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Identification of microsatellite
instability and immune-related
prognostic biomarkers in
colon adenocarcinoma

Ziquan Sun1†, Guodong Li2†, Desi Shang3, Jinning Zhang1,
Lianjie Ai1 and Ming Liu1*

1Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical
University, Harbin, China, 2Department of General Surgery, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin, China, 3College of Bioinformatics Science and Technology, Harbin
Medical University, Harbin, China
Background: Colon adenocarcinoma (COAD) is a prevalent malignancy that

causes significant mortality. Microsatellite instability plays a pivotal function in

COAD development and immunotherapy resistance. However, the detailed

underlying mechanism requires further investigation. Consequently, identifying

molecular biomarkers with prognostic significance and revealing the role of MSI

in COAD is important for addressing key obstacles in the available treatments.

Methods: CIBERSORT and ESTIMATE analyses were performed to evaluate

immune infiltration in COAD samples, followed by correlation analysis for MSI

and immune infiltration. Then, differentially expressed genes (DEGs) in MSI and

microsatellite stability (MSS) samples were identified and subjected to weighted

gene co-expression network analysis (WGCNA). A prognostic model was

established with univariate cox regression and LASSO analyses, then evaluated

with Kaplan-Meier analysis. The correlation between the prognostic model and

immune checkpoint inhibitor (ICI) response was also analyzed.

Results: In total, 701 significant DEGs related to MSI status were identified, and

WGCNA revealed two modules associated with the immune score. Then, a

seven-gene prognostic model was constructed using LASSO and univariate

cox regression analyses to predict survival and ICI response. The high-risk

score patients in TCGA and GEO cohorts presented a poor prognosis, as well as

a high immune checkpoint expression, so they are more likely to benefit from

ICI treatment.
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Abbreviations: COAD, Colon adenocarcinoma;

instability; MSS, Microsatellite stability; CRC, Color

Mismatch-repair-deficiency; MSI-H, High levels of mi

pMMR, Mismatch-repair-proficient; ICI, Immune

TME, Tumor microenvironment; TCGA, The Cancer

Gene Expression Omnibus; MSI-L, Low levels of mi

IOD, Immunohistochemical integral optical density; O
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Conclusion: The seven-gene prognosticmodel constructed could predict the survival

of COAD and ICI response and serve as a reference for immunotherapy decisions.
KEYWORDS

colon adenocarcinoma (COAD), microsatellite instability (MSI), immune
microenvironment, prognostic biomarkers, drug response
Introduction

Colorectal cancer (CRC) is among the most prevalent

cancers globally and is ranked the second most common cause

of cancer-related death (1). In developed countries, CRC

patients’ 5-year survival has been enhanced by early detection,

yet 25% present with stage four and additional 25%–50% present

in the early stages but progress to metastasis (2). Therefore,

further research for effective treatment development is urgently

required. Over the past decade, immunotherapy has achieved

long-term durable effective responses in treating tumors,

including lung cancer and melanoma (2). For CRC, immune

checkpoint therapy was approved in 2017 for treating tumors

with heavy mutations that have mismatch-repair-deficiency

(dMMR) or high levels of microsatellite instability (MSI-H),

also known as dMMR-MSI-H tumors. Pembrolizumab obtained

FDA approval for treating solid tumors with MSI-Hor

dMMR (2).

Colon cancer can be categorized into mismatch-repair-

proficient (pMMR), microsatellite stability (MSS), and dMMR

microsatellite instability (MSI) subtypes (3). Recent studies have

revealed that CRC patients who benefit from immune

checkpoint inhibitors mainly have a high mutation burden

and mismatch repair deficiency (MSI) (4). In several tumors,

the immune cell infiltration biological characteristics and

prognostic value have been thoroughly described (3), but the

value of MSI as a biomarker remains limited. For example,

several clinical trials revealed that metastatic CRC (mCRC)

patients with MMR deficiency/MSI-H benefit from the

immune checkpoint inhibitor (ICI) treatment (5). However,

the efficacy of MSI for drug response and treatment benefit

prediction of patients with COAD is unclear. Chen T et al. also

developed a lncRNA model to predict gastric cancer’s MSI and

prognosis (6). Hence, exploring MSI application in COAD
MSI, Microsatellite

ectal cancer; dMMR,

crosatellite instability;

checkpoint inhibitor;

Genome Atlas; GEO,

crosatellite instability;

S, Overall survival
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therapy and biomarker identification is necessary. This

requires identifying accurate predictive biomarkers to

comprehend the pathogenesis, predict the clinical outcomes,

and subsequently develop a treatment plan for COAD patients.

The tumor microenvironment (TME) and cancer evolution

are strongly co-dependent (7, 8). TME comprises several cellular

components, such as endothelial cells, fibroblasts, lymph vessels,

blood vessels , and immune cells (9) . The immune

microenvironment has a crucial function in cancer

development and therapy, as the immune system components

are usually affected by cancers (10–12). Due to the heterogeneity

and complexity of tumor immune microenvironment, few

patients have benefited from immunotherapy (13), leading to

diverse immunotherapy effects among COAD patients (14). The

MSI status alone cannot predict the immune checkpoint

blockade therapy response because of the complicated

interaction between tumor and immune cells (15). Besides,

COAD patients’ prognosis could be predicted by immune-

related parameters (14, 16). Consequently, the immune-related

and MSI status for identifying prognosis biomarkers

is necessary.

This study used MSI and immune-related gene modules to

construct and evaluate a prognostic model. Moreover, the

prognostic model and drug sensitivity correlation were

analyzed using drug response datasets.
Methods and materials

Colon adenocarcinoma
datasets acquisition

The UCSC Xena (https://xenabrowser.net/) was utilized to

obtain clinical and gene expression data of samples from COAD

patients in the Cancer Genome Atlas (TCGA). MSI or

microsatellite stability (MSS) of TCGA COAD samples was

obtained from Zaravinos et al. (17). In TCGA cohort, the

clinical-pathological stage and microsatellite status were

evaluated using the chi-square test and considered statistically

significant if the P-value was less than 0.05 (Table 1).

Expression levels were detected using a microarray of two

datasets with corresponding clinical information (GSE17536 and
frontiersin.org
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GSE39582), four datasets with corresponding microsatellite

stability status (GSE13294, GSE18088, GSE13067, and

GSE72969), and gene expression of two datasets (GSE33113

and GSE17537) were obtained using Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo), serving as the

validation sets.
Evaluation of the correlation between
microsatellite stability status and tumor
immune infiltration

Depending on CIBERSORT, the number of each tumor-

infiltrating immune cell type was determined (18). CIBERSORT

is a tool that estimates specific types of cell abundance based on

the gene expression in a mixed cell population, and mRNA

expression data were used in this study to compute the range of

22 infiltrating immune cells in TCGA cohort. CIBERSORT score

is available on their website (https://cibersort.stanford.edu/

index.php) with 1000 permutations. Additionally, the tumor

purity score, the stromal cell level, and the level of infiltrated

immune cells in TCGA COAD tumor tissues were determined

according to ESTIMATE (Estimation of STromal and Immune
Frontiers in Immunology 03
7

cells in MAlignant Tumor tissues) method via the “estimate” R

package (19).

The expression data of five immune checkpoints were

extracted from TCGA cohort; CD274 (code PD-L1), PDCD1

(code PD-1), BTLA, CD47, and CTLA4. A one-sided Wilcoxon

rank-sum test was employed for evaluating differences in

CIBERSORT 22 immune cells score, ESTIMATE score, and

five immune checkpoints expression between the MSI and

MSS groups or MSI-H and microsatellite instability low (MSI-

L) groups. A P-value less than 0.05 was considered significant.
Differentially expressed genes and
functional analysis

TCGA cohort gene expression data were standardized before

performing a differential expression analysis using “edgeR” R

package for DEGs detection in MSI and MSS samples using a

threshold of FDR < 0.05 and |logFC| > 1. In total, 701 DEGs were

identified (Table S1), and those DEGs with GO Biological

Processes were analyzed using the pathway and process

enrichment analysis using Metascape web-based tool (https://

metascape.org/gp/index.html) with default settings: terms with
TABLE 1 Baseline characteristics of patients in TCGA COAD cohort.

Characteristics Whole Cohort MSI Group MSS Group P

TCGA cohort (n=432) (n=157) (n=275)

Gender 0.0034

Male 230 (53.24%) 69 (43.95%) 161 (58.55%)

Female 202 (46.76%) 88 (56.05%) 114 (41.45%)

Age 0.17

<65 years 164 (37.96%) 53 (33.76%) 111 (40.36%)

>=65 years 268 (62.04%) 104 (66.24%) 164 (59.64%)

T-stage 1

T1 11 (2.55%) 4 (2.55%) 7 (2.55%)

T2 73 (16.9%) 26 (16.56%) 47 (17.09%)

T3 293 (67.82%) 107 (68.15%) 186 (67.64%)

T4 54 (12.5%) 20 (12.74%) 34 (12.36%)

N-stage 0.012

N0 250 (57.87%) 105 (66.88%) 145 (52.73%)

N1 103 (23.84%) 32 (20.38%) 71 (25.82%)

N2 79 (18.29%) 20 (12.74%) 59 (21.45%)

M-stage 0.049

M0 314 (72.69%) 118 (75.16%) 196 (71.27%)

M1 64 (14.81%) 17 (10.83%) 47 (17.09%)

Stage 0.0079

I 71 (16.44%) 27 (17.2%) 44 (16%)

II 150 (34.72%) 69 (43.95%) 81 (29.45%)

III 122 (28.24%) 35 (22.29%) 87 (31.64%)

IV 64 (14.81%) 17 (10.83%) 47 (17.09%)
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an enrichment factor > 1.5, a minimum count of 3, and P < 0.01.

The Metascape data are always up to date.
Weighted gene co-expression network
analysis (WGCNA) to identify immune-
related modules

WGCNA is a data reduction and unsupervised classification

method (20, 21). Subsequently, depending on DEG expression

profile, the co-expression network was built using “WGCNA” R

package with a parameters set as follows: mergeCutHeight =

0.25, minModuleSize = 20, corType = “Pearson”. The module-

trait association method was used to determine the co-

expression module related to immune infiltration without

impact on the clinical characteristics (Table S2). After gene

clustering, the modules and phenotype correlation were

illustrated by a heatmap. The blue and turquoise modules

were eligibly selected.
Construction of a prognostic model

In TCGA cohort, univariate Cox proportional regression was

conducted on “blue” as well as “turquoise” module genes linked to

OS. Seventy-eight genes with a P value of less than 0.01 were

considered for further analysis. In Cox regression model, the

considerable prognostic genes were identified by the least absolute

shrinkage and selection operator (LASSO) method for variable

selection, as well as one standard error (SE) above minimum

criteria. The following risk score formula is presented: Risk

score = (exp Gene1 * coef Gene1) + (exp Gene2 * coef Gene2) +

… +(exp Gene7* coef Gene7), considering the optimized gene

expression and the correlation estimated Cox regression coefficients.

COAD patients were categorized into two risk groups according to

the given risk score median, and their survival time differences were

evaluated using a log-rank test. The findings were presented using

Kaplan-Meier plots. The risk score differences between MSI and

MSS groups or MSI-H and MSI-L groups in TCGA, GSE13294,

GSE18088, and GSE13067 cohorts were evaluated using a one-sided

Wilcoxon rank-sum and demonstrated statistical significance when

the p-value < 0.05.
The risk score and drug response
correlation analysis

IMvigor210 was a single-arm phase 2 study to investigate

atezolizumab in metastatic urothelial cancer (mUCC) patients

(NCT02108652, NCT02951767) (22). The IMvigor210 trial

complete expression and clinical data were obtained using

“IMvigor210CoreBiologies” R package obtained from http://

research-pub.gene.com/IMvigor210CoreBiologies. The risk
Frontiers in Immunology 04
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score difference between the drug response (PD [progressive

disease], PR [partial response], SD [stable disease], and CR

[complete response]) was assessed. The difference in mutation

and neoantigen burdens between the risk groups was evaluated

by a one-sided Wilcoxon rank-sum. Differential expression for

five immune checkpoints between the two risk groups was

evaluated in IMvigor210 and TCGA cohorts. The Genomics of

Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.

org/) was utilized to obtain the drug response measurements as

LN_IC50 (natural log of the fitted half-maximal inhibitory

concentration) and transcription profiles for about 1000

cancer cell lines and drugs targets/pathways. The drug

sensitivity and risk score correlation were calculated using

Pearson correlation analysis.
Immunohistochemical verification

Twenty colorectal cancer tissues, including 10 MSI and 10

MSS, were acquired from the Fourth Affiliated Hospital of

Harbin Medical University. Immunohistochemistry was

performed as previously described (23). Tissues were

incubated with anti-CALB2 (ABclonal, dilution 1:100)

antibody at 37°C for 1h and with secondary antibodies at

room temperature for 30 min. The Olympus BX53 microscope

was utilized to capture images, and the immunohistochemical

integral optical density (IOD) was analyzed using Image-Pro

Plus v6.0. The groups’ average optical densities were compared.

The groups’ average optical densities were compared.
Statistical analysis

Statistical analysis was conducted using GraphPad Prism 8

and R 3.6.3 (https://www.r-project.org/). For comparing the

continuous variables in immunohistochemical analysis, the

t-test was employed. We applied the Kruskal-Wallis test to

compare the continuous variables during the bioinformatic

analysis. The subgroups were divided based on the median

value. Kaplan-Meier survival analysis was used to generate

overall survival curves, and the log-rank test was used to

calculate the significance.
Results

Microsatellite stability status affected
tumor immune infiltration

The abundance of twenty-two immune cells within TCGA

COAD samples was calculated by CIBERSORT to evaluate the

immune cell infiltration (Figure 1). Immune profile for the

evaluation of the immune cell infiltration was shown in Table S3.
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Then, the proportions of different subpopulations of tumor-

infiltrating immune cells were explored in TCGA COAD

(Figure 2A). “CD4 memory resting T cells” and “M0

macrophages” represent a significant proportion of COAD

immune cell infiltration. Next, we assessed the differentially

infiltrated immune cells between MSI and MSS groups

(Figure 2B), with the infiltration of “follicular helper T

cells” (P = 2.4E-04), “M1 macrophages” (P = 4.5E-04), and

“neutrophils” (P = 1.7E-02) in MSI group higher than in MSS

group, and infiltration of “CD4 naive T cells” (P = 1.8E-02),

“naive B cells” (P = 5.5E-03) and “plasma cells” (P = 1.3E-04)

in MSI group lower than in MSS group. Besides, we assessed

the immune cell infiltration in MSI-H and MSI-L groups

(Figure 2C), showing that the infiltration of “follicular helper

T cells” (P = 5.2E-05), “M1 macrophages” (P = 2.3E-08), and

“neutrophils” (P = 2.4E-04) in MSI-L group was lower than in

MSI-H group, and the infiltration of “CD4 naive T cells” (P =

6.2E-03), “naive B cells” (P = 2.7E-02) and “plasma cells” (P =

9.4E-06) in MSI-H group was lower compared to MSI-L

group. Besides, infiltration of CD8 T cells in MSI group was

considerably higher than in MSS group (Figure S1A; P = 1.8E-
Frontiers in Immunology
 05
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02), and infiltration in MSI-L group was lower than in MSI-H

group (Figure S1B; P = 8.8E-02).

To explore the tumor purity distinction between different

microsatellite stability statuses in TCGA COAD tumor tissues,

the ESTIMATE method was applied to evaluate the level of

stromal cells and the immune cell infiltration, and these are the

basis for ESTIMATE score. The ESTIMATE score (P = 7.8E-03),

Stromal score (P = 2.6E-01) and Immune score (P = 1.7E-05) in

MSI group were higher than MSS group (Figure 2D). The

ESTIMATE score (P = 3.8E-06), Stromal score (P = 1.8E-03)

and Immune score (P = 5.4E-09) in MSI-L group were lower

than in MSI-H group (Figure 2E).

The differential expression of five immune checkpoints in

the microsatellite instability groups were then analyzed,

showing that expressions of BTLA (P = 1.4E-02), PD-L1 (P =

1.2E-08), CD47 (P = 1.5E-02), CTLA-4 (P = 9.7E-07) and PD-1

(P = 4.3E-06) in MSI group were higher than in MSS group

(Figure 2F), with BTLA expression (P = 1.2E-03), PD-L1 (P =

3.1E-15), CD47 (P = 5.6E-04), CTLA-4 (P = 1.5E-06) and PD-1

(P = 7.3E-07) in MSI-L group lower than in MSI-H

group (Figure 2G).
FIGURE 1

The study design schematic diagram.
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B C
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F G

FIGURE 2

Evaluation of the association between microsatellite stability status and tumor immune infiltration. (A) In the TCGA COAD cohort, 22 immune
cell proportion and distribution using CIBERSORT are shown. (B) The six immune cells infiltration difference between MSI and MSS groups.
(C) The difference of six immune cells infiltration between MSI-L and MSI-H groups and (D) The difference in ESTIMATE score between MSI and
MSS groups was analyzed. (E) The difference in ESTIMATE score between MSI-L and MSI-H groups was analyzed. (F, G) The differential
expression status of five immune checkpoints between different MSI groups was analyzed. The one-sided Wilcoxon rank-sum test was utilized
to compute P-values.
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Identifying differentially expressed genes
between different microsatellite
stability status

Differential expression analysis of the MSI and MSS samples

was performed to identify genes that have a pivotal function in

the microsatellite stability status, identifying 701 genes

(Figures 1, 3A), the top 50 of which are shown in the heatmap

(Figure 3B). Pathway and process enrichment analyses using

Metascape were used to detect the functional processes regulated

by these 701 DEGs. Significantly enriched in GO biological

processes were “Cellular component organization or

biogenesis”, “Negative regulation of biological process”,

“Developmental process”, “Metabolic process”, and so

on (Figure 3C).
Frontiers in Immunology 07
11
Weighted gene co-expression network
construction and immune-related
modules identification

Co-expressed networks were built by WGCNA according to

701 DEGs expressions in TCGA COAD cohort to identify the

co-expression modules associated with immune traits (Figure 1).

The module power value between 1 and 30 was evaluated to

assure the average connectivity and high independence. To

ensure a scale-free network, the power value was set to 3 when

the scale-free R2 reached 0.9 as the soft-thresholding parameter

(Figure 4A). The number of genes in each of the six modules

identified was as follows: 179 in blue, 273 in turquoise, 122 in

brown, 52 in green, 18 in gray, and 57 in the yellow module. The

cluster tree is displayed in Figure 4B. The blue module was
B

C

A

FIGURE 3

The differentially expressed gene identification and functional analysis. (A) Volcano plot for differential expression genes (DEGs) between MSI
and MSS samples from TCGA COAD cohort. Blue points mean upregulation, and orange points mean downregulation. (B) The heatmap shows
the expression of the top 50 DEGs in samples from TCGA COAD cohort. (C) For 701 significant DEGs, pathway and process enrichment analysis
has been done with GO Biological Processes. The graphical graph revealed the top 20 enrichments having P < 0.01. A P-value was multi-test
adjusted in log 10.
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positively linked to brown and turquoise modules, and the

turquoise module was positively correlated with green and

blue modules (Figure 4C).

The module-trait association method was applied to detect

the high co-expression modules relevant to the immune

factors but did not affect clinical features. After gene

clustering, the correlation between modules and phenotype

was illustrated by heatmaps (Figure 4D). According to

correlation analysis, blue and turquoise modules were
Frontiers in Immunology 08
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identified as the immune-related modules highly correlated

with ESTIMATE score (Figures S2A, B; Cor = 0.6, P = 4.4E-28

for turquoise; Cor = 0.15, P = 4.5E-02 for blue), the expression

of PD-1 (Figures S2C, D; Cor = 0.72, P = 6.8E-45 for turquoise;

Cor = 0.63, P = 3.5E-21 for blue) and BTLA (Figures S2E, F;

Cor = 0.53, P = 3.6E-21 for turquoise; Cor = 0.85, P = 3.8E-51

for blue). Besides, the turquoise modules were highly linked to

CD8 T cells (Figure S2G; Cor = 0.58, P = 6.1E-26) and M1

macrophage (Figure S2H; Cor = 0.6, P = 4.4E-28) infiltration.
B C

D

A

FIGURE 4

Identifying immune-related modules by WGCNA. (A) The scale-free fit index analysis and the mean connectivity for various soft-thresholding
powers (b). (B) Dendrogram for clustering all differentially expressed genes relies on a measure of dissimilarity (1-TOM). (C) Clustering
correlations among WGCNA modules. The color red represents a positive correlation, and blue represents a negative correlation. (D) Heatmap
revealing the relationship between modules, clinical features, and immune factors, including ESTIMATE score, the immune checkpoints
expression, and CIBERSORT 22 immune cell score. The red refers to a positive correlation, while the blue indicates a negative correlation.
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The co-expression network of blue and turquoise modules is

displayed in Figure S3.
The MSI-related prognostic
model construction

Univariate Cox proportional regression analysis was

conducted to determine the prognostic value of selected MSI-

related co-expression module genes, displaying that 78 MSI-

related co-expression genes were statistically considerably linked

to the overall survival (OS) (Figures 1, 5A; P < 0.01). Next, LASSO

analysis was utilized to identify the most effective prognostic genes

in addition to one SE over the minimum threshold selected,

leading to a model having seven MSI-related co-expression

prognostic genes: SMC1B, MAGEA1, LHX8, KHDC1L,

HOXC9, GABRG2, and CALB2 (Figures 5B, C). Next, a

predictive model was developed according to TCGA training

set: risk score = (0.09433 * SMC1B expression) + (0.02362 *

MAGEA1 expression) + (0.02937 * LHX8 expression) + (0.1195 *

KHDC1L expression) + (0.02567 * HOXC9 expression) +

(0.08978 * GABRG2 expression) + (0.01932 * CALB2

expression) (Figure 5D). In TCGA training set, every patient’s

risk score was determined per the previous formula. The patients

were categorized per the median risk score as the cutoff value into

two risk groups, with the high-risk group having considerably

poorer OS (Figure 5E; P = 2.1E-03; log-rank test).

In the validation set GSE17536, the survival analysis revealed

that the high-risk group had a poorer prognosis in OS

(Figures 6A; P = 7.4E-03; log-rank test) and disease-specific

survival (DFS) (Figure S4; P = 4.2E-02; logrank test), and more

patients survived in the low risk group, whereas in the validation

set GSE39582, the high-risk group had a poorer prognosis

(Figures 6B; P = 5.2E-02; log-rank test), and more patients

survived in the low-risk group. Further investigations were

performed to confirm if the risk score indicates prognosis for

distinct subgroups of clinical characteristics. In TCGA cohort,

females, older patients, T3 stage, N1 stage, pathological stage

(Stages III and IV), and M subgroups (M0 and M1), the high-

risk group patients, presented a considerably poorer OS (Figures

6C–J; P < 0.05; log-rank test). We also found that the risk score

of T3+T4 group was higher than that of T1+T2 group

(Figure 6K). APC gene had the most mutations in COAD

(Figure 7A) and TMB is higher in the high-risk group

(Figure 7B, Wilcoxon test, P<0.0001). During the comparison

of patient prognosis of low risk and low TMB group, low risk

and high TMB group, high risk and low TMB group, and high

risk and high TMB group, the patients of the four groups had

different outcomes (Figure 7C; P=0.041).

Then, we compared the two risk groups’ genetic mutation

status. In TCGA cohort, Figures S5A, B revealed the top 20

mutations in the two risk samples. The top five mutations and

prognosis correlation were analyzed in the high-risk group,
Frontiers in Immunology 09
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showing that KARS mutation was linked to a poor prognosis

(Figure S5C; P = 0.072). However, no difference was observed

between the low-risk group and the entire TCGA COAD cohort

(Figures S5D, E).
Risk scores were related to immune
features and microsatellite stability status

The risk score potential in predicting COAD’s immune

features was determined by first illustrating the expression status

of immune-related genes in the two risk groups of the two data sets

(Figures 8A, B). The analysis of the linkage between the immune

cell infiltration and expression levels of risk score component genes

indicated that HOXC9 andCALB2 are significantly correlated with

most immune cell infiltration levels (Figures 8C, D). To confirm

the associations between risk score and microsatellite stability

status, we analyzed the risk score difference of different

microsatellite stability statuses (Figure 1). In TCGA COAD

cohort, MSI group had a higher risk score than MSS group

(Figure 9A; P = 1.1E-08; one-sided Wilcoxon rank-sum test),

and the risk score in MSI-L group was lower than MSI-H group

(Figure 9B; P = 1.9E-05; one-sided Wilcoxon rank-sum test).

Besides, the risk score in MSI group was higher than MSS group

in GSE13294 (Figure 9C; P = 1.8E-05; one-sided Wilcoxon rank-

sum test), GSE18088 (Figure 9D; P = 9.0E-03; one-sided Wilcoxon

rank-sum test) and GSE13067 (Figure 9E; P = 6.4E-02; one-sided

Wilcoxon rank-sum test) cohorts. Next, Pearson correlation

analysis was conducted to analyze the correlation between the

risk score and expression level of MLH1 and MSH4 (Figure 9F).

MutS homologues are the major conductor of the correction of

errors introduced in microsatellites. MLH1, MSH3, PMS2, MSH4,

MLH3 are five component genes of MutS homologues which can

recognize mismatched nucleotides to initiate the repair process (24,

25). Thus, here we analyzed the differential expression status of the

five genes in high risk score group and low risk score group.

Differences in the five MMR gene expression levels in the high-risk

and low-risk score groups are presented in Figure 9G.
The risk score and drug
response correlation

In IMvigor210 cohort, the risk score differences among the

immunotherapy responsive groups were evaluated to determine

if the risk score can predict patients’ immunotherapy response

(Figure 1). The risk scores in SD and PD were significantly

higher than in CR (Figure 10A; P < 0.05), while the risk score in

PR was higher compared to CR (Figure 10A; P = 0.062). The

immunotherapy responsive group risk score was higher

compared to non-response group (Figure 10B; P = 0.063). The

high-risk patients with PD or SD responses were less than low-

risk patients, and the high-risk group patients with PR or CR
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responses were more than low-risk patients (Figures 10C, F).

Besides, the mutation and neoantigen burdens in high-risk

patients were higher (Figures 10D, E; P < 0.05). Taken

together, such findings indicate that high-risk patients showed

better immunotherapy response in IMvigor210 cohort. Then, we
Frontiers in Immunology 10
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investigated the expression of the immune checkpoints among

the two risk groups, with the high-risk group in TCGA COAD

cohort having considerably higher PD-1, PD-L1, BTLA, and

CTLA4 (Figures 10G-J; P < 0.05). In IMvigor210 cohort, the

high-risk group had higher PD-1 as well as CD47 (Figure S6).
B C

D E

A

FIGURE 5

The MSI-related prognostic model construction. (A) Univariate Cox proportional regression analysis was conducted to identify significant MSI-
related co-expression prognostic genes with P < 0.01. The bars mean coefficients of univariate Cox proportional regression analysis. (B) LASSO
coefficient profiles of 78 MSI-related co-expression prognostic genes. (C) Cross-validation for tuning parameter selection in LASSO model.
(D) The coefficients of seven MSI-related co-expression prognostic genes in the predictive model were caluclated. (E) In TCGA COAD cohort,
OS difference among the two risk samples was evaluated using a log-rank test. Samples of high risk group: 212. Samples of low risk group: 211.
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We then examined the linkage between risk score and

responsiveness to 20 antitumor agents in GDSC cancer cell

lines. Nineteen drugs with a drug response value (LN_IC50)

were negatively linked to the risk score, defined as “drug

sensitivity”, whereas one drug was positively linked, defined as

“drug resistance”, by Pearson correlation analysis (Figure 10K).

The drugs with sensitivity were mostly targeting DNA

replication and IGF1R signaling pathways (Figure 10L).
Frontiers in Immunology 11
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Immunohistochemical
pathological analysis

To further validate the prognostic value of identified core

genes, immunohistochemical pathological analysis was executed

to analyze gene CALB2 protein expression status in MSI and

MSS subtypes, demonstrating that the gene had a higher

expression level in MSI samples (Figures 11A-C).
B
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A

FIGURE 6

Survival analysis in the validation set. OS difference and the survival and risk score distribution among the two risk samples were evaluated using
a log-rank test in (A) validation set GSE17536 and (B) validation set GSE39582. Samples of high risk group in GSE17536: 116. Samples of low risk
group in GSE17536: 61. Samples of high risk group in GSE39582: 307. Samples of low risk group in GSE39582: 250. (C-J) In TCGA cohort, a log-
rank test was employed to evaluate OS difference among two risk samples of females, older patients, T3 stage, N1 stage, M subgroups (M0 and
M1), and pathological stage (Stages III and IV). (K) Risk score of T1+T2 group and T3+T4 group was compared.
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Discussion

COAD treatment is challenging because of the advanced

stage and poor OS; accordingly, new therapeutic targets are

necessary (26). MSI is a high-frequency event in CRC, and recent

studies have revealed that MMR deficiency/MSI-H status affects

the response to ICI treatment in mCRC patients (27, 28).

However, the efficacy of MSI for COAD treatment requires

further research. Currently, genes are used to establish a

predictive model to evaluate COAD prognosis and

responsiveness to therapy, and several gene signatures have

been constructed using large-scale publicly available datasets

(29, 30). Consequently, the current study established an MSI and

immune-related prognostic model comprising seven genes to

identify COAD patients who may have better immunotherapy

responsiveness. We further validated OS predicting the efficacy

of this model in COAD patients via a validation analysis for
Frontiers in Immunology 12
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prognostic signatures. The prognostic model can distinguish

COAD patients with different responses to ICI treatment.

As an assessment of microsatellite status, we considered the

order of “MSS MSI-L MSI-H” as progressive relationships,

revealing that the infiltration of “M1 macrophages”, “follicular

helper T cells”, and “neutrophils” in MSS samples was

significantly lower compared to MSI samples; a similar

pattern was observed in the comparison of MSI-H and MSI-

L (P < 0.05). M1 macrophages are activated macrophages,

defined due to pro-inflammatory cytokine production,

mediating pathogens resistance, and exhibiting strong

microbicidal characteristics (31). In addition, they are tissue

destructive and have anti-tumoral ability (32). Follicular helper

T cells are a subpopulation of CD4+ T cells that have a pivotal

function in protective immunity because they assist B cells in

antibody production versus foreign pathogens (33).

Neutrophils have a pivotal function in the host defense
B C

A

FIGURE 7

The two risk groups have different mutation features. (A) Somatic mutation features of the two risk groups. (B) TMB was compared between the
two risk groups (C) Comparison of patient outcome of low-risk and low TMB group, low-risk and high TMB group, high-risk and low TMB
group, and high-risk and high TMB group.
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versus infection (34). Meanwhile, high T cell infiltration is

linked to a favorable cancer prognosis (8, 35). In addition, the

immune score was assessed according to ESTIMATE

algorithm, and the five immune checkpoints expression
Frontiers in Immunology 13
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increased as MSI level increased (P < 0.05). These findings

indicate that MSI is linked to the proportion of immune cell

infiltration in COAD; higher microsatellite stability indicates

an increase in immune infiltration.
B

C

D

A

FIGURE 8

Risk scores were related to cancer’s immune features. (A, B) Expression status of immune-related genes in GEO (A) and TCGA (B) data sets was
analyzed. (C, D) The risk score and immune infiltration level correlation in GEO (C) as well as TCGA (D) data sets were analyzed.
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This study identified DEGs related to the microsatellite

instability status and functional analysis disclosed that DEGs

were significantly enriched in several regulatory pathways. The

term “Developmental process” refers to some biological changes

linked to growth, information transfer, and differentiation over

the organism’s life cycle. “Cellular component organization or

biogenesis” leads to the constituent parts assembly or a cellular

component disassembly. “Negative regulation of biological

process” represents any process that reduces, prevents, or

stops the biological process rate, frequency, or extent.

“Metabolic processes” are chemical reactions and pathways,

such as catabolism and anabolism. Our analysis revealed that

DEGs related to the microsatellite stability status were closely
Frontiers in Immunology 14
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associated with the growth and activity of cellular components

and organisms.

A prognostic model was constructed of seven MSI and

immune-related genes in COAD according to WGCNA and

other bioinformatics analyses. This approach has demonstrated

its effectiveness in cancer research and is commonly utilized

(36). The biomarkers identified also have a stable efficacy in

COAD prognosis. Apart from T stage, M stage, N stage, Stage

and age, gender and sex hormone also contribute to disease

prognosis of COAD (37). To further validate our score’s

robustness, we analyzed the prognosis of high risk patients

and low risk patients in subgroups with different clinical

pathology features. Results further demonstrated our risk
B

C D E
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A

FIGURE 9

Risk scores were related to microsatellite stability status and the MMR gene expression. (A) A one-sided Wilcoxon rank-sum test was utilized for
evaluating risk score differences in TCGA cohort between MSI and MSS groups and (B) MSI-H and MSI-L groups, and (C-E) in GSE13294,
GSE18088, and GSE13067 cohorts between MSI and MSS groups. (F) Pearson correlation analysis was performed to evaluate the correlation
between DNA mismatch repair (MMR) gene expression and risk score. The bars mean -log10 (P-value). (G) In TCGA cohort, the five MMR gene
expression differences among the two risk groups were evaluated by a one-sided Wilcoxon rank-sum test. Statistical significance is determined
when P-value < 0.05.
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score’s effectiveness. SMC1B associates with cohesin proteins

and plays a part in genome stability (38). MAGEA1 codes for an

antigen that may cause cancer immune suppression (39). LHX8

is a crucial transcription factor mostly expressed in germ cells

(40). HOXC9 controls various cellular processes linked

to differentiation via activating and repressing the

transcription of different gene sets (41). Mutations in

GABRG2 have been associated with epilepsy syndromes with

varying severities (42). CALB2 is expressed in most poorly

differentiated colon carcinomas (43). Although the function of

KHDC1L is unclear, we still approve of its effect in the
Frontiers in Immunology 15
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prognostic model. Our prognostic model can differentiate high

and low-risk patients, not only in TCGA COAD cohorts (even

clinicopathological subgroups) but in the validation sets

GSE17536 and GSE39582. Moreover, there were considerable

risk scores differences between MSI and MSS samples in TCGA,

GSE13294, GSE18088, and GSE13067 datasets, signifying that

the prognostic model reflects the microsatellite stability status

of patients.

The immunotherapy dataset IMvigor210 was used to

validate our prognostic model. Although the cancer type of

patients in IMvigor210 is mUCC, IMvigor210 was widely used
B C
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FIGURE 10

Risk score and drug response correlation. (A, B) In IMvigor210 cohort, the risk score distribution between the responsive groups and
(C, F) between the two risk groups. (D, E) The mutation and Neoantigen burden distribution in the two risk group patients. (G–J) The immune
checkpoints expression among the two risk groups. (K) The risk score and drug response value correlation using Pearson correlation analysis.
Each column refers to a drug. Column brightness represents correlation significance. The column height represents a correlation. (L) Signaling
pathways targeted by drug resistance to the risk score or sensitivity are presented in red and blue, respectively. Drug names and the signaling
pathway targeted by the drug are presented on horizontal and vertical axes, respectively. The number of drugs targeting every signaling pathway
is shown on the right of the bar graph. The point size represents the correlation significance.
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as a validation dataset in some studies about other cancers, such

as glioblastoma and hepatocellular carcinoma (44, 45). The high-

risk patients’ score was more likely to profit from ICI

(atezolizumab, an anti-PD-L1 antibody) treatment. In

addition, we observed a considerable upregulation of immune

checkpoints expression in TCGA and IMvigor210, especially

PD-L1. The findings revealed that our predictive model might

identify groups more susceptible to immunotherapy, and it has

potential predictive power for other cancer types (46).

Next, to further validate the potential of our research in clinic

applications, we conducted an immunohistochemical pathological

analysis. CALB2 (Calbindin 2) encodes an intracellular calcium-

binding protein belonging to the troponin C superfamily. This

protein plays an important role in message targeting and

intracellular calcium buffering and related to cancer progression

(47–49). Among DEGs of MSI-H and MSI-L subtypes, CALB2

has the highest fold change. Furthermore, recent research revealed

its prognostic value in predicting the outcome and therapy

resistance of COAD patients (43, 50). However, the difference in

CALB2 expression status in MSI and MSS subtypes remains

unclear; consequently, further analysis of clinic-acquired COAD

tissues was performed, displaying that CALB2 has a higher

expression level in MSI samples which further indicated the

therapeutic potential of CALB2.

In conclusion, through a sequence of bioinformatics

analyses, a seven-gene predictive model was created to predict

COAD patients’ outcomes. It could accurately distinguish

COAD patients with different prognoses. By categorizing

patients and determining a suitable therapy course, our data

may help choose the precision medicine in COAD.
Frontiers in Immunology 16
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Changsha, China, 2Department of Blood Transfusion, The Third Xiangya Hospital of Central South
University, Changsha, China, 3Department of Pediatrics, The Third Xiangya Hospital, Central South
University, Changsha, China, 4Department of Hematology and Critical Care Medicine, The Third
Xiangya Hospital, Central South University, Changsha, China
Background:Melanoma, as one of the most aggressive and malignant cancers,

ranks first in the lethality rate of skin cancers. Cuproptosis has been shown to

paly a role in tumorigenesis, However, the role of cuproptosis in melanoma

metastasis are not clear. Studying the correlation beteen the molecular

subtypes of cuproptosis-related genes (CRGs) and metastasis of melanoma

may provide some guidance for the prognosis of melanoma.

