly

increased compared to that in the immunoactive phenotype.

KEAP1 is an essential regulator of cell homeostasis and

antioxidant stimulation (39). Studies have reported that this

mutation is common in NSCLC with close correlation to higher

tumor growth and invasiveness (40). Additionally, tumors

bearing KEAP pathway mutations have been reported in

preclinical and clinical studies, which have stronger resistance

to traditional treatment methods, such as chemotherapy,

radiotherapy, and targeted therapy (41–43). In addition, we

found that the amplification and deletion levels of

immunoactive subtypes were significantly higher at the

chromosome arm level, and the deletion levels of lipid

metabolism subtypes were higher in general. The contradictory

results may suggest that CNV does not seem to be playing a

pivotal role in regulating the differences between subtypes. In

general, the genomic changes of these two subtypes are mainly

mediated by gene mutations, especially KEAP1, which may

contribute to the heterogeneous response of subtypes to tumor
B

C

D

E

F

A

FIGURE 9

LIS in predicting immunotherapy. (A) TIDE algorithm predicted the response rate of immunotherapy with high LIS and low LIS. (B) ROC curve
shows the prediction accuracy of LIS and different immune markers. (C) Survival curve of high LIS and low LIS subgroups in GSE135222 cohort.
(D) Survival curve of high LIS and low LIS subgroups in Imvigor210 cohort. (E) Correlation between LIS and neoantigens in Imvigor210 queue. (F)
Correlation between LIS and TMB in Imvigor210 queue. *p < 0.05; ns p > 0.05.
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treatment, leading to different clinical outcomes. In addition,

KEAP1 may also be a new target for drug development and

clinical treatment of LUAD.

Finally, a prognostic feature called LIS was developed and

validated in the TCGA cohort, GEO meta cohort, and two

external immunotherapy cohorts. High LIS is an independent

negative prognostic factor for OS, and subgroup analysis showed

that LIS showed stronger performance in predicting early LUAD

patients. Considering the heterogeneity of subtypes in

immunotherapy, we also evaluated the effectiveness of LIS in

predicting immunotherapy. The results showed that LIS also

showed high accuracy in the immunotherapy cohort. In

addition, LIS also showed better accuracy than commonly

used biomarkers (MDSC, MSI score, IFNG, CD8 and CD274).

Finally, we found that patients with low LIS may have more

neoantigens, which may lead to stronger immunotherapy

sensitivity in patients with low LIS. In conclusion, our results

suggest that LIS is not only a robust prognostic marker, but also

a promising predictive marker of immunotherapy.

We admit that our research also has some defects. First, we

only use Bulk-seq data without considering the heterogeneity

between cells. Secondly, the sequenced samples came from

tumor tissue, which may lead to the fact that LIS is not

suitable for peripheral blood samples, and the clinical

application is limited. Finally, although we used algorithms

and mature immunotherapy cohorts to evaluate the sensitivity

of the two subtypes to immunotherapy, prospective clinical

research cohorts are still needed for validation. In conclusion,

our work identified and validated heterogeneous lipid

metabolism subtypes and immune activity subtypes in LUAD,

which showed heterogeneity in clinical outcomes, biological

functions, immune infiltration, and genome driven events. In

addition, we have developed a feature called LIS, which can be

used as a reliable prognostic biomarker for predicting OS and

immunotherapy response. These results promote the

understanding of the interaction between lipid metabolism and

TME and offer a new direction for clinical management and

precision therapy of LUAD patients.
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SUPPLEMENTARY FIGURE 1

The workflow of this study. In this study, we aimed to survey the crosstalk

between lipid metabolism and tumor immune response in LUAD patients
and identified two heterogeneous subtypes (lipid metabolism subtype and

immune activity subtype). These two subtypes show specific differences

in clinical outcomes, biological functions, immune infiltration and
genomic variation. In addition, a lipid-immune score (LIS) was

developed and validated, which shows significant advantages in
predicting prognosis and immunotherapy response. In conclusion, our

work strengthens the understanding of the complex role between lipid
metabolism and immune system in LUAD and provides a new perspective

and reference for the accurate prediction and immunotherapy of

LUAD patients.
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SUPPLEMENTARY FIGURE 2

Validation of immune and lipid subtypes. (A) CDF curve of consensus
matrix of different K in GEO queue. (B) Consensus matrix when k = 2 in

GEO queue. (C) Expression heat maps of LMGs and IRGs in two subtypes
in the GEO cohort. (D) Survival curve of two subtypes in GEO cohort.

SUPPLEMENTARY FIGURE 3

Verification of immune infiltration in subtypes. (A) Differences in Estimate

scores between the two subtypes in the GEO cohort. (B) Differences in
the expression of six typical immune checkpoints (PD-L1, CD8A, CTLA-4,

LAG-3, PD-1) between the two subtypes in the GEO cohort. (C)
Differences in immune related pathway activity between the two
subtypes in the GEO cohort. (D) Differences in immune cell infiltration

between the two subtypes in the GEO cohort.
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SUPPLEMENTARY FIGURE 4

External verification of LIS. (A) Survival curves of high and low LIS
subgroups in the GEO cohort. (B) ROC analysis of LIS in GEO queue.

(C) The scatter plot shows the survival status of different LIS patients in
the GEO cohort. (D) TROC curve of LIS in GEO queue. (E) Subgroup
analysis of LIS in patients with different clinical characteristics in
GEO cohort.
SUPPLEMENTARY FIGURE 5

External verification of LIS. (A) The TIDE algorithm in GEO queue
predicted the response rate of immunotherapy with high LIS and low

LIS. (B) ROC curves in the GEO cohort showed the predictive accuracy of
LIS and different immune markers.
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Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinf (Oxford England)
(2011) 27(12):1739–40. doi: 10.1093/bioinformatics/btr260

15. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al.
ImmPort, toward repurposing of open access immunological assay data for
translational and clinical research. Sci Data (2018) 5:180015. doi: 10.1038/
sdata.2018.15

16. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. Omics: J Integr Biol (2012) 16(5):284–7.
doi: 10.1089/omi.2011.0118

17. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B,
et al. Clinical activity and molecular correlates of response to atezolizumab alone or
in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat
Med (2018) 24(6):749–57. doi: 10.1038/s41591-018-0053-3

18. Gibbons DL, Creighton CJ. Pan-cancer survey of epithelial-mesenchymal
transition markers across the cancer genome atlas. Dev dyn: an Off Publ Am Assoc
Anat (2018) 247(3):555–64. doi: 10.1002/dvdy.24485

19. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR,
et al. IFN-g-related mRNA profile predicts clinical response to PD-1 blockade. J
Clin Invest (2017) 127(8):2930–40. doi: 10.1172/jci91190

20. Yu T, Tan H, Liu C, Nie W, Wang Y, Zhou K, et al. Integratively genomic
analysis reveals the prognostic and immunological characteristics of pyroptosis and
ferroptosis in pancreatic cancer for precision immunotherapy. Front Cell Dev Biol
(2022) 10:826879. doi: 10.3389/fcell.2022.826879

21. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

22. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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Integrated machine learning
methods identify FNDC3B as a
potential prognostic biomarker
and correlated with immune
infiltrates in glioma

Xiao Wang1,2†, Yeping Huang2†, Shanshan Li2

and Hong Zhang2*

1Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
Hangzhou, China, 2Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth
People’s Hospital, Shanghai, China
Background: Recent discoveries have revealed that fibronectin type III domain

containing 3B (FNDC3B) acts as an oncogene in various cancers; however, its

role in glioma remains unclear.

Methods: In this study, we comprehensively investigated the expression,

prognostic value, and immune significance of FNDC3B in glioma using

several databases and a variety of machine learning algorithms. RNA

expression data and clinical information of 529 patients from the Cancer

Genome Atlas (TCGA) and 1319 patients from Chinese Glioma Genome Atlas

(CGGA) databases were downloaded for further investigation. To evaluate

whether FNDC3B expression can predict clinical prognosis of glioma, we

constructed a clinical nomogram to estimate long-term survival probabilities.

The predicted nomogram was validated by CGGA cohorts. Differentially

expressed genes (DEGs) were detected by the Wilcoxon test based on the

TCGA-LGG dataset and the weighted gene co-expression network analysis

(WGCNA) was implemented to identify the significant module associated with

the expression level of FNDC3B. Furthermore, we investigated the correlation

between FNDC3B with cancer immune infiltrates using TISIDB, ESTIMATE, and

CIBERSORTx.

Results: Higher FNDC3B expression displayed a remarkably worse overall

survival and the expression level of FNDC3B was an independent prognostic

indicator for patients with glioma. Based on TCGA LGG dataset, a co-

expression network was established and the hub genes were identified.

FNDC3B expression was positively correlated to the tumor-infiltrating

lymphocytes and immune infiltration score, and high FNDC3B expression

was accompanied by the increased expression of B7-H3, PD-L1, TIM-3, PD-

1, and CTLA-4. Moreover, expression of FNDC3B was significantly associated

with infiltrating levels of several types of immune cells and most of their gene

markers in glioma.
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Conclusion: This study demonstrated that FNDC3B may be involved in the

occurrence and development of glioma and can be regarded as a promising

prognostic and immunotherapeutic biomarker for the treatment of glioma.
KEYWORDS

FNDC3B, glioma, prognosis, immune infiltration, The Cancer Genome Atlas (TCGA),
Chinese Glioma Genome Atlas (CGGA)
Introduction

Glioma is the most common primary tumor of the central

nervous system in adults and is characterized by high recurrence

and mortality rates. According to the World Health

Organization (WHO), glioma is typically divided into two

principal subgroups: low-grade glioma (LGG; grade II and III)

and glioblastoma multiforme (GBM; grade IV; most aggressive

and lethal subtype) based on the malignant degree (1). The

median survival is less than two years, and the overall prognosis

is poor for glioma patients even after surgical resection,

chemotherapy, and radiation therapy (CRT), especially for

those with GBM (2). Even though many advances have been

made in adjuvant therapy and surgery in the past few decades,

the clinical outcomes have not been significantly improved for

glioma patients. Apart from the traditional treatment (3), studies

in recent years have revealed the use of novel and effective

methods, such as immunotherapy to treat glioma owing to the

success achieved from other solid tumors, including lung,

bladder, and kidney cancers, and melanoma (4, 5). However,

there is still an urgent need to identify additional immune

biomarkers for combination therapy due to the resistance to

monotherapy (6–8). Furthermore, this may elucidate the

mechanism of tumorigenesis and help to identify new

molecular targets for treatment.

Fibronectin type III domain containing 3B (FNDC3B, also

named FAD104), which belongs to the FNDC3 family, was

initially identified as a regulator of adipocyte and osteoblast

differentiation (9). FNDC3B is an endoplasmic reticulum

transmembrane protein with a single transmembrane domain

at the C terminus preceded by nine repeated fibronectin type III

domains. Its biological function remains largely unknown (10).

Recent research demonstrated that FNDC3B plays a major role

in cell adhesion, proliferation, and growth signaling due to the

fibronectin type III domain, which has the ability to combine

with various proteins (11). For the past few years, emerging

evidence has demonstrated that FNDC3B was abnormally

expressed in several types of human cancers, including

hepatocellular carcinoma, acute myeloid leukemia, colorectal

and cervical cancers (12–15). For instance, Han reported that

FNDC3B expression was correlated with a worse prognosis in
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cervical cancer, while its carcinogenic effects are still unclear

(15). Notably, a few studies have demonstrated that FNDC3B

expression levels are correlated with glioblastoma. Wang and Xu

reported that MiR-1225-5p and MiR-129-5p inhibit the

malignant glioblastoma cells via targeting FNDC3B (16, 17).

Furthermore, a newly integrated analysis of RNA binding

proteins in glioma revealed that FNDC3B can not only serve

as a useful prognostic biomarker but also promote glioma cell

proliferation (18). However, the overall expression profile of

FNDC3B and its potential role in the development and distinct

clinical significance of glioma has not been fully elucidated. In

previous study, Rajasagi et al. found that long-lived cytotoxic T-

cell responses against peptides generated from personal tumor

mutations in FNDC3B presented on chronic lymphocytic

leukemia cells (19). Until now, there are very limited studies

on the correlation between FNDC3B and tumor-infiltrating

lymphocytes (TILs) in glioma.

Recent advancements in high-throughput sequencing

technologies and large-scale cancer genomics databases have

enabled a systematic and comprehensive analysis of genes from

the perspective of machine learning (20–22). In the present

study, we carried out an intensive analysis for the expression

signature of FNDC3B using various publicly accessible

databases, as well as applied data mining of the TCGA and

CGGA datasets to explore its in-depth prognostic effect. We also

investigated the correlations between FNDC3B expression and

tumor immune microenvironment (TIM) in LGG patients in

order to elucidate the underlying mechanisms and improve

molecular diagnosis for glioma patients.
Materials and methods

Gene expression pattern based on
ONCOMINE and GEPIA2

FNDC3B expression levels in various cancers were firstly

explored by ONCOMINE database (https://www.oncomine.org/)

(23), which is currently the largest public cancer microarray

database and integrated data-mining platform. The threshold for

ONCOMINEwas set according to the default settings of P < 0.0001,
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fold change > 2, and Gene Rank < Top 10%. Gene expression

profiling interactive analysis 2 (GEPIA2) is another useful web-

based tool (http://gepia.cancer-pku.cn/) that contains RNA

sequencing data based on 9,736 tumor and 8,587 normal control

samples from The Cancer Genome Atlas (TCGA) and The

Genotype-Tissue Expression (GTEx) (24), providing differential

expression analysis, correlation analysis, survival analysis, and

custom data analysis. GEPIA2 contains 518 LGG samples, 163

GBM samples, and 207 normal brain samples. FNDC3B expression

was compared between LGG or GBM and normal tissues by

Student t-tests. Samples were considered to be significant with

p < 0.05 and fold change > 2. Protein expression of FNDC3B in

glioma and normal brain tissues were evaluated based on

immunohistochemistry data from the Human Protein Atlas

(HPA) (https://www.proteinatlas.org/). The mRNA expression of

FNDC3B in various human cancer cell lines were obtained from

Broad Institute Cancer Cell Line Encyclopedia (CCLE).
Data source and processing

Gene expression data and corresponding clinical

information for glioma patients were downloaded from TCGA

(LGG and GBM) and Chinese Glioma Genome Atlas (CGGA)
Frontiers in Immunology 03
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(mRNAseq_325, mRNAseq_693 and mRNA_array_301)

database. The data from the TCGA was applied to explore the

prognostic role of FNDC3B in gliomas, and the three CGGA

cohorts were used to validate the results. The DNA methylation

along with transcriptional data of FNDC3B for patients with

LGG from the TCGA database was downloaded via the cBio

Cancer Genomics Portal (cBioPortal) website (http://www.