Methods: We collected 1085 melanoma samples in The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus(GEO) databases, constructed CRGs

molecular subtypes and gene subtypes according to clinical characteristics,

and investigated the role of CRGs in melanomametastasis. We randomly divide

the samples into train set and validation set according to the ratio of 1:1. A

prognostic model was constructed using data from the train set and then

validated on the validation set. We performed tumor microenvironment

analysis and drug sensitivity analyses for high and low risk groups based on

the outcome of the prognostic model risk score. Finally, we established a

metastatic model of melanoma.

Results: According to the expression levels of 12 cuproptosis-related genes,

we obtained three subtypes of A1, B1, and C1. Among them, C1 subtype had the

best survival outcome. Based on the differentially expressed genes shared by A1,

B1, and C1 genotypes, we obtained the results of three gene subtypes of A2, B2,

and C2. Among them, the B2 group had the best survival outcome. Then, we

constructed a prognostic model consisting of 6 key variable genes, which

could more accurately predict the 1-, 3-, and 5-year overall survival rates of

melanoma patients. Besides, 98 drugs were screened out. Finally, we explored

the role of cuproptosis-related genes in melanoma metastasis and established

a metastasis model using seven key genes.
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Conclusions: In conclusion, CRGs play a role in themetastasis and prognosis of

melanoma, and also provide new insights into the underlying pathogenesis of

melanoma.
KEYWORDS

melanoma, subtype, machine learning, prognostic model, metastasis model, cuproptosis
Introduction

Melanoma is a malignant tumor caused by aberrant

melanocyte proliferation. It has a high fatality rate and is

prone to metastasis. According to the 2020 global cancer

statistics, skin melanoma ranks 19th among the most common

cancers in the world (1), with the number of new cases rising to

324,635 and the number of deaths rising to 57,043. Melanoma is

one of the malignant tumors with an extremely high metastasis

rate. Its metastasis is characterized by local metastasis through

lymphatics first, and then systemic metastasis through blood.

Local surgery is the main treatment for early melanoma, while

palliative remission is the main treatment for aggressive

metastatic melanoma due to poor treatment effects (2).

Second, as the most heterogeneous tumor, melanoma is prone

to misdiagnosis and treatment failure (3). Melanoma can be

classified into nine types according to epidemiology, clinical and

histologic morphology, and genomic characteristics, namely low-

cumulative solar damage (CSD) melanoma, high-CSDmelanoma,

Desmoplastic melanoma, Spitz melanomas, Acral melanoma,

Mucosal melanomas, Melanomas arising in congenital nevi,

Melanomas arising in blue nevi, Uveal melanoma (4).

Characteristics of precursor lesions of different subtypes play a

certain role in the prevention and early treatment of melanoma.

Ultraviolet radiation is one of the main risk factors for the

formation of melanoma, and sun exposure is also an important

criterion for classifying melanoma types (5). However, little

research has been done on melanoma subtypes. Due to the high

mortality rate of melanoma, subtyping studies are also extremely

important for the individualized treatment of patients.

Cuproptosis is a novel form of cell death induced by copper

ionophores (6, 7). Under normal circumstances, cells maintain a

relatively low level of intracellular copper through homeostatic

mechanisms to prevent excessive copper accumulation leading

to cellular damage. Copper ions in the body combine with

enzymes and play a major role in blood coagulation, hormone

maturation, and energy metabolism (8–11). Within tumor

tissue, unbalanced copper levels can cause irreversible damage

to tumor tissue. It induces various forms of tumor cell death

including apoptosis and autophagy through mechanisms such as

reactive oxygen species accumulation, proteasome inhibition,
02
24
and anti-angiogenesis (11, 12). Studies have shown that copper

chelate, taken orally with food, has antitumor and antimetastatic

benefits in animals and humans (13). Recent studies have

identified specific roles of copper in oncogenic signaling

pathways and antitumor drug resistance (14).

In recent years, machine learning has been applied more and

more deeply in the field of life sciences, andmore andmore studies

have shown that machine learning plays an important role in

medical big data and can effectively mine new information (15–

18). With the development of microarray and sequencing

technology, the gene expression data of various diseases is also

increasing, andmachine learning has emerged in the processing of

gene expression data of various cancers (19). Machine learning can

predict the occurrence and prognosis of cancer, as well as unearth

new biomarkers of cancer (20, 21). This study aims to use machine

learning combinedwith bioinformatics to classifymelanomabased

on cuproptosis-related genes (CRGs) and to establish melanoma

prognosis and metastasis models.

In this study, we combined the transcriptional information

of melanoma samples from seven GEO datasets and TCGA

datasets to screen out a total of 12 CRGs. Then the molecular

subtypes and gene subtypes of CRGs were constructed according

to clinical characteristics and gene expression. Next, we explored

the prognostic role of these CGRs between different subtypes,

performed functional analysis of differentially expressed genes

between different subtypes, and established a prognostic model.

In addition, we performed tumor microenvironment analysis

and drug sensitivity analysis. Finally, to further understand the

role of CRGs in melanoma development, we established

metastasis models based on CRGs using 9 different machine

learning algorithms. Figure 1 shows the flow chart of this study.
Methods

Patients and datasets

We screened melanoma datasets in two databases, GEO

(https://www.ncbi.nlm.nih.gov/geo/.) and TCGA (http://portal.

gdc.cancer.gov/). A total of 7 datasets related to prognosis and

metastasis were downloaded from the GEO database [datasets
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containing prognostic information: GSE19234, GSE22153,

GSE54467, GSE69504 (394 melanoma samples)]. Datasets

containing metastasis information: GSE15605, GSE22153,

GSE46517 (219 samples)). Similarly, we screened melanoma

samples in the TCGA database and found 472 samples with

prognostic information, of which 471 were melanoma samples.

We merged datasets containing prognostic information

(GSE19234, GSE22153, GSE54467, GSE69504) with the TCGA

dataset. Then, the “perl” language was used to convert the probe

matrix into a genes matrix based on the annotation information.

Next, we converted the TCGA dataset to TPM format, so that

the data form of TCGA was more similar to that of GEO. The

“merge” package was used to merge the TCGA dataset with the

GEO dataset, and the “sva” package in the R language was used

to do a batch correction. Finally, we obtained 862 melanoma

samples containing prognostic information and 628 samples

containing metastasis information, respectively. In subsequent

analyses, we used these combined datasets to build melanoma

prognostic models and metastasis models.
Expression of CRGs in melanoma

In the TCGA cohort, “maftools” was used to map the

mutation frequencies of CRGs, shown as waterfall plots.

Likewise, we analyzed the copy number of CRG in melanoma.
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The “RCircos” package was used to draw copy number circle

diagrams. Next, we constructed a prognostic model based on 12

CRGs (7) in the combined TCGA and GEO cohort. First, we

extracted the expression levels of CRGs in datasets with

prognostic information and then merged clinical data. The

“survival” package was used for survival analysis, cox analysis

was used for univariate analysis, and KM analysis was used for

survival status analysis.
Construction of molecular subtypes
of CRGs

We obtained 13 CRGs (Supplementary Table 1) from

previous studies, and after deleting unexpressed CRGs in some

samples, we finally selected 12 CRGs for model construction.

Consensus Clustering is an unsupervised clustering method and

a common research method for cancer subtype classification. It

can differentiate samples into different subtypes based on

different omics data sets, so as to discover new disease

subtypes or perform a comparative analysis of different

subtypes. The “ConsensusClusterPlus” R package was used to

perform consensus clustering to distinguish different molecular

subtypes based on the mRNA expression levels of 12 CRGs.

Next, to further analyze the differences between subtypes. We

adopted the t-distributed stochastic neighbor embedding (t-
FIGURE 1

Article framework and workflow.
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SNE) method to explore the distribution of different subtypes,

and the “R t sne” R package was used to estimate the effect of

classification. Furthermore, we analyzed the extent of immune

cell infiltration between different subtypes. The “heatmap” R

package was used to analyze the expression levels of CRGs,

tumor grade, gender, and age among different subtypes. Finally,

the “GSVA” R package was used to analyze the enriched

pathways between different subtypes and displayed as heatmaps.
Survival analysis of gene subtype and
differential expression analysis of CRGs

To further understand the correlation between molecular

subtypes and differentially expressed genes, we performed gene

subtypes. The “limma” R package was used to analyze the

differentially expressed genes between different subtypes (logfc >

0.585, p-value < 0.05). After obtaining the differentially expressed

genes between each subtype, we took the intersection genes for

subsequent analysis. “clusterPrfiler” was used to perform GO

enrichment analysis (p-value < 0.05). Similarly, Metascape

website (http://metascape.org) (version 2022-04-22) was used to

perform enrichment analysis of 71 intergenes.Terms with a P

value1.5 are collected and grouped into clusters depended on

their membership similarities. The “limma” and “survival”

packages were used to analyze the differentially expressed genes

associated with prognosis. The Univariate cox regression analyses

were used to find intersecting genes associated with prognosis (p-

value<0.05). Next, we used the Consensus Clustering method to

type the samples according to the expression levels of the

intersecting genes. After finding the subtype with the highest

internal correlation, survival analysis and clinical trait analysis

were performed on different subtypes. We show the above

analysis results with KM curve and heat map respectively. Finally,

the “limma” package was used to analyze the expression levels of

CRGs in different gene types and displayed as boxplots.
Construction of the prognostic model

Wedivide the samples into training and validation sets in a 1:1

ratio. In the training set, differentially expressed genes associated

with prognosis were used to performLeast Absolute Shrinkage and

Selection Operator (LASSO) Cox regression analysis through the

“glmnet” R package. The risk score was equal to the LASSO

regression coefficient for each mRNA multiplied by the sum of

the normalized expression levels for each mRNA. Next, we

analyzed the AUC of the training set, the validation set, and all

samples. Then, based on the samples with survival information,

nomogram plots were constructed using the “rms” R package to

predict the 1-, 3-, and 5-year survival probabilities of patients. A

calibration plot was constructed to assess the agreement of the

probabilities predicted by the nomogram with the actual values.
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Tumor microenvironment and drug
sensitivity analysis

The “CIBERSORT” package was used to perform immune cell

infiltration analysis. We analyzed the correlation between 6 key

variablegenes (AIM2,EDNRB, SLC39A6,TMEM117,PTPRC, and

KIF14) and immune cells. At the same time, we also analyzed the

correlation between the two prognostic risk groups and the tumor

microenvironment. The “estimate” package was used to score the

tumormicroenvironment in the high-risk and low-risk groups and

displayed in a violin plot. Then, we performed a drug sensitivity

analysis based on the risk score results. We combined the sample’s

risk score and drug sensitivity. Then, the high-risk and low-risk

groups were analyzed for their sensitivity to the drug, and results

with significant differences (p-value > 0.001) were represented

by boxplots.
Construction of metastasis model

We integrated all GEO datasets (GSE15605, GSE21153,

GSE46517) with melanoma metastasis information. 70% of the

samples were set as the training set, and the remaining 30% of the

samples were set as the validation set.We used the REFCVmethod

to screen out keymetastatic variables by python 3.7. Themain idea

of recursive feature elimination (REF) is to build the model

iteratively and then select the best (or worst) features (selected

according to the coefficients). Set the selected features aside and

repeat the process on the remaining features until all features are

traversed.Theorder that is eliminated in thisprocess is theordering

of features. REFCV is REF + CV (cross-validation). Its operating

mechanism is first to use REF to obtain the ranking of each feature,

and then based on the ranking, select [min_features_to_select, len

(feature)] feature subsets for model training in turn and cross-

validation, and finally select the feature subset with the highest

average score. (python 3.7 sklearn 0.22.1 package).

We then use these key variables to build models using 9

different machine learning algorithms (XGBoost’, ‘Logistic’,

‘LightGBM ’ , ‘RandomFores t ’ , ‘AdaBoostClass ifier ’ ,

‘GaussianNB’, ‘ComplementNB’, ‘SVC’ ‘, ‘KNeighbors). Using

the cross-validation method, the random seed is set to 1 and the

fold is 15. The performance of each model was compared using

multi-model forest plots, AUC, accuracy, and F1 values to screen

out the best performing models. All Statistical analyses in the

process of construction of the metastasis model were performed

using python version 3.7 and the Extreme Smart Analysis

platform (https://www.xsmartanalysis.com/) (22).
Interpretability of the metastasis model

After filtering out the best performingmodels, use the “SHAP”

package (version 0.39.0, python 3.7) to explain the importance and
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contributionof key variables to themodel.At the same time, use the

force diagram to illustrate 2 samples to showhowdifferent variables

contribute in different samples (“SHAP” package version 0.39.0,

python 3.7). All Statistical analyses in this part were performed

using python version 3.7 and Extreme Smart Analysis platform

(https://www.xsmartanalysis.com/).

Statistical analysis

The “survival” package was used for survival analysis, cox

analysis was used for univariate analysis, and KM analysis was

used for survival status analysis. Principal Component Analysis

(PCA) was used to demonstrate the differences between CRG

subtypes.The “ConsensusClusterPlus” package was used for the

subtyping of CRG subtypes and gene subtypes. Lasso regression

was used to screen for genes associated with prognosis, and

prognostic models were developed using multivariate regression

analysis. Wilcoxon rank sum test was used to compare TME

scores between the high-risk and low-risk groups. The ROC

curve was used to assess the predictive power of the prognostic

model. There are several R packages, including “RCircos”,

“heatmap”, and “ggplot” packages for generating graphs. P <

0.05 is considered statistically significant.The python software

(version 3.7) used in the establishment of the melanoma

metastasis model was used for statistical analysis. The REFCV

method of the sklearn 0.22.1 package was used to screen key

variables in the melanoma metastasis model. In the modeling

process of various machine learning algorithms, the xgboost

1.2.1 package was used to perform the XGBoost algorithm, the

lightgbm 3.2.1 package was used to perform the LightGBM

algorithm, and the sklearn 0.22.1 package was used Used to

run other machine learning algorithms. The shap 0.39.0 package

was used to demonstrate model interpretability (SHAP graph,

feature importance ranking graph, force graph).

Cell lines and constructs for transfection

Human malignant melanoma cell line A375 were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco),

supplemented with 10% (v/v) heat-inactivated fetal bovine serum

(FBS,Gibco) at 37°C inahumidified incubator containing5%CO2.

FDX1 siRNAs (1#: 5’-CAUUAACAACCAAAGG AAA-3’, 2#: 5’-

CAUCUUUGAAGAUCACAUA-3’) and control siRNA (5’-UUC

UCCGAACGU GUCACGU-3’) were obtained from Sangon

(Shanghai, China). Transfection of siRNAs was performed with

Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher)

as recommended.

Western blot analysis

The protein was extracted using RIPA buffer (Beyotime) and

the protein concentration was determined using the BCA Protein

Assay Kit (Pierced, Grand Island, NY). Protein samples were
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separated by 12% SDS-PAGE and transferred onto polyvinylidene

difluoride membranes ((PVDF, Millipore). To assess the protein

expression, the blots were incubated with the primary rabbit

antibodies against FDX1 (Abcam) and anti-rabbit secondary

antibodies (Cell Signaling Technology) at a dilution of 1:2000

for 1 h at room temperature. b-Actin(Cell Signaling Technology)
served as an endogenous control for equal loading.
CCK-8 experiment

The CCK-8 reagent was purchased from GLPBIO

(GK10001). Briefly, A375 cells transient transfecting FDX1

siRNA (siFDX1) or the control siRNA (siNC) were seeded at

2x104 cells per well in 96-well plates in quintuplicate, the

number of viable cells in each well was measured at 0, 12, 24,

and 36 hours according to the manufacturer’s instructions.
Wound healing

For wound healing assay, when the cells were grown to 90%

confluence after transfection, a straight scratch in the cell

monolayer was created by a 10mL pipette tip. A375 cells were

incubated with 2% FBS. Images of the scratched area (wound)

were taken at the time point of 0h, 24 h, 36 h, and 48 h under a

microscope. Wound closure= (original wound area - existing

wound area)/original wound area. The area of wound healing

was calculated by Fiji (version Fiji for Mac OS X).
Vitro experiment statistical analysis

Statistical analysis was performed using software of Graph

Pad Prism 5 (GraphPad, La Jolla, CA). Student’s t-tests were

used to evaluate significant differences between any two groups

of data. All data are represented as means ± SEM. Differences

were considered significant if p < 0.05.
Results

Article framework and workflow

Flow chart of data collection and data analysis for the

article (Figure 1).

Mutation frequency and prognostic value of
CRGs in melanoma

Among the 467 patients in the TCGA dataset, 56 patients had

CRGs mutations (S1 A). Meanwhile, CRGs chromosome positions

are shown as copy number variant plots (S1 B). Besides, the

frequency of CRGs copy number variation in the samples is
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shown graphically (S1 C), with red representing an increase in copy

number and green representing a decrease in mutation. The graphs

show a significantly reduced number of mutations in DBT, FDX1,

and DLA. Next, we analyzed the association of CRGs with

prognosis after combining the TCGA and GEO datasets. 9 of the

13 CRGs were associated with prognosis (S2 A-I). Moreover,

Kaplan–Meier analysis results revealed that a higher expression

of LIPT1, FDX1, LIAS, and DBTwas associated with a better OS (P

< 0.05), and a lower expression of ATP7B, SLC31A1, PDHA1,

DLD, and DLST was associated with a better OS (P < 0.05).
Construction of CRGs molecular
subtypes of melanoma

To obtain the melanoma subtypes of CRGs, we performed a

consensus clustering analysis on the expression level of CRGs on

the combined GEO and TCGA datasets. In the cluster analysis of

862 samples, K = 3 was the optimal number of clusters. When

K=3, the difference between groups was the smallest, and the

difference outside the group was the largest. Therefore, we

accurately divided melanoma patients into 3 subtypes, namely

A1, B1, and C1 (Figure 2A). When dividing melanoma patients

into 3 subtypes, the relative change in the area under the CDF

curve indicated that the stable distribution of melanoma patients

was close (Figure 2B, C). In the Kaplan Meier analysis of A1, B1,

and C1 subtypes, the survival outcome of the C1 subtype was the

best, followed by the B1 subtype, and the worst survival outcome

of the A1 subtype (Figure 2D).
Comparative analysis between three
CRGs molecular subtypes

We present the expression level of CRGs and clinical traits,

such as Stage, Gender, and Age of the A1, B1, and C1 subtypes in a

heat map. CRGs were expressed at the highest level in the B1
subtype, followed by the C1 subtype, and lowest in the A1 subtype.

Then, GSVA enrichment pathway analysis was performed on three

different subtypes (Figures 2F–H). Comparing the A1 subtype and

the B1 subtype, it was found that the B1 subtype was significantly

more enriched than the A1 subtype in cell cycle, non-homologous

end linkage, and ubiquitination-mediated hydrolytic protein

action. A1 subtype showed significantly higher levels of

enrichment in pathways such as neuroactive ligand receptor

interactions, cytochrome p450 effects on foreign biometabolism,

and drug metabolism of cytochrome p450 than B1. Comparing the

A1 and C1 subtypes, the A1 subtype showed significantly higher

levels of enrichment in the drug metabolism cytochrome p450,

glycerolipid, and tyramine metabolism pathways than the C1

subtype. The C1 subtype was slightly more enriched than the A1

subtype in pathways such as trap interactions in vesicle transport,

ubiquitin-mediated protein hydrolysis, and protein efflux.
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Comparing the B1 subtype and C1 subtype, the enrichment level

of the C1 subtype is higher than that of the B1 subtype in pathways

such as neuroactive ligand receptor interaction, complement

system, and leukocyte endothelial migration. The B1 subtype was

significantly more enriched in ubiquitin-mediated protein

hydrolysis, aminyl biosynthesis, and citric acid cycle TCA cycle

pathways than the C1 subtype.

Further, we analyzed the level of immune cell infiltration

between three CRGs subtypes. Among the 23 immune cells,

most of them differed in their degree of infiltration in the A1, B1,

and C1 subtypes. Among them, Myeloid-derived suppressor cells

(MDSC), Immature B cells, and active B cells had the highest

difference in the degree of infiltration, and only Eosinophilna

cells had no difference in the degree of infiltration. Overall, the

highest level of immune cell infiltration was found in the C1

subtype and the lowest in the B1 subtype.
Enrichment analysis of genes with
intersections of CRGs subtypes

t-distributed stochastic neighbor embedding(tSNE) analysis

showed that the A1, B1, and C1 subtypes are distinguishable from

each other. This indicates that our subtype analysis based on

CRGs has better typing ability (Figure 3A). Next, we analyzed

the differentially expressed genes between A1, B1, and C1

subtypes. There were 1090 differentially expressed genes

between A1 and B1 subtypes, 117 differentially expressed genes

between A1 and C1 subtypes, and there are 219 Differentially

expressed genes between the B1 and C1 subtypes. We intersected

the differentially expressed genes of the three subtypes and

obtained 71 differentially expressed genes that were co-

expressed in the three subtypes (Figure 3B). Enrichment

analysis in Metascape showed that differentially expressed

genes were mainly associated with Signaling by Rho GTPases,

Miro GTPases and RHOBTB3, MHC class II antigen

presentation, and Platinum drug resistance (Figure 3C). GO

(Gene ontology) enrichment analysis indicates the results of

intersecting genes in BP (Biological Process), CC (Cellular

Component), MF (Molecular Function) respectively

(Figure 3D). BP is primarily associated with the establishment

of organelle localization, mitotic cell cycle phase transitions, and

cytoskeletal-intracellular transport dependence. CC is associated

with cell cortex, cell division sites, and membrane

microstructure domains. MF is mainly associated with the

guanosine triphosphatase binding region, ATP hydrolysis

activity, and microtubule binding proteins.
Construction of gene subtypes

To further understand the correlation between CRGs

subtypes and differentially expressed genes, we constructed
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gene subtypes. We performed univariate regression analysis

on 71 differentially expressed genes co-expressed in the three

CRGs subtypes, and obtained 16 differentially expressed genes

associated with survival. In the cluster analysis, when K=3, we

can see that the difference between groups is small, and the

difference outside the group is large (S3 A). The

comprehensive analysis of the consistent cumulative

distribution function (S3 B) and Delt area(S3 C) also shows

that K=3 is more suitable. Kaplan Meier analysis was
Frontiers in Immunology 07
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performed on the three gene subtypes, with B2 having the

best survival outcome, A2 having the second worst survival

outcome, and C2 having the worst survival outcome (S3 D) (P-

value<0.001). Then, we illustrate the clinical traits (stage,

gender, age)of both gene subtypes and CRGs molecular

subtypes in a heat map (S3 E). Besides, we explored the

differences in the expression levels of CRGs among the A2,

B2, and C2 subtypes. We found that the expression of CRGs

was different in A2, B2, and C2 subtypes (p<0.001) (S3 F).
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FIGURE 2

Classification of melanoma based on CRGs. (A) Molecular subtypes based on CRGs obtained under unsupervised consensus clustering. (B) The
empirical cumulative distribution function (CDF) plot depicts the consistent distribution of different K values. (C) Relative increase in cluster
stability by delta area fraction. (D) Comparison of the degree of immune cell infiltration of the three molecular subtypes*, P<0.05; **, P<0.01;
***, P<0.001. (E) Kaplan Meier analysis results of three molecular subtypes based on 12 CRGs. (F, G, H) pictures show the enriched pathways of
differentially expressed genes obtained by comparing A1, B1, and C1 molecular subtypes with each other using the GSVA method. (I) Heatmap of
clinical information and gene expression profiles of the three molecular subtypes based on 12 CRGs.
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Construction of the prognostic model

A Sankey diagram was used to show our flow chart for two

types of melanoma (Figure 4A). AIM2, EDNRB, SLC39A6,

TMEM117, PTPRC, and KIF14 were screened out by the LASSO

regression algorithm to construct a prognostic model (Figures 4B,

C). In the training set, there was a significant difference in

prognostic value between the high-risk and low-risk groups

(Figure 4D). Survival time was significantly lower in the high-risk

group than in the low-risk group. The areas under the time-

dependent ROC of the train set are 0.670, 0.662 and 0.683 for 1-,

3-, and 5-year survival. (Figure 4G). Next, the prognostic model was

applied to the validation set and to the total sample. In the

validation set and in the total sample, the prognostic value of the

high-risk group was significantly lower than that of the low-risk

group (Figures 4E, F). The areas under the time-dependent ROC of

the validation set are 0.587, 0.620, and 0.601 for 1-, 3-, and 5-year
Frontiers in Immunology 08
30
survival (Figure 4H). In the total sample, The areas under the time-

dependent ROC are 0.626, 0.640 and 0.643 (Figure 4I). The ROC of

each group shows that our model has better prediction accuracy.

Finally, we used nomograms to predict patient survival (Figure 4J).

Calibration curves showed that our model had high accuracy in

predicting patient survival at 1, 3, and 5 years (Figure 4K).
Risk curve and tumor microenvironment

We arranged the training set, validation set, and all samples

according to the prognostic risk model from low to high risk

scores, and obtained the risk curve (Figures 5A–C).Similarly, we

obtained the survival status map between risk scores and death

samples (Figures 5D–F), and finally, we used heatmaps to show

the expression of the model’s key variable genes (AIM2, EDNRB,

KIF14, PTPRC, SLC39A6, and TMEM117) in the training set,
B

C

DA

FIGURE 3

Differentially expressed genes of three CRGs molecular subtypes. (A) VENN plot showing 71 intersecting differentially expressed genes across
three molecular subtypes. (B) t-distributed Stochastic Neighbor Embedding (tSNE) analysis of three CRGs molecular subtypes. (C) Metascape
enrichment analysis of DEGs with intersections of the three molecular subtypes. (D) GO enrichment analysis of DEGs with intersections of the
three molecular subtypes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.986214
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.986214
validation set and all sample (Figures 5G–I). Next, we performed

tumor microenvironment analysis on 6 key variable

genes (Figure 5J).

The key variable genes were mainly associated with the degree

of infiltration of M1 macrophage, M0 macrophage, and memory B

cells. KIF14, SLC39A6, TMEM117, and EDNRB, as high-risk genes,

were negatively correlated with the degree of infiltration of memory

B cells and regulatory T cells, and positively correlated with the
Frontiers in Immunology 09
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degree of infiltration of M1 macrophage, T follicular helper. AIM2

and PTPRC, as low-risk genes, showed a significant positive

correlation with the degree of infiltration of memory B cells,

activated memory CD4(+) T cells, and CD8(+) T cells, and a

significant negative correlation with the degree of infiltration of M0

macrophage. The stromalscore , immunescore , and

ESTIMATEscore scores in the high-risk group were significantly

lower than those in the low-risk group (Figure 5K).
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FIGURE 4

Construction of the prognostic model. (A) Sankey diagram to describe the process of constructing a prognostic model based on CRGs-
subtypes and gene subtypes. (B, C) Prognostic genes were screened using LASSO regression. (D, G) Kaplan Meier analysis of OS in melanoma
patients in the training set; ROC curves for 6 key variable genes. (E, H) OS of melanoma patients in Kaplan Meier analysis validation set; ROC
curves of 6 key variable genes. (F, I) Kaplan Meier analysis of OS in all melanoma patients; ROC curves of 6 key variable genes. (J) Nomograms
predicting 1-, 3-, and 5-year OS probabilities in melanoma patients. (K) Calibration plots of the nomograms.
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Comparison of drug sensitivity, subtypes
and expression levels of CRGs between
high and low risk groups

We divided the high-risk group and the low-risk group

according to the model. Screening of sensitive drugs was carried

out according to the difference in IC50 concentration between the

twogroups.A total of98drugs (S2)were screened, andwe selected3

high-sensitivity drugs in the low-risk group (Figures 6A–C) and 3

high-sensitivity drugs in the high-risk group (Figures 6D–F).

Among the CRG subtypes, B1 has the lowest risk score and
Frontiers in Immunology 10
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subtype C1 has the highest risk score (Figure 6G). Among the

genesubtypes, C2 had the highest risk score and B2 had the lowest

risk score (Figure 6H). Among the CRGs genes with differential

expression in the high-risk and low-risk groups, only FDX1

expression was decreased in the high-risk group (Figure 6I).
Construction of metastasis model

We used the REFCV method to filter out key metastatic

variables: ‘FDX1’, ‘LIPT1’, ‘LIAS’, ‘DLD’, ‘DBT’, ‘DLAT’,
B C
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FIGURE 5

Risk curve and immune microenvironment analysis between high and low immune groups. (A) Risk curve in the training set. Take the median of
the risk scores and use the median to divide the samples into high-risk and low-risk groups. (B) Risk curve in the validation set. (C) Risk curves
of all samples. (D) Survival state diagram of the training set, red for dead and blue for survival. (E) The living state diagram of the validation set.
(F) Survival state diagram of all samples. (G–I) Heat map showing the expression of 6 key variable genes in training set, validation set and all
samples. (J) Correlation of 6 key variable genes with immune cells, red represents positive correlation and blue represents negative correlation.
(K) Correlation of stroma score, immune score, and ESTIMATE with immune microenvironment.
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‘PDHB’. From Figures 7A, B we can see that LightGBM has the

highest AUC in both training and validation sets, 1 and 0.750,

respectively. The values of LightGBM and XGBoost in the multi-

model forest graph in Figure 7C are also the highest at 0.748.

Tables 1 and 2 show that the AUC, cutoff, accuracy, sensitivity,

specificity, positive predictive value, negative predictive value, F1

score, Kappa value of LightGBM are 1.000, 0.637, 0.995, 1.000,

1.000, 1.000, 0.986, 1.000, 0.989. In conclusion, LightGBM is the
Frontiers in Immunology 11
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best performing model, and we choose this model to establish a

melanoma metastasis model.
Interpretability of the metastasis model

After filtering out the best performing LightGBM model,

we used the “SHAP” package to explain the importance of key
B C

D E F

G H I

A

FIGURE 6

Drug Sensitivity Analysis. (A–C) The sensitivity of the low-risk group to Sunitinib, VX.702, AZD6482 was higher than that of the high-risk group.
The abscissa is the low-risk group and the high-risk group, and the ordinate is the value of the drug IC50. (D–F) The high-risk group had higher
sensitivity to OSI.906, FH535, and Bryostatin.1 than the low-risk group. (G) Risk scores for A1, B1, and C1 subtypes in CRGs molecular subtypes.
(H) Risk scores for A2, B2, C2 subtypes in genotyping. (I) Expression levels of CRGs in high and low risk groups.
B CA

FIGURE 7

Construction of metastasis model. (A) REFCV method to filter out key metastatic variables in train set. (B) REFCV method to filter out key
metastatic variables in validation set. (C) Multi-model forest graph.
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TABLE 1 Multi-model comparison, training set results.

Model AUC
(SD)

cutoff
(SD)

accuracy
(SD)

sensitivity
(SD)

specificity
(SD)

positive predictive
value (SD)

negative predictive
value (SD)

F1 score
(SD)

Kappa
(SD)

XGBoost 1.000
(0.000)

0.863
(0.025)

0.995(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.986(0.000) 1.000(0.000) 0.989
(0.000)

logistic 0.749
(0.009)

0.656
(0.018)

0.712(0.018) 0.709(0.045) 0.730(0.042) 0.828(0.015) 0.572(0.024) 0.763(0.023) 0.406
(0.026)

LightGBM 1.000
(0.000)

0.637
(0.019)

0.995(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.986(0.000) 1.000(0.000) 0.989
(0.000)

RandomForest 1.000
(0.000)

0.623
(0.048)

0.988(0.006) 0.999(0.003) 0.999(0.004) 0.999(0.002) 0.969(0.017) 0.999(0.002) 0.974
(0.014)

AdaBoost 0.980
(0.004)

0.504
(0.001)

0.918(0.014) 0.894(0.025) 0.976(0.017) 0.986(0.010) 0.825(0.031) 0.938(0.012) 0.828
(0.028)

GNB 0.783
(0.008)

0.629
(0.032)

0.744(0.014) 0.772(0.033) 0.706(0.029) 0.828(0.010) 0.620(0.025) 0.798(0.015) 0.456
(0.022)

CNB 0.700
(0.008)

0.495
(0.001)

0.728(0.013) 0.849(0.023) 0.519(0.026) 0.763(0.008) 0.640(0.030) 0.803(0.011) 0.376
(0.027)

SVM 0.815
(0.006)

0.686
(0.014)

0.764(0.010) 0.744(0.024) 0.814(0.025) 0.880(0.011) 0.627(0.016) 0.806(0.012) 0.515
(0.016)

KNN 0.856
(0.014)

0.760
(0.080)

0.610(0.052) 0.688(0.104) 0.853(0.115) 0.982(0.037) 0.478(0.040) 0.802(0.052) 0.315
(0.066)
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variables to the model. As shown in Figure 8A, the importance

of 7 variables from high to low is: ‘FDX1’, ‘ DBT’, ‘LIPT1’,

‘PDHB’, ‘DLD’, ‘DLAT’, ‘LIAS’. Figure 8B shows the

contribution of each variable to the model. The red dots

indicate positive contributions, and the blue dots indicate

negative contributions. A point closer to the left indicates a

smaller value and a point closer to the right indicates a larger

value. For example, the higher the FDX1 value, the higher the

probability of death from heart failure; the lower the FDX1

value, the lower the probability of heart failure death. At the
TABLE 2 Multi-model comparison, validation set results.

Model AUC
(SD)

cutoff
(SD)

accuracy
(SD)

sensitivity
(SD)

specificity
(SD)

p

XGBoost 0.743
(0.130)

0.863
(0.025)

0.647(0.150) 0.706(0.192) 0.853(0.225)

logistic 0.726
(0.130)

0.656
(0.018)

0.680(0.094) 0.838(0.143) 0.720(0.138)

LightGBM 0.746
(0.126)

0.637
(0.019)

0.703(0.101) 0.720(0.178) 0.844(0.181)

RandomForest 0.763
(0.115)

0.623
(0.048)

0.699(0.097) 0.707(0.150) 0.842(0.149)

AdaBoost 0.701
(0.116)

0.504
(0.001)

0.668(0.125) 0.712(0.170) 0.804(0.216)

GNB 0.737
(0.112)

0.629
(0.032)

0.703(0.092) 0.782(0.167) 0.782(0.128)

CNB 0.676
(0.140)

0.495
(0.001)

0.693(0.144) 0.736(0.253) 0.798(0.184)

SVM 0.737
(0.115)

0.686
(0.014)

0.689(0.085) 0.768(0.165) 0.789(0.136)

KNN 0.686
(0.186)

0.760
(0.080)

0.561(0.110) 0.540(0.254) 0.882(0.175)
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same time, we use the force diagram to illustrate 2 samples to

show how different variables contribute to different samples.

Figures 8C, D show the model predicts that these two samples

are likely to metastasize and not metastasize, respectively, and

show the contribution of each gene’s expression to the sample

prediction. Red indicates a positive contribution. Blue

represents a negative contribution. If f(x) is greater than the

cut-off value, the tumor sample is more likely to metastasize; if f

(x) is less than the cut-off value, the tumor sample is less likely

to metastasize.
ositive predictive
value (SD)

negative predictive
value (SD)

F1 score
(SD)

Kappa
(SD)

0.801(0.159) 0.511(0.135) 0.731(0.139) 0.309
(0.275)

0.800(0.089) 0.554(0.120) 0.813(0.099) 0.343
(0.180)

0.809(0.118) 0.561(0.126) 0.753(0.142) 0.367
(0.227)

0.844(0.075) 0.575(0.121) 0.760(0.101) 0.403
(0.166)

0.766(0.115) 0.537(0.158) 0.727(0.120) 0.296
(0.255)

0.794(0.087) 0.612(0.186) 0.778(0.121) 0.362
(0.196)

0.742(0.101) 0.597(0.348) 0.725(0.178) 0.291
(0.346)

0.843(0.097) 0.551(0.108) 0.793(0.109) 0.375
(0.165)

0.896(0.172) 0.446(0.075) 0.629(0.239) 0.232
(0.170)
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Knockdown of fdx1 inhibits the
proliferation of melanoma cells

We used specific FDX1-targeting siRNAs to knockdown

the expression levels of FDX1 in the A375 cells (Figure 9A).

siNC was used as a control group for subsequent comparative

analysis. CCK-8 assay results showed that the proliferation of

FDX1 knockdown cells at 12h, 24h, and 36h was significantly

higher than that of the control group (Figure 9B). Wound

healing assay results showed that FDX1 knockdown inhibited

wound healing (Figure 9C). siNC group healed slightly faster

than the siFDX1 group. However, this result is not

statistically significant.
Discussion

As one of the deadliest tumors in skin cancer, melanoma is

characterized by high invasiveness and high mortality (1).

Therefore, a large body of literature has explored the

prognosis and metastasis of melanoma. At present, the

literature has predicted the prognosis of melanoma patients

based on the expression levels of pyroptotic genes, tumor
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microenvironment status, or m6a-regulated methylation

patterns (23–30). Although many bioinformatics studies are

predictingognosis of melanoma, the existing cuproptosis-

related melanoma research is not abundant.

Recently, Tsvetkov et al. discovered a novel apoptosis-

independent cell death pathway, copper-dependent cell death

(termed cuproptosis) (7). They proved that copper ions bind

directly to the lipoylated components of the tricarboxylic acid

cycle. Then, proteotoxic stress and unique cell death were

induced. At the same time, the role performed by cuproptosis

in tumours is gradually being understood. Zhong Hao et al.

discovered that 6 CRGs had good diagnostic efficacy in kidney

renal clear cell carcinoma (31). Besides, Liyang et al. developed a

safe, mitochondria-targeted, copper-depleted nanoparticle

(CDN) and tested its efficacy against triple-negative breast

cancer (TNBC) (32). Injection CDN into mice with triple

negative breast cancer resulted in a significant reduction in

tumour growth and a significantly longer survival time for the

mice. Zhang Zheng et al. constructed a prognostic model of

HCC using the expression levels of ferredoxin 1 (FDX1) in

hepatocellular carcinoma (HCC). They found that the

expression level of FDX1 was significantly lower in HCC

patients than in the non-HCC population (33). At the same
B

C

D

A

FIGURE 8

Interpretability of the metastasis model. (A) “SHAP” package to explain the importance of key variables to the model. (B) Contribution of each
variable to the model. (C, D) Prediction of model.
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time, survival time was significantly higher in patients with high

expression of HCC than in those with low expression of

HCC.These studies suggest that cuproptosis has implications

for the clinical diagnosis and treatment of tumours.

Therefore, CRGs were used to construct molecular subtypes

of melanoma and to construct metastasis models in this

research. The molecular subtypes of melanoma based on

CRGs can give us a more comprehensive understanding of

melanoma. At the same time, the metastasis model established

based on CRGs can also fi l l the gap in melanoma

bioinformatics research.

In this study, we explored the effects of CRGs on both

survival and metastasis in melanoma patients. We analyzed the

expression of 12 CRGs in TCGA and GEO cohorts. First,

through bioinformatics analysis, we constructed molecular

subtypes of 3 CRGs (A1, B1, C1) based on 12 CRGs. Among

the three molecular subtypes of CRGs, the C1 subtype had the

best survival outcome, and the A1 subtype had the worst survival

outcome. Next, we obtained 71 Differentially expressed genes

that were co-expressed by all three subtypes. Based on 71

Differentially expressed genes, we genotyped melanoma and

obtained 3 gene subtypes (A2, B2, C2). Among them, the B2
type had the best survival outcome, and the C2 type had the

worst survival outcome. Then, we screened prognosis-related

genes from 71 co-expressed Differentially expressed genes. After

obtaining 16 prognosis-related genes, the LASSO algorithm was

used to screen out 6 key variable genes(AIM2, EDNRB,

SLC39A6, TMEM117, PTPRC, and KIF14) for model

construction and validation. Ultimately, our risk score model
Frontiers in Immunology 14
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can distinguish between high-risk and low-risk groups. And KM

analysis, AUC analysis, nomogram, and calibration curve

indicated that our model could predict the prognosis of

melanoma patients more accurately. Finally, in the analysis of

metastasis, we used the LightGBM machine learning algorithm

to screen out 7 CRGs to establish the metastasis model

of melanoma.

In the TCGA cohort, we found that 9 out of 13 CRGs had an

impact on the prognosis of melanoma patients. Therefore, this

sparked our interest in investigating the role of CRGs in

melanoma prognosis and metastasis. The degree of immune

cell infiltration was also significantly different among the three

molecular subtypes of CRGs. We selected 23 immune cells for

analysis, except for Eosinophilna cells, the other 22 immune cells

had significantly different infiltration degrees in the three

subtypes. This suggests that immune cells play different roles

in different subtypes. In many tumors, the immune

microenvironment plays an important role in tumor

angiogenesis, tumor invasion, and metastasis. Patients with

high expression of CXCL9, CXCL10, CXCL13, CCL4, and

CCL5 in SKCM (Skin cutaneous melanoma) had better overall

survival (27). Some studies have constructed risk models based

on immune-related genes and found that immune cell

infiltration is different between patients with high and low

immune scores, and the survival time of patients with high

immune scores is significantly lower than that of patients with

low immune scores. Other studies have shown that in melanoma

patients, IL27 is closely related to CD8+ cells, and is related to

the treatment effect and prognosis of patients (34–36).
B

C

A

FIGURE 9

Knockdown of fdx1 inhibits the proliferation of melanoma cells. (A) FDX1-targeting siRNAs to knockdown the expression levels of FDX1. (B) The
proliferation of FDX1 knockdown cells at 12 h, 24 h, and 36 h. (C) Wound healing assay at 12 h, 24 h, 36 h, and 48 h.
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Enrichment analysis of Metascape shows 71 intergenes were

mainly enriched in MHC class II antigen presentation and

platinum resistance pathways. Melanoma-specific MHC-II

expression predicted anti-pd-1/PD-L1 treatment efficacy (37).

Overexpression of BCL2L10 in melanoma has also been shown

to promote cisplatin and ABT-737 resistance (38). In a case

report, a patient with metastatic melanoma was also associated

with hyperprolactinemia (39). Next, we used cox regression

analysis and the LASSO algorithm to screen out 6 key variable

genes(AIM2, EDNRB, SLC39A6, TMEM117, PTPRC, and

KIF14) to construct a risk model. Absent in melanoma 2

(AIM2) is a cytoplasmic sensor that recognizes double-

stranded DNA derived from viruses, bacteria, or the host itself,

and is a member of the interferon inducible p200-protein (IFI-

P200) family of immune-related proteins. AIM2 plays a

significant role in autoimmune diseases (40) and the activation

of inflammasome (41–44). In the melanoma-related literature,

patients with melanoma whose dendritic cells express AIM2

have a significantly lower prognosis than patients with

melanoma whose dendritic cells do not express AIM2 (45). In

breast cancer treatment, Dihydroartemisinin induces pyroptosis

in breast cancer cells by promoting the AIM2/caspase-3/DFNA5

(gasdermin E) axis (46). Endothelin Receptor type B (EDNRB) is

widely expressed in vascular endothelial cells of the

cardiovascular system, gastrointestinal tract, lung, kidney,

adrenal gland, uterus, prostate, and brain. In melanoma-

related studies, the prognostic value of patients with high CD8

(+) T cell subpopulations expressing EDNRB was significantly

reduced (47). This suggests that EDNRB could be a potential

therapeutic target for melanoma. Solute carrier family 39

member 6(SLC39A6) is also known as LIV-1, ZIP-6, and Zinc

transporter ZIP6. May act as a zinc-influx transporter. Solute

Carrier Family 39 Member 6 (SLC39A6) is also known as LIV-1,

ZIP-6, and Zinc transporter ZIP6. May act as a zinc-influx

transporter. In studies of esophageal cancer, SLC39A6

increases the invasiveness of esophageal cancer cells and

reduces patient prognosis by increasing the level of Zinc

expression in esophageal cancer cells (48). SLC39A6 can also

be used as an indicator for early diagnosis of esophageal cancer

(49). However, in luminal breast cancer, the Oestrogen-

regulated protein SLC39A6 acts as a benign prognostic

indicator (50). One study reported that transmembrane

protein 117 (TMEM117) was associated with endoplasmic

reticulum stress-mediated mitochondrial-mediated cell death

(51). Studies have shown that in primary liver cancer, miR-631

can target the receptor protein tyrosine phosphatase gene

(PTPRE) to inhibit the intrahepatic metastasis of liver cancer

(52). In kras mutant lung adenocarcinoma, the PTPRE is highly

expressed, which can be used as a novel therapeutic target in kras

mutant lung adenocarcinoma (53). The kinesin family member

14 (KIF14), is a novel oncogene located on chromosome 1q.

When it malfunctions, it can affect the development of the brain

and kidneys, and it can lead to many types of cancer (54, 55). In
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breast cancer, high expression of KIF14 can promote breast

cancer metastasis and is associated with poor prognosis of breast

cancer patients (56, 57). Similarly, studies have shown that in

gastric cancer, when KIF14 mRNA is highly expressed, the

prognosis is significantly lower than that with low KIF14

mRNA expression (58). However, the above two genes have

not been deeply studied in melanoma research, and the specific

functions of PTPRE and KIF14 in melanoma need to be

further explored.

Among these CRGs, we also screened out 7 key genes

(FDX1, DBT, LIPT1, PDHB, DLD, DLAT, LIAS) as variables

in the metastasis model. In other tumor metastasis models, the

roles of some of these genes in tumor metastasis have also been

found. Chen found that LIPT1 may be a prognostic-related gene

for bladder cancer, and then found that this gene has a certain

degree of inhibitory effect on the migration ability of bladder

cancer cells by transwell method (59). Zhao found that PDHB is

associated with ovarian cancer growth and metastasis, and miR-

203 can target the 3’-UTR of PDHB to promote glycolysis.

Meanwhile, overexpression of PDHB could abolish the

promoting effect of miR-203 on ovarian cancer cell growth

(60). Regarding the role of these genes in tumor metastasis, we

still need further functional tests to verify.

During the occurrence and development of tumor tissue,

there are a large number of gene mutations. Mutated genes can

provide tumor antigens that can be recognized by the immune

system as non-self tissues, inducing immune cells to respond

(61). Immunotherapy takes advantage of the fact that immune

cells can recognize and eliminate tumor cells, which plays a great

role in the treatment of tumors (62, 63). However, tumors

effectively suppress immune responses (immune escape) by

activating negative regulatory pathways associated with

immune homeostasis (checkpoints) or by adopting features

that allow them to actively evade detection (64, 65). Effective

immunotherapy drugs have been approved in preclinical and

clinical phase I-III trials for highly aggressive, highly refractory,

and advanced and metastatic melanoma (66). For example, the

ant i -PD-1 monoc lona l ant ibodies n ivo lumab and

pembrolizumab and the anti-CTLA-4 antibody ipilimumab are

being tested in clinical trials to treat melanoma (67). Studies have

shown that commonly used immune checkpoint inhibitors

(ICIs) can improve progression-free survival and overall

survival in melanoma patients (68, 69). In our study, the risk

score model showed that the degree of immune cell infiltration

in the high-risk group was significantly lower than that in the

low-risk group. Interestingly, the survival time of the high-risk

group was significantly lower than that of the low-risk group. In

other melanoma studies, the survival time of the high immune

score group was significantly higher than that of the low immune

score group (70, 71). We also propose a hypothesis here, in

melanoma, is the degree of immune cell infiltration positively

correlated with the survival time of patients? This problem also

needs more clinical data or experiments to confirm. It is worth
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mentioning that in this study, we also analyzed the drug

sensitivity between high and low risk groups. We screened 98

drugs (Supplementary File 1) with significant differences in IC50

concentrations between high and low risk groups. Among them,

worthy of our attention are Sunitinib, VX-702, and Bryostatin.1.

Sunitinib is a new class of drugs that can selectively target

multiple receptor tyrosine kinases, and is now being used

alone or in combination with other antitumor drugs to treat

many solid tumors, including liver cancer, renal cancer, and

gastric cancer (72–74). VX-702 is a highly selective p38aMAPK

inhibitor targeting nimokinase for the treatment of primary and

acquired endocrine-resistant breast cancer (75). Bryostatin-1 is a

protein kinase C (PKC) inhibitor that inhibits cell entry into

mitosis, lowers pH and energy metabolism, and reduces tumor

blood flow, thereby inhibiting tumor cell growth (76, 77). We

screened 98 drugs to guide the development of melanoma drugs.

Furthermore, our in vitro experiments showed that FDX1

promoted the growth, and migration of melanoma cells.

Therefore, we speculate that FDX1, as a CRG, is a marker of

melanoma. People with high expression of this gene need to be

more alert to the occurrence of melanoma. At the same time, it is

also a prognostic marker for melanoma patients. The prognosis

of cancer patients may be better than that of other patients.

Taken together, our results suggest that FDX1 is aberrantly

expressed in melanoma and may be associated with patient

prognosis. In the future, we need to conduct more in-depth

functional experiments to explore how this gene acts on the

occurrence and development of melanoma.

This study established prognostic and metastatic models of

CRGs in melanoma. But there are still some limitations.

Although the sample size of our sequencing data is relatively

large, it is mainly based on the data of the network database, and

we also need our own sequencing data to verify. In our in vitro

experiments, knockdown of FDX1 reduced the ability of cells to

migrate, but there was no difference compared to the control

group. However, this gene was selected in our model, which may

be due to the joint effect of multiple genes in the establishment of

the metastasis model. In the future, we will conduct more in-

depth experiments to explore its transfer mechanism. We

analyzed the enriched pathways and functions of these key

genes, and functional assays are needed to verify them. Finally,

the drugs we screened also need to be verified by drug

resistance experiments.
Conclusion

In this study, melanoma was classified based on 12 CRGs

and clinical features, and three subtypes, A1, B1, and C1, were

established. Among them, the C1 subtype had the best survival

outcome and the highest immune cell infiltration. Then, A2, B2,

and C2 subtypes were established based on genotyping, with
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the B2 subtype having the best survival outcome. We

performed functional analysis on the intergenes between

different types, and the results showed that these intergenes

were mainly enriched in cell cycle and drug metabolism

pathways. We also established a prognostic model using 6

key variable genes and analyzed the tumor microenvironment

according to the high and low risk scores of prognosis. In

addition, we screened drugs for high and low risk groups and

found that 98 drugs had significant differences in IC50

concentrations in high and low risk groups. Finally, we used

the LightGBM algorithm to screen out 7 CRGs to build the

transfer model of melanoma. These results help us to

understand the role of CRGs in the occurrence and

development of melanoma, and provide us with new

therapeutic ideas and potential treatment methods.
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SUPPLEMENTARY FIGURE 1

Mutations and copy number variations of CRGs in the TCGA cohort. (A)
The proportion of mutation frequency of CRGs in melanoma. (B) The
chromosome where the mutated CRGs are located. Red represents an
increase in copy number and green represents a decrease in copy

number. (C) CRGs copy number variation graph. The ordinate of the red
circle is the number of samples with increased copy number, and the

ordinate of the green circle is the number of samples with reduced
copy number.

SUPPLEMENTARY FIGURE 2

9 CRGs associated with prognosis. (A–I) Comparison of the overall

survival time of samples with high expression of CRGs genes (indicated

in red) and samples with low expression of CRGs (indicated in blue).

SUPPLEMENTARY FIGURE 3

Melanoma gene subtypes constructed based on prognostic-related

intersection differentially expressed genes. (A) Three gene subtypes

obtained by unsupervised consensus clustering method. (B) Consistent
distribution of different K values described by a consistent cumulative

distribution function (CDF) plot. (C) The delta area score displayed the
relative growth in cluster stability. (D) Kaplan Meier analysis results of three

gene subtypes. (E) Comparison of CRGs expression levels among the
three gene subtypes. (F) Heatmap showing clinical information and gene

expression profiles for the three gene subtypes.

SUPPLEMENTARY TABLE 1

Names of 13 cuproptosis-related genes

SUPPLEMENTARY FILE 1

98 drugs were with significant differences in IC50 concentrations

between high and low risk groups.
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CAPN8 involves with exhausted,
inflamed, and desert immune
microenvironment to influence
the metastasis of thyroid cancer

Xiang Zhong1†, Shu Xu2†, Quhui Wang1, Long Peng3,
Feiran Wang1, Tianyi He1, Changyue Liu1, Sujie Ni2*

and Zhixian He1*

1Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical
School of Nantong University, Nantong, China, 2Department of Oncology, Affiliated Hospital of
Nantong University, Medical School of Nantong University, Nantong, China, 3Department of
Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University,
Nantong, China
Background: Thyroid cancer (THCA) is the most prevalent malignant disease of

the endocrine system, in which 5-year survival can attain about 95%, but

patients with metastasis have a poor prognosis. Very little is known about the

role of CAPN8 in the metastasis of THCA. In particular, the effect of CAPN8 on

the tumor immune microenvironment (TIME) and immunotherapy response

is unclear.

Material and methods:Multiome datasets and multiple cohorts were acquired

for analysis. Firstly, the expression and the prognostic value of CAPN8 were

explored in public datasets and in vitro tumor tissues. Then, hierarchical

clustering analysis was performed to identify the immune subtypes of THCA

according to the expression of CAPN8 and the activities of related pathways.

Subsequent analyses explored the different patterns of TIME, genetic alteration,

DNA replication stress, drug sensitivity, and immunotherapy response

among the three immune phenotypes. Finally, five individual cohorts of

thyroid cancer were utilized to test the robustness and extrapolation of the

three immune clusters.

Results: CAPN8 was found to be a significant risk factor for THCA with a

markedly elevated level of mRNA and protein in tumor tissues. This potential

oncogene could induce the activation of epithelial–mesenchymal transition

and E2F-targeted pathways. Three subtypes were identified for THCA,

including immune exhausted, inflamed, and immune desert phenotypes. The

exhausted type was characterized by a markedly increased expression of

inhibitory receptors and infiltration of immune cells but was much more

likely to respond to immunotherapy. The immune desert type was resistant

to common chemotherapeutics with extensive genomic mutation and copy

number variance.
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Conclusion: The present study firstly explored the role of CAPN8 in the

metastasis of THCA from the aspects of TIME. Three immune subtypes were

identified with quite different patterns of prognosis, immunotherapy response,

and drug sensitivity, providing novel insights for the treatment of THCA and

helping understand the cross-talk between CAPN8 and tumor immune

microenvironment.
KEYWORDS

CAPN8, thyroid cancer, prognosis, immunotherapy, tumor immunemicroenvironment
Introduction

Thyroid carcinoma (THCA) is the most prevalent malignant

disease of the endocrine system, which can be divided into four

histological types, including papillary thyroid cancer (PTC),

follicular thyroid cancer (FTC), medullary thyroid cancer, and

poorly differentiated thyroid cancer (1). The 5-year survival rate

for patients with PTC or FTC can attain about 95%, but patients

with metastatic THCA have a poor prognosis (2). Calpain

calcium kinase (CAPN) is a kind of cysteine protein kinase

widely existing in most eukaryotic cells and plays a key role in

regulating cell cycle and apoptosis (3). It is already reported that

the aberrant expression of CAPN is involved in several types of

cancer progression by inducing NF-kB, focal adhesion kinase,

and MYC pathways (4–7). However, very little is known about

the role of CAPN8 in the genesis and development of THCA up

to now. In particular, the effect of CAPN8 on the tumor immune

microenvironment (TIME), which is a well-recognized factor in

promoting the metastasis of THCA, is unclear (8).

Hereby we hypothesize that CAPN8 might facilitate the

metastasis of thyroid cancer cells and lead to poor prognosis

by inducing an inhibitory TIME pattern. Firstly, we explored the

expression and downstream signaling pathways of CAPN8 in

The Cancer Genome Atlas—Thyroid Cancer (TCGA-THCA)

cohort and in vitro tumor tissues. Next, clustering analysis was

performed, and three immune-related clusters (immune

exhausted, immune desert, and inflamed) were identified for

THCA according to the expression of CAPN8 and related

pathways. Subsequent analyses examined the different patterns

of genetic alteration, DNA replication stress, TIME,

immunotherapy response, drug sensitivity, and prognosis amid

the three immune clusters of THCA. Finally, external validation

cohorts were utilized to test the robustness and extrapolation of

the three immune clusters. Overall, the present study is aimed at

elucidating the role of CAPN8 in the metastasis of THCA from

the aspects of TIME, DNA replication stress, and genetic

variation. These findings will provide novel insights for the
02
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treatment of THCA and help understand the cross-talk

between CAPN8 and the tumor immune microenvironment.
Materials and methods

Multiome dataset acquisition
and processing

Multiome datasets of thyroid cancer were obtained from

TCGA-THCA (497 tumor samples and 71 normal samples) (9).

RNA-seq data, downloaded in the format of fragments per

kilobase million at the UCSC Xena website (9), was

transformed into the value of transcripts per kilobase million

for further analysis. Information about copy number variance

(CNV) was acquired from the FireBrowse (10) data portal.

Detailed somatic mutation categories were retrieved from the

cBioPortal (11) online platform.

Meanwhile, five datasets of thyroid cancer were also

exported from the Gene Expression Omnibus database for

external validation, including GSE3467 (n = 9), GSE3678 (n =

7), GSE33630 (n = 49), GSE60542 (n = 33), and GSE27155 (n =

95) cohorts. The batch effect amid different arrays was

eliminated by using the ComBat function of R (version 4.1.3)

package sva (12). As these data are open access resources from

public database where patients’ consents were already obtained,

extra informed consents are not needed.
Immunoreactive score calculation

Firstly, the number of positive cells and the total cells in each

stained section were counted to calculate the positive rate (PP)

(PP% = positive cells/total cells). By averaging the PP values of

10 discontinuous fields of the experimental tissue in a

microscope with a 200-fold high-power lens, the patients were

scored with 0 point for no positive cells and 1, 2, 3, and 4 points
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1013049
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.1013049
for 0% < PP ≤ 10%, 11% ≤ PP <50%, 50% ≤ PP < 80%, and PP ≥

80%, respectively.

Then, the staining intensity (SI) of cells in the tissue was

estimated based on the shades of cell color. The SI score was

marked as 0 when there was no obvious staining and 1, 2, and 3

for light brownish yellow, brownish yellow, and brown

staining, respectively.

The final IRS score was calculated by the following formula:

IRS = PP × SI. IRS >3 indicates a high expression, while IRS ≤3

represents a low expression.
Detecting the mRNA and protein
expression of CAPN8 in THCA

The expression difference of CAPN8 between 33 types of

cancer and cancer-adjacent tissues was illustrated in a boxplot by

us ing the UCSC Xena web browser . Meanwhi l e ,

immunohistochemistry (IHC) was also performed on isolated

thyroid cancer tissues to detect the level of CAPN8 protein. IHC

was conducted as described previously (13), and tumor sections

were obtained from patients who had received radical surgery

for thyroid carcinoma in the Affiliated Hospital of Nantong

University. The primary anti-bodies used for IHC were anti-

CAPN8 (1:30, biorbyt, orb140072).
Prognostic value and biological function
of CAPN8 in THCA

To test the prognostic value of CAPN8, 496 patients in the

TCGA-THCA cohort were divided into CAPN8-high and

CAPN8-low groups according to the median mRNA value. The

Kaplan–Meier (K-m) curve and log-rank test were then utilized

to show their difference in progression-free survival (PFS) time.

To explore the biological function of CAPN8, differential

expression analysis was carried out between CAPN8-high and

CAPN8-low groups by using R package limma (14). |Log2 fold

change (FC)| >1 and false discovery rate (FDR) <0.05 were set as the

significant threshold. Subsequently, Gene Set Enrichment Analysis

(GSEA) (15) was performed to recognize the differentially

expressed pathways (DEPs) between CAPN8-high and CAPN8-

low groups by using R package clusterProfiler. In total, 50 well-

known cancer hallmarks (16) were set as the background gene sets,

and FDR <0.05 was chosen as the significant threshold.
Screening for CAPN8-related cancer
hallmarks in THCA

To elucidate the potential regulating mechanism of CAPN8

toward thyroid cancer cells, Least Absolute Selection and

Shrinkage Operator (LASSO) penalty and ridge regression
Frontiers in Immunology 03
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were implemented to screen the 22 significant DEPs by using

R package glmnet (17). In addition, random survival forest (RSF)

algorithm was also employed to compute the significance of each

DEP by using the R packages randomForestSRC and

randomSurvivalForest (https://CRAN.R-project.org/package=

beeswarm) with the minimal depth method to determine the

final number of prognostic variables. Pathways with a certain

contribution to patients’ overall survival were screened in the

two models. The importance of each variable was then visualized

in a bar plot, and the marginal effect was displayed by the

function plot.error of R package randomSurvivalForest.
Identifying the subtypes of THCA by
hierarchical clustering analysis

The six DEPs, obtained by adaptive LASSO regression, and

eight DEPs, obtained by random survival forest, were taken into

intersection with a Venn diagram depicting the common DEPs by

using R package VeenDiagram (18). Gene Set Variation Analysis

(GSVA) (15) was then performed to quantify the pathway

activities of three common DPEs in THCA. Afterwards, survival

analysis was conducted to demonstrate the impact of the three

DEPs on PFS. The patients were stratified into two groups

according to the median activity score of each DEP, with the K-

m curve showing their difference in PFS. Of the common DEPs,

HALLMARK_E2F_TARGETS was a prominent risk factor for

THCA patients. Therefore, the core enrichment genes of

HALLMARK_E2F_TARGETS were then submitted to

hierarchical clustering analysis to identify the subtypes of

THCA, resulting in an E2F-Clust with two sub-clusters.

Hierarchical clustering was completed with Ward’s Clustering,

computing the Euclidean distance among each patient by using R

function hclust. Consensus Cumulative Distribution Function

(CDF) and Delta area (relative change of area under the CDF

curve) were used to select the proper clustering numbers. The two

indices were provided in R package “ConsensusClusterPlus”.
Characterizing the different TIME
patterns between the two E2F-clusters
and three ImmClusters of THCA

GSEA analysis was wielded to dissect the biological features of

the two E2F-Clusters of THCA, and survival analysis was

conducted to explore their difference in PFS. Moreover, the

infiltrating proportions of 10 immune cells were calculated for

each TCHA patient by using R package MCPcounter (19) to probe

the different TIME pattern (tumor immune microenvironment)

between the two E2F-Clusters. In addition, the expression profiles

of eight well-known immune inhibitory receptors (IRs)—CD274,

PDCD1, CD247, PDCD1LG2, CTLA4, TNFRSF9, TNFRSF4, and

TLR9—were also explored in the two E2F-Clusters.
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With these immune-related information, the two E2F-

Clusters were further subdivided into three clusters

(ImmCluster) by using the hclust function in R package

ComplexHeatmap (20). Subsequently, the immune enrichment

score (IES) and the stromal enrichment score (SES) were

compared among the three ImmClusters. IES and SES were

obtained by applying ESTIMATE algorithm (21) to each TCHA

patient, where IES represented the enrichment score of immune

cell ingredients, while SES reflected the ratio of stromal

components in tumor tissues. Furthermore, the patients’

diverse responses to immunotherapy were predicted among

the three ImmClusters by using Tumor Immune Dysfunction

and Exclusion) algorithm (22) and R package Submap (23, 24).
Resolving the genetic alteration
paradigm in two E2F-Clusters and three
ImmClusters of THCA

To characterize the different genetic alteration profile among

the two E2F-Cluster and three ImmClusters, somatic mutation,

CNV, and chromosome instability for each patient were explored

by R package MOVICS (Multi-Omics Integration and

Visualization in Cancer Subtyping.) (25). CN GISTIC score was

also computed for patients in each Immun-Cluster to manifest

their different chromosome instability. Specifically, FGA, FGL,

and FGG represented the fraction of CN altered genome, fraction

of CN-lost genome, and CN-gained genome, respectively.
Different patterns of DNA replication
stress and drug resistance amid two E2F-
Clusters and three ImmClusters of THCA

As E2F is part of the cell cycle-related pathways, which can

lead to DNA replication stress and drug resistance in cancer

cells, we further investigated the activities of 21 pathways related

to DNA replication stress (26). Pathway activity was estimated

by the GSVA strategy as previously described, and a heat map

was utilized to demonstrate the difference between two E2F-

Clusters and three ImmClusters. Moreover, the IC50 (half-

maximal inhib i tory concentrat ion) of five typica l

chemotherapeutics for THCA was computed and compared

between each cluster by using R package pRRophetic (27).
External validation for the applicability of
E2F-Clust and ImmClust in five individual
thyroid cancer cohorts

To extrapolate the E2F-Clust and ImmClust for further

application in clinical practice, five external datasets of thyroid
Frontiers in Immunology 04
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cancer cohorts were used for validation. One dataset was

GSE27155 (n = 95) which was quantified by Affymetrix

Human Genome U133A Array and annotated by GPL96

platform. The other four datasets—GSE3467 (n = 9), GSE3678

(n = 7), GSE33630 (n = 49), and GSE60542 (n = 33)

were quantified by Affymetrix Human Genome U133

Plus 2.0 Array and annotated by GPL570 platform. The last

four datasets were consolidated by using the ComBat function

of R package sva. Principal component analysis was then

utilized to visualize the homogeneity of different samples

after combination.

Then, based on the core enrichment genes of the E2F

pathway, hierarchical clustering analysis was implemented to

seek similar subclusters in these datasets. Similarly, patterns of

IRs, TIME, DNA replication stress, drug resistance, and

immunotherapy responses were explored in different

subclusters by using the same analysis strategies as

described above.
Statistic and software

Data processing and bioinformatics analyses were

accomplished by R (version 4.1.3). Packages like limma,

ggplot2, survminer, clusterProfi ler , GSVA, glmnet,

MCPcounter, SubMap, MOVICS, etc., were employed for

analyses with proper citation. Wilcox or Kruskal–Wallis tests

were applied for comparisons between two or more groups

involved in this study. Pearson and Spearman rank correlation

were adopted to estimate the statistical correlation of parametric

or non-parametric variables. A log-rank test was utilized for

survival analysis. Two-sided P <0.05 was considered the

significant threshold for all statistical tests.
Results

Expression profile, prognostic value,
biological function, and immune features
of CAPN8 in THCA

CAPN8 showed a substantial rise in protein, mRNA,

and relative IHC score (D) in thyroid cancer tissues

(Figures 1A, B, D). Upon dividing the patients into two groups

according to the median value of CAPN8 mRNA, patients in the

CAPN8-high group were observed to have a noticeable worse

survival outcome, suggesting a potential role of oncogene for

CAPN8 (Figure 1C). The differential expression analysis showed

that many genes showed a considerable un-regulation in the

CAPN8-high group, while the levels of a relatively few genes

decreased (Figure 1E). In terms of the 50 cancer hallmarks,
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interferon-gamma response, inflammatory response, E2F-

targets, etc., were significantly upregulated in the CAPN8-high

group, while the oxidative phosphorylation pathway was slightly

downregulated (Figure 1F). We also detected that the strong
Frontiers in Immunology 05
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relationship of CAPN8 with immolators were presented in the

BEST website (Figure 2A), and CAPN8 could be an

immunotherapy predictor for patients who underwent

immunotherapy (Figure 2B).
A B

D

E F

C

FIGURE 1

Expression profile and prognostic value of CAPN8 in thyroid cancer. (A, B, D) There was an obvious increase in the level of CAPN8 protein
(A), mRNA (B), and relative immunohistochemistry score (D) in thyroid cancer tissues. (C) Influence of CAPN8 expression on the progression-
free survival and overall survival of thyroid cancer. (E) Differentially expressed genes between the CAPN8-high and CAPN8-low groups.
(F) Enrichment analysis identified many pathways which were activated in the CAPN8-high group. ***P < 0.001, ****P < 0.0001.
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Screening of CAPN8-related signaling
pathways and construction of E2F-Clust
for THCA

Six and eight CAPN8-related cancer hallmarks were

screened out by the adaptive LASSO regression and random

survival forest algorithm, respectively (Figures 3A–C). Each

pathway was graded in order of their importance, and the

E2F-targets pathway showed a dominant impact on survival

time in the RSF analysis (Figure 3D). In addition, the marginal

effect of RSF was demonstrated in the scatter diagram where the

E2F-target and G2M-checkpoint pathways exhibited a mild

positive correlation with the mortality of THCA patients
Frontiers in Immunology 06
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(Figure 3E). These findings suggest that the E2F-targets

pathway could be the downstream signaling pathway of

CAPN8 and plays a key role in THCA progression.

Subsequently, three shared cancer hallmarks were

documented after taking the intersection of six pathways from

LASSO regression and eight pathways from RSF analysis,

including E2F-targets, oxidative phosphorylation, and

inflammatory-response pathways (Figure 4A). Of the three

pathways, E2F-targets was a risk factor, and patients with a

high pathway activity of E2F-targets demonstrated a worse

survival outcome (Figure 4B).

A further cluster analysis identified two subtypes of THCA

based on the core genes of the E2F-targets pathway (Figure 4C).
A

B D EC

FIGURE 2

Relationship of CAPN8 with immolators and immunotherapy from the BEST website. (A) Relationship of CAPN8 with immunomodulators in the
four thyroid cancer cohorts. (B–E) Different expression of CAPN8 in different status of patients from four cohorts with immunotherapy.
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A B

D

E

C

FIGURE 3

Screening of CAPN8-related hub pathways in thyroid cancer. (A, B) Coefficient profiles (A) and deviance profiles (B) of the adaptive Least
Absolute Shrinkage and Selection Operator regression model. Six cancer hallmarks were selected. (C) Error rate of the random survival forest
(RSF) model. Eight cancer hallmarks were determined. (D, E) Importance (D) and marginal effect (E) of each pathway in the RSF model. The blue
color represented pathways with a certain influence on overall survival, while the red color represented background noise with no impact on
the dependent variable.
Frontiers in Immunology frontiersin.org07
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Of the E2F-Clust, CS1 (cluster 1) was characterized by an

evidently high expression of CAPN8 as well as core genes in

E2F-targets pathways, showing an unfavorable effect on patients’

survival outcome (Figure 4D) compared to the superior

influence of CS2 (cluster 2). This E2F-Cluster further

supported that CAPN8 may lead to THCA progression by

regulating the E2F-targets pathway.
Immune exhausted, immune desert, and
inflamed TIME patterns in the two E2F-
Clusters and three ImmClusters of THCA

There was a considerable diversity of biological function and

TIME pattern between the two E2F-Clusters. CS1 was identified

by the elevated pathway activity of E2F-targets, epithelial–

mesenchymal transition (EMT), inflammatory response, and

interferon-gamma response (Figure 5A).

Compared to the two E2F-Clusters, three subtypes were

identified in the ImmClust with a significant difference in
Frontiers in Immunology 08
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survival outcome (Figure 5B). Considering the information of

10 immune cells and eight IRs, CS1 of the ImmuClust was

accompanied with an increased expression of IRs and an

infiltrating ratio of almost all types of immune cells,

underlying a strongly inhibitory TIME pattern in the CS1

group. This result suggested that CAPN8 could induce T cell

exhaustion to inhibit immune response and lead to a poor

prognosis of THCA (Figure 5C). Moreover, CS1 was

characterized by a higher infiltrating proportion of fibroblast

than CS2, accounting for its distinctly higher enriched score of

SES (Figure 5D).

CS2 of the ImmClust, however, was characterized by an

inflammatory TIME pattern with high levels of infiltration of

neutrophil and endothelial cells. Distinctively, CS3 of the

ImmClust lacked immune infiltration, suggesting a potential

phenotype of immune desert for this subtype (Figure 5C).

Keeping consistent with the exhausted TIME feature of CS1,

immunotherapy seemed to be a feasible strategy for this

subtype. Patients in CS1 significantly responded to PD1-R

treatment (Figure 5E).
A B

DC

FIGURE 4

Prognostic value of the E2F-Clust and E2F-targets pathway. (A) Three mutual pathways were identified by taking an intersection of the results
from the Least Absolute Shrinkage and Selection Operator model and the random survival forest model. (B) Prognostic value of three hub
pathways. Only E2F-targets pathway was a significant risk factor for thyroid cancer. (C, D) E2F-Clust stratified the patients into two groups with
a distinct difference in survival outcome (C) and clinical TNM stages (D).
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Genetic alteration paradigm in the two
E2F-Clusters and three ImmClusters
of THCA

Oncoplot was illustrated to resolve the mutation profile of

E2F-Clusters and ImmClusters. CS2 of the ImmClust seems to
Frontiers in Immunology 09
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have the highest mutation frequency of BRAF and ZFHX3, while

CS1 exceeded the other two clusters in the mutation frequency of

COL5A3 and AKT1, which is a hub element of the PI3K

proliferation pathway (Figure 6A).

By contrast to the mutation frequency, CS2 of the ImmClust

was fairly stable in CNV with the lowest FGA, FGL, FGG, and
A

B

D E

C

FIGURE 5

Different tumor immune microenvironment (TIME) patterns in the E2F-Clust and ImmClust. (A) The enrichment analysis identified five
upregulated pathways in CS1 of E2F-Clust. (B) There was a significant difference in PFS among the three ImmClusters. (C) Different TIME
patterns among the three ImmClusters, including the immune exhausted (CS1), inflammatory (CS2), and immune desert (CS3) subtypes. (D) The
Immune Enrichment Score and the Stromal Enrichment Score differ in the three ImmClusters. (E) Different responses to immunotherapy of the
three ImmClusters. OS, overall survival; PFS, progression-free survival; FDR, false discovery rate; TIME, tumor immune microenvironment.
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CN GISTIC score than CS1 and CS3 (Figure 6B), suggesting a

rather recent cancer origin and fairly low chromosomal

instability for this subtype.