cbioportal.org/). The detailed methodology of the study is

shown in Figure 1.
Clinicopathological correlation and
prognosis analysis

Coefficients of Cox regression were determined by data

mining among 21 TCGA cancer types using OncoLnc (http://

www.oncolnc.org/) to compare FNDC3B expression in different

tumors. The gene expression data and corresponding clinical

information from the TCGA and CGGA were used to evaluate

the prognostic role of FNDC3B in gliomas. Patients with

incomplete clinical information were eliminated. We explored

the correlation between FNDC3B expression and various clinical

features using the Wilcoxon test in R version 3.6.3. Kaplan-

Meier analysis and log-rank test were implemented to evaluate
FIGURE 1

Flowchart of this study: data collection, processing, analysis, and validation. LGG, low-grade glioma; TCGA, The Cancer Genome Atlas; CGGA,
Chinese Glioma Genome Atlas; GEPIA2, gene expression profiling interactive analysis 2; HPA, Human Protein Atlas; K-M, Kaplan-Meier; ROC,
receiver operating characteristic; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; GSEA, gene set
enrichment analysis; KEGG, kyoto encyclopedia of genes and genomes; GO, gene ontology; PPI, protein-protein interaction.
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the associations of FNDC3B and clinical variables with overall

survival (OS). Univariate and multivariate Cox regression

analyses were performed to further examine whether FNDC3B

expression was a significant factor associated with OS when

adjusted by clinical variables (age at initial pathological

diagnosis, gender, neoplasm histologic grade, IDH mutation

status, etc.). “Survival” and “survminer” packages in R

software were used for the stepwise variable selection and Cox

model construction.
Construction and evaluation of
a nomogram

Nomogram is widely used as a predictive model for cancer

patients and can provide prognostic risk individually and

intuitively (25). Based on the TCGA-LGG dataset, we

constructed a prognostic nomogram model to predict the

probability of 2-, 3-, and 5- year OS using “rms” package in R.

The nomogram combined the expression level of FNDC3B with

traditional clinical parameters (age, grade, and IDH status) and

formulated the scoring criteria for all the parameters in the

regression equation based on their regression coefficients. Then,

the summed score for each patient was converted into the

probability of the outcome time by using the nomogram. The

performance and prediction efficiency of the nomogram were

evaluated via plotting the calibration, K-M and receiver

operating characteristic (ROC) curves of the three CGGA

validation datasets.
Screening of differentially expressed
genes (DEGs)

The median value was used to create a categorical dependent

variable based on FNDC3B expression level. For the TCGA-

LGG dataset, DEGs between the high and low FNDC3B groups

were screened using Wilcoxon test (screening criteria: P < 0.01,

FDR < 0.05, and |logFC| > 1). Volcano plot of all DEGs was

generated using R. For accurate results, we set the average

expression level to at least 1 for the raw DEGs. Then, the

filtered DEGs were selected for further analysis. Heatmap was

generated by “ComplexHeatmap” package in R. To identify

biological pathway differences between the high and low

FNDC3B groups, gene set enrichment analysis (GSEA) and

kyoto encyclopedia of genes and genomes (KEGG) were

performed on the screened DEGs using “org.Hs.eg.db”,

“clusterProfiler”, “enrichplot” and “ggplot2” R packages. The

correlations between FNDC3B with DEGs in pan-cancer were

obtained by using Gene_Corr module of TIMER2.0 (tumor

immune estimation resource, version 2) (http://timer.cistrome.

org/). P < 0.05 was considered to be a significant enrichment.
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Co-expression network creation and hub
genes identification

To reveal the correlation between genes and identify the ones

with significant relationships, 2,099 DEGs between the high and

low FNDC3B expression groups were used to construct a

weighted co-expression network. Patients with incomplete

expression information were removed, and the remaining

samples were implemented to construct the network. In order

to ensure the reliability of the network structure, we set gene

expression value larger than 1 in at least 10% of all the samples,

and the average expression level was at least 0.5 for the raw

DEGs. A scale-free gene co-expression network based on 673

filtered DEGs was constructed using the R package “WGCNA”.

Hierarchical clustering tree was created based on a dissimilarity

measure (1-TOM), and genes with similar expression patterns

were merged into the same module. The most relevant module

was revealed by calculating the correlation between modules and

the FNDC3B group; the genes in the most significant module

were extracted to determine the target genes. For the selected

module, Gene Ontology (GO) was performed in R using the

packages “org.Hs.eg.db”, “AnnotationDbi”, “enrichplot” and

“ggplot2” with q-values less than 0.0001. The Search Tool for

the Retrieval of Interacting Genes Database (STRING) version

11 was applied to generate the PPI network and the combined

score > 0.4 was used as the cut-off criterion. Cytoscape version

3.8.2 was employed to visualize the molecular interaction

networks and biological pathways. Hub genes were identified

via CytoHubba plugin with the top 10 MCC values. We used

GeneMANIA database (http://genemania.org/) to build the

gene-gene interaction network for hub genes in terms of

physical interactions, co-expression, shared protein domains,

pathways, predicted interactions, and colocalization, as well as to

predict their biological functions. The relationships of the

expression levels between the hub genes and FNDC3B were

shown by scatterplots using “ggplot2” R package.
Analysis of FNDC3B-associated
immunomodulators

To investigate the immune infiltration of FNDC3B in

different cancers, TISIDB database (http://cis.hku.hk/TISIDB/)

was applied to infer the correlations between 28 types of tumor-

infiltrating lymphocytes (TILs) and FNDC3B expression.

TISIDB integrates a variety of data sources in tumor

immunology, including abundant human cancer datasets from

TCGA and text mining results from PubMed. Spearman

correlation test was implemented to estimate the association

between FNDC3B and TILs. Furthermore, Estimation of

Stromal and Immune cells in Malignant Tumor tissues using

Expression (ESTIMATE) algorithm was employed to evaluate
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the stromal score, immune score, and ESTIMATE score for each