CS3, however, was in the lead in CNV frequency and CN

GISTIC score, underlying a quite earlier cancer origin and

extremely high chromosomal instability (Figure 6C) for

this subtype.
Patterns of DNA replication stress and
drug resistance in two E2F-Clusters and
three ImmClusters of THCA

With regards to the 21 pathways related to DNA replication

stress, CS3, the immune desert subtype, was dramatically

downregulated in the pathway activity of cell cycle, G1S-DNA

damage checkpoints, G2M-DNA damage checkpoint, and mitotic

spindle checkpoint, implying a considerably declined ability to

maintain the correct paradigm of DNA replication (Figure 7A).

This is in line with the result mentioned above, namely: there

was a highly altered genomic CNV situation and increased
Frontiers in Immunology 10
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chromosomal instability for CS3 cluster (Figure 6C),

suggesting that CS3, the immune desert subtype, was prone to

being drug resistant by inducing extensive epigenetic variations.

As expected, CS2 of the E2F-Clust, similar to CS3 of the

ImmClust, was relatively insensitive to many chemotherapeutics

and correlated with poor survival outcome (Figure 7B).

Specifically, the estimated IC50 values of VE-822, AZD67738,

VE821, and MK-1775 were widely increased (Figure 7C). These

drugs are famous inhibitors of ATR and week1, which are

famous cell cycle regulatory proteins.
Application of the E2F-Clust and
ImmClust in five individual thyroid
cancer cohorts

The z-score normalization for GSE3467 (n = 9), GSE3678

(n = 7), GSE33630 (n = 49), and GSE60542 (n = 33) was

appropriate as the heterogeneity among the four datasets was

eliminated after combination. After applying the E2F-Clust and

ImmClust to this combined thyroid cancer cohort (n = 78), the
A B

C

FIGURE 6

Patterns of genetic alteration in the E2F-Clust and ImmClust. (A) Oncoplot showing the mutation information of the E2F-Clust and ImmClust.
(B) The fraction of copy number variance among the three ImmClusters. **, ***, and **** represent p < 0.01, p < 0.001, and p < 0.0001,
respectively. (C) Copy number GISTIC score of the E2F-Clust and ImmClust.
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same TIME pattern in the TCGA-THCA cohort was still

recognizable. CS3 remained to be the phenotype of immune

desert with decreased infiltration of immune cells and expression

of IRs. CS1 remained as the phenotype of immune exhausted for

its increased infiltration of immune cells and IRs expression,

while CS2 maintained the phenotype of inflamed TIME with

elevated infiltration of neutrophils (Figure 8A).

The pattern of DNA replication stress, however, seems to be

indistinguishable in the combined cohort. CS1, CS2, and CS3 were
Frontiers in Immunology 11
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all seemingly accompanied by the increased activity of 21 DNA

replication-related pathways (Figure 8A). Despite this uncertain

result, CS2 was still much more likely to be drug resistant, with

generally rising IC50 for ATR and week1 inhibitors (Figure 8C).

Moreover, immunotherapy was plausible for the CS1 subtype in

this combined cohort as patients in the CS1 subtype significantly

responded to PD1-R treatment (Figure 8E).

Similar patterns of TIME, drug sensitivity, and

immunotherapy response were still distinguishable in another
A

B

C

FIGURE 7

Different paradigms of DNA replication stress and drug sensitivity in the E2F-Clust and ImmClust. (A) Activities of 21 pathways related to DNA
replication stress in the E2F-Clust and ImmClust. There was evident downregulation of DNA replication stress in the CS3 subtype. (B) The E2F-Clust
stratified patients into two groups with distinct differences in clinical TNM stages and progression-free survival. (C) IC50 (half maximal inhibitory
concentration) of typical inhibitors targeting ATR and week 1 protein. Patients of CS2 showed a tendency to be drug resistant. ***P < 0.001.
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validation cohort: GSE27155 cohort (n = 95), annotated by

GPL96 platform. The immune exhausted inflammatory and

immune desert phenotypes still corresponded to CS1, CS2,

and CS3 subtypes, respectively (Figure 8B). The activities of 21

DNA replication stress-related pathways and drug sensitivity

kept decreasing in the CS3 subtype (Figure 8D). The CS1 group

demonstrated the same certain probability of benefiting from

PD1-R treatment (Figure 8F).
Discussion

The present study identified three immune subtypes of

THCA according to the expression of CAPN8 and related

pathways, including the immune exhausted (CS1), inflamed

(CS2), and immune desert (CS3) phenotypes. Three sub-

clusters for THCA demonstrated quite diverse patterns of

TIME, genetic variation, drug sensitivity, immunotherapy
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response, and patient prognosis—for instance, patients with

CS1, with high expression of CAPN8, demonstrated rather

detrimental survival outcomes when receiving chemotherapy

but were much more likely to respond to anti-PD-1 treatment.

These findings will provide novel insights for the treatment of

THCA and help to understand the cross-talk between CAPN8

and the tumor immune microenvironment.

Firstly, CAPN8 was found to be a significant risk factor for

THCA with a markedly elevated level of mRNA and protein in

tumor tissues. This potential oncogene also induced the

activation of EMT and E2F-targets, which are well-

acknowledged pathways to promote cancer metastasis and

proliferation. Consistent with our studies, CAPN8 was claimed

to be a potential oncogene in gastric cancer, hepatic carcinoma,

and lung cancer, causing the occurrence of precancerous lesions

and cancer progression (5, 6, 28). In addition, members of

CAPN family have been reported to facilitate the invasion of

THCA by inducing MMP2 and MMP9 secretion, which can
A B D

E F

C

FIGURE 8

Application of the E2F-Clust and ImmClust in two external validation datasets (N = 78, N = 95). (A) The exhausted, inflamed, and desert TIME
patterns remain recognizable after the application of E2F-Clust and ImmClust in the combined validation dataset (N = 78). (B) The exhausted,
inflamed and desert TIME patterns are still distinct after applying the E2F-Clust and ImmClust in GSE27155 (N = 95). (C) CS2 still showed a
tendency to be drug resistant in the combined validation dataset (N = 78). (D) Patients of CS2 are potentially resistant to common
chemotherapeutics in GSE27155 (N = 95). (E) CS1 is prone to response to anti-PD-1 treatment in the combined validation dataset (N = 78).
(F) Anti-PD-1 treatment is feasible in patients of CS1 subtype in GSE27155 (N = 95). *P < 0.05, ***P < 0.001.
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contribute to extracellular matrix degradation during cancer cell

migration (29).

Furthermore, three immune phenotypes of THCA were

identified according to the expression of CAPN8 and related

pathways. CS1, the immune exhausted subtype, was

accompanied with a distinctly increased expression of IRs and

proportion of infiltrating T cells. Accordingly, exhausted T cells

lose their killing ability because of the increased expression of

IRs but can be restored by immune checkpoint inhibitors (30).

This exactly accords with our result: CS1 was found to be

positively responsive to anti-PD-1 treatment.

In terms of CS3, this immune desert subtype of THCA

demonstrated the absence of anti-tumor immunity and surging

level of CNV. This is not surprising as there was a general

downregulation of 21 pathways related to DNA replication stress

in CS3. It is widely accepted that replication stress plays a key

role in initiating anti-tumor immunity by inducing cancer-

related neoantigens (31, 32), and its absence is intensively

correlated with the immune desert phenotype. Consequently,

the low immunity and high level of CNV can jointly contribute

to strong cancer stemness (33), accounting for the result that

patients of CS3 were tolerant of many ATR and week1 inhibitors

in our study.

Overall, three immune subtypes of THCA were identified

based on the expression of CAPN8 and related pathways in our

study. The three types displayed rather different paradigms of

TIME, immune therapy response, drug sensitivity, and genomic

variance. Moreover, these three immune subtypes are highly

coincident with the results of previous studies on cancer

classification (34–38), where the exhausted, inflamed, and

desert phenotypes of breast cancer, prostate cancer, and

bladder cancer were characterized by using a similar

clustering analysis.

Our study has several advantages. This is the first study to

elucidate the role of CAPN8 in the metastasis of THCA from the

aspects of TIME, DNA replication stress, and genetic alteration.

Three immune subtypes identified in our study will provide new

insights for the treatment of THCA, as different subtypes showed

distinctly different responses to immunotherapy and

chemotherapy. Most importantly, external validation in five

individual cohorts made the extrapolation and robustness of

the classification convincing.

There were also some limitations to the current study.

Firstly, further in vitro experiments will make it more

authentic for the existence of the three subtypes of THCA.

Secondly, the prognostic effects of CAPN8 could be validated

in actual cohorts of THCA to make it more persuasive. Lastly,

analysis on cancer stemness can be added to further explain

the relationship between different subtypes and various

drug sensitivities.

In conclusion, we highlighted the role of CAPN8 in

THCA metastasis and identified three distinct immune

subtypes that can be distinguished in terms of prognosis,
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immunotherapeutic response, and drug sensitivity, which

provide new insights for the treatment of THCA and contribute

to the understanding of the interaction between CAPN8 and the

tumor immune microenvironment.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials. Further

inquiries can be directed to the corresponding authors.
Author contributions

All authors contributed to the study’s conception and design.

XZ, SX, and QW performed data collection and analysis. XZ and

SX wrote the manuscript. LP, FW, and TH polished and revised

the manuscript. ZH and SN provided analytical ideas. All

authors contributed to the article and approved the

submitted version.
Funding

This work was supported by grants from the Research

Project of Maternal and Child Health of Jiangsu Province

(F201953) and the Science and Technology Project of Nantong

(JC2020067) to ZH.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1013049/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1013049/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1013049/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.1013049
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.1013049
References
1. Erler P, Keutgen XM, Crowley MJ, Zetoune T, Kundel A, Kleiman D, et al.
Dicer expression and microRNA dysregulation associate with aggressive features in
thyroid cancer. Surgery (2014) 156:1342–50. doi: 10.1016/j.surg.2014.08.007

2. Vasko VV, Saji M. Molecular mechanisms involved in differentiated thyroid
cancer invasion and metastasis. Curr Opin Oncol (2007) 19:11–7. doi: 10.1097/
CCO.0b013e328011ab86

3. Campbell RL, Davies PL. Structure-function relationships in calpains.
Biochem J (2012) 447:335–51. doi: 10.1042/BJ20120921

4. Yoshikawa Y, Mukai H, Hino F, Asada K, Kato I. Isolation of two novel genes,
down-regulated in gastric cancer. Jpn J Cancer Res (2000) 91:459–63. doi: 10.1111/
j.1349-7006.2000.tb00967.x

5. Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev
Camb Philos Soc (2021) 96:961–75. doi: 10.1111/brv.12686

6. Chen B, Tang J, Guo YS, Li Y, Chen ZN, Jiang JL. Calpains are required for
invasive and metastatic potentials of human HCC cells. Cell Biol Int (2013) 37:643–
52. doi: 10.1002/cbin.10062

7. Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG. The calpain system
and cancer. Nat Rev Cancer (2011) 11:364–74. doi: 10.1038/nrc3050

8. Menicali E, Guzzetti M, Morelli S, Moretti S, Puxeddu E. Puxeddu EJFie,
Immune Landscape Thyroid Cancers: New Insights Front Endocrinol (Lausanne)
(2020) 11:637826. doi: 10.3389/fendo.2020.637826

9. Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al.
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Identification and validation
of immunotherapy for four
novel clusters of colorectal
cancer based on the
tumor microenvironment

Xiaoyong Zheng1†, Yajie Ma2†, Yan Bai3†, Tao Huang4,
Xuefeng Lv5, Jinhai Deng6, Zhongquan Wang7, Wenping Lian7,
Yalin Tong8, Xinyu Zhang2, Miaomiao Yue1, Yan Zhang1,
Lifeng Li4,9,10* and Mengle Peng7*

1Department of Digestion, Henan Provincial Third People’s Hospital, Zhengzhou, China,
2Department of Medical Affair, Henan Provincial Third People’s Hospital, Zhengzhou, China,
3Department of Digestion, Zhengzhou First People’s Hospital, Zhengzhou, China, 4Medical School,
Huanghe Science and Technology University, Zhengzhou, China, 5Department of Clinical
Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 6Richard
Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London,
London, United Kingdom, 7Department of Clinical Laboratory, Henan Provincial Third People’s
Hospital, Zhengzhou, China, 8Department of Digestion, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China, 9Cancer Center, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 10Internet Medical and System Applications of National Engineering Laboratory,
Zhengzhou, China
The incidence and mortality of colorectal cancer (CRC) are increasing year by

year. The accurate classification of CRC can realize the purpose of personalized

and precise treatment for patients. The tumor microenvironment (TME) plays

an important role in the malignant progression and immunotherapy of CRC. An

in-depth understanding of the clusters based on the TME is of great

significance for the discovery of new therapeutic targets for CRC. We

extracted data on CRC, including gene expression profile, DNA methylation

array, somatic mutations, clinicopathological information, and copy number

variation (CNV), from The Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO) (four datasets—GSE14333, GSE17538, GSE38832, and

GSE39582), cBioPortal, and FireBrowse. The MCPcounter was utilized to

quantify the abundance of 10 TME cells for CRC samples. Cluster repetitive

analysis was based on the Hcluster function of the Pheatmap package in R. The

ESTIMATE package was applied to compute immune and stromal scores for

CRC patients. PCA analysis was used to remove batch effects among different

datasets and transform genome-wide DNA methylation profiling into

methylation of tumor-infiltrating lymphocyte (MeTIL). We evaluated the

mutation differences of the clusters using MOVICS, DeconstructSigs, and

GISTIC packages. As for therapy, TIDE and SubMap analyses were carried out

to forecast the immunotherapy response of the clusters , and

chemotherapeutic sensibility was estimated based on the pRRophetic

package. All results were verified in the TCGA and GEO data. Four immune
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clusters (ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and ImmClust-CS4)

were identified for CRC. The four ImmClusts exhibited distinct TME

compositions, cancer-associated fibroblasts (CAFs), functional orientation, and

immune checkpoints. The highest immune, stromal, and MeTIL scores were

observed in CS2, in contrast to the lowest scores in CS4. CS1 may respond to

immunotherapy, while CS2 may respond to immunotherapy after anti-CAFs.

Among the four ImmClusts, the top 15 markers with the highest mutation

frequency were acquired, and CS1 had significantly lower CNA on the focal

level than other subtypes. In addition, CS1 and CS2 patients had more stable

chromosomes than CS3 and CS4. The most sensitive chemotherapeutic agents

in these four ImmClusts were also found. IHC results revealed that CD29 stained

significantly darker in the cancer samples, indicating that their CD29 was highly

expressed in colon cancer. This work revealed the novel clusters based on TME

for CRC, which would guide in predicting the prognosis, biological features, and

appropriate treatment for patients with CRC.
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Introduction

Colorectal cancer (CRC) is a common malignant tumor in

the digestive system. In recent years, the incidence of CRC is

gradually increasing, and the mortality is also on the rise,

ranking at the forefront of all malignant tumors, seriously

endangering human health (1). The treatment of CRC is based

on radical surgery, supplemented by chemotherapy, but nearly

half of the patients are still trapped in tumor recurrence or

metastasis without effective treatment (2). The traditional

clinical and pathological predictors of CRC mainly include

intestinal obstruction, pathological stage, level of cell

differentiation, invaded vessels, invaded nerves, microsatellite

status, etc. However, the final clinical significance is not very

obvious. Recently, in order to more accurately predict the
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prognosis of patients with CRC, more and more researchers

have begun to pay attention not only to tumor cells themselves

but also to the tumor microenvironment (TME) of tumor cells.

The occurrence of CRC is a multistage mutation

accumulation process involving multiple oncogenes, and the

TME also plays an important role in the regulation (3) and drug

resistance (4, 5) of CRC. The TME consists of a variety of cell

types, including immune cells, inflammatory cells, adipocytes,

fibroblasts, and vascular endothelial cells, as well as non-cellular

components in and around the tumor (6). TME cells can be

induced by tumor cells to produce a large number of cytokines

and growth factors, thus forming a microenvironment

conducive to the survival and proliferation of tumor cells. The

TME can mediate the immune escape of tumor cells with the

participation of tumor-associated immunosuppressive

molecules (transforming growth factor-b, TGF-b), tumor-

associated immunosuppressive cells (tumor-associated

macrophages, TAMs), and tumor-associated proinflammatory

responses (tumor-associated neutrophils) (7). The cellular

components in the TME have become key modulators of

tumor progression, organ-specific metastasis, and therapeutic

response, among which tumor-infiltrating immune cells are the

key to immunotherapy (8). Furthermore, tumor-infiltrating

lymphocytes (TILs) can directly affect the prognosis and

response to immunotherapy (9).

The heterogeneity of tumors is one of the important

characteristics of tumors, which enables tumors to evolve

various characteristics to adapt to the environment and even to

resist the treatment of tumors (10, 11). Traditionally, tumors have

been classified according to the type of cell or tissue they originate
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from and, thus, have a “one-size-fits-all” approach to pathology

and treatment. It was not until sequencing became widely

available that we realized that there were differences in genomic,

transcriptome, and epigenetic characteristics within the same type

of tumor (10). For example, the CRC Subtyping Consortium

proposed a consensus molecular model, which divided CRC into

four consensus molecular subtypes (CMS) according to

pathological features (12). CMS1 is the type involved in

microsatellite instability (MSI), also known as a high mutation

type, which is manifested by mismatched gene repair changes.

CMS2 is typical and is associated with abnormal activation of

WNT or MYC signaling pathways. CMS3 is a metabolic type,

showing a high mutation degree of KRAS and metabolic disorder.

CMS4 indicates an abnormal activation of the TGF-b signaling

pathway. Even within the same tumor, its genetic characteristics

are different between subcellular populations and change

dynamically as the tumor develops (11, 13). The understanding

of tumor heterogeneity has led to a more detailed classification of

tumors, and the development of different treatment regimens

based on the molecular characteristics of tumors has improved the

therapeutic outcomes of multiple tumors. For example, imatinib is

used to treat BCR-ABL tyrosine kinase constitutively activated

chronic myeloid leukemia (14), HER2 protein-targeting drugs are

used to treat HER2-positive breast cancer (15), and estrogen

antagonists are used to treat estrogen receptor-positive breast

cancer (16).

In this study, we integrated TME cells of CRC to identify

four immune clusters (ImmClust-CS1, ImmClust-CS2,

ImmClust-CS3, and ImmClust-CS4), which were validated

using data from the Gene Expression Omnibus (GEO)

datasets. We described each according to their biological

characteristics, including the prognosis, immune status,

somatic mutations, copy number variation (CNV), and

response to treatment.
Materials and methods

Public data acquisition and
preprocessing

The RNA-seq FPKM (fragments per kilobase million) data of

TCGA-COAD and TCGA-READ were downloaded from the

UCSC Xena platform (https://xenabrowser.net/) (17). After

primary tumor selection, a total of 390 COAD and 154 READ

samples were included in our study. The FPKM style of RNA-seq

data was normalized into TPM value (18). The 450K DNA

methylation array was also extracted from the UCSC Xena

platform (19). The somatic mutation data and the

clinicopathological information of patients with COAD or READ

were obtained from the cBioPortal platform (http://www.

cbioportal.org/datasets) (20). The data on CNV were acquired

from FireBrowse (http://firebrowse.org/) (21). Four external
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independent datasets, namely, GSE14333, GSE17538, GSE38832,

and GSE39582, were downloaded from the GEO database and

quantitated by Affymetrix Human Genome U133 Plus 2.0 Array

(22–25). TCGA and GEO data were combined to remove batch

effects by ComBat in R package SVA (26), and the removal of batch

effects was tested by principal component analysis (PCA) (27).
TME abundance quantification and
immune cluster establishment

MCPcounter is an R package that quantifies the absolute

abundance of eight immune cells (B-cell lineage, CD8+ T cells,

cytotoxic lymphocytes, monocytic lineage, myeloid dendritic

cells, natural killer cells, neutrophils, and T cells) and two

stromal cells (fibroblasts and endothelial cells) using

transcriptome data (28). We utilized MCPcounter to quantify

the abundance of the 10 TME cells for CRC samples. After

cluster repetitive analysis based on Hcluster function of

Pheatmap package in R (29), four immune clusters

(ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and

ImmClust-CS4) were identified. The ESTIMATE R package

was applied to compute immune scores and stromal scores

(30), representing the enrichment scores for CRC patients.
Immunotherapy response analysis

Based on the ESTIMATE tool, the present study used gene

expression data from CRC to estimate stromal and immune cells

in cancer tissue to predict the immune score and stromal score in

CRC (30). TILs were associated with the clinical outcomes of CRC

(31, 32). To further evaluate the local tumor immune response of

the four ImmClusts, genome-wide DNA methylation profiling

was applied and transformed into methylation of tumor-

infiltrating lymphocyte (MeTIL) using PCA analysis (33). TIDE

is a computational method for predicting immune checkpoint

blockade (ICB) responses (34). Based on RNA expression profiles,

TIDE prediction scores were calculated to forecast the likelihood

of CRC patients responding to immunotherapy. A lower TIDE

score indicated a lower possibility of immune escape (34). In

addition, SubMap analysis was carried out to contrast gene

expression similarity between ImmClusts and the responders of

anti-PD-1 or anti-CTLA-4 therapy (35–38).
Assessment of cancer-associated
fibroblasts

Cancer-associated fibroblasts were reported to play an

essential role in the TME of CRC (38). Since cancer-associated

fibroblast (CAF) may have modeled different patient

subpopulations, CAF-related genes and signatures were
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mapped to ImmClusts. Previous studies provided seven CAF-

related genes, namely, ACTA2, PDGFRA, PDGFRB, THY1,

COL1A1, FAP, and PDPN (39–43). We obtained eight CAF-

related signatures (ecm-myCAF, detox-iCAF, IL-iCAF, TGFB-

myCAF, wound-myCAF, IFNG-iCAF, CAF-S1, and normal

fibroblast) from the study based on single-cell analysis (44).
Evaluation of mutation differences

The MOVICS package is designed for multi-omics

comprehensive clustering and visualization of cancer clusters,

which provides a unified interface and standardizes the output

for 10 algorithms (CIMLR, iClusterBayes, MoCluster, COCA,

ConsensusClustering, IntNMF, LRAcluster, NEMO, PINSPlus,

and SNF) (45). The ImmClusts of the TCGA-CRC cohorts were

comprehensively characterized by the MOVICS package,

including somatic mutation (46), tumor mutational burden

(TMB), and fraction genome altered score. The package

DeconstructSigs can put 96 mutation spectrums into 30

corresponding mutation signatures of the COSMIC database

(47). Mutations mediated by the apolipoprotein B mRNA-

editing enzyme catalytic polypeptide-like (APOBEC) family

are widespread in human cancers (48). APOBEC has been

reported to be associated with immunotherapy response (49).

We selected two APOBEC-related signatures and weighted them

to obtain the weight of the APOBEC mutant signature. Somatic

CNV (SCNA) may affect as many as thousands of genes

simultaneously, but the selective advantage that drives

variation may be mediated by only one or a few of these

genes. Based on the Genomic Identification of Significant

Targets in Cancer (GISTIC) algorithm (50), we compared the

chromosomal instability of subtypes.
Prediction of the sensibility of
chemotherapeutics

A wide range of drug screening can be performed through

the Genomics of Drug Sensitivity in Cancer (GDSC) website

(51). Based on pRRophetic package in R (52, 53), Ridge’s

regression was used to construct a prediction model between

drug sensitivity and the expression profile of cell lines.

Whereafter, we applied the aforementioned model to estimate

the half-maximal inhibitory concentration (IC50) value of

chemotherapeutics for CRC patients.
Human tissue sample collection

Formalin-fixed and paraffin-embedded (PPFE) specimens

were collected from cancerous and paracancerous tissues of CRC

patients in the First Affiliated Hospital of Zhengzhou University.
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All the samples were stored at room temperature (20°C–25°C).

According to pathological features, at least two pathologists

diagnosed all the specimens and reached an agreement. Lastly,

this study included 10 cases of CRC cancerous and

paracancerous tissues. The study was approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou

University (Ethics No. 2021-KY-0147-002).
Immunohistochemical staining

According to themanufacturers’ protocol, immunohistochemistry

(IHC) staining of CRC cancerous and paracancerous tissues

was performed. First, we dewaxed, hydrated, and blocked the

paraffin-embedded sections and then incubated them

overnight at 4°C with a CD29 antibody (Affinity, China). The

next day, sections were washed three times with PBS and then

incubated with secondary antibodies at 37°C. Again, sections

were washed with PBS, dropped into a DAB reagent, and

restained with hematoxylin for 2 min. Finally, these sections

were visualized by light microscopy, and the results of Masson

staining and IHC were analyzed using ImageJ software.
Results

Immune-related cluster establishment

If the sample dataset collection time, collection institutions,

sequencing platform, and other factors are different, they may

automatically form different batches, thus affecting the real data.

Therefore, batch effects should be checked and removed before

subsequent analysis; otherwise, all subsequent analysis results

will be invalid. Figure 1A shows the PCA diagram of the TCGA-

COAD and TCGA-READ data before and after batch removal,

indicating that batch effect removal was relatively successful.

We developed an immune-related cluster using the Hcluster

function of the Pheatmap package, and four immune clusters

(ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and ImmClust-

CS4) were identified for CRC (Figure 1B). The heatmap showed

the differences in the distribution of the four ImmClusts in

clinicopathological features, TME compositions, functional

orientation, and immune checkpoints (Figure 1B). The four

ImmClusts exhibited distinct TME compositions. ImmClust-

CS1 was characterized by a high enrichment of immune cells

and low fibroblasts (Figure 1B). ImmClust-CS2 was dominated by

immune-cell-related genes, as well as endothelial cells and

fibroblasts (Figure 1B). ImmClust-CS3 and ImmClust-CS4 were

both characterized by immune low and fibroblast high and

fibroblast low, respectively (Figure 1B). As for the functional

orientation (immunosuppression, T-cell activation, T-cell

survival, regulatory T cells, major histocompatibility complex

class I, myeloid cell chemotaxis, and tertiary lymphoid
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structures), on the whole, the expression values of related genes

were relatively high in ImmClust-CS1 and ImmClust-CS2 and

relatively low in ImmClust-CS3 and ImmClust-CS4 (Figure 1B).

The expression of immune checkpoint genes was consistent with

the above findings (Figure 1B).

Furthermore, we compared the clinical outcomes of patients in

the four ImmClusts. Although the survival patterns of the four

ImmClusts exhibited were not statistically significant (P = 0.335),

ImmClust-CS1 did not reach the median survival period in

10 years and had a better prognosis than other ImmClusts

(Figure 1C). Hence, we compared the differences in enrichment

pathways between CS1 and the other ImmClusts. GSEA analysis

showed that compared with the other three ImmClusts, CS1 was

enriched in interferon-alpha response, interferon-gamma

response, and TGF beta signaling pathways, while the epithelial–

mesenchymal transition (EMT) pathway was downregulated,

indicating that CS1 was enriched in immune-related pathways

but downregulated in the EMT pathway (Figure 1D).
Immunotherapy response analysis

ESTIMATE is an algorithm that uses transcription profiles

of cancer samples to estimate the number of tumor cells, as well

as the number of infiltrated immune and stromal cells. Among

the ESTIMATE scores of the four ImmClusts, the highest
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immune (Figure 2A) and stromal scores (Figure 2B) were

observed in CS2, in contrast to the lowest scores in CS4

(Figures 2A, B). A study has shown that the MeTIL score

system may assess immune and immunotherapy responses in

CRC (54). Interestingly, our data suggested that CS2 had the

highest MeTIL score (Figure 2C), while CS4 had the lowest

MeTIL score, which further suggested the differences in

immunotherapy responses among the four ImmClusts. A

lower TIDE score indicated a lower possibility of immune

escape. From Figures 2D, E, we found that patients in CS1

were more likely to respond to immunotherapy (Fisher’s exact

test, P < 0.001). In mapping CAF-related genes and signatures to

ImmClusts, we found a highly positive correlation between CS2

and CAFs (Figure 2F). At the same time, the immune gene

expression profiles of CS1 and CS2 were found to be similar to

those of melanoma patients responding to anti-PD-1 therapy

using SubMap analysis (Figure 2G). To sum up, CS1 may

respond to immunotherapy, while CS2 may respond to

immunotherapy after anti-CAFs.
Verification analysis based on GEO data

To validate the results of the above analysis, four external

CRC cohorts from the GEO database were included in the

follow-up study. First, the data of the GEO cohorts were
A
B

D

C

FIGURE 1

Immune-related cluster establishment for The Cancer Genome Atlas (TCGA). (A) Batch effect removal of the TCGA-COAD and TCGA-READ
cohorts using PCA analysis. (B) The heatmap showed the differences in the distribution of the four ImmClusts in clinicopathological features,
TME compositions, functional orientation, immune checkpoints, and so on. (C) K‐M survival curves showed the differences of overall survival
and recurrence rate among the four ImmClusts. (D) GSEA analysis comparing the differences of enrichment pathways between CS1 and the
other ImmClusts.
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combined and PCA analysis was performed. The batch effect

removal was observed successfully (Figure 3A). Subsequently,

considering the large cohort size and uneven distribution of

tumor purity in GEO, we removed the samples with a tumor

purity larger than 0.8 (the higher the tumor purity, the less

accurate the TME estimate), leaving 833 CRC samples. Here,

four subtypes were obtained by unsupervised clustering, and the

distribution of subtypes in clinicopathological features, TME

compositions, functional orientation, and immune checkpoints

was consistent with the TCGA cohort (Figure 3B). Happily, for

survival analysis, we found statistically significant differences in

survival curves, and CS1 and CS2 subgroups with high levels of

immune cell infiltration fared better, while CS3 with lower

immune cell infiltration but higher fibroblast infiltration had a

poor prognosis (Figure 3D). Conclusively, GSEA analysis

showed that CS1 was associated with interferon-alpha

response, interferon-gamma response, TGF beta signaling, and

epithelial–mesenchymal transition pathways (Figure 3C), which

was consistent with the previous findings.

In addition, the same results as the above findings were

confirmed. The immune (Figure 4A) and stromal (Figure 4B)

scores were the highest in CS2 and the lowest in CS4. CS1 with

the lowest TIDE score (Figure 4C) remained the subgroup most

likely to respond to immunotherapy (Figure 4D). The heatmap

revealed that CS2 was positively correlated with CAF-related
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genes and signatures (Figure 4F). SubMap analysis uncovered

that CS1 and anti-CAF-CS2 may respond to anti-PD-1

immunotherapy (Figure 4E).
Evaluation of mutation differences

The distribution variations of the somatic mutations among

the four ImmClusts were also analyzed based on MOVICS. The

top 15 markers with the highest mutation frequency were

PIK3CA, FAT4, FAT3, DNAH5, NEB, PCLO, HMCN1,

AHNAK2, PCDH15, CACNA1E, DNAH8, ATM, VPS13B,

DNAH2, and KMT2B (Figure 5A). TMB and TiTv were

calculated by MOVICS, and it was found that CS1 had a

higher TMB (Figure 5B). As for APOBEC, mutation weights

were significantly different among the four ImmClusts, with CS3

having the highest and CS1 the lowest (Figure 5C). In addition,

we found a significant negative correlation between immune

enrichment score (IES) and APOBEC mutation weight

(R = −0.12, P = 0.012, Figure 5D), while APOBEC mutation

weight was positively correlated with TIDE score (R = 0.13,

P = 0.0065, Figure 5E), suggesting that APOBEC is involved in

immunotherapy response.

From the Manhattan plot, we can see CNV at the

chromosomal level, which was computed by the GISTIC
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FIGURE 2

Immunotherapy response analysis for the TCGA. (A) Immune enrichment score for the four ImmClusts. (B) Stromal enrichment score for the
four ImmClusts. (C) MeTIL score for the four ImmClusts. (D) TIDE score for the four ImmClusts. (E) Response to immunotherapy of the four
ImmClusts. (F) The heatmap showed the differences in the distribution of the four ImmClusts in cancer-associated fibroblast (CAF)-related
genes and signatures. (G) SubMap analysis for the four ImmClusts.
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FIGURE 4

Immunotherapy response analysis for the GEO. (A) Immune enrichment score for the four ImmClusts. (B) Stromal enrichment score for the four
ImmClusts. (C) TIDE score for the four ImmClusts. (D) Response to immunotherapy of the four ImmClusts. (E) SubMap analysis for the four
ImmClusts. (F) The heatmap showed the differences in the distribution of the four ImmClusts in CAF-related genes and signatures.
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FIGURE 3

Immune-related cluster establishment for the Gene Expression Omnibus (GEO). (A) Batch effect removal of four external independent datasets using
PCA analysis. (B) The heatmap showed the differences in the distribution of the four ImmClusts in clinicopathological features, TME compositions,
functional orientation, immune checkpoints, and so on. (C) GSEA analysis comparing the differences of enrichment pathways between CS1 and the
other ImmClusts. (D) K–M survival curves showed the differences of overall survival and recurrence rate among the four ImmClusts.
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algorithm (Figure 6A). By counting copy number amplification

(Figure 6B) and deletion (Figure 6C), respectively, we found that

CS1 had a significantly lower CNA at the focal level than

other subtypes. Fraction genome-altered scores (threshold 0.2)

were calculated using MOVICS packages to characterize

chromosomal instability. The results showed that CS1 and CS2

patients had more stable chromosomes than CS3 and

CS4 (Figure 6D).
Univariate Cox regression analysis for
CAF-related genes

Since CAF plays an important role in shaping the ImmClusts

of CRC, 289 CAF-related genes (CRGs) were extracted from the

literature and analyzed by univariate Cox regression analysis. In

the TCGA-CRC cohort, 49 risky CRGs and 8 protective CRGs

were identified. In the GEO-CRC dataset, 56 risky CRGs and 13

protective CRGs were found. We selected 25 intersection genes

to map the forest plot. As can be seen from Figure 7, there were

20 risky CRGs (SERP2, CILP, GRP, COMP, C7, SNAI1, LAMP5,

TGFB3, OLFM2, GAS1, IGF1, CYP1B1, PRICKLE1, ZFHX4,

UST, CD36, EBF2, PCOLCE2, PLIN4, and STEAP4) and 5

protective CRGs (CEBPA, PID1, CD177, DNASE1L3, HRCT1)

in the intersection genes (Figure 7).
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Prediction of the sensibility of
chemotherapeutics

To further investigate the treatment strategies for the four

ImmClusts of CRC, we conducted a prediction of the sensibility

of chemotherapeutics to evaluate the IC50 value using the

pRRophetic package. The IC50 value can be used to measure

the ability of a drug to induce apoptosis, that is, the higher the

inducing ability, the lower the value, and of course, it can also be

used to reverse the tolerance of a certain cell to the drug. We

screened out drugs that showed consistent sensitivity in the

TCGA (Figure 8A) and GEO (Figure 8B) databases for display.

Compared with the other three ImmClusts, patients in CS1 were

most sensitive to metformin, epothilone B, and VX-680; patients

in CS2 were most sensitive to DMOG, AICAR, AZD7762,

temsirolimus, TW.37, and elesclomol; patients in CS3 were

most sensitive to MG.132, A.770041, and cyclopamine; and

patients in CS4 were most sensitive to lapatinib.
Validation of the protein expression
levels of CD29 using IHC

A comparison of cancer and paracancer IHC results revealed

that CD29 stained significantly darker in the cancer samples,
A
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FIGURE 5

Evaluation of mutation differences among the four ImmClusts. (A) The waterfall plot of somatic mutation features established with ImmClusts.
(B) TMB and distribution of TiTv calculated by MOVICS for the four ImmClusts. (C) Apolipoprotein B mRNA-editing enzyme catalytic
polypeptide-like (APOBEC) mutation weights of the four ImmClusts. (D) Correlation between immune enrichment score (IES) and APOBEC
mutation weight. (E) Correlation between TIDE score and APOBEC mutation weight.
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indicating that CD29 was highly expressed in colon cancer

(Figure 9). These results are consistent with our subtype results,

indicating the reliability and reproducibility of the classification.
Discussion

CRC is the third most common malignant tumor in the

world and the second leading cause of cancer death worldwide,
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with about 1.8 million new cases and 800,000 deaths every year

(55, 56). The tumor microenvironment plays an important role

in tumor genesis, development, and tumor immunity. Studies

have shown that the infiltration and metastasis of immune cells,

memory CD4+ T cells, and CD8+ T cells in the TME can regulate

tumor immunity and participate in the three stages of tumor cell

clearance, tumor and body balance, and tumor immune escape

(57). They not only inhibit tumor growth but also screen tumors

for hypoimmunogenicity, leading to tumor escape (58).
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FIGURE 6

The chromosomal instability of the four ImmClusts. (A) Manhattan plot showing the CNV at the chromosomal level. (B) Copy number
amplification of the four ImmClusts. (C) Copy number deletion of the four ImmClusts. (D) Fraction genome-altered scores of the four
ImmClusts. ****p < 0.001.
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FIGURE 7

Univariate Cox regression analysis for the CAF-related genes in TCGA (A) and GEO (B) datasets.
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Our data revealed that CS1 was enriched in the interferon-

alpha (IFN-a) response and interferon-gamma (IFN-g) response
signaling pathways, while it was downregulated in the EMT

pathway. EMT is the process by which cells lose epithelial

features and gain mesenchymal properties, such as increased

motility of tumor cells (59). EMT processes are a series of

changes and transformations resulting from environmental

stimuli, depending on the organization and signal transduction

environment (60). In CRC, EMT is strongly associated with

aggressive or metastatic phenotypes (61). In-depth research on

the mechanism of action and interaction of the related signaling

pathways in CRC EMT will help to develop more new methods

for CRC treatment and promote individualized treatment. IFN-

a can inhibit the proliferation of tumor cells through the

adaptive and innate immune system (62). IFN-a can also

activate important components of the immune system such as

CD8+ T cells and NK cells and promote the mature

differentiation of B cells and DC cells (62). NK cells and CD8+

T cells can inhibit tumor cell metastasis (63); hence, IFN-a can

regulate the immune system to play an antitumor role. The

secretion of TNF-a, IFN-g, IL-6, and other cytokines by CD4+ T

cells can change the TME (64, 65), induce the local invasion of T

lymphocytes into the tumor (66), inhibit the synthesis of DNA

and RNA of tumor cells, and thus, induce the apoptosis of tumor

cells (65).