sample using the downloaded data. Moreover, CIBERSORTx

(https://cibersortx.stanford.edu/) was used to assess the relative

variations of 22 types of tumor-infiltrating immune cells

between the high and low FNDC3B expression groups in

LGG. Packages “ggplot2”, “ggpubr” and “ggExtra” in R were

applied to investigate the correlation between FNDC3B and

immune checkpoints based on TCGA-LGG dataset. The

associations between gene markers of the significant immune

cells and FNDC3B expression were also determined by the

correlation analysis function in GEPIA2. Differences with a P-

value < 0.05 were considered significant in all tests.
Statistical analysis

All statistical analysis was performed in R software and P <

0.05 was considered statistically significant. Wilcoxon test was

used to compare the differences for clinical characteristics or

immune scores grouped by FNDC3B expression. Univariate

(Log-rank test) and multivariate Cox regression (cox

proportional hazard, coxph) analyses were performed to assess

clinical traits associated with OS.
Results

FNDC3B mRNA expression in
various cancers

We first assessed the expression of FNDC3B in different tumors

and normal tissues of multiple cancer types using the Oncomine

database. The results showed that abnormal FNDC3B expression

was retrieved from a total of 368 datasets. Among them, FNDC3B

expression levels were significantly upregulated in tumor tissues in

43 datasets, including brain and central nervous system (CNS),

head and neck, esophageal, kidney, cervical, bladder, and colorectal

cancers, etc. (Figure 2A, P < 0.0001, Fold Change > 2, and Gene

Rank < Top 10%). In addition, its expression in leukemia,

lymphoma, breast cancer, and sarcoma lymphoma was shown to

be downregulated in multiple datasets. In summary, FNDC3B is

generally upregulated in several tumors. In the brain and CNS

cancers dataset, there were seven studies on the upregulation of

FNDC3B and no studies on its downregulation. Comparison of

FNDC3B across the seven studies showed a Median Rank = 302,

suggesting that FNDC3Bwas highly expressed in glioma tissues and

concentrated both in LGG and GBM (Figure 2B, P <0.0001). As for

the outlier analysis of FNDC3B, 822 different studies on FNDC3B

have been included in Oncomine database. Among them, 11 studies

indicated the upregulation of FNDC3B and four studies the

downregulation in brain and CNS cancers (Figure 2A). Then, we

evaluated the differentially expressed level of FNDC3B in TCGA

pan-cancer data using GEPIA2. Our findings revealed that an
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elevated expression of FNDC3B was involved in a variety of

tumors (Figure 2C). In TCGA LGG and GBM cohorts, FNDC3B

expression was significantly higher in tumors compared to matched

normal tissues (Figure 2D). Specifically, FNDC3B expression was

2.71-fold in LGG and 7.16-fold in GBM vs. normal brain tissue.

Genetic alterations of FNDC3B in glioma patients were examined

using cBioPortal (Supplementary Figure 1). Among 6216 samples

from 5774 patients in 14 glioma datasets, the overall alteration

frequency of FNDC3B gene is 1.5% (71/4774); amplification,

mutations, and deep deletions were the most common types of

alteration. Due to the low mutation rate, FNDC3B may not be a

hypermutation gene in the glioma cohort. In our previous study, we

had confirmed that methylation status of TERT was strongly

correlated with its expression in hepatocellular carcinoma (HCC)

(26). In the present research, the expression of FNDC3B was

negatively correlated with FNDC3B DNA methylation; the

methylation levels were reduced in the FNDC3B high group

based on the TCGA-LGG dataset (Figures 2E, F). These results

suggested that FNDC3B may be negatively regulated by epigenetic

modification and lead to its high expression in glioma samples.

FNDC3B protein expression was explored using HPA

database. The immunohistochemistry result revealed

upregulated FNDC3B in glioma samples (Figure 2G). In

human cancer tissues, FNDC3B protein expression in glioma

was ranked as the top 12 out of 20 distinct cancer types

(Supplementary Figure 2A). Furthermore, we detected the

FNDC3B mRNA level in human normal tissues using the

GTEx database, and FNDC3B expression was mainly found in

lung, adipose tissue, thyroid gland, endometrium, and ovary. It is

worth noting that the brain displayed the lowest expression

levels of global FNDC3B transcript across all normal tissues

(Supplementary Figure 2B). In addition, we systematically

elucidated the expression levels of the FNDC3B in different

cancer cells by querying the CCLE database and found that

FNDC3B was highly expressed in glioma cell l ines

(Supplementary Figure 2C).
High expression of FNDC3B predicts
poor prognosis of glioma

OncoLnc and GEPIA2 are free online resources and

databases for the analysis and visualization of datasets from

the TCGA and GTEx projects. To examine the function of

FNDC3B on OS in various cancers, we used OncoLnc online

tool to perform Cox regression analysis. We found that FNDC3B

expression in LGG was ranked first among 21 different cancer

types based on the FDR correction (Table 1). Moreover, we

analyzed the relationships between FNDC3B expression and

prognostic values in 33 types of cancer using GEPIA2 databases.

As shown in Supplementary Figure 3, high FNDC3B expression

levels were associated with poorer prognosis of OS and disease-

free survival (DFS) in adrenocortical carcinoma (ACC), GBM,
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FIGURE 2

The expression profiles and prognostic value of FNDC3B in glioma. (A) In brain and CNS cancers, FNDC3B was significantly upregulated in seven
studies. Red represents high expression and blue represents low expression. The darker the red color, the higher the gene expression level. The
darker the blue color, the lower the gene expression level. (B) Comparison of FNDC3B expression across seven analyses, and red represents
high expression. (C) FNDC3B was significantly upregulated in various tumors. (D) Expression level of FNDC3B in LGG and GBM compared to
control. *, P < 0.05. (E) The expression of FNDC3B was negatively regulated by FNDC3B DNA methylation. (F) Different methylation levels of
FNDC3B in the FNDC3B high- and low-expression groups in TCGA LGG samples. (G) Representative FNDC3B protein expression in normal and
glioma tissues. Data were obtained from the Human Protein Atlas (HPA). (H) Kaplan-Meier analysis of OS and DFS based on FNDC3B high- vs.
low-expression in pan-glioma, LGG, and GBM patients in the TCGA dataset. Red curve represents patients with high expression of FNDC3B, and
blue curve represents low FNDC3B. (I) The correlations between FNDC3B expression and clinical characteristics based on TCGA LGG datasets:
age, gender, grade, and isocitrate dehydrogenase (IDH) status. (J) Multiple Cox regression analysis of clinicopathological features (including
FNDC3B expression) and OS in the TCGA LGG datasets.
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kidney Chromophobe (KICH), LGG, liver hepatocellular

carcinoma (LIHC), mesothelioma (MESO), and pancreatic

adenocarcinoma (PAAD); OS in cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC) and lung

adenocarcinoma (LUAD); DFS in colon adenocarcinoma

(COAD) and uveal Melanoma (UVM). A high FNDC3B

expression was correlated with a better prognosis of OS and

DFS in skin cutaneous melanoma (SKCM) as well as OS in acute

myeloid leukemia (LAML).

To assess the prognostic significance of FNDC3B in glioma

patients from TCGA and CGGA, samples were first split into

two groups according to the median expression of FNDC3B for

each dataset. Among pan-glioma, LGG, and GBM in the TCGA

datasets, patients with higher FNDC3B levels presented shorter

OS and DFS (Figure 2H) compared to patients expressing low

levels of FNDC3B. Similarly, high FNDC3B expression was

significantly associated with poor prognosis in all the three

CGGA datasets (seq_325, seq_693, array_301) (Supplementary

Figure 4). In particular, highly expressed FNDC3B was

significantly related to reduced DFS in GBM (p<0.001),

however, just marginally correlated with worse OS (P<0.05).

We postulate that the less obvious but significant results of GBM

may be due to the insufficient statistical power of a small sample

size. Furthermore, we investigated the associations between

FNDC3B expression and clinical characteristics, such as age,

gender, grade, and isocitrate dehydrogenase (IDH) status.