In order to further improve the overall survival (OS) rate of

CRC, immunotherapy has gradually attracted our attention. For

example, the gradual discovery of immune checkpoints such as

PD-1, PD-L1, CTLA-4, and OX40 has led to the emergence of

immune checkpoint inhibitors for CRC therapy (67). There are
A B

FIGURE 8

Prediction of chemotherapeutic sensibility. (A) Prediction of chemotherapeutic sensibility for the TCGA. (B) Prediction of chemotherapeutic
sensibility for the GEO.
FIGURE 9

Comparison of cancer and paracancer IHC results revealed that
CD29 stained significantly darker in the cancer samples,
indicating that their CD29 was highly expressed in colon cancer.
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significant differences in treatment outcomes among different

subtypes of CRC. For example, immune checkpoint inhibitors

represented by the anti-PD-1/PD-L1 pathway have achieved the

most outstanding curative effect in the treatment of CRC with

deficient mismatch repair (dM-MR) or microsatellite instability-

high (MSI-H) and have been used for the second-line treatment

(68). However, most metastatic CRC patients represented by the

proficiency of mismatch repair (pMMR) or microsatellite

stability (MSS) not only do not respond to the above

treatments; moreover, it also leads to the progression of the

disease, and some patients even have adverse events related to

immunotherapy such as colitis, pneumonia, dermatitis, and

endocrine diseases after receiving the treatment (69, 70). At

the same time, the TME is also closely related to the effect of

immunotherapy. A study has shown that the accumulation of

memory B cells and T cells in the TME can not only determine

the clinical stage of CRC but also indicate the effect of the

immune system’s antitumor response (71). TIL is characterized

by tumor invasion and lymph node metastasis. As a signal of

tumor cells attacking the human immune system, TIL reflects

the immune response of the host (72, 73). The antitumor effect

of TIL can be affected by co-inhibitory immune checkpoints and

can be used as a biomarker to evaluate and predict the effect of

immune checkpoint inhibitors (74, 75). CAFs that are abundant

in CRC and accumulate substantially in the TME are usually

associated with poor prognosis (76, 77). CAFs are positively

related to PD-L1 expression in CRC tissues, and by secreting

CXCL5, CAFs could promote the expression of PD-L1 in cancer

cells (78).

In general, immunotherapy has opened a new chapter in

cancer treatment and greatly improved the prognosis of CRC,

but the therapeutic effect varies greatly among different subtypes

of CRC. Therefore, it is very important to distinguish sensitive

and insensitive populations by specific biomarkers. In the era of

precision cancer therapy, the CRC typing system we identified

has great potential to be used to predict and evaluate the effects

of immunotherapy on CRC patients. In this study, we integrated

the TME cells of CRC to identify four immune clusters

(ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and

ImmClust-CS4), which were validated using data from the

GEO datasets. The four ImmClusts exhibited distinct TME

compositions, CAFs, functional orientation, and immune

checkpoints. The highest immune, stromal, and MeTIL scores

were observed in CS2, in contrast to the lowest scores in CS4.

CS1 may respond to immunotherapy, while CS2 may respond to

immunotherapy after anti-CAFs.

Cancer develops through the gradual acquisition of somatic

genetic changes, including point mutations, CNV, and fusion

events that affect the function of key genes that regulate cell

growth and survival. The occurrence of CRC is the cumulative

result of a series of gene mutations. CRC not only mutates in well-

known tumor-related genes (such as APC, TP53, KRAS, PIK3CA,

SMAD4) but also mutates in other genes, including SMAD2,
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CTNNB1, FAM123B, SOX9, ARID1A, etc. (79, 80). The latest

research showed that mutations of TP53, APC, KRAS, BRAF, and

ATM cover most patients with CRC (81, 82). The top 15 markers

with the highest mutation frequency among the four ImmClusts

we constructed were PIK3CA, FAT4, FAT3, DNAH5, NEB,

PCLO, HMCN1, AHNAK2, PCDH15, CACNA1E, DNAH8,

ATM, VPS13B, DNAH2, and KMT2B. These mutation markers

may serve as novel molecular targets for the detection or therapy

of these ImmClusts. When every cell divides, it acquires random

somatic mutations, and only driver mutations lead to malignant

development. PIK3CA was previously defined as a driving

mutation in CRC (46). Recent studies have found that mutation

of PIK3CA can lead to continuous activation of the EGFR

signaling pathway, thus affecting the therapeutic efficiency of

anti-EGFR drugs (83). Ejima et al. found high-frequency

mutations in ATM introns in CRC cell lines (84). Genes with

different mutation frequencies are expected to be markers for the

detection or treatment of subtypes. Among the four ImmClusts,

the top 15 markers with the highest mutation frequency were

acquired, and CS1 had significantly lower CNA at the focal level

than other subtypes. In addition, CS1 and CS2 patients had more

stable chromosomes than CS3 and CS4. The most sensitive

chemotherapeutic agents in these four ImmClusts were also found.

To sum up, the high immune infiltration, low fibroblast

infiltration, high mutation load, and low chromosomal variation

of CS1 are related to the ability of this subtype to respond

to immunotherapy.

Our study was the first one to establish the cluster system

based on TME for CRC. The combined analysis of data from the

TCGA and GEO verified the accuracy of the classification

system. Nevertheless, the clustering system constructed by us

lacks large prospective studies to verify, and its specificity and

sensitivity need to be further determined.
Conclusions

This work revealed the novel clusters based on the TME for

CRC, which would guide in predicting the prognosis, biological

features, and appropriate treatment for patients with CRC.
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Background: Immunotherapy has shown promising results in bladder cancer

therapy options.

Methods: Analysis of open-access data was conducted using the R software.

Open-access data were obtained from The Cancer Genome Atlas (TCGA),

Gene Express ion Omnibus (GEO) , and IMvigor210 databases .

Immunofluorescence and co-culture systems were utilized to validate the

effect of PTHLH on M2 macrophage polarization.

Results: Here, through the combined (TCGA, GSE128959, GSE13507, and

GSE83586) and IMvigor210 cohorts, we comprehensively investigated the

biological and immune microenvironment differences in patients with diverse

immunotherapy responses. Meanwhile, we found that M2 macrophage could

affect bladder cancer immunotherapy sensibility. Moreover, based on the

machine learning algorithm (LASSO logistics regression), PTHLH, BHMT2, and

NGFR were identified, which all have good prediction abilities for patient

immunotherapy. Then, a logistics regression model was established based on

PTHLH, BHMT2, and NGFR, and each patient was assigned a logistics score.

Subsequently, we investigated the difference in patients with high low logistics

scores, including biological enrichment, immune microenvironment, and

genomic characteristics. Meanwhile, data from the Human Protein Atlas

database indicated a higher protein level of PTHLH in bladder cancer tissue.

Immunofluorescence indicated that the knockdown of PTHLH in bladder

cancer cells can significantly inhibit the M2 polarization of co-culture M0

macrophages.
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Conclusions: Our study investigated the difference between bladder cancer

immunotherapy responders and non-responders. Meanwhile, the PTHLH was

identified as a novel biomarker for bladder cancer immunotherapy.
KEYWORDS

immunotherapy, PTHLH, machine learning, M2 macrophages, bladder cancer
Introduction

Bladder cancer is the leading malignancy in the urogenital

system and is responsible for a serious health concern globally

(1). Bladder cancer usually occurs as a result of several factors

such as gender, genetic differences, and lifestyle (1). In bladder

cancer, there are two clinical phenotypes: non-muscle-invasive

bladder cancer (NIMBC) and muscle-invasive bladder cancer

(MIBC). Generally, surgery can provide long-term therapeutic

benefits for most NIMBC and high-level MIBC patients. Also,

MIBC tends to suffer from worse survival and more limited

treatment options compared to NIMBC (2). Clinically, bladder

cancer patients often benefit from immunotherapy. Nonetheless,

immunotherapy is still ineffective for a substantial number of

people, leading to poor outcomes (3).

There is a long history of immunotherapy in bladder cancer

treatment. In 1976, researchers found that the intravesical instillation

of the BCG vaccine can kill bladder cancer cells by inducing a local

immune response (4). However, for decades, bladder cancer

management has remained relatively unchanged and the high

recurrence rate remains a challenge (5). Simultaneously, the

microenvironment in bladder cancer is always immunosuppressive.

Bladder cancer often has a high infiltration level of Treg cells and is

regulated by multiple cytokines (6). Consequently, studies are

underway to identify new targets for immunotherapy for bladder

cancer. Shi et al. found that the mutagenesis mediated by APOBEC

can effectively indicate the survival and immunotherapy of bladder

cancer (7). Groeneveld et al. revealed that CXCL13, a marker of

tertiary lymphoid structures, can effectively indicate the survival of

advanced bladder cancer patients receiving immunotherapy (8). Yi

et al. found that IGFBP7 is associated with immunological

characteristics and might be an immunotherapy target for bladder

cancer (9). Same as other cancers, bladder cancer uses immune

checkpoints to regulate immunity, notably PD-1/L1 and CTLA4.

Nowadays, some clinical trials that target immune checkpoints have

achieved some promising results in bladder cancer (10). Meanwhile,

the combination of chemotherapy and immunotherapy can

effectively improve the antitumor effect in bladder cancer (11).

Therefore, the exploration of the novel biomarkers involved in

bladder cancer immunotherapy is meaningful.

Here, based on the open-access data, we comprehensively

investigated the biological and immune microenvironment
02
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differences in patients with diverse immunotherapy responses.

Meanwhile, we found that M2 macrophage could affect the

sensitivity of bladder cancer patients to immunotherapy.

Moreover, PTHLH, BHMT2, and NGFR were identified, which

all have good prediction abilities on patient immunotherapy.

Then, a logistics regression model was established based on

PTHLH, BHMT2, and NGFR. Next, we explored the difference

between patients with high and low logistics scores, including

biological enrichment, immune microenvironment, and genomic

characteristics. Immunofluorescence showed that the knockdown

of PTHLH in bladder cancer cells can significantly inhibit the M2

polarization of co-culture M0 macrophages, making it a potential

biomarker for bladder cancer.
Methods

Data collection

Open-access data were obtained from The Cancer Genome

Atlas (TCGA), Gene Expression Omnibus (GEO), and

IMvigor210 databases. As for the patients in TCGA, the

expression profile was in “STAR-Counts” form and clinical

data were in “bcr-xml” form. Before analysis, all the data were

pre-processed. For the dataset in GEO, the criteria “1. Sample

counts > 150; 2. Complete expression profile; 3. Complete

survival information” were used for data filtering. Ultimately,

GSE128959, GSE13507, and GSE83586 were identified and

annotated according to their platforms. The sva package was

utilized for data combination. Levels of tumor mutational

burden (TMB) and microsatellite instability (MSI) were

extracted from the genomic data of the TCGA database. The

IMvigor210 dataset was downloaded from http://research-pub.

gene.com/IMvigor210CoreBiologies. Baseline information of the

included samples is shown in Supplementary Tables S1-S4.
Immunotherapy evaluation

Response of patients on immunotherapy was conducted

using the Tumor Immune Dysfunction and Exclusion (TIDE)

analysis (12). The input file was the expression profile, and
frontiersin.org
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according to this, each patient owns a TIDE score. The

immunotherapy responders were those whose TIDE score > 0;

otherwise, non-responders.
Machine learning algorithm

The machine learning algorithm, LASSO logistic regression,

was used for optimal variable selection (13). For the identified

characteristic genes, the glm function in R software was used for

logistics model construction. The “family” was set as “binomial”.
Biological enrichment

Biological enrichment difference was identified using the

Gene Set Enrichment Analysis (GSEA), whose gene sets for

reference were “Hallmark” and “c2.cp.kegg.v2022.1.Hs.symbols”

(14). Implementation of gene ontology (GO) analysis was based

on the clusterprofiler package (15). The terms of adjusted p-

value < 0.05 was considered statistically significant.
Immune microenvironment exploration

CIBERSORT was utilized to quantify the infiltration level of

22 immune cells based on the input transcriptional profile data

(16). Calculation of the immune score and the stromal score was

conducted using the Estimate packages in R software.
Genomic difference

The index reflecting tumor stemness characteristics named

mRNAsi was extracted from the previous study (17). The

frequency and somatic copy number alteration (SCNA) level

difference of human chromosomes was extracted from the

TCGA database.
Immunohistochemistry

Evaluation of protein levels of PTHLH, BHMT2, and NGFR

was conducted using representative immunohistochemistry

images (normal bladder and bladder cancer sections) obtained

from the Human Protein Atlas (HPA) database.
Cell culture and transfection

Cell lines T24 and THP-1 were laboratory stock and cultured

under routine culture conditions. Lipofectamine 2000 was selected

for cell transfection following the standard steps. The following were
Frontiers in Immunology 03
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the sequences of shRNAs used: shRNA1: 5’-CCCTGATTGTGC

CATAAAT-3’; shRNA2: 5’-GGCCAGAACAATGAAGAAA-3’;

shRNA3: 5’-GGCACTTAGAAGAACCAAT-3’.
Co-culture system and THP-1
differentiation

THP-1 cells were seeded into six-well plates for 24 h (100 ng/

ml PMA) to differentiate into adherent M0 macrophages. The

transfected T24 cell lines and differentiated M0 macrophages

together constituted a co-culture system. The culture

supernatant of transfected T24 cells was collected and added

to the M0 macrophages. After that, for 48 h, macrophages were

collected for further assay.
Immunofluorescence

The collected M0 macrophages were firstly cultured on a glass

slide and then fixed with 4% PFA at room temperature. Afterwards,

0.05% Triton X-100 was used for cell permeabilization (2 min) and

5% BSA was used for cell blocking (1 h). Next, cells were incubated

with the following specific antibodies overnight at 4°C: anti-F4/80

antibody (1:200) and anti-CD206 (1:200) antibody. DAPI was

utilized for cell nuclear staining. Fluorescence microscopy was

used to visualize immunofluorescence.
Statistical analysis

Calculation of statistical significance in the different analysis

was conducted using the R and GraphPad Prism software. The

threshold of statistical significance was 0.05. According to the data

distribution, Student’s t-test andMann–WhitneyU test were tested.
Results

Data preparation

The whole flowchart is shown in Figure S1. Firstly, the

independent bladder cancer cohorts, TCGA, GSE128959,

GSE13507, and GSE83586, were selected for our analysis, which

showed a high batch effect (Figure 1A; Comp 1: 84.2% variance,

Comp 2: 6.4% variance). Through the sva package, we effectively

decreased the batch difference and completed data combination

(Figure 1B; Comp 1: 10% variance, Comp 2: 6.6% variance).

Furthermore, TIDE analysis was utilized to assess the

immunotherapy response (Figure 1C). In the combined cohort,

the TIDE score was utilized to divide patients into immunotherapy

responder and non-responder groups (Figure 1D). Meanwhile, in

the real immunotherapy IMvigor210 cohort, the bladder patients
frontiersin.org
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with SD (stable disease)/PD (progressive disease) and CR (partial

response)/PR (complete response) to immunotherapy were enrolled

in our analysis (Figure 1E).
Biological difference between the
immunotherapy responders and
non-responders

GSEA indicated that, in the immunotherapy responders,

pathways of spermatogenesis, E2F target, G2/M checkpoint,
Frontiers in Immunology 04
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MYC target, and mitotic spindle were significantly enriched

(Figure 2A). Moreover, results of GO analysis revealed that the

terms blood microparticle (GO:0076562), positive regulation of

vasoconstriction (GO:0045907), zymogen activation

(GO:0031638), regulation of vasoconstriction (GO:0019229),

positive regulation of blood circulation (GO:1903524), and

vasoconstriction (GO:0042310) were remarkably enriched in

the immunotherapy responders (Figure 2B). Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis

indicated that in the immunotherapy responders, the terms

antigen processing and presentation, cell cycle, olfactory
B

C

D E

A

FIGURE 1

Data preparation (A) Significant batch effect of four independent bladder cancer cohorts was observed, namely, TCGA, GSE128959, GSE13507,
and GSE83586. (B) Sva package was used for data combination and removal of batch difference. (C) Overview of TIDE score in the combined
cohort (TCGA + GSE128959 + GSE13507 + GSE83586). (D) According to TIDE algorithm, the patients in the combined cohort were divided into
immunotherapy responders and non-responders. (E) SD/PD and CR/PR patients in the IMvigor210 cohort.
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transduction, DNA replication, natural killer cell-mediated

cytotoxicity, and spliceosome were significantly enriched

(Figure S2).
M2 macrophages is associated with
immunotherapy response

Immune cell infiltration was quantified using the

CIBERSORT algorithm, which is shown in Figure 3A. Results

indicated that in the combined cohort, immunotherapy non-

responders might have a higher level of follicular helper T cells,

monocytes, M2 macrophages, activated dendritic cells, and

neutrophils, but a lower level of Tregs (Figure 3B). Also, in the

IMvigor210 cohort, the SD/PD patients might have higher

activated memory CD4 T cells, follicular helper T cells, delta

gamma T cells, activated NK cells, M2 macrophage, and

activated dendritic cells (Figure 3C). In the combined and

IMvigor210 cohorts, M2 macrophages showed a consistent

trend (Figures 3D, E). Correlation analysis also indicated a

positive correlation between M2 macrophages and TIDE score

(Figure 3F, R = 0.232). The results showed that M2 macrophages

might hamper the sensitivity of bladder cancer immunotherapy.
Identification of the important molecules
involved in bladder cancer
immunotherapy

Next, we identified differentially expressed gene (DEG) analysis

between SD/PD and CR/PR in the IMvigor210 cohort. Under the

threshold of |logFC| > 0.5 and adjusted p-value < 0.05, 30

downregulated and 24 upregulated genes were determined

(Figure 4A). Additionally, we identified that the genes remarkably

correlated with TIDE score in the combined cohort (Table S1).

Then, we intersected the molecules meeting the criteria of “Positive

with TIDE and downregulated in CR/PR group” and “Negative

with TIDE and upregulated in CR/PR group” based on the machine

learning algorithm (Figures 4B, C, and Figure S3). Finally, three

genes were identified, including PTHLH, BHMT2, and NGFR.

Receiver operating characteristic (ROC) curves indicate a good

prediction ability of these three molecules on patients’

immunotherapy. In the combined cohort, the AUCs of PTHLH,

BHMT2, and NGFR were 0.720, 0.735, and 0.661, respectively

(Figures 4D–F). A logistic regression model was constructed with

the formula “−4.9842 + 0.3738*PTHLH + 0.675*BHMT2 +

0.1128*NGFR”, which showed satisfactory prediction efficiency

(Figure 4G, AUC = 0.775). Also, in the IMvigor210 cohort, the

AUCs of PTHLH, BHMT2, NGFR, and logistics scores were 0.679,

0.697, 0.706, and 0.750, respectively (Figures 4H–K). A higher level

of PTHLH, BHMT2, and NGFR was observed in immunotherapy

non-responders (combined cohort) and SD/PD patients

(IMvigor210 cohort) (Figures 4L, M).
Frontiers in Immunology 05
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The logistics score affects patients’
immunotherapy and prognosis

The overview of logistics calculated with the above formula

is shown in Figures 5A, B. In the combined cohort, patients in

the immunotherapy non-responder group had a higher logistics

score (Figure 5C). Moreover, in patients with a high logistics

score, a higher proportion of immunotherapy non-responders

was found (Figure 5D, 88.6% vs. 65.8%). Meanwhile, in the

IMvigor210 cohort, we observed the same trend in SD/PD

patients (Figures 5E, F, 88.6% vs. 65.8%). Kaplan–Meier

survival curve indicated that the logistics score was correlated

with worse survival in both combined and IMvigor210 cohorts

and dead cases might have a higher logistics score (Figures 5G–

J). Clinical correlation analysis revealed that the logistics score

was associated with a more progressive clinical stage and

grade (Figure 5K).
Immune microenvironment difference in
patients with a high and those with a low
logistics score

Immune checkpoint is tightly correlated with the

immunotherapy response. Therefore, we evaluated the level of

hub immune checkpoints (CD274, PDCD1, CTLA, and

PDCD1LG2) in patients with a high and those with a low

logistics score. Results indicated that all these immune

checkpoints had a higher expression in patients with a high

logistics score (Figures 6A–D). We also investigated the immune

difference in patients with a high and those with a low logistics

score. In the combined and IMvigor210 cohorts, we all observed

a higher level of M2 macrophages in patients with a high

logistics score (Figures 6E, F). Next, results showed that M2

macrophages were positively correlated with PTHLH, BHMT2,

NGFR, and logistics score (Figures 6G–J).
Patients with a high logistics score might
have a higher genomic instability

Moreover, we observed a higher stromal score, immune

score, TMB score, and MSI score in patients with a high

logistics score (Figures 7A–D). The mRNAsi obtained is

shown in Figure 7E. Patients with a high logistics score might

have a higher mRNAsi (Figure 7F). Meanwhile, we found that

the patients with a high logistics score might have a lower level of

amplification frequency in the 3p, 3q, and 21q sites in the

chromosome (Figure 7G). In the deletion frequency, a lower

level in the 1q, 2q, 5p, 9q, 14q, and 16q sites were found in

patients with a high logistics score (Figure 7G). Meanwhile, the

difference in SCNA level was also illustrated (Figure 7H).
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B

A

FIGURE 2

Biological enrichment between immunotherapy responders and non-responders (A) GSEA between immunotherapy responders and non-
responders based on the Hallmark gene set. (B) GO analysis using the clusterprofiler package.
Frontiers in Immunology frontiersin.org06
75

https://doi.org/10.3389/fimmu.2022.1051063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1051063
B
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FIGURE 3

Immune microenvironment difference between immunotherapy responders and non-responders (A) The CIBERSORT algorithm was utilized to
quantify the immune microenvironment of bladder cancer tissue. (B) The level of quantified immune cells in the immunotherapy responders
and non-responders (combined cohort), ns = p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. (C) The level of quantified immune cells in the
immunotherapy CR/PR and SD/PD patients (IMvigor210 cohort), ns = p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. (D) The level of M2
macrophage in immunotherapy responders and non-responders, ***p < 0.001. (E) The level of M2 macrophage in immunotherapy SD/PD and
CR/PR patients, ***p < 0.001. (F) Correlation between the M2 macrophage and TIDE score.
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PTHLH was associated with patients’
survival and M2 macrophage polarization

Following this, we investigated the prognostic role of PTHLH,

BHMT2, and NGFR. Results showed that all these three genes were

risk factors for overall survival and disease-free survival, but not for

progression-free survival (Figures 8A–C and Figure S4). Then, we
Frontiers in Immunology 08
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try to identify the expression difference of these molecules in

bladder cancer tissue. No significant difference was found in

PTHLH mRNA level between normal and bladder cancer tissue

(Figure 8D). However, the HPA database showed a high protein

level of PTHLH in bladder cancer tissue (Figure 8E). For themRNA

level, BHMT2 was lower in bladder cancer tissue, but not in protein

levels (Figures 8F, G). Also, the same trend was noticed in NGFR
B C

D E F G

H I J K

L M

A

FIGURE 4

Identification of the PTHLH, BHMT2, and NGFR (A) Limma package was used for DEG analysis between the SD/PD and CR/PR patients with the
threshold of |logFC| > 0.5 and adjusted p-value < 0.05. (B) Intersection of the genes negatively correlated with TIDE score and upregulated in
CR/PR (LASSO logistics regression). (C) Intersection of the genes positively correlated with TIDE score and downregulated in CR/PR (LASSO
logistics regression). (D–G) Performance of PTHLH, BHMT2, NGFR, and the logistics model in predicting bladder cancer immunotherapy
(combined cohort). (H–K) ROC curves were used to evaluate the performance of PTHLH, BHMT2, NGFR, and the logistics model in predicting
bladder cancer immunotherapy (IMvigor210 cohort). (L) The level of PTHLH, BHMT2, and NGFR in immunotherapy responders and non-
responders. (M) The level of PTHLH, BHMT2, and NGFR in immunotherapy SD/PD and CR/PR patients. ***P < 0.001.
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(Figures 8H, I). Considering the high protein level of PTHLH in

bladder cancer tissue, we next try to validate its association with M2

macrophages. The knockdown efficiency is shown in Figure S5.

Immunofluorescence showed that knockdown of PTHLH in

bladder cancer cells can significantly inhibit the M2 polarization

of co-culture M0 macrophages (Figures 8J, K).
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Discussion

There is no doubt that bladder cancer represents one of the

greatest health problems globally (18). In recent years,

immunotherapy, such as immune checkpoint inhibitors, has

improved bladder cancer treatment options.
B

C D E F

G H I J

K

A

FIGURE 5

Logistics score was associated with patient immunotherapy response and prognosis (A) Calculated logistics score in the combined cohort. (B)
Calculated logistics score in the IMvigor210 cohort. (C) Logistics score in immunotherapy responders and non-responders (combined cohort).
(D) Percentage of immunotherapy responders and non-responders in patients with a high and those with a low logistics score (combined
cohort), *p < 0.05. (E) Logistics score in immunotherapy SD/PD and CR/PR patients (IMvigor210 cohort). (F) Percentage of immunotherapy SD/
PD and CR/PR in patients with a high and those with a low logistics score (IMvigor210 cohort), *p < 0.05. (G) Kaplan–Meier survival curves in
patients with a high and those with a low logistics score (combined cohort). (H) The level of logistics score in alive and dead cases in the
combined cohort. (I) Kaplan–Meier survival curves in patients with a high and those with a low logistics score (IMvigor210 cohort). (J) The level
of logistics score in alive and dead cases in the IMvigor210 cohort. (K) Clinical correlation analysis of logistics score. ***P < 0.001.
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Here, through the combined (TCGA, GSE128959,

GSE13507, and GSE83586) and IMvigor210 cohorts, we

comprehensively investigated the biological and immune

microenvironment differences in patients with diverse
Frontiers in Immunology 10
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immunotherapy responses. Meanwhile, we found that M2

macrophage could affect the sensitivity of bladder cancer

patients to immunotherapy. Moreover, PTHLH, BHMT2, and

NGFR were identified, which all have good prediction abilities
B C D

E

F

G H I J

A

FIGURE 6

Immune microenvironment difference in patients with a high and those with a low logistics score (A–D) Hub immune checkpoints in patients
with a high and those with a low logistics score. (E) The level of quantified immune cells in patients with a high and those with a low logistics
score (combined cohort). (F) The level of quantified immune cells in patients with a high and those with a low logistics score (IMvigor210
cohort). (G) Correlation between logistics score and M2 macrophages. (H–J) Correlation between PTHLH, BHMT2, NGFR, and M2
macrophages. *P < 0.05, **P < 0.01, ***P < 0.001. ns: P > 0.05.
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FIGURE 7

The genomic difference in patients with a high and those with a low logistics score (A) Level of stromal score in patients with a high and those
with a low logistics score. (B) Level of immune score in patients with a high and those with a low logistics score. (C) Level of TMB score in
patients with a high and those with a low logistics score. (D) Level of stromal score in patients with a high and those with a low logistics score.
(E) The obtained mRNAsi in the TCGA database. (F) Level of mRNAsi score in patients with a high and those with a low logistics score. (G, H)
Comparisons of arm-level amplification and deletion frequencies and focal-level amplification and deletion levels in patients with high and
those with low logistics scores. *P < 0.05, **P < 0.01, ***P < 0.001. ns: P > 0.05.
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FIGURE 8

Further exploration of PTHLH, BHMT2, and NGFR (A) Prognosis correlation of PTHLH, BHMT2, and NGFR in overall survival. (B) Prognosis
correlation of PTHLH, BHMT2, and NGFR in disease-free survival. (C) Prognosis correlation of PTHLH, BHMT2, and NGFR in progression-free
survival. (D) Expression level of PTHLH in normal bladder and bladder cancer tissue in mRNA level. (E) Representative immunohistochemistry
image of PTHLH protein level in normal bladder and bladder cancer tissue. (F) Expression level of BHMT2 in normal bladder and bladder cancer
tissue in mRNA level. (G) Representative immunohistochemistry image of BHMT2 protein level in normal bladder and bladder cancer tissue. (H)
Expression level of NGFR in normal bladder and bladder cancer tissue in mRNA level.; (I) Representative immunohistochemistry image of NGFR
protein level in normal bladder and bladder cancer tissue. (J, K) Knockdown of PTHLH in bladder cancer cells can significantly inhibit the M2
polarization of co-culture M0 macrophages. ***P < 0.001. ns: P > 0.05.
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for patients’ immunotherapy. Then, a logistics regression model

was established based on PTHLH, BHMT2, and NGFR, and each

patient was assigned a logistics score. Afterwards, we explored

the difference in patients with a high and those with a low

logistics score, including biological enrichment, immune

microenvironment, and genomic characteristics. Meanwhile,

data from the HPA database indicated a higher protein level of

PTHLH in bladder cancer tissue. Immunofluorescence showed

that the knockdown of PTHLH in bladder cancer cells can

significantly inhibit the M2 polarization of co-culture

M0 macrophages.

Based on the immune analysis, we found that M2

macrophages might affect bladder cancer immunotherapy.

Tissue homeostasis is mediated by macrophages. Meanwhile,

cancer-associated macrophages show the ability to hamper T-

cell recruitment and its function, as well as regulate other aspects

of tumor immunity (19). Previous studies have reported the

potential effects of macrophages in tumor immunotherapy (20).

The effect of TAMs on naive T-cell proliferation has been

demonstrated in numerous studies, which suggests that

macrophages can suppress T-cell function directly (21). An

example is that arginase-1 is a common marker of M2

macrophage in mice, which was also involved in antitumor

activity and T-cell fitness (22). Meanwhile, in ovarian cancer,

Curiel et al. found that macrophages could mediate the

recruitment of Treg cells through secreting CCL22,

contributing to immunosuppression (23). In breast cancer,

macrophages characterized by the expression of IL10 could

hamper CD8+ T-cell-dependent responses by inhibiting IL-12

expression in intratumoral dendritic cells (24).

We identified three genes, PTHLH, BHMT2, and NGFR,

involved in bladder cancer immunotherapy. Also, the logistics

model based on these three genes can effectively indicate

immunotherapy sensitivity and patient prognosis. Moreover,

we found that all these three genes were positively correlated

with M2 macrophage infiltration. In renal cancer, Yao et al.

demonstrated that the upregulation of PTHLH can indicate

more progressive clinical features and poor prognosis (25). In

pancreatic cancer, the protein named PTHrP (encoded by

PTHLH) can drive the growth of primary and metastatic

tumors in mice (26). In colon cancer, Chen et al. indicated

that NGFR could act as a tumor suppressor by activating

S100A9, thus leading to the enhanced apoptotic and

autophagic effects of 5-fluorouracil (27). Huang et al. found

that the NGFR-FOXP3 positive feedback loop contributes to

ICOTINIB resistance in non-small cell lung cancer (28). Also,

we found that PTHLH can induce M2 macrophage polarization.

Our results indicated that PTHLH, BHMT2, and NGFR might

be novel targets for bladder cancer immunotherapy and

prognosis. In real practice, detecting the relative level of

PTHLH, BHMT2, and NGFR through a customized chip or

absolute real-time PCR can indicate the sensitivity of

immunotherapy and therefore contribute to the therapy option.
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Also, we noticed a higher genomic instability in patients with

a high logistics score, including TMB, MSI, and tumor stemness

index. It is widely believed that TMB is related to the response to

immunotherapy for tumors (29). Zhu et al. found that the

mutations in EP300 lead to TMB and promote antitumor

immunity in bladder cancer (30). Meanwhile, Zhan et al.

found that SOX2OT can promote bladder cancer stemness, as

well as the malignant phenotype through modulating SOX2 (31).

These results indicated that the patients with a high logistics

score might have a poor prognosis due to the higher

genomic instability.

Even though our research is based on reliable data and

analysis, there are some limitations to consider. Firstly, our

analysis primarily had a Western population, and therefore,

underlying race bias might reduce the credibility of conclusions.

Secondly, the loss of probes when combining the TCGA and

GSE cohorts might result in information loss.
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KEGG analysis of immunotherapy responders.
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Machine learning algorithm – LASSO logistics regression.

SUPPLEMENTARY FIGURE 4

Prognostic role of PTHLH, BHMT2, and NGFR (A–C) Kaplan–Meier
survival curves of PTHLH, BHMT2, and NGFR in overall survival. (D–F)
Kaplan–Meier survival curves of PTHLH, BHMT2, and NGFR in disease-
free survival. (G–I) Kaplan–Meier survival curves of PTHLH, BHMT2, and

NGFR in disease-free survival.

SUPPLEMENTARY FIGURE 5

Knockdown efficiency of PTHLH.
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A ferroptosis-related gene
signature associated with immune
landscape and therapeutic
response in osteosarcoma
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1Department of Orthopaedics, The Third Xiangya Hospital, Central South University,
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Background: The role of ferroptosis in tumor progression and immune

microenvironment is extensively investigated. However, the potential value of

ferroptosis regulators in predicting prognosis and therapeutic strategies for

osteosarcoma (OS) patients remains to be elucidated.

Methods: Here, we extracted transcriptomic and survival data from

Therapeutically Applicable Research to Generate Effective Treatments

(TARGET) and Gene Expression Omnibus (GEO) to investigate the expression

and prognostic value of ferroptosis regulators in OS patients. After

comprehensive analyses, including Gene set variation analysis (GSVA), single-

sample gene-set enrichment analysis (ssGSEA), Estimated Stromal and Immune

cells in Malignant Tumor tissues using Expression (ESTIMATE), single-cell RNA

sequencing, and biological experiments, our constructed 8-ferroptosis-

regulators prognostic signature effectively predicted the immune landscape,

prognosis, and chemoradiotherapy strategies for OS patients.

Results: We constructed an 8-ferroptosis-regulators signature that could predict

the survival outcome of OS. The signature algorithm scored samples, and high-

scoring patients were more prone to worse prognoses. The tumor immune

landscape suggested the positive relevance between risk score and

immunosuppression. Interfering HILPDA and MUC1 expression would inhibit

tumor cell proliferation and migration, and MUC1 might improve the ferroptosis

resistance of OS cells. Moreover, we predicted chemoradiotherapy strategies of

cancer patients following ferroptosis-risk-score groups.

Conclusion: Dysregulated ferroptosis gene expression can affect OS

progression by affecting the tumor immune landscape and ferroptosis

resistance. Our risk model can predict OS survival outcomes, and we

propose that HILPDA and MUC1 are potential targets for cancer therapy.

KEYWORDS

ferroptosis, osteosarcoma, immune microenvironment, prognostic risk model,
sing-cell sequencing
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Introduction

Osteosarcoma (OS), the most common bone tumor, is a

highly aggressive malignancy that frequently occurs in

childhood and adolescence and has a worldwide annual

incidence rate of 1~3 cases per million (1). OS originates from

primitive mesenchymal cells in bone and rarely in soft tissue and

progresses to pulmonary metastasis, whose subsequent relapse

remains the primary cause of OS-related death (2). The current

treatment strategy for OS patients includes neoadjuvant

chemotherapy combined with surgical removal of the primary

lesions and evidenced metastatic lesions, followed by additional

adjuvant chemotherapy (3). Compared with management

regimens before 1970, multiagent chemotherapy has

considerably improved the long-term survival of localized OS

patients from 20% to 70%. However, metastatic and recurrent

OS patients still have a significantly low survival rate (4).

Unfortunately, since the mid-1970s, little progress has been

made in improving standard management strategies and

increasing the survival rate of OS patients (3). The therapeutic

outcome of OS is significantly impacted by intrinsic cellular

heterogeneity and complex immunogenic mechanisms (5).