FNDC3B expression was higher in high-grade and IDH
Frontiers in Immunology 07
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wildtype patients; there was no significant difference between

age and gender based on the TCGA datasets (Figure 2I). Our

findings revealed that higher FNDC3B expression is closely

correlated with the malignant clinical characters of gliomas.

Subsequently, univariate and multivariate Cox regression

analyses were performed to identify whether FNDC3B

expression represented an independent prognostic factor.

Univariate Cox analysis showed that FNDC3B (HR = 1.64;

95% CI = 1.50-1.80; P < 0.001), grade (HR = 3.37; 95% CI =

2.28-4.98; P < 0.001) and age (HR = 1.06; 95% CI = 1.04-1.07; P <

0.001) were high-risk factors, and IDH mutation (HR = 0.18;

95% CI = 0.07-0.48; P < 0.001) was a low-risk factor (Table 2). In

multivariate Cox regression analysis , FNDC3B was

independently associated with overall survival, suggesting it

could be an independent prognostic biomarker for glioma

(HR = 1.72; 95% CI = 1.07-2.80; P < 0.05). In addition, age

may also be an independent prognostic factor (Table 2

and Figure 2J).
Construction and validation of a
prognostic nomogram

A quantitative prognostic nomogram model to predict

individual survival chances was established based on the

TCGA-LGG dataset using Cox regression (Figure 3A).

According to the stepwise Cox multivariate regression analysis,
TABLE 1 Cox regression results of FNDC3B among 21 tumor types.

Cancer Cox Coefficient P-value FDR Rank Median Expression

LGG 0.82 1.30E-13 2.43E-10 9 324.53

PAAD 0.472 2.00E-05 5.74E-03 57 2620.58

SKCM -0.242 8.20E-04 1.23E-02 1073 1402.12

KIRP 0.513 1.50E-03 1.33E-02 1827 2117.32

CESC 0.618 2.30E-05 3.41E-02 11 1686.62

LUAD 0.162 3.10E-02 1.55E-01 3320 2465.66

LAML -0.339 3.00E-03 1.72E-01 260 3845.4

LIHC 0.154 1.10E-01 3.33E-01 5095 1812.82

BLCA 0.113 1.30E-01 3.61E-01 5715 2083.57

BRCA 0.163 7.70E-02 4.29E-01 2968 1715.64

STAD 0.126 1.20E-01 4.70E-01 4198 2732.83

HNSC 0.078 2.60E-01 6.02E-01 7067 2235.09

SARC 0.084 4.40E-01 7.07E-01 10003 2106.74

KIRC 0.031 7.10E-01 7.98E-01 14796 3396.2

GBM 0.137 1.70E-01 8.17E-01 3379 862.45

COAD -0.03 7.70E-01 9.27E-01 13553 1591.87

LUSC -0.019 7.80E-01 9.50E-01 13845 2926.55

UCEC -0.159 1.40E-01 9.64E-01 2309 2368.54

OV -0.019 8.00E-01 9.65E-01 13931 2115.89

ESCA -0.06 6.40E-01 9.84E-01 10805 3323.64

READ -0.067 7.50E-01 9.86E-01 12457 1657.46
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age, grade, IDH status, and FNDC3B expression were features

that were included in the nomogram, and the risk scores were

calculated based on that model. The concordance index (C-

index) for OS prediction was 0.775, indicating high predictive

performance of the model. A calibration curve was implemented

to reflect the degree of consistency between the predicted risk

and actual occurrence risk, and it can be used to estimate the

accuracy of the model in predicting the probability of an

individual outcome in the future (27). In our study, the

calibration curve showed acceptable agreement between

nomogram-predicted and observed 2-, 3- and 5-year OS in the

CGGA_325, CGGA_693, and CGGA_301 validation

cohorts (Figure 3B).

The patients in the training dataset were divided into high-

risk and low-risk groups according to the positive and negative

values of the risk score, respectively. The K-M survival curve

showed a good discriminating ability of the nomogram (P =

1.4e-4) (Figure 3C). Moreover, the area under the ROC curve for

OS was 0.755, indicating a reliable predictive ability in the TCGA

LGG dataset (Figure 3D). The CGGA_325, CGGA_693, and

CGGA_301 datasets were used to validate the performance of

the nomogram. A risk score for each patient was generated by

the same method. Consistently, the patients in the high-risk

group had a notably poorer prognosis in all the three validation

datasets (p < 0.0001) (Figure 3C). The area under the curve

(AUC) for CGGA_325, CGGA_693, and CGGA_301 OS was

0.8, 0.816, and 0.807, respectively (Figure 3D). In conclusion,

these results indicated that the nomogram had adequate

performance in predicting the OS of glioma patients.
DEGs identification and weighted co-
expression network construction based
on FNDC3B expression

To further elucidate the role of FNDC3B expression in the

glioma microenvironment, the median expression value was

used to create a categorical variable for the TCGA-LGG

cohort. The DEGs between the two groups were detected

using Wilcoxon test. After setting FDR < 0.05 and fold change

≥ 2 in either direction, a total of 2,099 DEGs, including 1,631
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upregulated and 468 downregulated genes were screened out in

FNDC3B highly expressed group compared to the low expressed

group (Figure 4A). In order to obtain more reliable results, 670

DEGs were filtered after setting the mean expression value to 1

for the raw DEGs (Figure 4B). GSEA was conducted to assess the

potential functions of these DEGs. Our results suggested that

various immune-related gene signatures were enriched in LGG

samples, such as response to cytokine, cytokine secretion,

immune system process, and inflammatory response

(Figure 4C). According to the KEGG analysis, DEGs were

mainly concentrated in PI3K-Akt, p53, and MAPK signaling

pathways (Figure 4D). We used TIMER2.0 to explore the

relationship between FNDC3B with the top 10 most

significantly up or downregulated DEGs in pan-cancer. The

corresponding heatmap showed that the correlation was

consistent with the gene expression direction of the 20 DEGs

only for LGG (Figure 4E).

WGCNA was applied to build a co-expression network based

on the 2,099 DEGs. Before constructing the co-expression

network, we screened the DEGs by setting expression value

larger than 1 in at least 10% of all the samples, and the average

level at least 0.5. Finally, 673 DEGs were filtered and selected for

subsequent analysis. Power eight was chosen as the appropriate

soft threshold because it was the first value to make the degree of

independence reach 0.90 and the corresponding average

connectivity was close to zero. A total of five gene modules were

excavated (genes in the grey module that were not co-expressed;

Figure 4F). As shown in Figure 4G, the turquoise module was the

most relevant in FNDC3B expression level (R = 0.51, p = 7e-35).

Therefore, the 282 hub genes included in the turquoise module

were extracted for further analysis. GO enrichment analyses of

these genes indicated that the response to interferon-gamma,

neutrophil activation and degranulation, regulation of immune

effector process, antigen processing and presentation, T cell

activation, leukocyte migration, lymphocyte proliferation,

mononuclear cell proliferation, interleukin-8 production and

acute inflammatory response was related to FNDC3B-mediated

immune events. The top 30 GO items, as ranked by their P-values,

are shown in Supplementary Figure 5. A total of 210 nodes and

1,061 edges were mapped for the turquoise module genes in the

PPI network (Supplementary Figure 6). Using CytoHubba in
TABLE 2 Univariate and multivariate cox regression analyses of prognostic factors in 416 cases of low-grade glioma (LGG).

Parameter Univariate analysis Multivariate analysis

HR (95% CI) P-Value HR (95% CI) P-Value

Age (continuous, years) 1.06 (1.04-1.07) <0.001 1.06 (1.01-1.10) 0.011

Gender (ref. Female) 1.11 (0.78-1.58) 0.574 2.01 (0.71-5.80) 0.184

Grade (ref. WHO II) 3.37 (2.28-4.98) <0.001 0.85 (0.25-2.9) 0.795

IDH_mutation (ref. Wildtype) 0.18 (0.07-0.48) <0.001 0.40 (0.12-1.40) 0.142

FNDC3B (continuous) 1.64 (1.50-1.80) <0.001 1.72 (1.07-2.80) 0.026
fron
Bold values means p<0.05.
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Cytoscape plug-in, we selected the top 10 genes ranked by the

MCC method as hub genes, including TLR2, TLR7, PTPRC

(CD45), CCR1, CCL5, TLR1, FN1, VCAM1 (CD106), CXCL10,

and TLR6. They were immune-related genes and positively

correlated with FNDC3B (R > 0.3 and P < 0.0001; Figure 4H).

A gene-gene interaction network for the 10 hub genes was

built, and their functions were analyzed through the

GeneMANIA database (Figure 4I). We found that toll-like

receptor signaling pathways, ERK1 and ERK2 cascade and

NIK/NF-kappaB signaling, were enriched in LGG. Then,

OncoLnc online tool was applied to investigate the function of

these hub genes on OS of LGG. The results showed that all hub

genes were independent risk factors for evaluating OS (Table 3),

and the K-M curves based on GEPIA2 displayed that higher
Frontiers in Immunology 09
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expression of these genes predicted shorter OS in LGG

(Supplementary Figure 7). Furthermore, the gene expression

analysis of the LGG samples from TCGA showed that the

combined expression of the 10 hub genes had a significant

effect on overall survival (Figure 4J).
Relationship between FNDC3B
expression and tumor immune infiltrates

Since previous studies have reported that TILs are independent

predictors in cancers (28, 29), we used TISIDB database to infer the

correlations between the expression of FNDC3B and the abundance

of 27 types of TILs across TCGA pan-cancers. As shown in
A B

D

C

FIGURE 3

Construction and validation of the prognostic nomogram. (A) Prognostic nomogram for TCGA low-grade glioma (LGG) dataset. According to
four variables (FNDC3B expression level, age, grade, and IDH status) in the model, four corresponding ‘points’ values can be obtained, and the
‘total points’ can be calculated by summing them. Therefore, the 2-/3-/5-year overall survival (OS) rate of patients can be predicted. (B) The
calibration curves for predicting 2-/3-/5-year OS in the CGGA_325, CGGA_693, and CGGA_301 validation datasets, respectively. The
nomogram-predicted probability of survival and actual survival are plotted on the x- and y-axes, respectively. The diagonal line represents a
perfect prediction. (C) K-M curve of high-risk (red) and low-risk (blue) for TCGA low-grade glioma (LGG) training, CGGA_325, CGGA_693, and
CGGA_301 validation datasets. (D) ROC curves for the risk score in the TCGA LGG training, CGGA_325, CGGA_693, and CGGA_301 validation
datasets. TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas.
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FIGURE 4

Identification and enrichment analysis of differentially expressed genes (DEGs) in TCGA low-grade glioma (LGG). (A) Volcano plot of all DEGs.
(B) Heatmap of the 547 filtered DEGs. (C) Gene set enrichment analysis (GSEA) showed that FNDC3B is involved in the tumor immune
microenvironment. (D) Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses of DEGs. (E) The correlation heatmap between
FNDC3B with 20 DEGs in pan-cancer. TCGA: The Cancer Genome Atlas. (F) Co-expression network constructed with weighted gene co-
expression network analysis (WGCNA), hierarchical clustering tree for DEGs based on a dissimilarity measure (1-TOM), genes with similar
expression patterns were merged into the same module. (G) Correlation between modules and FNDC3B expression. The upper number in each
grid represents the correlation coefficient of each module, and the lower number is the corresponding P-value. (H) Relationship of the
expression level between the top 10 hub genes and FNDC3B. (I) GeneMANIA database analysis shows the interaction network among hub
genes. Each node represents a gene. The node size displays the strength of interactions. The line color indicates the types of interactions and
the node color represents the possible functions of each gene. (J) The survival times of TCGA low-grade glioma (LGG) patients with the highest
and lowest expression of the top 10 hub genes were compared.
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Figure 5A, FNDC3B expression was positively correlated with TILs

in several human cancer types, especially in LGG. Moreover, we

investigated the associations between FNDC3B expression and

immune subtypes across human cancers, and the landscape of

correlations between FNDC3B expression and immune subtypes in

different types of cancer (Figure 5B). Among all cancer types, LGG

showed the most significant results via Kruskal-Wallis test (p =

1.26e-23). In TISIDB, we further analyzed FNDC3B expression in

different immune subtypes of LGG.We found FNDC3Bwasmainly

expressed in three types, including C3 (inflammatory type), C4

(lymphocyte depleted type), and C5 (immunologically quiet type).

FNDC3B expression was the highest in the C3 (inflammatory) type

and the lowest in the C5 (immunologically quiet) type (Figure 5C).

These results indicated that FNDC3Bmay play an important role in

immune infiltration in glioma. Notably, FNDC3B expression was

correlated with the abundance of central memory CD8 T cells (r =

0.497, p < 2.2e-16), effector memory CD8 T cells (r = 0.412, p <

2.2e-16), central memory CD4 T cells (r = 0.468, p < 2.2e-16),

regulatory T cells (r = 0.521, p < 2.2e-16), natural killer (NK) cells

(r = 0.532, p < 2.2e-16), natural killer T (NKT) cells (r = 0.64, p <

2.2e-16), memory B cells (r = 0.64, p < 2.2e-16), andmacrophages (r

= 0.349, p < 2.2e-16) in LGG (Figure 5D). The positive correlations

between FNDC3B expression and TILs were also observed in GBM.

We then assessed the relationships between FNDC3B and eight

genes previously reported to be targets of immune checkpoint

inhibitors, including CD274 (PD-L1), PDCD1 (PD-1), CD152

(CTLA-4), CD276 (B7-H3), HAVCR2 (TIM-3), CD223 (LAG-3),

TNFRSF4 (OX40), and VTCN1. There were significant positive

correlations between FNDC3B with B7-H3 (R = 0.69, p < 2.2e-16),

PD-L1 (R = 0.58, p < 2.2e-16), TIM-3 (R = 0.43, p < 2.2e-16), PD-1

(R = 0.42, p < 2.2e-16), CTLA-4 (R = 0.34, p = 1.3e-15), and OX40

(R = 0.31, p = 1.3e-12) (Figure 5E). Thus, the six genes were

significantly upregulated in the FNDC3B high group compared

with the low group (Figure 5F). In summary, these results suggested

that FNDC3B was correlated with clinically relevant immune

checkpoint molecules in glioma.