Immune checkpoint inhibitors have made breakthroughs in

the immunotherapy of various cancers (6, 7), whereas the

therapeutical effect of targeting TILs and PD-L1 in managing

OS is inconsistent (8–11). These suggest that OS might have a

complex immune status that helps cancer cells evade the

immune surveillance-mediated cell death. Therefore,

identifying novel effective immune therapeutic targets to

benefit treatment for OS is needed. Recently, three newly

identified types of cell death, including ferroptosis, necroptosis,

and pyroptosis, have been suggested to have crosstalk with
Abbreviations: OS, osteosarcoma; TARGET, Therapeutically Applicable

Research to Generate Effective Treatments; GEO, Gene Expression

Omnibus; NMF, Non-negative matrix factorization; MAD, Median absolute

deviation; PCA, Principal component analysis; GSVA, Gene set variation

analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; TME, tumor microenvironment; ssGSEA, single-sample gene-set

enrichment analysis; ESTIMATE, Estimated Stromal and Immune cells in

Malignant Tumor tissues using Expression; LASSO, least absolute shrinkage

and selection operator; HR, Hazard ratio; UMAP, Uniform Manifold

Approximation and Projection for Dimension Reduction; siRNA, Small

interfering RNA; RT-qPCR, Real-time quantitative polymerase chain

reaction; GSDC, Genomics of Drug Sensitivity in Cancer; IC50, half-

maximal inhibitory concentration; ROC, Receiver operating characteristic;

AUC, area under the curve; DEGs, differentially expressed genes; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; ATF4, activating transcription

factor 4; HILPDA, hypoxia inducible lipid droplet associated; ATM, ATM

serine/threonine kinase; CBS, cystathionine beta-synthase; MUC1, mucin 1,

cell surface associated; MT1G, metallothionein 1G; PML, PML nuclear body

scaffold; ARNTL, aryl hydrocarbon receptor nuclear translocator like.
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antitumor immunity (12). As a research hotspot, ferroptosis

was involved in multiple antitumor mechanisms. However, the

re la t ionship between ferroptos i s and OS immune

microenvironment remains to be elucidated.

Ferroptosis, distinguished from traditional cell death-like

apoptosis, cell autophagy, or necroptosis, is a novel

programmed cell death characterized by iron-dependent lipid

peroxidation (13). Previous studies have suggested that

ferroptosis regulators, including GPX4 (14), FANCD2 (15),

P53 (16), and HSPB1 (17), are related to oncogenesis and

progression. Increasing evidence has identified the pivotal role

of ferroptosis in tumor therapies (18–20), in addition to the

sensitivity of various tumors to ferroptosis, such as ovarian

cancer (21), hepatocellular carcinoma (22), and adrenocortical

carcinomas (23). Notably, the anti-tumorigenesis effect of

ferroptosis is likely propelled by the immune system. Wang

et al. (24) reported that CD8+ T cells released interferon-

gamma (IFNg) could induce ferroptosis activity in cancer cells.

On the contrary, ferroptosis-induced regulatory factors

and the release of micromolecules may contribute to

immunosuppression and tumor growth (25). Hence, the

regulatory network between immune responses and

ferroptosis as it relates to tumor immunotherapy remains

unclear. In attempts to address this gap, several studies have

suggested a correlation between ferroptosis regulators and

antitumor drug sensitivity in treating OS (26–29).

In this study, we collected data from Therapeutically

Applicable Research to Generate Effective Treatments

(TARGET) and Gene Expression Omnibus (GEO) to

investigate the expression and prognostic value of ferroptosis

regulators in OS patients. Risk signatures were constructed based

on selected ferroptosis genes to evaluate the prognostic value of

ferroptosis in risk stratification. Single-cell sequencing analysis

was performed to explore the interaction between ferroptosis

regulators and the immune microenvironment. Additionally, we

investigated the predictive value of ferroptosis signature in

anticancer chemotherapy. We further verified the cancer

promotion function of pivotal genes HILPDA and MUC1 and

revealed the probable association between them and ferroptosis.

Therefore, this study aimed to comprehensively assess the effect

of ferroptosis regulators on the immune microenvironment,

prognosis, and therapeutic efficacy in OS.
Materials and methods

This study protocol was approved by the institutional review

board (IRB) of the Third Xiangya Hospital, Central South

University (No: 2020-S221). All experiments involving human

tissues were performed based on guidelines approved by the IRB.

Each sample was processed only after receiving a signed

informed consent form.
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Data collection

Expression array profiling of 9 normal cell lines (5 normal

osteoblast cells and 4 normal bone cells) and 103 patient-derived

OS cell lines were extracted from GSE42352 (30) and GSE36001

on the GEO (https://www.ncbi.nlm.nih.gov/geo/). The batch

effect was eliminated using the “removeBatchEffect” function

in the R package “limma.” Expression heatmaps were visualized

with the “pheatmap” R package, while boxplot was constructed

using the “ggpubr” R package. TARGET-OS RNA-seq data of 84

OS patients with available clinical characteristics extracted from

the UCSC Xena website (https://xenabrowser.net/) were

analyzed as the training cohort (Table S1). Furthermore, 53

OS samples extracted from GSE21257 (31) in the GEO database

were validation cohorts (Table S2). In each cohort, we used the

following criteria to exclude unqualified samples: (a) follow-up

time < 1 month; (b) lack of survival data; (c) histopathological

type is not OS. These count matrixes were standardized using the

“DEseq2” package. Single-cell RNA sequencing datasets

containing two primary OS lesions, “BC21” and “BC22”, two

metastatic OS lesions “BC10” and “BC17”, and two recurrent OS

lesions “BC11” and “BC20” were collected from GSE152048 (32)

in GEO database. Ferroptosis regulators, including 108 driver

genes and 69 suppressor genes, were obtained from the FerrDb

website (Table S3) (http://www.zhounan.org/ferrdb) (33).
Non-negative matrix factorization
clustering for ferroptosis regulators

One hundred seventy-three ferroptosis-related genes were

extracted and analyzed in the TARGET-OS training cohort.

Candidate regulators with a high median absolute deviation

(MAD > 0.5) value across the OS patients were selected for

subsequent NMF clustering analysis. Unsupervised NMF

clustering was performed using the “NMF” R package based

on the 132 candidate genes (34). When the coexistence

correlation coefficient k = 2, we observed the clearest

boundary and most appropriate consistency; thus, 84 patients

were clustered into two subclusters. In addition, principal

component analysis (PCA) was used to validate the subcluster

d i s t r i b u t i o n w i t h t h e e x p r e s s i o n o f c a nd i d a t e

ferroptosis regulators.
Gene set variation analysis and
functional annotation

To explore the difference between ferroptosis-related

subclusters in biological processes, we conducted a GSVA

enrichment analysis using the “GSVA” R package (35). Two

gene sets, “c2.cp.kegg.v7.4.symbols” and “c5.go.bp.v7.4.symbols”
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were obtained from MSigDB database for performing GSVA

enrichment. Moreover, Gene Ontology (GO) term enrichment,

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis, and annotation were also conducted with

“clusterProfiler” and “org.Hs.eg.db” R packages. Finally,

histograms were developed with the “ggplot2” R package.
Assessment of tumor microenvironment
cell infiltration

We conducted a single-sample gene-set enrichment analysis

(ssGSEA) algorithm to assess the expression abundance of 28

specific infiltrating immune cell types in the OS TME. Marker

gene sets for these TME infiltrating immune cells were collected

from previous studies, covering multiple immune cell types,

including activated B cell, CD8+ T cell, macrophage, natural

killer T cell, and others (36, 37). Estimated Stromal and Immune

cells in Malignant Tumor tissues using Expression (ESTIMATE)

analysis was performed using the “estimate” R package to

evaluate the infiltration of stromal cells and immune cells. The

ESTIMATE score based on stromal and immune scores was used

to evaluate tumor purity (38), and Scatter diagrams were

developed using the “ggplot2” R package.
Construction of ferroptosis risk signature

Based on the 132 ferroptosis regulators for NMF clustering,

we identified 22 independent prognosis-related genes with

univariate Cox regression analysis (P < 0.05). Then, the least

absolute shrinkage and selection operator (LASSO) algorithm

filtered out 11 ferroptosis regulators that met the minimum

lambda value. Finally, stepwise multivariate Cox regression

analysis confirmed 8 genes with optimal collinearity, and a

risk signature was constructed. A risk score of each OS patient

in the TARGET training cohort and GEO validation cohort was

calculated with the following algorithm:

Risk score = 0.705×ATF4 + 0.503×ATM + 0.616×HILPDA +

0.323×MUC1 + 0.417×CBS + 0.238×MT1G + (-0.969)×ARNTL

+ (-0.553)×PML.

Hazard ratios (HRs) were used to distinguish protective (HR

< 1) and risky elements (HR > 1). Forest plots were developed

using the “ggplot2” R package.
Single-cell RNA sequencing analysis

scRNA-seq analysis was conducted as previously described

(39, 40). All single-cell expression matrixes of primary,

metastatic, and occurrent OS patients from GSE152048 were

processed by the “Seurat” R package. Firstly, “NormalizedData”
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https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
http://www.zhounan.org/ferrdb
https://doi.org/10.3389/fonc.2022.1024915
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1024915
was applied to normalize these expression data, then we

performed “FindVariableFeatures” to identify the 1,000 most

variable genes. After PCA with “RunPCA,” we conducted a K-

nearest neighbor graph via “FindNeighbors,” while cells were

combined with the “FindClusters” function. Subsequently,

Uniform Manifold Approximation and Projection for

Dimension Reduction (UMAP) (41) was used for visualization.

Moreover, we performed a “Single R” R package to annotate cells

when feature genes for all concerned cell categories were

obtained from reported studies (32). Then, the “FindMarkers”

function was performed to find differentially expressed genes for

identified risk clusters.
Immunohistochemistry

Five pairs of formalin-fixed paraffin-embedded OS tissue and

para-carcinoma tissue blocks (all post-chemotherapy) from 5

patients with OS were made into 5 µm paraffin sections. IHC was

performed following the Mouse/rabbit enhanced polymer

method detection system (ZSGB-BIO, PV-9000, China). The

slides were deparaffinized and rehydrated using xylene and

gradient-concentration ethyl alcohol, followed by antigen

retrieval with sodium citrate at 95°C. At room temperature,

the slides were blocked using an endogenous peroxidase blocker

for 10 min. Samples were incubated with primary antibodies

against HILPDA (Proteintech, China) and MUC1 (Proteintech,

China) overnight at 4°C, reaction enhancer for 20 min at 37°C,

and enhanced enzyme-conjugated sheep anti-mouse/rabbit IgG

polymer for 20 min at 37°C. Then the slides were stained with 3,

30-diaminobenzidine tetrahydrochloride (DAB) and

counterstained with hematoxylin. Images were captured with a

magnification of 20x.
Cells culture

Two osteosarcoma cell lines (U2OS and MNNG/HOS) were

kindly provided by Procell Life Science & Technology Co., Ltd.

U2OS and MNNG/HOS were correspondingly cultured in

McCoy’s 5A (Procell, China), and MEM (Procell, China), both

supplemented with 10% fetal bovine serum (Gibco, USA) and

1% penicillin-streptomycin solution (Biosharp, China) at 37°C

with saturated humidity and 5% CO2. The average time of

culture medium exchange was 24-48h. The cells were digested

with trypsin-EDTA (Gibco, USA) and passaged when cell

adhesion exceeded 80% confluency.
Small interfering RNA transfection

Human HILPDA siRNA (si-HILPDA), MUC1 siRNA (si-

MUC1), and their nonspecific control siRNA (si-NC) were
Frontiers in Oncology 04
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synthesized by JTSBio (Wuhan, China). The siRNAs were

transfected into cells using jetPRIME transfection reagent

(Polyplus, France) following the manufacturer’s protocol. The

siRNAs sequences were listed in Table S4. RNA extraction and

cell proliferation assay were performed 48h after transfection.
Western blot

A mixture of RIPA (Beyotime, China) and a final

concentration of 1mM PMSF (Beyotime, China) was used to

lyse cells for protein extraction. Loading Buffer (Biosharp,

China) was added to the protein supernatant, and then the

sample was boiled to denature the protein. Then proteins were

separated using SDS–PAGE gel (Biosharp, China), transferred to

PVDF membranes (Millipore, USA), and blocked in 5%

skimmed milk for 1h. Then membranes were incubated

overnight at 4°C with primary antibodies, including HILPDA

(Proteintech, China), MUC1 (Proteintech, China), ASCL4

(Affinity, China), GPX4 (Affinity, China), xCT (Affinity,

China) and GAPDH. The membranes were incubated with

fluorophore-conjugated secondary antibody (LI-COR Corp,

NE) the following day. Protein bands were captured with an

enhanced LI-COR Odyssey infrared imaging system (LI-COR

Corp, NE), and the protein levels were normalized to the

GAPDH levels.
Real-time quantitative polymerase chain
reaction

RT-qPCR primers are listed in Table S4. Total RNA from

cultured cells was extracted using Rnafast200 (Fastagen, Japan),

and cDNA was synthesized using HiScript II Q RT SuperMix for

qPCR (Vazyme, China). ChamQ Universal SYBR qPCR Master

Mix (Vazyme, China) was used to conduct RT-qPCR based on

the manufacturer’s protocol. All steps for RT-qPCR reaction

were conducted as follows: initial denaturation at 95°C for 30s,

one cycle; denaturation at 95°C for 10s, 40 cycles; dissolution

curve at 95°C for 15s, 60°C for 60s, 95°C for 15s, one cycle. Gene

expression levels were normalized to those of GAPDH and

calculated using lg2–△△Ct method.
EdU incorporation assay

Proliferating OS cells were identified using the Click-iT Plus

EdU Alexa Fluor 488 Imaging Kit (Invitrogen, USA), and cell

nuclei were stained using Hoechst (Invitrogen, USA). Image

Pro-Plus version 6.0 (Media Cybernetics, USA) was applied to

calculate the counts and percentage of EdU-positive cells.
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Cell migration assay

OS cell migration was assayed using a Transwell chamber

(Corning, USA) with polycarbonic membranes (6.5 mm in

diameter and 8 mm pore size). Cells in a serum-free medium

were added into the upper chamber at the density of 5 × 105

cells/ml (200 ml/well), and an OS-conditioned medium with 10%

FBS was added to the lower chamber. After incubating for 48h at

37°C, non-migrated cells on the membrane were removed with a

cotton swab. Cells that penetrated to the lower surface were

stained with 0.1% crystal violet. Then cells in five random fields

per well were counted under 200×magnification as n=1 for the

assay in triplicate.
Cell viability detection

The cells were seeded into 96-well plates at a density of 5,000

cells/well with specific-concentration RSL3 (Selleck, China).

After 24h, 1/10 volume of CCK-8 reagent (Proteintech, USA)

was added to the wells, and the absorbance value was detected at

450nm after 1h incubation at 37°C. The experiment was

repeated three times.
Lipid reactive oxygen species detection

BODIPY 581/591 C11(Invitrogen, D3861, USA) with a final

concentration of 2mM was used to detect intracellular and lipid

cell membrane ROS. After incubation for 30min at dark 37°C,

cells were digested with trypsin and resuspended by PBS to

prepare a 300 ml cell suspension to determine lipid oxidation by

Flow Cytometry. The fluorescence intensity of the FITC channel

was measured by BD FACS Canto II (BODIPY 581/591 C11 at

590 nm in the non-oxidized state and 510 nm in the oxidized

state). At least 10,000 cells were analyzed per sample, and data

were analyzed using FlwoJo V10.
Potential therapeutic prediction value of
ferroptosis signature

We extracted expression matrix and drug response data of

over 1,000 cancer cell lines from the Genomics of Drug

Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org/)

database (42). Afterward, each cell line’s risk scores were

calculated by conducting a ferroptosis signature. Then, we

performed the Spearman method to evaluate the correlation

(Cor) between risk scores and half-maximal inhibitory

concentration (IC50) of each cell line. | Cor | > 0.2 and P <

0.05 were considered statistically significant.
Frontiers in Oncology 05
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Statistical analysis

All bioinformatics statistical analyses and visualization were

performed using R version 4.0.3 (https://www.r-project.org/),

and the R script was listed in Supplementary “R_script”.

Kaplan–Meier and log-rank analysis using “survival” and

“survminer” packages were applied to evaluate the survival

comparison. Receiver operating characteristic (ROC) and the

area under the curve (AUC) were conducted with the “Time

ROC” R package. Spearman correlation analysis was applied to

evaluate correlations among continuous variables. Wilcoxon and

One-way Anova tests were used to compare the difference

among groups. A Chi-square test was used to identify the

significance of ferroptosis DEGs (differentially expressed

genes) among all detected genes. Values in cell experiment are

mean ± SD unless otherwise noted and analyzed using Graphpad

Prism version 8.0.2.263. Furthermore, the Benjamini-Hochberg

method was utilized to adjust p values in functional annotation.

P.adjust < 0.05 was considered statistically significant.

Results

Expression of ferroptosis genes was
disordered in OS cells

A flow diagram was generated to systematically describe our

study (Figure 1A). We collected 108 driver genes and 69

suppressor genes from FerrDb (http://www.zhounan.org/ferrdb),

among which four genes were intersected, then 173 ferroptosis

regulators were selected. Of the merged expression matrix

containing 9 normal and 103 OS cell lines from GSE42352 and

GSE36001, 143 of 173 ferroptosis regulators were detected.

Subsequently, the expression of the 143 detected regulators were

evaluated and visualized in heatmap, while 21 significant DEGs

were identified (P < 0.05, |logFC| > 0.5) (Figure 1B). CBS, SCD,

CDKN2A, SNX4, FANCD2, and HMGB1 were upregulated in

OS, and 15 regulators, including PML, ACO1, MYB, NCOA4,

ATG3, CDO1, SQSTM1, TNFAIP3, CDKN1A, CAV1, NQO1,

TF, EPAS1, ZFP36, and AKR1C3 were downregulated. The Chi-

square test indicated that the ratio of significant ferroptosis-related

DEGs was statistically higher than that of other genes (Figure 1C).

Therefore, these results indicated that the expression of ferroptosis

regulators was dysregulated in OS.
Ferroptosis regulators-based
classification correlated with
steosarcoma prognosis and immune
microenvironment

We downloaded TARGET-OS gene expression profiles from

UCSC Xena (https://xenabrowser.net/) and screened out 84
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patients with analyzable prognostic information as a training

cohort. Based on the previously mentioned 173 ferroptosis-

regulated genes, a total of 132 genes selected with MAD value

> 0.5 (43–45) were applied for NMF clustering analysis. Then,

unsupervised NMF clustering was performed to assess potential

gene expression features by dividing the original matrix into

subclusters. A comprehensive correlation coefficient determined

the most appropriate k value. Compared with heatmaps at k

values of 3, 4, and 5 (Supplementary Figure 1A), k = 2 generated

a heatmap that displayed the clearest boundary and best

consistency in every subcluster (Figure 2A and Supplementary

Figure 1B). Thus 84 patients were clustered into two subclusters,

50 patients in cluster one and 34 patients in cluster two. The

heatmap displays 132 selected ferroptosis regulators’ expression

levels in clusters one and two (Figure 2B). PCA analysis was

performed to verify the consistency of subcluster distribution

(Figure 2C), which is highly consistent. Based on the clinical

information of these patients in the TARGET cohort, survival

analysis (Figure 2D) was constructed and revealed that cluster

two OS patients exhibited poor survival outcomes compared

with cluster one patients (p < 0.001). To investigate the 28

specific infiltrating immune cell types in tumor progression,

ssGSEA was conducted (Figure 2E) and showed that cluster one
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was more positively correlated with immune cell infiltration

than cluster two. The specific immune cells in this ssGSEA

analysis included activated B cells, activated CD8 T cells,

regulatory T cells, macrophages, NK cells, and others.

Furthermore, based on the KEGG and GO databases, gene set

variation analysis (GSVA) was performed to investigate the

activation level of immune-related biological pathways in two

subclusters (Supplementary Figures 2A, B). Our results

demonstrated that cluster one is more relevant to various

immune-related processes and pathways, such as NK cell-

mediated cytotoxicity, primary immunodeficiency, T cell

receptor signaling pathway, and regulation of macrophage

fusion. Additionally, GO enrichment analysis was performed

to comprehensively evaluate the biological characteristics in two

ferroptosis-related subclusters and indicated that cluster one was

c lose ly corre la ted wi th immune-re la ted ac t iv i t i e s

(Supplementary Figure 2C), and cluster two was relevant to

ion transmembrane channel activity and intercellular adhesion

(Supplementary Figure 2D). In summary, these results suggest a

significant difference in prognostic outcomes and biological

characteristics within ferroptosis-related subclusters, and the

difference in prognosis is highly correlated with the

immune microenvironment.
A B

C

FIGURE 1

Expression of ferroptosis regulators in normal and OS cell lines. (A) Flow diagram of the study. (B) Heatmaps of the expression of 143 detected
ferroptosis regulators (up) and 21 significant DEGs (|LogFC| > 0.5, P <0.05) (down). Red represents high expression level and blue represents low
expression. The darker the color, the greater the significance. (C) Chi-square test for the significance of ferroptosis DEGs. * P < 0.05; ** P <
0.01; *** P < 0.001; **** P < 0.0001.
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Construction of prognostic signature
based on ferroptosis regulators in
osteosarcoma cohort
Cox regression analysis and the LASSO regression algorithm

were conducted to determine the prognostic value of ferroptosis

regulators in OS. Among the OS patients in the TARGET cohort,

initially, 22 independent prognosis-related genes were confirmed
Frontiers in Oncology 07
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by univariate Cox regression analysis (P < 0.05) (Figure 3A).

Then, the LASSO algorithm filtered 11 ferroptosis regulators

that met the minimum lambda value from the 22 genes

(Figure 3B). Based on the LASSO results, stepwise multivariate

Cox regression analysis was performed to construct a prognostic

signature model (Figure 3C), which selected an optimal model

containing eight genes: ATF4, HILPDA, ATM, CBS, MUC1,

MT1G, PML, and ARNTL. Subsequently, every patient obtained

a risk score calculated based on the eight regulators’ regression
A B

D
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FIGURE 2

Identification of OS subclusters by unsupervised NMF clustering with ferroptosis regulators in TARGET OS cohort. (A) NMF clustering heatmap
based on 132 ferroptosis genes (MAD > 0.5). NMF clustering divided 84 OS patients into two subclusters (we observed clearest boundary and
most appropriate consistency when the coexistence correlation coefficient k = 2). (B) Heatmap of expression of the 132 ferroptosis regulators in
two subclusters. Red represents high expression level and blue represents low expression. The darker the color, the greater the significance. (C)
PCA scatter diagram supporting that NMF clustering algorithm divided OS patients into two subclusters. (D) Kaplan-Meier analysis for overall
survival of OS patients in two subclusters. (E) Box diagram of ssGSEA analysis revealing expression of 28 immune cells in two subclusters.
Kruskal test * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, no significance.
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coefficients and expression levels. Patients were classified into

high-risk and low-risk groups using the median risk score (46,

47). The Kaplan-Meier analysis revealed that patients in the

high-risk group exhibit poor overall survival compared with

low-risk group patients (P < 0.0001) (Figure 3D). The expression

of the eight risk genes is shown in the heatmap (Figure 3E). The

Scatter diagram displayed that the high-risk group correlated

more with death incidents (Figure 3E). Time-dependent ROC

(Figure 3F) indicated that the area under the curve (AUC) of 1-

year, 2-year, 3-year, and 5-year survival was 0.881, 0.945, 0.886,

and 0.858, respectively. Notably, it was most accurate for the risk

score to predict 2-year survival. Additionally, Kaplan-Meier

analyses based on these 8 genes respectively verified their

potential to serve as independent prognosis factors

(Supplementary Figures 3A–H). These results suggest the

potential value of the constructed risk signature in predicting

the prognosis of OS patients.
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Moreover, ssGSEA analysis revealed that the high-risk group

was likely to have less expression of immune cells, including

activated B cells, macrophages, and NK cells (Figure 3G). In

ESTIMATE analysis, Stroma, Immune, and ESTIMATE scores

were prominently lower (T-test P < 0.05) in the high-risk group

than those in the low-risk group (Figure 4A). Correlation

analysis revealed that risk score was negatively correlated with

Stromal, Immune, and ESTIMATE scores (Figure 4B). Relative

expression of immune checkpoints in two risk groups was also

visualized (Figure 4C), in which checkpoints PDCD1LG2,

CD274, TIGIT, and CD40LG were observed at relatively low

levels in a high-risk group. These results suggest that the risk

score based on the ferroptosis prognostic signature was

associated with immunosuppression and tumor progression.

In the validation set from GSE21257, a prognostic signature

was executed to calculate risk scores. Then, 53 OS patients were

divided into high-risk and low-risk groups using the median risk
A B
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FIGURE 3

Construction and analysis of prognostic signature based on ferroptosis gene expression in TARGET OS cohort. (A) Forest plot of 22 independent
prognostic genes identified by univariate Cox regression analysis (P < 0.05). Blue represents statistical significance. The deeper the blue, the
greater the significance. (B) LASSO algorithm confirming minimum lambda value. (C) Forest plot of 8 regulators in optimal prognostic model
selected by stepwise multivariate Cox regression analysis. (D) Kaplan-Meier analysis exhibiting the overall survival of OS patients in high-risk
group and low-risk group graded by the optimal prognostic model. Red represents high risk group and blue represents low risk group. (E)
Distribution plots of risk scores and heatmap of signature genes expression in TARGET OS patients. (F) Time dependent receiver operating
characteristic (ROC) curve of the ferroptosis signature model in predicting prognosis of OS patients. (G) Box plot of ssGSEA analysis revealing 28
immune cells expression in two risk subgroups. Kruskal test * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, no significance.
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score. The heatmap demonstrated expression of the eight risk

genes (Supplementary Figure 4A), and the scatter diagram

indicated increased death incidents in the high-risk group

(Supplementary Figure 4A). The Kaplan-Meier analysis

revealed that high-risk patients possessed poor overall survival

compared with low-risk patients (P < 0.05) (Supplementary

Figure 4B). Additionally, time-dependent ROC (Supplementary

Figure 4C) indicated that the area under the curve (AUC) of

1-year, 2-year, 3-year, 5-year, and 8-year survival was 0.658,

0.694, 0.754, 0.718, and 0.689, respectively.
Single cell sequencing investigated the
relevance between risk stratification and
immunity

To further investigate the correlation between ferroptosis

risk signature and immune infiltration in OS, we collected

scRNA-seq expression profile from GSE152048 on the GEO

database, containing primary, lung metastatic, and recurrent OS

lesions. Firstly, 16 cell subclusters were identified by “UMAP”

dimension reduction in primary OS lesions expression profile

(Supplementary Figures 5A, B). Expression proportions of the

eight signature genes among all detected cells in primary OS

samples were also visualized (Supplementary Figures 5C, 4D), in

which we observed a relatively high proportion in the expression
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of ATF4, HILPDA, and ATM. All subclusters were annotated

with feature genes and visualized into 12 cell clusters, including

chondroblastic OS cells, endothelial cells, fibroblasts, M2

macrophages, myeloid cells, NK cells, osteoblastic OS cells,

proliferating osteoblastic OS cells, T cells, and novel 1 and

novel 2 (Figure 5A). Then, the prognostic signature was

applied to calculate the risk scores of all cells and divided into

high-risk and low-risk cells by median risk score. We found that

chondroblastic OS cells, osteoblastic OS cells, proliferating

osteoblastic OS cells, a subset of M2 macrophages, and

myeloid cells were identified as high-risk cells, and immune

cells, including T cells and NK cells, were identified as low-risk

cells (Figure 5B). Subsequently, marker genes in high-risk cells

and low-risk cells were distinguished by the “FindMarkers”

function of the “Seurat” R package. KEGG enrichment analysis

based on these markers indicated that high-risk cells were

correlated with several cancer-related pathways, including

oxidative phosphorylation, HIF-1 signaling pathway, and

glycolysis/gluconeogenesis (Figure 5C). In contrast, low-risk

cells were associated with immune-related pathways, including

the T cell receptor signaling pathway, PD-L1 expression and PD-

1 checkpoint pathway in cancer, NF-kB signaling pathway, NK

cell-mediated cytotoxicity, and others (Figure 5D). Moreover,

the low-risk group was correlated with ferroptosis and apoptosis

(Figure 5D). Notably, these results support a risk score based on

constructed prognostic signatures positively associated with

tumor progression and negatively associated with immune
A
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FIGURE 4

Association between ESTIMATE scores and risk scores in TARGET OS cohort. (A) Box plot of Stromal score, immune score and ESTIMATE score
and in high-risk group and low-risk group. Red represents high risk group and blue represents low risk group. (B) Scatter plot shows correlation
between risk score and stromal score, immune score and ESTIMATE score. (C) Box plot of relative expression of immune checkpoints in risk
groups. * P < 0.05; ** P < 0.01; ns, no significance.
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infiltration and programmed cell death like ferroptosis and

apoptosis in primary OS lesions.

Additionally, 13 cell subclusters were identified in metastatic

OS lesions expression profile (Supplementary Figures 6A, B).

The proportion diagram exhibited a markedly elevated

expression level of MT1G compared with primary OS lesions

(Supplementary Figures 6C, D). Moreover, all subclusters were

annotated and visualized into 10 cell clusters, including

chondroblastic OS cells, endothelial cells, fibroblasts, M2

macrophages, myoblast, NKT/T cells, osteoblastic OS cells,

osteoclasts, proliferating osteoblastic OS cells and B cells

(Supplementary Figure 6E). Then the prognostic signature was

performed to calculate risk scores and divided all cells into high-

risk and low-risk groups. Chondroblastic OS cells, osteoblastic

OS cells, and proliferating osteoblastic OS cells were defined as

high-risk cells, and B cells, NK T cells, and T cells were low-risk

cells (Supplementary Figure 6F). Six-cell clusters were annotated

and visualized in recurrence OS lesions, including

chondroblastic OS cells, fibroblasts, myeloid cells, NKT/T cells,
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and novel cells. Prognostic signature classified all recurrence

cells into high-risk and low-risk groups, indicating that

chondroblastic OS cells, osteoblastic OS cells, and a part of

fibroblasts were high-risk cells, and NKT/T cells were low-risk

cells (Supplementary Figures 7A–F). The proportion diagram

exhibited the up-regulation of HILPDA, MUC1, and MT1G in

recurrence OS lesions. Therefore, these findings suggest a vital

role of five cancer-promoting genes: ATF4, HILPDA, ATM,

MUC1, and MT1G in affecting the OS progression, metastasis,

and recurrence.
Knocking down of HILPDA or MUC1
significantly inhibited the proliferation of
OS cells

We further analyzed the five cancer-promoting prognostic

genes and found that ATF4 (48), ATM (49), and MT1G (50)

have been reported in OS, while the functions of HILPDA and
A B

DC

FIGURE 5

Single-cell sequencing investigating the correlation between risk signature and tumor microenvironment in primary OS samples. (A) UMAP
visualization exhibits 12 annotated cell clusters based on primary OS single cell sequencing. (B) Risk cell clustering by ferroptosis signature
clusters all cells into high-risk cells and low-risk cells. Red represents high-risk cells and blue represents low-risk cells. NA represents partial
signature genes were not expressed in the single-cell sparse matrix. (C) KEGG enrichment analysis based on marker genes of high-risk cells.
(D) KEGG enrichment analysis based on marker genes of low-risk cells. Color represents adjusted p value (Benjamini-Hochberg), the darker the
red, the higher the significance; the darker the blue, the lower the significance.
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MUC1 remained unclear. We then chose HILPDA and MUC1

as the following research subjects to illustrate their functions in

OS. The expression levels of HILPDA (Figure 6A) and MUC1

(Figure 6B) were upregulated in OS tissues compared with

paracancerous normal tissues. Then we used small interfering

RNA to silence the expression of HILPDA and MUC1 in two OS

cell lines. In U2OS cells, si-HILPDA sequence-2 and si-MUC1

sequence-3 had the best interference effect, while in MNNG/

HOS cells, si-HILPDA sequence-3 and si-MUC1 sequence-1

were the optimal (Figures 6C, D). Correspondingly, compared to

normal control groups, the percentages of Edu-positive OS cells

and migrated cell numbers were significantly reduced in si-

HILPDA and si-MUC1 groups (Figures 6E, F). The proliferation
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and migration of OS cells were inhibited considerably after

interfering with HILPDA or MUC1 expression.
HILPDA and MUC1 influenced ferroptosis
resistance of OS cells

Both HILPDA and MUC1 were reported ferroptosis-related

regulators, but mechanisms of how they affect ferroptosis remain

to be further investigated. In our subsequent experiments, we

used gradient concentration of ferroptosis inducer RSL3 to treat

U2OS and MNNG/HOS, and 24h later, the CCK-8 method was
A B
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FIGURE 6

Expression of HILPDA or MUC1 influenced the proliferation of OS cells. Representative immunohistochemical images of expressions of HILPDA
(A) and MUC1 (B) in OS and para-carcinoma tissues. (C) Relative protein levels of HILPDA and MUC1 after si-RNA transfection (n=3) in U2OS and
MNNG/HOS. (D) Relative mRNA expression levels of HILPDA and MUC1 using the optimal si-RNA (E, F) Representative images of EdU (red),
Hoechst staining (blue) and transwell (purple) in U2OS and MNNG/HOS cells after si-RNA transfection.The ratios of EdU-positive (red) cells and
migration cell numbers were calculated (n=3) after si-RNA transfection. Student t test ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, no
significance.
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used to detect the cell viability. Compared with the control

group, the si-MUC1 group exhibited poor cell viability. The si-

HILPDA group had a higher survival rate, with the greatest

difference when RSL3 concentration was 4mM in U2OS

(Figure 7A) and 8mM in MNNG/HOS (Figure 7B). Thus,

U2OS with 4mM RSL3 and MNNG/HOS with 8mM treatment

were used for subsequent experiments. Based on Flow

Cytometry, the lipid ROS level was increased in the si-MUC1

group and decreased in the si-HILPDA group (Figures 7C, D),
Frontiers in Oncology 12
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indicating RSL3-induced activity was correlated with lipid

peroxidation, the marker of ferroptosis. We further assessed

the levels of several ferroptosis-related proteins (Figures 7E, F).

Among the control, si-HILPDA, and si-MUC1 groups, ASCL4

exhibited no significant difference, and xCT was decreased in the

si-MUC1 groups. Intriguingly, GPX4 seemed to decrease in the

si-MUC1 group of U2OS cells while slightly upregulated in the

si-HILPDA group of MNNG/HOS cells. This finding might

explain the earlier appearance of RSL3-induced ferroptosis in
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FIGURE 7

The effects HILPDA or MUC1 on ferroptosis resistance in OS cells. CCK-8 method detected the cell viability of U2OS (A) and MNNG/HOS
(B) after treatment by different concerntrations of RSL3 for 24h. One-way Anova test *P< 0.05; **P< 0.01; ***P< 0.001. Lipid ROS levels of RSL3
induced U2OS (C) and MNNG/HOS (D) after C11 BODIPY incubation based on flow cytometry. Levels of ferroptosis-related proteins including
ASCL4, GPX4 and xCT in RSL3 induced U2OS (E) and MNNG/HOS (F).
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si-MUC1 U2OS cells and the enhanced ferroptosis resistance in

si-HILPDA MNNG/HOS cells.
Predictive value on therapeutic strategies
of the prognostic signature

To explore the potential value of risk signature in predicting

therapeutic strategies, based on the Genomics of Drug Sensitivity

in Cancer (GSDC) database, spearman analysis was performed

to investigate the correlation between half-maximal inhibitory

concentration (IC50) of drugs and risk scores in cancer cell lines.

A total of 32 drugs were identified to be significantly associated

with the prognostic signature score (|cor| > 0.15, P < 0.05)

(Figure 8A). Among them, drug sensitivity of 10 drugs were

determined relevant to the score, including RTK signaling

inhibitor BIBF 1120 (cor = -0.22, P = 0.012), PI3K/mTOR

signaling inhibitor YM201636 (cor = -0.22, P = 0.019) and

IGF1R signaling inhibitor Linsitinib (cor = -0.16, P = 0.002).

However, drug resistance of 22 drugs were correlated with risk

score, including cell cycle inhibitor CGP-60474 (cor = 0.31, P =

0.003), RTK signaling inhibitor Sunitinib (cor = 0.26, P = 0.013),
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and DNA replication inhibitor Bleomycin (cor = 0.23, P =

0.003). Additionally, targeted signaling pathways of these

drugs were exhibited (Figures 8B, C) and indicated that drugs

whose sensitivity was positively related to risk scores mostly

target RTK signaling, kinases, IGF1R signaling, and ERK MAPK

signaling. However, drugs whose resistance was positively

related to risk scores targeted PI3K/mTOR signaling, ERK

MAPK signaling, DNA replication, and cell cycle signaling.