Subsequently, to investigate whether FNDC3B expression was

correlated with immune infiltration patterns in LGG, we
Frontiers in Immunology 11
287
compared the degree of immune cell infiltration between high

and low expression groups using the ESTIMATE algorithm. The

immune, stromal, and ESTIMATE scores were higher in the high-

expression group than in the low-expression group (Figure 5G).

Furthermore, we explored the proportions of 22 types of immune

cells for LGG using CIBERSORTx to acquire a deeper

understanding of the relationship between FNDC3B expression

and tumor immune infiltrates. Among the 529 TCGA-LGG

samples, 265 samples were in the high expression group and

264 samples in the low expression group. Figure 5H shows the

differences in the proportions of the 22 subpopulations of immune

cells in these two groups. Naive B cells, plasma cells, naive CD4 T

cells, resting memory CD4 T cells, activated memory CD4 T cells,

follicular helper T cells (Tfh), M1 and M2 macrophages, activated

dendritic cells, and neutrophils were the main immune cells

affected by FNDC3B expression. Among them, there were more

proportions of resting memory CD4 T cells (p < 0.001), activated

memory CD4 T cells (p < 0.01), M1 macrophages (p < 0.01), M2

macrophages (p < 0.01), dendritic cells activated (p < 0.01), and

neutrophils (p < 0.0001) in the high expression group. In contrast,

the proportions of naive B cells (p < 0.01), plasma cells (p <

0.0001), naive CD4 T cells (p < 0.05), and follicular helper T cells

(p < 0.05) were lower in the high expression group compared with

the low expression group. The correlation matrix heatmap of 22

immune infiltration cells in LGG samples was shown in Figure 5I.

Moreover, we analyzed the association between FNDC3B

expression and gene markers of various TILs, including B cell,

plasma cells, T cell, CD4+ T cell, Tfh, M1 and M2 macrophages,

dendritic cells, and neutrophils (Table 4). Overall, FNDC3B

expression was strongly positively correlated with gene markers

of B cells, T cells, M1 and M2 macrophages, dendritic cells, and

neutrophils for TCGA-LGG and TCGA-GBM.
Discussion

Glioma is the most common primary intracranial neoplasm,

accounting for approximately 80% of malignant brain tumors.
TABLE 3 Cox regression results of 10 hub genes in low-grade glioma (LGG).

Gene Cox coefficient P-value FDR

TLR2 0.400 7.30E-06 6.01E-05

TLR7 0.334 2.80E-04 1.18E-03

PTPRC 0.439 2.20E-06 2.30E-05

CCR1 0.306 5.90E-04 2.24E-03

CCL5 0.190 4.90E-02 9.17E-02

TLR1 0.444 2.90E-06 2.88E-05

FN1 0.309 1.20E-03 4.06E-03

VCAM1 0.553 2.40E-09 1.29E-07

CXCL10 0.373 6.40E-05 3.51E-04

TLR6 0.433 3.90E-06 3.65E-05
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FIGURE 5

Correlation of FNDC3B expression with immune infiltration level in pan-cancer and TCGA low-grade glioma (LGG). (A) The landscape of
correlation between FNDC3B expression and tumor-infiltrating lymphocytes (TILs) in pan-cancer (red is positive correlated and blue is
negatively correlated). (B) Associations between FNDC3B expression and immune subtypes across human cancers. (C) Correlation of FNDC3B
expression and immune subtypes in low-grade glioma (LGG). C3: inflammatory; C4: lymphocyte depleted; C5: immunologically quiet; C6: TGF-
b dominant. (D) FNDC3B expression was positively closely related with infiltrating levels of central memory CD8 T cells, effector memory CD8 T
cells, central memory CD4 T cells, regulatory T cells, natural killer cells, natural killer T cells, memory B cells, and M1 and M2 macrophages in
LGG and glioblastoma multiforme (GBM). (E) The correlation between FNDC3B and immune checkpoint molecules (B7-H3, PD-L1, TIM-3, PD-1,
CTLA-4, and OX40). (F) Different expression levels of the six immune checkpoint genes in the high and low FNDC3B expression groups in TCGA
LGG samples. (G) Comparison of immune, stromal, and ESTIMATE scores between the FNDCB high- and low-expression groups. (H) Different
proportions of 22 subtypes of immune cells in the FNDCB high- and low-expression groups in TCGA LGG dataset by CIBERSORTx. The
proportions of naive B cells (P < 0.01), plasma cells (P < 0.0001), naive CD4 T cells (P < 0.05), resting memory CD4 T cells (P < 0.001), activated
memory CD4 T cells (P < 0.01), follicular helper T cells (P < 0.05), macrophages M1 (P < 0.01), macrophages M2 (P < 0.01), dendritic cells
activated (P < 0.01), neutrophils (P < 0.0001). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (I) Correlation matrix heatmap of 22 immune
infiltration cells in LGG samples.
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The limitations of classical treatments lead to a poor OS (30). New

progress in brain tumor research suggests that immunotherapy is

a powerful tool for the treatment of gliomas (31–33). Therefore,

the identification of novel effective biomarkers for early diagnosis

and promising immune-related therapeutic targets for glioma

patients has become imperative in clinical practice. Recently,

several studies have reported that FNDC3B is an oncogene in

various cancers, including glioma (18). To our knowledge, the

expression pattern and biological function of FNDC3B in glioma

have not been studied in detail, and its possible prognostic value in
Frontiers in Immunology 13
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glioma remains to be explored. Based on the integrated machine

learning methods, this is the first report to comprehensively

analyze FNDC3B expression profiles and its correlation with

immune infiltrates in gliomas.

In this study, we identified that FNDC3B was highly

expressed in glioma tissues by mining multiple databases, and

the expression levels of FNDC3B increased with the level of the

malignant degree, which was also confirmed in another study

(16). These results suggested that FNDC3B could serve as a

promising molecular marker for predicting the degree of
TABLE 4 Correlation analysis between FNDC3B expression and gene markers of immune cells in Gene Expression Profiling Interactive Analysis 2
(GEPIA2).

Immune cell types Gene markers LGG GBM

Cor P Cor P

B cells CD2 0.42 *** 0.3 ***

CD74 0.48 *** 0.31 ***

CD27 0.24 *** 0.3 ***

Plasma cells SPAG4 0.3 *** 0.29 ***

PDK1 0.37 *** 0.2 **

MAST1 -0.31 *** −0.27 ***

MANEA 0.64 *** 0.2 *

T cells CD2 0.42 *** 0.3 ***

CD3E 0.38 *** 0.32 ***

CD3D 0.37 *** 0.21 **

CD4+ T cells CD4 0.47 *** 0.42 ***

Tfh BCL6 0.16 *** 0.28 ***

CD84 0.47 *** 0.32 ***

IL6R 0.46 *** 0.4 ***

IL21 0.22 *** 0.19 *

M1 Macrophage CD80 0.36 *** 0.28 ***

IRF5 0.41 *** 0.26 ***

IL6 0.19 *** 0.42 ***

CD64 0.24 *** 0.21 **

M2 Macrophage CD163 0.4 *** 0.43 ***

CD206 0.12 ** 0.57 ***

VSIG4 0.34 *** 0.3 ***

MS4A4A 0.35 *** 0.36 ***

Dendritic cell HLA-DPB1 0.47 *** 0.3 ***

HLA-DQB1 0.36 *** 0.27 ***

HLA-DRA 0.52 *** 0.24 **

HLA-DPA1 0.47 *** 0.27 ***

CD8A 0.43 *** 0.25 **

CD141 0.35 *** 0.6 ***

NRP1 0.63 *** 0.81 ***

Neutrophils CCR1 0.45 *** 0.41 ***

CD11B 0.46 *** 0.56 ***

CCR7 0.25 *** 0.3 ***

SLC1A5 0.42 *** 0.43 ***

CXCR2 0.38 *** 0.22 **
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malignancy in brain glioma. K-M plots indicated that patients