Therefore, established risk signatures might serve as potential

guidance for establishing therapeutic strategies.
Discussion

Therapeutic schedules and outcomes of OS patients have

remained significantly unimproved since the 1970s (3). Despite

decades of research, molecular exploration still needs to

diagnose the disease early, predict the progression and

improve the prognosis for OS, especially for lung metastasis

and chemotherapy resistance patients (51). Yanlong et al. found

that focally amplified long noncoding RNA (lncRNA)

expression on chromosome 1 (FAL1) was positively related to
A
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FIGURE 8

Influence of the risk signature on drug sensitivity and resistance in GSDC pan-cancer cell lines. (A) Bar diagram of correlation between IC50 of
anti-cancer drugs and risk scores in pan-cancer. Altitude represents the correlation, higher the altitude, higher the correlation. Color represents
statistical significance (p value), the more purple the color, the greater the significance. (B) Scatter diagram of correlation between targeted
signaling pathways and IC50 of significant anti-cancer drugs. Size of plots represents statistical significance (p value), the larger the size, the
greater the significance. Color of plots represents the correlation between targeted pathways and anti-cancer drugs. Red represents positive
correlation and blue represents negative correlation. Purple represents little correlation. (C) Bar diagram shows the counts of sensitive drugs and
resistant drugs regarding the targeted pathways.
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the distance metastasis, tumor stage, and negatively

prognosticate outcomes in OS patients (52). Wei et al. also

showed that cyclin E1 was a promising prognostic and

chemotherapeutic target for OS (53). These studies promoted

the potential and significance of exploring molecular biomarkers

for the onset and development of OS. In addition to these

molecular biomarkers, ferroptosis has been considered a

promising antitumor target mechanism in the occurrence and

progression of numerous cancers (13, 54, 55). Evidence suggests

multiple risk signatures based on ferroptosis genes could

effectively predict the diagnosis, prognosis, immune

microenvironment, and therapeutic strategies for cancers (56–

58). However, few studies reported the correlation between

ferroptosis mechanisms and OS progression.

Our study initially showed the dysregulation of ferroptosis

regulators with normal and patient-derived OS cell lines, which

was statistically significant by the Chi-square test (Figure 1).

Whereas biological deviations existed between specific DEGs in

cell lines and RNA sequencing results from OS patients, we set

MAD > 0.5 as gene screening criteria for following NMF

clustering analysis instead of using DEGs from OS cell lines.

In doing so, two distinct subclusters were identified with

different biological characteristics (Figure 2). OS patients in

cluster1 exhibited a more favorable prognosis than those in

cluster2, indicating that identified subclusters had significant

clinical implications. Meanwhile, ssGSEA and GSVA for

immune pathways and GO enrichment analyses suggested a

higher degree of immune cell expression and immune response

activity in cluster1 (Supplementary Figure 2). Existing studies

indicate an association between immune response and tumor

progression. Chi et al. (59) revealed that NK T cells promoted

antitumor immunity in liver tumors. Mary et al. (60) found that

the dysregulation of CD8 T cells would allow for tumor

progression. Moreover, the Toll-like receptor signaling

pathway benefits immune-related anticancer chemotherapy

and radiotherapy (61). Our results are consistent with these

dominant perceptions that the immune microenvironment’s

abundance correlates with better clinical outcomes. Given the

above discovery, we speculated that cluster1, having a better

prognosis, was more immune-activated than cluster2, and

ferroptos i s was involved in shaping the immune

microenvironment in OS.

Considering the heterogeneity and complexity of

individuals, we constructed a risk scoring system, “ferroptosis-

based risk signature,” to quantify the biological characteristics of

OS patients (Figure 3). High-risk scores with worse clinical

outcomes exhibited strong relevance to immunosuppression

and lower stromal scores (Figure 4). The significance of

immune and stromal scores in the ESTIMATE algorithm for

tumor classification and clinical outcomes was already testified

(62, 63). Hence we speculated that our constructed ferroptosis

score was more significant in predicting immunosuppression

than in predicting the stromal activation for OS malignancy.
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Moreover, immune checkpoints like PDCD1LG2, CD274,

TIGIT, and CD40LG were upregulated in low-risk groups,

reflecting the potential of immunotherapy in managing OS

(Figure 4C). These results suggest that ferroptosis-based risk

signature is reliable for comprehensively predicting the clinical

prognosis, immune response activity, and therapeutic strategy

for OS.

Among the 8 independent prognosis factors (Supplementary

Figure 3) in the signature, ATF4, HILPDA, ATM, CBS, MUC1,

and MT1G were significantly upregulated in the high-risk group,

whereas PML was down-regulated (Figure 3E), implying that

PML might serve as an antineoplastic factor in OS progression.

Chen et al. (64) found that expression of activating transcription

factor 4 (ATF4) promoted the malignancy of gliomas and

fostered tumor angiogenesis and proliferation, while ATF4

knockdown made cells susceptible to ferroptosis. Hypoxia-

inducible lipid droplet-associated (HILPDA) (65, 66) was

overexpressed in multiple tumor types, HILPDA was positively

correlated with tumor-associated macrophages (TAM)

infiltration, and immunosuppressive genes, such as PD-L1,

PD-1, TGFB1, and TGFBR1. Notably, Ataxia-Telangiectasia

mutated protein (ATM) was reported as a positive regulator

for ferroptosis (67). Radiotherapy-activated ATM and IFNg
from immunotherapy-activated CD8+ T cells would

synergistically enhance ferroptosis and tumor lipid oxidation,

indicating the correlation between ferroptosis agonists and

chemoradiotherapy via immunotherapy for the first time (68).

Li Wang et al. (69) found that inhibition of Cystathionine b-
synthase (CBS) triggered ferroptosis in hepatocellular carcinoma

and reduced tumor growth. Takahiro et al. (70) showed that the

transmembrane mucin MUC1 contributed to immunologic

escape in triple-negative breast cancer (TNBC) and that

targeting MUC1-C correlated with PD-L1 suppression to

activate the immune response and tumor cell killing. Emerging

evidence suggests the crucial role of metallothioneins (MTs),

including MT1G, in tumor formation, progression, and drug

resistance (71). As a tumor suppressor, promyelocytic leukemia

(PML) protein was mechanistically capable of inhibiting tumor

proliferation, migration, and invasion while promoting cell

senescence and apoptosis (72–74). A recent study also

reported that ubiquitination of PML promotes lung cancer

progression via fostering immunosuppression in the tumor

microenvironment (75).

Single-cell sequencing analysis further investigated the role

of ferroptosis signature in the tumor microenvironment and

malignant cell proliferation of OS (Figure 5). Neoplastic cells and

M2 macrophages were identified in the high-risk group, while

immune cells were mostly identified in the low-risk group.

Growing evidence has clarified the crucial role of TAMs in the

progression and metastasis of tumors (76, 77). Additionally,

Zhou et al. found the preventive effect of inhibiting M2

polarization of TAMs in OS metastasis (78). Moreover,

previous work indicated that the infiltration degree of
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intratumoral T cells was positively effective in predicting the

prognosis of colorectal cancer, ovarian cancer, and melanoma

patients (79–81). Existing research also reported the cytotoxic

effect of NK cells against tumor progression in multiple cancers

(82, 83). Our results implied that the prognostic signature could

predict tumor invasion and progression from the M2

polarization of TAMs. The risk score was negatively correlated

with anticancer immune cell infiltration in primary OS.

However, in the high-risk group, several cancer-promoting

pa thways were enr i ched (F i gu r e 5C) . Ox ida t i v e

phosphorylation is upregulated in multiple cancers, including

leukemias, melanoma, pancreatic ductal adenocarcinoma

lymphomas, and endometrial carcinoma (84). Similarly, high-

rate glycolysis can promote tumor proliferation in an aerobic

environment (85). Importantly, HIF-1 functions as a crucial

signal by coordinating tumorigenesis-related transcription

factors and signaling molecules (86); Ni et al. suggests that

inhibition of HIF-1a would unleash the activity of tumor-

infiltrating NK cells (87). In the low-risk group, immune-

related pathways were enriched as expected, including the T

cell receptor signaling pathway, PD-L1 expression and PD-1

checkpoint pathway in cancer, NF-kB signaling pathway, and

NK cell-mediated cytotoxicity. However, ferroptosis and

apoptosis were also correlated with low-risk cells (Figure 5D),

suggesting that ferroptosis risk score was negatively relevant to

ferroptosis occurrence and ferroptosis occurrence in OS cells

associated with immune system activation.

Based on the above findings, we chose two prognostic genes

to illustrate our results through functional experiments in OS

cells. HILPDA and MUC1 expression were verified to be

increased in OS tissues (Figures 6A, B), and we confirmed the

knockdown of HILPDA or MUC1 could inhibit the proliferation

and migration of OS cells (Figure 6). Notably, Hasegawa et al.

reported that MUC1-C forms a complex with xCT, which

interacts with xCT and thereby controls GSH levels (88) and

that xCT activity drives the expression GPX4 (89). Our results

showed that interference targeting MUC1 led to the decrease of

xCT, and GPX4 also exhibited downregulation. Therefore, the

decline in these two anti-ferroptosis proteins (89) might be the

potential mechanism of weakened ferroptosis resistance in

MUC1-knockdown cells (Figure 7). However, HILPDA-

knockdown cells seemed to have enhanced ferroptosis

resistance (Figure 7). Thus, the restraint in OS invasiveness

regarding HILPDA knockdown is probably unrelated to the

ferroptosis mechanism.

Adverse chemotherapy combined with surgical removal of

OS lesions is the primary management strategy for OS patients

(3), while chemoresistance has become a pivotal obstacle in

improving the therapeutic effect (90). The interaction between

ferroptosis and chemoresistance has recently been a topic of

investigation, which Zhang et al. (91) reports that cisplatin and

paclitaxel facilitated the secretion of miR-522 from cancer-
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associated fibroblasts, leading to ALOX15 suppression,

ferroptosis inhibition, and ultimately chemoresistance. Our

analysis for IC50 of anticancer drugs (Figure 8) showed the

potential therapeutic efficiency of ferroptosis regulators. The

ferroptosis risk score was correlated with sensitivity to drugs

targeting RTK, IGF1R signaling, and kinases and with resistance

to drugs targeting PI3K/mTOR, ERK/MAPK signaling, DNA

replication, and cell cycle signaling. These results imply that

patients with higher ferroptosis scores may benefit more from

chemotherapy drugs targeting RTK, IGF1R signaling, and

kinases. Ferroptosis regulators might be an adequate predictor

for evaluating chemoradiotherapy’s prognosis or targeted

therapies. Therefore, our findings provided new probabilities

for improving the management strategies for OS.

There are still some limitations in our study. Firstly, the data

capacity for OS in public databases is significantly less than that

for other tumor types, obstructing the exploration of OS

bioinformatics research. To enlarge the sample capacity of the

control group, we extracted control cell lines with inconsistent

standards to accomplish the variation analysis, which could

result in unpredictable biological deviations. More practicable

sequencing data is yet to be discovered. Likewise, the interaction

between stromal cell and ferroptosis signature remains unclear,

as well as the major function of stromal cells in tumor

progression and infiltration. Secondly, checkpoint PD-1/PD-L1

(CD274) has been reported as a pivotal mediator of

immunosuppression in the tumor immune microenvironment

(92, 93). Zheng et al. (94) demonstrated that PD-L1 was

negatively associated with prognosis , while PD-L2

(PDCD1LG2) positively correlated with overall survival in OS.

Given our contradictory result that the expression level of

checkpoint CD274 was higher in the low-risk group, further

inquiry about the molecular mechanisms of CD274 affecting

ferroptosis signature and OS prognosis is needed, and PD-L1-

related immune therapy on OS remains to be developed.

Thirdly, ferroptosis-related gene signature for OS is not a

novel subject. Lei et al. (95), Zhao et al. (96), Jiang et al. (97)

all reported prognostic ferroptosis signatures, which might make

our finding less novel. However, our study appears to be the first

to reveal the correlation between immune landscape and

ferroptosis signature from the perspective of a single-cell

sequence. Notably, we are the first to propose the potential

ferroptosis mechanism of specific genes, HILPDA and MUC1

regarding ferroptosis s ignature . From mechanist ic

investigations, we confirmed the cancer-promoting function of

HILPDA and MUC1. However, the potential mechanisms or

detailed pathways between HILPDA, MUC1, and ferroptosis

require further exploration. Furthermore, the specific roles of the

other six genes and their crosslinking remains to be explored.

Generally, existing data and results could only support the

predicting value of ferroptosis signature on OS progression,

immune activity, and patient prognosis. The activation
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mechanism of ferroptosis signature to intervene in the immune

system is lacking. Therefore, more experiments are needed to

explore the mechanism of ferroptosis signature in

OS immunology.
Conclusions

In summary, our study comprehensively evaluated the

expression pattern and prognostic value of ferroptosis

regulators in OS. Our study’s constructed prognostic model

based on ferroptosis regulators is promising in predicting

tumor progression, immune infiltration, and survival outcome

of OS patients. Moreover, the risk stratification had a guidance

value on chemoradiotherapy and might be correlated with the

efficacy of immunotherapy. We also confirmed the cancer-

promoting function of HILPDA and MUC1 and the

ferroptosis-resistant related mechanism of MUC1 in OS,

which suggested that MUC1 has the potential to become a

ferroptosis-related therapeutic target. However, further

exploration is necessary to reveal the potential mechanism

among these genes in OS progression and therapeutic efficacy.
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SUPPLEMENTARY FIGURE 1

Unsupervised consensus NMF clustering on TARGET cohort. (A)
Heatmaps of NMF clustering for k = 3, 4, and 5. (B) The correlation

among cophenetic, dispersion, evar, residuals, rss, silhouette and

sparseness coefficients with reference to different cluster number.

SUPPLEMENTARY FIGURE 2

Enrichment characteristics in two ferroptosis subclusters. (A, B) GSVA

analysis for NMF clustered ferroptosis subclusters based on KEGG
database and GO database. Red represents high expression level and

blue represents low expression. The darker the color, the greater the

significance. (C, D) GO enrichment analysis including biological process,
molecular function and cellular component based on high-expression
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genes in cluster one and cluster two. The length of bars represents gene
counts of GO terms. Color represents adjusted p value (Benjamini-

Hochberg), the redder the color, the greater the significance.

SUPPLEMENTARY FIGURE 3

Kaplan–Meier survival analysis for TARGET OS patients based on the

expression of ATF4 (A), HILPDA (B), ATM (C), CBS (D), MUC1 (E), MT1G
(F), PML (G), ARNTL (H).

SUPPLEMENTARY FIGURE 4

Validation of the ferroptosis prognostic signature in GEO OS cohort. (A)
Distribution plots of risk scores and heatmap of signature gene expression
in GEO OS patients. Red represents high expression level and blue

represents low expression. The darker the color, the greater the
significance. (B) Kaplan-Meier analysis exhibiting the overall survival of

GEO OS patients in high-risk group and low-risk group. (C) Time

dependent ROC curve analysis of the ferroptosis signature model in
predicting prognosis of GEO OS patients. * P < 0.05; ** P < 0.01; *** P

< 0.001; **** P < 0.0001.

SUPPLEMENTARY FIGURE 5

Single cell sequencing analysis of primary OS samples. (A) UMAP

visualized 16 cell subclusters identified using “FindClusters” function. (B)
Heatmap of top10 feature genes in 16 subclusters. Yellow represents high
expression level of genes, purple represents low expression. (C)
Expression of eight risk signature genes in all identified cells. Purple
represents high expression of signature genes. The more purple the

color, the higher the expression. (D) Expression proportion of eight
signature genes among all detected cells in primary OS samples. Red

represents the proportion of gene-positive cells and blue represents the

proportion of gene-negative cells.
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SUPPLEMENTARY FIGURE 6

Single cell sequencing analysis of metastatic OS samples. (A) UMAP
visualized 13 cell subclusters identified in metastatic OS samples using

“FindClusters” function. (B) Heatmap of top10 feature genes in the 13
subclusters. Yellow represents high expression level of genes, purple

represents low expression. (C) Expression of eight risk signature genes
in all identified cells. Purple represents high expression of signature genes.

The more purple the color, the higher the expression. (D) Expression
proportion of eight signature genes among all detected cells in metastatic

OS samples. Red represents the proportion of gene-positive cells and

blue represents the proportion of gene-negative cells. (E) UMAP
visualization exhibits 10 annotated cell clusters based on metastatic OS

single cell sequencing. (F) Risk cell clustering by ferroptosis signature
clusters all cells into high-risk cells and low-risk cells. Red represents

high-risk cells and blue represents low-risk cells. NA represents partial
signature genes were not expressed in the single-cell sparse matrix.

SUPPLEMENTARY FIGURE 7

Single cell sequencing analysis of recurrent OS samples. (A) UMAP
visualized 13 cell subclusters identified in recurrent OS samples using

“FindClusters” function. (B) Heatmap of top10 feature genes in the 13

subclusters. Yellow represents high expression level of genes; purple
represents low expression. (C) Expression of eight risk signature genes

in all identified cells. Purple represents high expression of signature genes.
The more purple the color, the higher the expression. (D) Expression

proportion of eight signature genes among all detected cells in recurrent
OS samples. Red represents the proportion of gene-positive cells and

blue represents the proportion of gene-negative cells. (E) UMAP

visualization exhibits 6 annotated cell clusters based on recurrent OS
single cell sequencing. (F) Risk cell clustering by ferroptosis signature

clusters all cells into high-risk cells and low-risk cells.
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Combined bulk RNA-seq and
single-cell RNA-seq identifies a
necroptosis-related prognostic
signature associated with
inhibitory immune
microenvironment in glioma

Sicheng Wan1,2†, Ulrich Aymard Ekomi Moure2,3†,
Ruochen Liu1,2, Chaolong Liu1,2, Kun Wang1,2, Longfei Deng1,2,
Ping Liang4* and Hongjuan Cui1,2*

1The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest
University, Chongqing, China, 2Cancer Center, Medical Research Institute, Southwest University,
Chongqing, China, 3The Ninth People’s Hospital of Chongqing, Affiliated Hospital of Southwest
University, Chongqing, China, 4Department of Neurosurgery, Chongqing Children’s Hospital,
Chongqing, China
Necroptosis is a programmed cell death playing a significant role in cancer.

Although necroptosis has been related to tumor immune environment (TIME)

remodeling and cancer prognosis, however, the role of necroptosis-related

genes (NRGs) in glioma is still elusive. In this study, a total of 159 NRGs were

obtained, and parameters such as mutation rate, copy number variation (CNV),

and relative expression level were assessed. Then, we constructed an

18-NRGs-based necroptosis-related signature (NRS) in the TCGA dataset,

which could predict the patient’s prognosis and was validated in two external

CGGA datasets. We also explored the correlation between NRS and glioma

TIME, chemotherapy sensitivity, and certain immunotherapy-related factors.

The two necroptosis-related subtypes were discovered and could also

distinguish the patients' prognosis. Through the glioblastoma (GBM) scRNA-

seq data analysis, NRGs’ expression levels in different GBM patient tissue cell

subsets were investigated and the relative necroptosis status of different cell

subsets was assessed, with the microglia score culminating among all.

Moreover, we found a high infiltration level of immunosuppressive cells in

glioma TIME, which was associated with poor prognosis in the high-NRS

glioma patient group. Finally, the necroptosis suppressor CASP8 exhibited a

high expression in glioma and was associated with poor prognosis. Subsequent
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experiments were performed in human glioma cell lines and patients' tissue

specimens to verify the bioinformatic analytic findings about CASP8.

Altogether, this study provides comprehensive evidence revealing a

prognostic value of NRGs in glioma, which is associated with TIME regulation.
KEYWORDS

necroptosis-related gene, necroptosis-related prognostic signature, glioma, tumor
immune microenvironment, single cell RNA seq
Introduction

Glioma, a malignant central nervous system (CNS) tumor

originating from the glial, is featured with high recurrence and

poor prognosis. According to the World Health Organization

(WHO), glioma classification relies on different histopathological

subtypes and is classified into four grades (I-IV), with grades I-III

being the low-grade glioma (LGG) and grade IV representing the

aggressive form, GBM (1, 2). Although conventional surgical

resection, chemoradiotherapy combined with immunotherapy

and electric field therapy improve the prognosis of glioma

patients to an extent, the overall prognosis of glioma patients

remains poor due to the glioma heterogeneity and epigenetic

mutations of intratumoral molecules (including isocitric

dehydrogenase (IDH) and epidermal growth factor receptor

mutations, 1p19q co-deletion, and MGMT promoter

methylation). Accordingly, it is urgent to comprehensively

understand the molecular mechanisms underlying glioma

recurrence and progression, and discover new biomarkers for a

better diagnosis and treatment of this disease (3).

Necroptosis is a novel form of regulated necrosis. It is a cell

death pattern originally programmed to protect the host

against microbial agents when the caspase-dependent

apoptosis pathway is blocked by pathogens. Generally, the

classical necroptotic pathway is triggered by extracellular

stimuli, such as tumor necrosis factor (TNF), which activates

the downstream receptor-interacting serine/threonine kinases

1 and 2 (RIPK1/2), leading to the phosphorylation of the mixed

lineage kinase domain-like pseudokinase (MLKL). The latter

then translocates to the cytoplasmic membrane to generate the

pore complex, resulting in the release of damage-associated

molecular patterns (DAMPs) and cellular contents, and

membrane rupture (4, 5). Caspase-8 (CASP8) is a necroptosis

suppressor that inhibits the necroptotic pathway by cleaving

RIPK1 and RIPK3 (6). The two latter molecules show low

expression level in multiple cancer types and the conventional

perspective reckon that the related activated necroptosis

promotes cell necrosis and leads to tumor inhibition.

However, recent studies have suggested that necroptosis
02
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might play a dual role in tumors. For instance, necroptosis-

mediated dying tumor cells induce the C-X-C motif chemokine

ligand 1 (CXCL1) and sin3A-associated protein 130 (SAP130)

release to aggravate inhibitory TIME (7, 8). Besides, DAMPs

released from damaged or dying cells can promote

immunosuppressive cell accumulation in the TIME (9).

In this study, we aimed to comprehensively analyze the

expression patterns of NRGs in glioma, construct an NRS to

predict the prognosis of glioma patients, and explore the

relationship between necroptosis and glioma immune

microenvironment at a single-cell level. We found the

dysregulation of the necroptosis pathway in glioma and certain

NRGs displayed abnormal expression, multitype mutations, and

CNVs, and certain of the NRGs were associated with TIME

regulation. Next, we constructed and validated an NRS that

could effectively predict the prognosis and chemosensitivity of

patients with glioma. And then, based on the NRS, we explored

the immunotherapy difference between the two NRS groups and

further discovered two necroptosis-related subtypes, which can

also distinguish the patients’ prognosis. Later, we also assessed

the expression of NRGs in different cell subsets at a single-cell

level. Finally, we analyzed the core intersection gene CASP8 from

the perspectives of immune checkpoints, immune cell

infiltration, prognosis, and protein expression, which unveiled

that CASP8 can be used as a novel potential glioma

prognosis biomarker.
Materials and methods

Datasets acquisition and processing

The expression profile with the Toil RNA-seq recompute and

related clinical sample information LGG, GBM, and normal brain

tissue samples) were downloaded from The Cancer Genome Altas

(TCGA) [TCGA-LGG, TCGA-GBM and the Genotype-Tissue

Expression (GTEx) database (UCSC Xena repository, an online

cancer database designed by the University of California–Santa

Cruz, http://xena.ucsc.edu/)] (10). Thereafter, LGG and GBM
frontiersin.org
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RNA-seq data were merged, and totals of 642 glioma samples

(LGG, n=499 and GBM, n=143) and 1259 normal brain tissue

samples were included in the present study.

For dataset validation, gene expression profile data

(mRNAseq-693 and mRNAseq-325) and corresponding

clinicopathological information for glioma patients were

retrieved from the Chinese Glioma Genome Atlas (CGGA,

http://www.cgga.org.cn/) (11).

Corresponding GBM scRNA-seq data from a previous

scRNA-seq research (single-cell transcriptome profiles in 10

primary IDHwt type GBM patients, GSE173278) were

downloaded from the Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/). The R-package (Seurat

4.1.0) was used to analyze scRNA-seq data (12–15). The top

20 principal components were used to construct the SNN graph

and UAMP embedding. The R-package (harmony 0.1.0) was

used for batch correction and cell annotation was performed

based on singleR and manual cell type annotation.
Differentially expressed
NRGs identification

NRGs differential expression analysis was performed with

FPKM and Wilcoxon rank sum test by using R-package

(Limma) (16). Gene expression was considered significant

when meeting the following criteria: adjusted p-value<0.05

(BH method) and |log2(Fold Change)| >1.0.
Analysis of NRGs mutation

NRGs mutation frequency and oncoplot waterfall plot were

generated by R-package (maftools) (17). For the gene CNVs, the

value >0.2 was defined as “gain” and the value< -0.2 was defined

as “loss”.
Identification and validation of the NRS

A total of 159 NRGs were obtained from the KEGG

necroptosis pathway [https://www.kegg.jp/entry/map04217)

(18). By using the R-package (survival (3.2-13)], we performed

the univariate Cox regression analysis to identify the NRGs

related to glioma patients’ overall survival (OS) in the TCGA

training set (p<0.05). A total of 126 genes were screened as

potential risk factors related to the OS. Then, the LASSO

regression algorithm was performed by using the R-package

(glmnet) to calculate regression coefficients to further refine the

gene set (19, 20). Finally, 15 NRGs were identified as the most

valuable OS genes and based on normalized gene expression

values and coefficients, each sample risk score was calculated

using the following formula:
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Riskscore =o
n

i=1
(exprgenei x coefficientgenei)

Based on the median value of all patients’ risk scores in the
TCGA training set, samples were classified into high- and low-

risk cohorts. For the signature validation, the same calculation as

described above was employed in two CGGA (mRNAseq-693,

mRNAseq-325) validation sets, respectively.

Then, we used R-packages [survival (3.2-13)” and

“survminer (0.4.9)] to analyze the survival of two risk groups

through the Kaplan-Meier (K-M) curve. The Log-Rank test was

conducted to assess survival differences between the two groups.

The time-dependent receiver operating characteristic (ROC)

curve was plotted by using R-packages [timeROC (0.4)” and

“survival (3.2-13)] to evaluate the predictive ability of the NRS

for 6 months, 1-, 2-, and 3-year glioma patient survival rates.
Functional enrichment analysis

To clarify the risk score-related to biological functions and

pathways, the differentially expressed genes (DEGs) between

high and low-risk groups in the training set were identified as

described above. DEGs’ biological functions and pathways were

explored through the gene ontology (GO) and Kyoto Genome

Encyclopedia (KEGG) pathway enrichment analysis by using R-

package (ClusterProfiler), the FDR p-value<0.05 was used as the

cut-off criterion.

The gene set enrichment analysis (GSEA) was used to

identify and compare the different cancer hallmarks between

high and low-risk groups in the TCGA cohorts (https://www.

gsea-msigdb.org/gsea/index.jsp).
Immune cell infiltration analysis

To explore the relationship between the immune cell

infiltration and calculated risk score, the correlation between

NRS groups and different immune cell infiltration was analyzed

by using the CIBERSORT, GSVA, and XCELL methods (21–23).

The gene set of immune cell types was obtained from a previous

research (24).
Chemotherapeutic drug
response analysis

The R-package (oncoPredict) was used to assess the drug

response differences between risk score and corresponding drugs

derived from the Genomics of Drugs Sensitivity in Cancer

(GDSC), Cancer Therapeutics Response Portal (CTRP), and

Cancer Cell Line of Encyclopedia (CCLE). Pearson coefficient

was used to calculate the correlation between signature score and

area under the dose-response curve (AUCs) values.
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Construction of an
NRS-based nomogram

The R-package (rms) was used to build the NRS-based

nomogram to predict glioma patients’ 6-months, 1- and 2-year

survival probability. To validate the nomogram, the calibration

was plotted, which can assess the nomogram prognostic accuracy;

the 45° line represents the best prediction. The decision curve

analysis (DCA) curve, drawn by R-package (rmad), was used to

test the nomogram value for clinical application.
The exploration of new
necroptosis subtypes

Based on the 18 NRGs, the consensus non-negative matrix

factorization (CNMF) algorithm was performed to identify new

necroptosis subtypes in the TCGA glioma cohort by using the R-

package (CancerSubtype). We used the silhouette coefficient to

evaluate the most optimal cluster number.
Cell culture

Human glioma (LN-229, U87-MG, U118-MG, U251-MG,

and A172) and human astrocyte NHA cell lines were obtained

from American Type Culture Collection (ATCC, Beijing, China).

All cell lines were regularly tested for mycoplasma contamination,

and cultured in Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco, New York, NY, USA), supplemented with 10% fetal

bovine serum (Gibco, New York, NY, USA).
Antibodies

The CASP8 (13423-1-AP) and CD11B/ITGAM (#66519-1-

Ig) antibodies were purchased from Proteintech Group (Wuhan,

China), and a-Tubulin (ab7291) antibody was purchased from

Abcam (Cambridge, UK).
Western blot (WB) assay

Cells were lysed with the cell lysis buffer (Beyotime). WB

assay was performed as previously described (25).
Patient specimen
immunohistochemistry (IHC) assay

15 pairs of glioma patients’ tissue samples were obtained

from the Affiliated Hospital of Southwest University (The Ninth
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People’s Hospital of Chongqing), and patients agreed and signed

consent. As previously described, paraffin sections were

dewaxed, hydrated, and repaired with corresponding antigens

(Sangon, Shanghai China), followed by overnight incubation

with CASP8 antibody (26). Visualization was made by using a

horseradish peroxidase detection system.
Immunofluorescence histochemistry
(IFH) assay

After dewaxing, samples were incubated with 10 mM citric

acid (pH6.0) for antigen repair and blocked with goat serum for

2 hours. Following primary antibody staining, PBS was washed

and incubated with fluorescent secondary antibody for 1 hour,

then washed with phosphate-buffered saline (PBS). Then, we

repeated the above procedure for the second primary antibody

staining. Finally, the tissue slices were mounted with medium

containing 4’,6-diamidino-2-phenylindole (DAPI). Stained

slides were observed by using confocal fluorescence

microscopy (Leica, Germany).
Data statistics and analysis

The bioinformatics statistics analysis was accomplished by R

(version 4.1.2, Institute for Statistics and Mathematics, Vienna,

Austria; https://www.r-project.org). The correlation analysis was

conducted by Spearman correlation analysis. The Chi-square

test was used to compare the different clinical indicators.

Survival status was evaluated by Cox regression analysis and

the OS, DSS, and PFS were generated by the Kaplan–Meier

method and evaluated by the log-rank test, respectively. The log-

rank test was used to assess the difference in immune infiltration

and drug response among different NRS groups.

As for the part of experiment validation, all observations

were confirmed by at least three independent biological

replicates. The results in this study were presented as the

means ± standard deviation (SD). Two-tailed Student’s t test

was performed for paired samples. P<0.05 was considered

statistically significant.
Results

The necroptosis pathway is dysregulated
in glioma

The workflow of this study is depicted in Figure 1. Patients

with incomplete clinical information were excluded from the

bulk RNA-seq data, and the clinical features of all included

patients are summarized in Table 1.
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We first investigated the mutation type and occurrence of

the 159 NRGs. The results showed a high occurrence of missense

and nonsense mutations, splice sites, deletions, and insertions

among the top 20 NRGs (Figure 2A). Then, we detected the

NRGs’ CNV score using the GISTIC software, and found that

the interferon alpha (IFNA) family genes lost their copy numbers

(Figure 2C, and Figures S1A-B). Next, we combined data from

both TCGA and GTEx databases to identify the DEGs between

glioma and normal brain tissues using the following parameters:

adjusted P value< 0.05, and |log2(Fold Change)| > 1. As a result,

we screened 29 NRGs with significant differential expressions

(Figure 2B, and Figure S1C). Finally, based on the 159 NRGs and

TCGA data, we performed the ssGSEA to calculate the sample

enrichment score and combined it with survival analysis, where

we found that activation of the necroptosis pathway was

associated with poor prognosis (Log-rank, p<0.001)

(Figure 2D, and Figures S1D-1E).
Establishment and validation of
an NRS in glioma

The above findings reveal the dysregulation of the

necroptosis pathway in glioma. To construct an effective

necroptosis prognosis signature in glioma, we pre-screened

126 potential NRGs closely associated with prognosis through

the univariate Cox regression (Table S1). Among these 126

NRGs, we applied the LASSO regression analysis and
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discovered 18 candidate genes, including the TIR domain-

containing adaptor molecule 2 (TICAM2), interferon beta 1

(IFNB1), H2A.X variant histone (H2AX), peptidylprolyl

isomerase A (PPIA), interferon-gamma receptor 2 (IFNGR2),

H2A clustered histone 11 (H2AC11), interleukin 1 alpha

(IL1A), caspase 8 (CASP8), Z-DNA binding protein 1 (ZBP1),

baculoviral IAP repeat containing 3 (BIRC3), phospholipase A2

group IVA (PLA2G4A), TNF receptor superfamily member 1A

(TNFRSF1A), TNF receptor superfamily member 10 B

(TNFRSF10B), signal transducer and activator of transcription

3 (STAT3), H2A.W histone (H2AW), BH3 interacting domain

death agonist (BID), macroH2A.2 histone (MACROH2A2), and

glutamate dehydrogenase 1 (GLUD1) (Figures 3A–C).

Then, Glioma patients in the TCGA training set were

classified into low- (n=321) and high- (n=320) risk groups

according to the median risk score. The K-M curves showed

that compared to the low-risk group, the high-risk group

significantly held a poor prognosis (Log-rank test, p<0.0001)

(Figure 3D). Besides, time-dependent ROC curves showed high

sensitivity and specificity for 6 months, 1-, 2-, and 3-year

survivals (Figure 3E). Finally, we performed the univariate Cox

regression analysis on the WHO glioma grades (I-IV), gender,

age, and NRS groups, and found that age and risk score were

significantly associated with glioma patients’ survival, suggesting

that the NRS could serve as a prognosis factor for glioma

patients (Figure 3F).

Finally, to validate the NRS predictive performance, we

assessed the two CGGA datasets (CGGA-mRNAseq_325 and
FIGURE 1

Workflow used in this study.
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CGGA-mRNAseq_693), which we sorted into both high-risk

(mRNAseq_325: n=156, and mRNAseq_693: n=328) and

low-risk (mRNAseq_325: n=157, and mRNAseq_693:

n=329) groups by using the respective dataset’s median risk

score as the cut-off value based on the same calculation

formula in the TCGA training set. The K-M curves showed

that the high-risk group had a shorter survival period than the

low-risk group and the ROC curves proved the predictive

effect of the NRS (Figures 3G–N).
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Identification of potential signaling
pathways and biological processes
related to the NRS

In order to probe the biological functions related to the NRS,

we displayed the differential analysis of the GSVA score on

cancer hallmark pathways between different NRS groups, based

on the following criteria: FDR< 0.05. Apparently, multiple

oncogenic pathways were significantly activated in the high-
A B DC

FIGURE 2

The necroptosis pathway is dysregulated in glioma. (A) NRGs mutational landscape. The more frequent mutations included missense and
nonsense mutations, splice sites, deletions, and insertions. (B) Volcano plot showing some NRGs differentially expressed in glioma and normal
brain tissues. (C) The CNV, gain, and loss of the NRGs and their distribution on human chromosomes. (D) Necroptosis score was calculated by
using the GSVA method, and through the K-M curves, activated necroptosis was found associated with poor prognosis (OS).
TABLE 1 Patients’ clinical features from the bulk RNA-seq.