with high FNDC3B expression had worse OS and DFS than

those with low expression in gliomas. Furthermore, univariate

and multivariate Cox analysis demonstrated a positive

correlation between FNDC3B expression and poor prognosis

of patients with glioma. To further apply FNDC3B in clinical

treatments, a prognostic nomogram for personalized prediction

was constructed, integrating the FNDC3B expression level with

significant clinical parameters (age, grade, and IDH status). The

C-index, AUC value, and calibration curve for TCGA training

and three CGGA validation datasets showed that our nomogram

was reliable and performed adequately. In general, we identified

and validated the expression level of FNDC3B as a useful and

independent prognostic biomarker for glioma. In the present

study, we found that the expression of FNDC3B was negatively

correlated with its DNA methylation and CNV was the most

common type of alteration for FNDC3B gene. Compared with

single-omics, multi-omics approaches can provide more deep

insights on molecular changes for cancer subtyping (34). A

recent study identified subtype-specific signatures via a

computational framework for analyzing multi-omics profiles

and patient survival and confirmed that subtype-specific

signatures could be more feasible in the clinical practice (35).

By combining multidimensional genomic measurements, a

higher resolution of prognostic signatures will be available for

different glioma subtypes in the future. Moreover, methylation

(5mC) in cell-free DNA (cfDNA) have been widely observed in

human diseases, regions with consistently altered 5mC levels for

FNDC3B in circulating cfDNA during progression from low-

grade glioma to glioblastoma could be used as markers for

development of minimally invasive screening of early

diagnosis and surveillance (36, 37).

To further investigate the functions of FNDC3B in glioma, we

performed GSEA analysis using DEGs based on TCGA LGG data.

The results showed that multiple immune-related pathways were

enriched in the FNDC3B high-expression group, such as cellular

response to cytokine stimulus, inflammatory response, and

immune system process. In the KEGG analysis, PI3K-Akt, p53

and MAPK signaling pathways participated in tumor

development. We found that the expression of FNDC3B

correlated with that of multiple T cell markers (Th1, Th2, and

Th17) in LGG. This suggested that FNDC3B may be involved in

the regulation of T cell response in glioma. In addition, WGCNA

was performed on the DEGs to find more valuable clues. Finally,

10 upregulated genes were identified as hub genes, including

TLR2, TLR7, PTPRC, CCR1, CCL5, TLR1, FN1, VCAM1,

CXCL10, and TLR6. Previous studies reported that T cells have

the ability to directly recognize danger signals through the

expression of toll-like receptors (TLRs) (38); interactions

between CCR1 and CCL5 contribute to T-cell activation (39),

and CXCL10 is usually considered to be a pro-inflammatory

chemokine that enhances recruitment of CD8+ and Th1-type

CD4+ effector T cells to infected or inflamed nonlymphoid tissues
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(40). FN1 can promote integrin b1 ubiquitination and

degradation and its expression may be upregulated by the

hyperactivation of ERK1/2 (41), considered to be critical

mediators for T cell functions (42). VCAM1 induces T-cell

antigen receptor-dependent activation of CD4+ T lymphocytes

(43), and PTPRC is a well-known positive regulator of T-cell

receptor signaling (44). Overall, these findings highlight the ability

of FNDC3B to potentially regulate T cell responses in LGG.

TILs are independent predictors in cancers (29). Our

findings showed that FNDC3B was strongly positively

correlated with immune infiltration in LGG and GBM among

all cancer types in the database, especially in the cytotoxic T cells

and anti-tumor associated immune cells, such as central

memory CD8 T cell, effector memory CD8 T cell, central

memory CD4 T cell, regulatory T cell (Treg), natural killer cell

(NK), natural killer T cell (NKT), memory B cell, and

macrophage. The comparative analysis of FNDC3B gene

expression in different immune subtypes in LGG suggested

that FNDC3B may be strongly linked to immunological

properties in the tumor microenvironment. A previous study

reported that the immune microenvironment affected the gene

expression of tumor tissues, and the degree of stromal and

immune cell infiltration influenced prognosis (45). In our

study, the FNDC3B high-expression group displayed higher

values for immune, stromal, and ESTIMATE scores than the

FNDC3B low-expression group, indicating that the high

expression level of FNDC3B is positively related to immune

infiltration in gliomas. Moreover, consistent with the TISIDB

results, we found that memory CD4 T cell, macrophages M1 and

M2, and neutrophils were enriched in the FNDC3B high group

based on CIBERSORT analysis. Additionally, a relatively strong

correlation between FNDC3B expression and gene markers of T

cells, CD4+ T cell, follicular helper T cells, and dendritic cells

indicated the potential role of FNDC3B in regulating T cell

function in LGG and GBM.

The FNDC3B expression was positively correlated with

genes of immune checkpoints, suggesting that FNDC3B could

be a regulatory factor of various immune checkpoints in glioma.

The correlation analysis showed that FNDC3B was mostly

positively correlated with B7-H3, which was associated with a

suppressive effect on T-cell activities in various tumors (46). In

recent years, studies have shown that B7-H3 is a promising novel

target for glioma immunotherapy (47, 48). Nehama and

colleagues reported that B7-H3 is highly expressed in more

than 70% of GBM samples and that B7-H3-redirected chimeric

antigen receptor T (CAR-T) cells can effectively control tumor

growth (31). Currently, tumor immunotherapy has attracted

great attention. Hence, our findings indicated that whether we

can participate in the immune checkpoint by inhibiting the

expression of FNDC3B, and can FNDC3B be served as a

powerful immune checkpoint blockade combination therapy

to increase efficacy and reduce side effects? More investigations

are required to get a full description and understanding of the
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mechanisms in the future, this study provide a new insight for

further exploration of the molecular mechanisms.

There are several limitations in the current research. First, it

was mainly based on online public databases and computational

methods. Nevertheless, integrated machine learning algorithms

strengthen the conclusion of this study. Second, more

investigations are needed to identify the expression and

function of FNDC3B as well as their correlations with immune

cell infiltration; thus, further clinical and experimental studies in

the laboratory are required for verifying its role in glioma.

In conclusion, our comprehensive analysis revealed that

FNDC3B was upregulated in glioma, while increased FNDC3B

expression predicted an unfavorable prognosis. Moreover,

FNDC3B is associated with the infiltration of various immune

cells, and it may play a vital role in the tumor immune

microenvironment of glioma. Therefore, we reported that

FNDC3B is a possible prognostic biomarker and an immune-

related therapeutic target for glioma, which will be useful for

clinical applications.
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