TCGA
(N = 642)

CGGA_693
(N = 692)

CGGA_325
(N = 321)

Overall
(N = 1655)

Cancer type

GBM 143 (22.3%) 249 (36.0%) 139 (43.3%) 531 (32.1%)

LGG 499 (77.7%) 443 (64.0%) 182 (56.7%) 1124 (67.9%)

Age

Mean 46.7 (15.1) 43.3 (12.4) 43.0 (12.0) 44.5 (13.5)

Median 45.5
[14.0,89.0]

43.0 [11.0,76.0] 42.0 [8.0,79.0] 43.0 [8.0,89.0]

Missing 0 (0%) 1 (0.1%) 0 (0%) 1 (0.1%)

Gender

Female 271 (42.2%) 294 (42.5%) 122 (38.0%) 687 (41.5%)

Male 371 (57.8%) 398 (57.5%) 199 (62.0%) 968 (58.5%)

Grade

II 241 (37.5%) 188 (27.2%) 103 (32.1%) 532 (32.1%)

III 258 (40.2%) 255 (36.8%) 79.0 (24.6%) 592 (35.8%)

IV 143 (22.3%) 249 (36.0%) 139 (43.3%) 531 (32.1%)

Radio status

No 115 (17.9%) 136 (19.7%) 65 (20.2%) 316 (19.1%)

Yes 139 (21.7%) 510 (73.7%) 242 (75.4%) 891 (53.8%)

Missing 388 (60.4%) 46.0 (6.6%) 14.0 (4.4%) 448 (27.1%)
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FIGURE 3

Building and validating the NRS. A total of 126 NRGs were selected via the univariate Cox regression and Lasso regression and significantly
correlated with prognosis. (A) The most optimal parameter selected in Lasso regression by using the 10-fold cross-validation. Red dots indicate
the likelihood of deviance values, gray lines represent the standard error (SE), and vertical dot lines correspond to optimal values by minimum
criteria, and 1-SE, respectively. (B) The Lasso coefficient profile of 126 NRGs, with each curve representing a gene. (C) A total of 18 NRGs were
incorporated for the NRS construction. (D) The survival analysis of the NRS in the TCGA training set. (E) Verification of the NRS predictive
performance using the Time-ROC analysis. (F) Univariate Cox regression analysis illustrates that signature and age were the independent
prognostic factor for glioma patients. (G, H) The distribution of risk scores of glioma patients in CGGA-mRNA_325 and CGGA-mRNA_693
datasets, respectively. (I, J) Numbers of alive and dead patients with different risk scores in CGGA-mRNA_325 and CGGA-mRNA_693 datasets,
respectively. (K, L) Survival analysis. (M, N) Time-ROC analysis.
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risk NRS group, such as angiogenesis, hypoxia, KRAS, Notch,

PI3K-AKT-mTOR, and WNT-b-catenin. These pathways are

closely related to the poor prognosis of glioma patients

(Figure 4A). In addition, the KEGG and GO enrichment

analysis were conducted, based on the DEGs between high-

and low-risk groups in the TCGA training set. The KEGG and

GSEA enrichments indicated that the signature was related to

pivotal biological processes, such as lysosomes, antigen

processing and presentation, oxidative phosphorylation, DNA

replication, and so on. (Figures 4B, C). Besides, the GO

enrichment analysis further revealed that a large number of

immune-associated biological processes were associated with the

NRS, including immune responses mediated by leukocytes, B

cells, and T cells (Figure 4D). Notably, many immune-

inflammatory biological processes and pathways were

significantly enriched in three different enrichment methods,

suggesting that the difference may be valid in TIME between
Frontiers in Immunology 08
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high- and low-risk NRS groups. Nevertheless, further studies are

needed to compare the specific different immune cell infiltration

and TIME between the two NRS groups.
Analysis of tumor immune cell infiltration
and chemotherapeutic drug sensitivity
between NRS groups

Since the occurrence and progression of cancer considerably

rely on the TIME, we sought to investigate the relationship

between NRS groups and immune cell infiltration. To reach this

aim, three algorithms including XCELL, GSVA, and

CIBERSORT were performed to calculate the immune cell

infiltration between NRS groups. Regulatory T cells (Tregs)

negatively regulate the immunoreaction, and previous evidence

has demonstrated that the increased grade of glioma is
A B

DC

FIGURE 4

Identification of potential signaling pathways and biological processes associated with the NRS. (A) The hallmark pathway enrichment analysis
between NRS groups. (B, C) KEGG and GSEA enrichment analyses revealing the relevant enrichment pathways of DEGs between NRS groups.
(D) GO enrichment analysis unveiling the enrichment biological process of DEGs between NRS groups. *: p<0.05.
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proportional to the number of CD4+CD25+Foxop3 Treg cells in

the peripheral blood of glioma patients, indicating that

malignant progression of glioma might be associated with

Treg immunosuppression (27, 28). Macrophages are the major

immune cells with high plasticity, and two activated forms of

macrophages exist including M1 macrophages and M2

macrophages. Cytokines secreted by glioma can activate the

STAT3 signaling in macrophages, down-regulate the surface

antigens required for the antigen presentation, and up-regulate

M2 macrophages-specific antigens like epidermal growth factor

(EGF), vascular endothelial growth factor (VEGF), and matrix

metallopeptidase (MMPs), which in turn promote the tumor

growth and invasion (29–31). Moreover, myeloid-derived

suppressor cells (MDSCs) are a group of phenotypic

suppressor cells composed of myeloid progenitor cells and

myeloid precursor cells in various differentiation stages, such

as granulocytes, macrophages, and dendritic cells, known to

extensively infi ltrate in tumor tissues and exert an

immunosuppressive role in the TIME (32, 33). It is also

reported that MDSCs’ proportion in peripheral blood

mononuclear cells (PBMCs) in GBM patients was evidently

higher than that in controls and the accumulation of MDSCs

in GBM patients’ peripheral blood may inhibit the immune

effects of T cells (34, 35). Combining three immune cell

infiltration algorithms, we found that the infiltration of

activated M2 macrophages, Tregs, and MDSCs in the high-risk

NRS group was significantly higher than that in the low-risk

NRS group, which partly explained the effect of the immune cell

infiltration on the survival between NRS group (Figures 5A–E).

To investigate the chemotherapeutic drug resistance

between NRS groups based on the GDSC, CCLE, and CTRP

datasets, the R package (oncoPredict) was used to calculate the

sensitivity of NRS groups to different chemotherapeutic drugs

(Figures 5F; S2A, 2C). We used the correlation analysis to

identify the relationship between the signature score and the

AUC of 12 GDSC-derived compounds. IOX2, axitinib, AZ628,

dasatinib, CGP-60474, and sorafenib were negatively correlated

with the signature score, whereas the remaining compounds

(n=6) were positively correlated. Moreover, the 12 compounds

were found to inhibit the ABL signaling, cell cycle, histone

acetylation, DNA replication, ERK MAPK signaling, cell

metabolism, RTK signaling, and other signaling pathways by

targeting corresponding core molecules. Specific interactions

between drugs, target molecules, and pathways are shown in

sankey plot (Figures 5G and S2B, D).
Construction of clinical nomograms
associated with the NRS

To further incorporate the NRS into the clinical diagnosis of

glioma prognosis, we drew an intuitional nomogram to

thoroughly comprehend the impact of certain risk factors on
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patient survival (age, gender, and grade) (Figure 6A). The

calibration curve demonstrated a good agreement between the

real observed OS and the ideal nomogram-predicted OS in 6

months, 1- and 2-year survival (Figure 6B). Finally, the DCA

curves were performed to verify the acceptability of this

signature in predicting the probability of glioma patients to

survive for 6 months, 1 and 2 years. Our NRS and nomogram

had a good predictive performance (Figure 6C). All results

validated the high precision and practical utility of the NRS.
Predicting the immunotherapy sensitivity
of glioma patients with the present NRS

An increasingly number of clinical trials and researches

have reported that glioma patients can benefit from related

immune checkpoint inhibitors (ICI), CAR-T therapy, and

tumor antigen-related vaccines (36–38). Accordingly, we

further explored the relationship between NRS groups and

the expression of immunotherapy-related targeted molecules.

Firstly, we used the TIDE method to evaluate the potential

clinical efficacy of immunotherapy in different NRS groups.

Among them, the higher the TIDE prediction score, the greater

the possibility of immune evasion, indicating that the patient is

less likely to benefit from ICI treatment. However, we found

there was no significant difference in the TIDE score between

the two groups (Figure 7A) (39). Next, through the differential

analysis, we found that the human leukocyte antigen (HLA),

checkpoints, chemokines, and costimulatory molecules were

highly expressed in the high NRS group, such as the HLA-B,

CD44, CXCL14, and TNFRSF1A (Figure 7B). Finally, we found

that IFNG, CD8, and CD274 were highly expressed in the high

NRS group and the Merck18 score was higher too (Figures 7C–

F). Meanwhile, the Exclusion score was lower in the high NRS

group (Figure 7G) . The above are representa t ive

immunological biomarkers. These results indicated that high

NRS group patients may be more likely to benefit from anti-

tumor immunotherapy.
Exploring new necroptosis subtypes
from the 18 NRGs in the present NRS

Based on the 18 NRGs in the present NRS, we identified

two new necroptosis-related subtypes in glioma patients by

utilizing the consensus non-negative matrix factorization

(CNMF) method (Cluster 1 and Cluster 2) (Figures 8A, B)

(40). Then, the K-M survival analysis showed that C1 held a

better prognosis than C2 (Log-rank test) (Figure 8C).

Dimensionally reduction was employed by Principal

Component Analysis (PCA), and we found that the 18 NRGs

have evident differential expression patterns (Figure 8D). The

heatmap showed that the 4 genes, MACROH2A2, GLUD1,
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H2AW, and BID were highly expressed in the C1 group, on the

contrary, the other 14 genes were highly expressed in the C2

group (Figure 8E). In order to probe the related different

pathways of the two subtypes, the GSVA was conducted and

we found many immune and inflammatory pathways were

significantly up-regulated in the C2 group. (Figure 8F). Finally,

we used TIMER, CIBERSORT, CIBERSORT-ABS ,

QUANTISEQ, MCPCOUNTER, XCELL, and EPIC, 7

different algorithms to evaluate the immune cell infiltration

between the two subtypes. By comprehensively comparing the

7 methods, we found that the C2 group held a higher immune

cell infiltration (Figure 8G).
Frontiers in Immunology 10
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Identification of potential genes
associated with necroptosis in glioma by
scRNA-seq

To resolve the expression patterns of genes in the NRS at a

single-cell level, scRNA-seq data in the GSE173278 dataset was

selected for analysis. The R-package (Seurat 4.1.0) was used for

scRNA-seq analysis and the batch correction between samples was

employed by using the harmony algorithm (Figures S3A-3C). We

used the uniform manifold approximation and projection (UMAP)

for dimensionality reduction visualization and a total of 29339 cells

were divided into seven categories: CENPF+ malignant (n=5363),
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FIGURE 5

Tumor immune cell infiltration analysis and chemotherapeutic drug sensitivity between NRS groups. Infiltration level analysis of Tregs (A), M2
macrophages (B), resting NK cells (C), activated NK cells (D), and MDSCs (E) between NRS groups by using the CIBERSORT algorithm. (F) Pearson
correlation coefficient between the AUC of 12 chemotherapy drugs and the signature score in the GDSC database. (G) Sankey plot showing the
specific relationship between the 12 drugs in the GDSC database and their target molecules and pathways. * p<0.05; ** p<0.01 and **** p<0.0001.
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VEGFA+ malignant (n=6446), OLIG1+ malignant (n=11637),

microglia (n=3219), endothelial cell (n=919), and oligodendrocyte

(n=1020) (Figure 9A). Corresponding molecular markers were used

to identify relevant cell subsets (Figure 9B). We analyzed the

expression of 18 genes in the NRS in different types of cell

subsets (Figure 9E), where BIRC3 and CASP8 were specifically

expressed in VEGFA+ malignant cells and microglia cells,

respectively (Figures 9C, D). And then, CASP8 expression in

microglia was verified by IFH assay in glioma patients’ tissues,

and we found a significant colocalization of CASP8 and microglia

cell marker CD11B (Figure 9H). Because of the specific BIRC3

expression in the VEGFA+ malignant cell subset, the biological

function of the VEGFA+ malignant cell subset was investigated. We

analyzed the differences between this subset and the other 6 cell

subsets and selected the DEGs for GO enrichment analysis. The

results showed that the main enriched biological processes were

hypoxia and stress responses (Figure 9F). Based on the genes in the

NRS, we lastly used the GSVA to evaluate the necroptosis pathway

status in each cell, and in general, we found the microglia and

CENPF+ malignant cells had a higher activated necroptosis status

(Figure 9G). CASP8, a core molecule located in the necrosome, can
Frontiers in Immunology 11
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selectively trigger apoptosis, necrosis, necroptosis, and

inflammatory cell death, such as pyroptosis, depending on its

status. CASP8 inhibition in the necroptosis pathway will promote

the interaction of RIPK1 with RIPK3, which in turn phosphorylates

the downstream molecule MLKL, ultimately leading to cell

necroptosis (41). Microglia is a type of macrophage that infiltrates

in glioma’s TIME and has two subtypes (M1 and M2), M2

microglia can induce the immunosuppression, invasion, and

angiogenesis of glioma by secreting cytokines (42, 43). Therefore,

we hypothesized that the activated necroptosis process in microglia

might evade the CASP8’s inhibitory effect. These necroptosis

microglia, which infiltrate in the glioma TIME induce a

immunosuppression, which may be associated with the glioma

progression and poor prognosis.
CASP8 is crucial for glioma progression

A random forest algorithm was employed to identify the

most characteristic gene in the NRS gene set. Due to the

profound impact on survival in glioma patients, 4 genes,
A
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FIGURE 6

Construction of clinical utility nomograms with the NRS. (A) The nomogram included patients’ age, gender, grade, and NRS groups for predicting
the 6 months, 1-, and 2-year survival probability of glioma patients. (B) Calibration curves showing accuracy and specification of the nomogram and
its association with actual clinical effects. (C) The DCA analysis of the nomogram for 6-months, 1- and 2-year survival prediction.
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namely IFNGR2, GLUD1, PPIA, and CASP8 were identified

(Figure S4A). Both IFNGR2 and CASP8 represented the

common intersection genes as revealed by the venn plot after

combining the DEGs between glioma and normal brain tissues,

NRS gene set, and important survival genes from the random

forest (Figure 10A). Given the key role of CASP8 in regulating

cell death process and its high expression in glioma, we further
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explored the biological function of CASP8 in glioma at mRNA

level, based on the TCGA database. We, that the expression

levels of CASP8 mRNA were considerably increased in different

cancer types, including bladder urothelial carcinoma, esophageal

carcinoma, stomach adenocarcinoma, etc. (Figure S4B). Then,

from the K-M curves, an association was obtained between

CASP8 expression and the poor prognosis of glioma patients
A B

D E

F G

C

FIGURE 7

Immunotherapeutic responses exploration between NRS groups. (A) The TIDE score in NRS groups. (B) Expression of different immune-related indexes
between NRS groups. (C–G) The expression differences of IFNG, CD8, CD274, and different Exclusion and Merck18 score between NRS groups.
*** p<0.001; ns, no significance.
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(Figures 10F; S4C, S4D). Similarly, a positive correlation

between CASP8 and increased glioma histopathological grades

was observed (Figure 10B). In addition, CASP8 expression

significantly differed between age groups (Age =<60 VS Age

>60), while in gender groups there was no difference (Figures

S4E, F). Methylation on the gene promoter region, one of the

epigenetic modifications, controls gene transcription and
Frontiers in Immunology 13
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expression to a large extent. Thus, based on the TCGA

methylation data, we explored the relationship between mRNA

and different CASP8 promoter methylation levels [4kb upstream

and 100bp downstream of the transcription start site (TSS)] and

found the methylation in both of the regions presented an

evident negative correlation with CASP8 expression (Figures

S4G, H). We also probed the CASP8 methylation in normal and
A B
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F
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C

FIGURE 8

The exploration and assessment of two new subtypes in TCGA glioma patients from the 18 NRGs in the present NRS. (A) Based on the CNMF
method, the C1 and C2 subtype groups were identified. (B) When K=2, the silhouette coefficient is the highest. (C) The K-M curves showed that
the patients in the C1 group had a higher survival probability than the C2 group. (D) PCA analysis illustrated that the two subtypes held different
NRGs expression patterns. (E) Heatmap showed the 18 NRGs expression in the two subtypes. (F) The pathway GSVA score of the two subtypes.
(G) The heatmap showed 7 algorithms to assess the immune cell infiltration between the two subtypes. ****: p<0.0001.
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GBM patients according to the TCGA-GBM cohort. In the

primary tumor group, CASP8 had a lower methylation level

than that in the normal group, although the number of samples

varied considerably between the two groups (Figure S4I). These

results about CASP8 methylation may also reflect the malignant

function of CASP8 in glioma development. Furthermore, a
Frontiers in Immunology 14
117
correlation between CASP8 and chemokines, cytokine receptor

interactions, and JAK-STAT signaling pathways was further

unveiled using the KEGG and GSEA enrichment analyses

(Figures 10D, E). Given the association between CASP8 and

immune signaling pathways, we investigated the correlation

between CASP8 and immune checkpoints (Figures 10C; S5A,
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FIGURE 9

Identification of the potential genes associated with necroptosis in glioma through the scRNA-seq analysis. (A) Cells were divided into 7 cell
subsets based on the marker gene expression. (B) Respective marker genes of the 7-cell subsets. (C, D) Expression of BIRC3 and CASP8 in
different cell subsets, with a specific expression in VEGFA+ malignant cells and microglia, respectively. (E) Expression levels of 18 NRGs in the
NRS from 7 different cell subsets. (F) GO enrichment analysis of significant DEGs in VEGFA+ malignant cell subsets versus other cell subsets.
(G) The GSVA score of the necroptosis pathway in each cell subset. (H) IFH assay confirmed the localization of CASP8 in microglia (red
fluorescent: anti-CD11B, microglia marker; green fluorescent: anti-CASP8; blue fluorescent: DAPI, nuclear).
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FIGURE 10

CASP8 functional exploration. (A) Venn plot portraying the common genes in the NRS, DEGs, and random forest analysis. (B) The expression of
CASP8 was positively correlated with glioma patient histopathological grades (II-IV). (C) Heat map displaying the relationship between various
inhibitory immune checkpoints and CASP8 expression in pan-cancer. (D, E) KEGG and GSEA enrichment analyses showing CASP8-related
signaling pathways and biological processes in glioma. (F) The K-M curves suggested that the high CASP8 expression was associated with low
overall survival of glioma patients. (G, H) The protein expression of CASP8 in astrocyte NHA and five human glioma cell lines was detected by
WB assay, and the protein expression level was quantified in the histogram. The CASP8 protein expression level is lower in glial cell than glioma
cell lines. (I, J) IHC stain was performed on the 15 glioma patient tissues. Compared with the adjacency, the positive IHC signal of CASP8 was
more in the glioma tissues. * p<0.05; ** p<0.01; *** p<0.001 and **** p<0.0001.
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S5B) as well as immune cell infiltration (Figures S5C, D) by using

CIBERSORT and GSVA algorithms. Next, the expression

analysis of CASP8 in human astrocyte NHA and 5

immortalized human glioma cell lines (LN-229, U87-MG,

A172, U118-MG, and U251-MG) showed that CASP8

expression in astrocytes was lower than that in 5 human

glioma cell lines (Figures 10G, H). IHC experiment on 15

glioma patient tissues also demonstrated that CASP8

expression in glioma tissues was higher than that in

paracancerous tissues (Figures 10I, J), further confirming the

above analysis of CASP8 expression in TCGA.

It has been reported that CASP8 can initiate apoptosis while

inhibiting necroptosis (41). However, our results showed that

CASP8 was highly expressed in glioma. Through the ssGSEA

score of glioma patients in the TCGA database based on 159

NRGs, we found that the activated necroptosis was closely

related to the poor patients’ prognosis, suggesting that

necroptosis in glioma might be regulated by other genes than

CASP8. Therefore, we analyzed the expression patterns of core

genes in the KEGG necroptosis pathway between glioma and

normal brain tissues (Figure S6) and found several upstream

genes, such as TNF receptor superfamily member 1A (TNFR1),

TNF-related apoptosis-inducing ligand receptor (TRAILR), and

interferon production regulator (IFNR) were highly expressed in

glioma. Consistently, two vital effector molecules, RIPK1 and

RIPK3 were also highly expressed in glioma, suggesting that

initiation of necroptosis may be critically regulated by these

highly expressed upstream NRGs in glioma.
Discussion

Mutations in proto-oncogenes and suppressor genes are

directly linked to tumor occurrence, which leads to the

shutdown of tumor-suppressing signaling and continual

activation of tumor-proliferating signaling, resulting in

abnormal cell proliferation. At present, with advances in the

investigation of the tumor microenvironment (TME) and

TIME, researchers have found cancer progression to be

related to numerous immunosuppressive cell infiltrations in

TIME. Meanwhile, how to inhibit tumor progression by cell

death induction has always been a research focus. A variety of

small-molecule inhibitors and chemotherapy drugs targeting

key regulatory molecules of cell death processes, such as

apoptosis, ferroptosis, pyroptosis, and necroptosis, have

shown clinical benefits to patients (44, 45). However, the

immune suppression caused by the recruitment of immune

cells to TIME induced by DAMP release after cell necroptosis

has not been fully studied. It has been reported that some drugs

can inhibit glioma cell proliferation by inducing necroptosis

(46–51). Unfortunately, these findings only rely on in vitro

studies, which fail to reflect the interaction between glioma

necroptosis and TIME. To date, no studies have investigated
Frontiers in Immunology 16
119
the relationship between necroptosis and glioma TIME at a

single-cell level.

In the present study, we found that some NRGs were highly

expressed in glioma and the ssGSEA score suggested an

association between activated necroptosis and poor prognosis

in glioma patients. This may be consistent with the finding of a

previous study that reported an association between RIPK1

overexpression and glioma progression (52). Next, an NRS

consisting of 18 NRGs was established and the predictive

performance of the NRS was evaluated. Then, the NRS was

well validated in two external CGGA datasets, by combining the

results, the NRS showed a good performance in assessing the

prognosis. Moreover, through the functional enrichment

analysis, we found that angiogenesis, KRAS, and WNT

signaling pathways were activated in the high-risk group, and

KEGG and GO enrichment analysis showed that the DGEs

between NRS groups were mainly associated with immune and

inflammatory biological functions. Based on these results, we

analyzed the different immune cell infiltration to investigate the

relationship between necroptosis and TIME in glioma. We

found that Tregs, M2 macrophages, and MDSCs were

significantly infiltrated in the high-risk group. Combining the

TIME analysis and the high expression of NRGs in glioma, we

speculated that necroptosis in glioma may enhance the immune

response and eliminate own necrotic tumor cells, however, it

may probably promote immunosuppression in TIME as well

(25, 53–56).

Several studies have reported that injecting necroptotic

tumor cells, or engineered cells to specifically overexpress

RIPK3 into mouse tumor models leads to killer T cell

recruitment to TIME and attack tumor cells. Next, the

combination of this therapy with PD-1 immunotherapy could

result in long-lasting tumor clearance (57). But, in contrast,

some studies have also pointed out that RIPK1 and RIPK3-

drived tumor cell necroptosis could induce CXCL1 and SAP130

release that leads to mincle ligation activation and MDSC and

M2 macrophage infiltration, which promotes and accelerates

immunosuppressive and tumorigenesis, respectively. Our

viewpoint is that at an early stage, necroptosis may remove

tumor cells, whereas, at a later stage, the immunosuppressive

TIME driven by necroptosis contributes to immune escape and

results in poor prognosis of glioma patients (8, 25, 58–60). Later,

in order to investigate the relationship between immunotherapy

and NRS, we analyzed the expression difference of classical

immune-associated factors in different NRS groups. Among

them, most of the HLA, checkpoints , chemokines,

costimulatory molecules, IFNG, CD8, and CD274 were highly

expressed in the high-risk group, which showed that the high-

risk group may get more chances from the anti-glioma

immunotherapy. Such a founding may bring the poor

prognosis group some prospect. We discovered two

necroptosis-related subtypes by using the CNMF method and

assessed them. The two subtypes held different NRGs’
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1013094
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wan et al. 10.3389/fimmu.2022.1013094
expression patterns, the cluster 2 expressed more immune and

inflammatory genes and infiltered a much number of immune

cells than did in cluster 1; however, cluster 2 presented a poorer

prognosis that may echo the above discussion about the

inhibitory glioma TIME associated with necroptosis.

Thereafter, we used the scRNA-seq data to further study the

necroptosis in GBM and found through the ssGSEA score that

necroptosis was activated in both microglia and certain

malignant GBM cell subsets, the necroptotic cells infiltrating

in glioma TME may exacerbate the inhibitory TIME. In the end,

through differential expression analysis and random forest

feature screening, the core intersection gene CASP8 was

screened out and the comprehensively functional exploration

was conducted on it. We found CASP8 was significantly

overexpressed in a variety of cancers, including glioma.

Furthermore, the result indicated that the OS of glioma patient

groups with high CASP8 expression was evidently shortened,

and positively correlated with multiple inhibitory immune

checkpoints. The three seemingly contradictory findings

including the activated necroptosis pathway in glioma patients

with poor prognosis and high CASP8 expression in glioma as

well as classical negative regulation of necroptosis by CASP8

imply that the post-translational modification (PTM) of CASP8

may play a significant role in necroptotic glioma. As expected,

studies have indicated that CASP8 phosphorylation (mediated

by ribosomal protein S6 kinase (RSK) recruited into necrosome)

at Thr265 can stabilize the necrosome and relieve the inhibitory

effect on necroptosis caused by CASP8 (61, 62). However,

whether CASP8 expression can be affected by other PTMs,

such as ubiquitination, SUMOylation, and glycosylation

thereby impacting necroptosis needs further investigation. In

addition, the highly expressed CASP8 in gliomas may be a

feedback regulatory mechanism evolved by glioma to

avoid necroptosis.

Our study may have some limitations due to the lack of

patients’ specific clinical information and follow-up data, and all

data derived from public databases. Besides, the difference

between gene and protein expression levels might be

influenced by several complex biological processes.

Furthermore, our hypothesis of which immunosuppression is

caused by necroptosis needs further verification. We deem that

our study may bring more light to our understanding of how the

different necroptosis stages impact the glioma progression.

In conclusion, through analyzing gene expressions and

clinical characteristics of glioma patients in the TCGA dataset,

we found that certain NRGs harbored mutations and

overexpressed in glioma. Besides, a novel NRS was developed,

which can effectively assessed the prognosis in glioma patients.

Our study further indicated that the activated necroptosis

pathway was related to poor prognosis, and multiple

immunosuppressive cells were highly infiltrated in the high-
Frontiers in Immunology 17
120
risk group. We assumed that the poor prognosis caused by

necroptosis may be associated with immunosuppressive TIME.

Through scRNA-seq data, we also reported that the necroptosis

pathway in GBM and microglial was activated, suggesting that

necroptosis in the glioma TIME might promote glioma

progression. Our findings may provide guidance for the study

of immune escape induced by necroptosis in glioma, and give a

new scheme for glioma prognosis prediction. CASP8 high

expression seems to be one of the mechanism by which glioma

escapes necroptosis and therefore it represents a potential

biomarker for glioma prognosis.
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Gliomas, originating from the glial cells, are the most lethal type of primary

tumors in the central nervous system. Standard treatments like surgery have

not significantly improved the prognosis of glioblastoma patients. Recently,

immune therapy has become a novel and effective option. As a conserved

group of transcriptional regulators, the Sry-type HMG box (SOX) family has

been proved to have a correlation with numerous diseases. Based on the large-

scale machine learning, we found that the SOX family, with significant immune

characteristics and genomic profiles, can be divided into two distinct clusters in

gliomas, among which SOX10 was identified as an excellent immune regulator

of macrophage in gliomas. The high expression of SOX10 is related to a shorter

OS in LGG, HGG, and pan-cancer groups but benefited from the

immunotherapy. It turned out in single-cell sequencing that SOX10 is high in

neurons, M1macrophages, and neural stem cells. Also, macrophages are found

to be elevated in the SOX10 high-expression group. SOX10 has a positive

correlation with macrophage cytokine production and negative regulation of

macrophages’ chemotaxis and migration. In conclusion, our study

demonstrates the outstanding cluster ability of the SOX family, indicating that

SOX10 is an immune regulator of macrophage in gliomas, which can be an

effective target for glioma immunotherapy.
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Introduction

Gliomas, originating from the glial cells, are the most

lethal type of primary tumors in the central nervous system

(CNS) (1). According to theWHO classification criteria, they are

classified into four types inferred by malignancy (2). In depth,

grade II and III gliomas are classified as lower-grade gliomas

(LGG), grade IV (glioblastoma, GBM) as higher-grade gliomas

(HGG), by The Cancer Genome Atlas (TCGA). For most cases,

LGG with the isocitrate dehydrogenase (IDH) mutant for the

metabolic enzymes has a conspicuously better prognosis than

the IDH wild type, which are generally GBMs. To date, the

standard treatment contains surgery has not significantly

improved the prognosis and median overall survival (OS) of

GBM patients (3). As a consequence, a new and effective therapy

is of urgency.

Recent studies have found that as a constitutive part of the

tumor microenvironment (TME), tumor cells, stromal cells, and

infiltrating immune cells all serve a variety of biologically

important roles in glioma proliferation, progression, and

prognosis (4). Moreover, we and others have previously

suggested several immune-related prognostic biomarkers to

predict prognosis and immunotherapy efficacy perfectly (5, 6).

These may all contribute to the immune therapy of glioma.

Sry-type HMG box (SOX) family proteins are a conserved

group of transcriptional regulators depending on the high-

mobility group (HMG) domain to bind with DNA (7). The

SOX family has been revealed to have the correlation with

numerous diseases (8). Almost all SOX genes, for instance,

SOX1, SOX2, SOX7, and SOX10, have been found to have the

potential to regulate the progression of glioma, whose expression

levels are also related to the prognosis of patients (9–12). SOX

genes play an important role in this regulation, which are found

to be involved in the maintenance of the stemness or differential

initiation of glioma stem cells (13). For example, knockdown of

SOX1 expression in glioma stem cells has been found to impair

the self-renewal, proliferation, viability, and tumorigenesis

ability of glioma cells, while the overexpression of SOX1

promoted the malignant phenotype of glioma (9). However,

the overexpression of SOX11 prevents tumorigenic ability

in glioma-initiating cell-like cells and human glioma-initiating

cel ls derived from malignant gl iomas by inducing

neuronal differentiation (14). Moreover, previous studies have

confirmed that SOX is closely associated with the TME (15).

SOX genes in tumor cells influence the infiltration of immune

cells via paracrine signals, and vice versa (16). By giving tumor

cells the ability to evade NK cells, SOX2 and SOX9 have been

found to promote the immune evasion of tumor cells (17, 18).

Therefore, the SOX family is crucial to the development

of gliomas, especially in the aspect of the TME and

immunotherapy. However, it remains unclear which one, as

well as the detailed function, of the SOX family plays the leading

role in glioma.
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Herein, our study extracted data from bulk tumor (The

Cancer Genome Atlas, TCGA; the Chinese Glioma Genome

Atlas, CGGA) and single-cell mRNA-seq databases (SCP50 and

SCP393; http://singlecell.broadinstitute.org). Cluster analysis

was performed, and SOX10 was identified as a distinguished

biomarker to explore the prognostic value and association with

the glioma immune microenvironment.
Materials and Methods

Data collection and preprocessing

1685 samples of diffuse glioma related data and complete

clinicopathological annotations were obtained from two

datasets: TCGA (https://xenabrowser.net/) and CGGA (http://

www.cgga.org.cn/). 672 samples in TCGA were used as the

training set, while 1013 samples in CGGA were used as the

validation set. We excluded samples with insufficient OS. The

RNA-sequencing data, SCP50 and SCP393, was collected form

Single Cell Portal platform (http://singlecell.broadinstitute.org).

To possessing a similar signal intensity with the RMA- processed

values, the fragments per kilobase million (FPKM) values were

transformed into transcripts per kilobase million (TPM) values.
Genomic alteration

We obtained the somatic mutation and copy number variant

(CNV) profiles from TCGA dataset. We used GISTIC 2.0

analysis (https://cloud.genepattern.org) to assess the landscape

of CNV, including the frequency of function mutation gain or

loss at the amplified or deleted peaks.
Unsupervised consensus clustering
for the SOX family and the selection
of SOX10

Using the ConsensusClusterPlus R package, we determined

the optimal cluster number and their constancy and authenticity

in TCGA cohort and meta-cohort. We performed principal

component analysis (PCA) to ensure the clustering tendency.

The LASSO-LR algorithm, Pamr algorithm, random forest

algorithm, XGboost algorithm, and Boruta algorithm were

used to screen out the most characteristic genes, SOX10.
TME immunological characteristic
analysis

The Estimation of STromal and Immune cells in MAlignant

Tumors using Expression data (ESTIMATE) algorithm was used
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to estimate the stromal score, immune score, and estimate score

of the infiltrating immune cells in the TME. The Tumor Immune

Estimation Resource 2.0 (TIMER2.0; http://timer.cistrome.org/)

web server was used to thoroughly evaluate the degree of

immune infiltrating cells in gliomas. We used the xCell

algorithm to ascertain the enrichment levels of 64 types of

immune cells. The proportions of 22 types of TME cells in

tumor tissues were evaluated by the CIBERSORT algorithm. The

R gene set variation analysis (GSVA) package was implemented

to calculate enrichment scores by single-sample gene set

enrichment analysis (ssGSEA). Besides, the EPIC algorithm,

MCPcounter algorithm, and QuantSeq algorithm were also

executed to estimate the immune infiltrating cell abundance.

Using ssGSEA, we evaluated the seven steps of cancer immune

cascades. This immunity cycle determined the destination of

tumor cells and reflected the immune response of the anticancer.

The subMap algorithm was used to evaluate the response to

therapies of anti-CTLA4 and anti-PD1. Also, the Tumor

Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.

harvard.edu/setquery/) and Tumor Immune Syngeneic MOuse

(TISMO) (http://tismo.cistrome.org) algorithm was utilized for

deducing the immune checkpoint blockade immunotherapy

responses in gliomas.
Single-cell sequencing

R package Seurat was employed to process the single-cell data

expressionmatrix. We used “NormalizeData” to renormalize data.

Then, 2,000 highly changeable genes were identified by

“FindIntegrationAnchors.” “FindIntegrationAnchors” and the

“Intergratedata” were used to merge GBM sample data sets.

“RunPCA” and “FindNeighbors” was used to perform PCA.

Afterwards, to alternately combine cells together, we used the

“FindClusters” function. Finally, to visualize the analyses,

“UMAP” was performed.
Multiplex immunofluorescence staining

We purchased the glioma tissue array from Wuhan Tanda

Scientific Co., Ltd. (NGL1021), with ethics approvement. SOX10

(Mouse, 1:100, Proteintech, China), CD163 (Rabbit, 1:3,000,

Proteintech, China), and CD68 (Rabbit, 1:3,000, Servicebio,

China) were the primary Abs. Horseradish peroxidase-conjugated

secondary antibody incubation (GB23301, GB23303, Servicebio,

China) was the secondary antibody. The tyramide signal was

amplified into TSA [FITC-TSA, CY3-TSA, 594-TSA, and 647-

TSA (Servicebio, China)]. The stained slides were scanned using the

TissueFAXS platform (TissueGnostics, Vienna, Austria). The

spatial analysis of the stained cells was performed using the

StrataQuest software (TissueGnostics, Vienna, Austria).
Frontiers in Immunology 03
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Drug response prognostication

All pharmacogenomic data were downloaded from the

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org/). The semi-inhibition rate (IC50) reckoned by

the pRRophetic R package was utilized to predict the drug

susceptibilities and responses.
Statistical analysis

The overall survival of divergent groups was assessed

by Kaplan–Meier curves (KM curves) with the log-rank test.

All OS curves were produced by the survminer R package.

Mutation landscape OncoPrint was executed by the maftools

R package. Heatmaps were pictured found on the R package

complexHeatmap. Student’s t-test was conducted to analysis

normally distributed variables between the two groups while

one-way analysis of variance (ANOVA) was conducted to

analysis normally distributed variables between multiple

groups. The Wilcoxon test was applied to analysis non-

normally distributed variables between the two groups while

Kruskal-Wallis test was applied to analysis normally distributed

variables between multiple groups. R 3.6.3 was used to conduct

all statistical analyses. Statistics were considered significant when

p-value< 0.05.
Results

Two distinct clusters of the SOX family

Firstly, we evaluated the clustering capabilities of the SOX

family and visualized it (Figure 1A). To choose the ideal cluster

number, the stability of clustering was appraised by the

ConsensusClusterPlus package in TCGA (Figures 1B, C). It

was found that k = 2, with the flattest CDF curve, is the

optimal choice (Figure 1B). Then, clustering tendency was

evaluated by principal component analysis (PCA). We used

blue dots to represent cluster1, while red dots represent

cluster2. SOX clusters were separated significantly, indicating a

high-quality consensus cluster result (Figure 1D).

We further explored the overall survival of glioma patients in

cluster1 and cluster2, p < 0.001. The Kaplan–Meier curves firmly

demonstrated that cluster2 had higher and more prolonged

survival than cluster1 (Figure 1E). Besides, Figures 1F, G show

the global view of mutational distribution in cluster1 and

cluster2, respectively. As a biomarker related to the

malignancy of gliomas, IDH1 mutation took up 69% of the

general in cluster2, much higher than that of cluster1, 44% (19,

20). Cellular tumor antigen p53 (TP53) alteration was presented

similarly in cluster1 (37%) and cluster2 (45%). In cluster1, the
frontiersin.org
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FIGURE 1

Cluster analysis of the SOX family. (A) Visualization of cluster analysis. (B, C) Determination of the number of clusters. (D) Significant separation
of SOX clusters by PCA. Blue dots represent cluster1, while red dots represent cluster2. (E) Kaplan–Meier overall survival curves comparing
cluster1 and cluster2 in gliomas. (F) Detection of the genes with the highest mutation frequency in cluster1. (G) Detection of the genes with the
highest mutation frequency in cluster2.
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following three genes ranked by frequency were alpha-

thalassemia/mental retardation syndrome x-linked chromatin

remodeler (ATRX) (22%), epidermal growth factor receptor

(EGFR) (16%), and titin (TTN) (16%), while those in cluster2

were ATRX (29%), CIC (19%), and TTN (14%). In conclusion,

the SOX family has a close correlation with the prognosis and

proliferation of gliomas.
Immune characteristics of two clusters

We investigated the TME characteristics of cluster1 and

cluster2. We evaluated the ESTIMATEScore, ImmuneScore, and

StromalScore of the two clusters in TCGA dataset (Figures 2A–C).

Among these three evaluations, scores of cluster1 were all higher

than those of cluster2. Moreover, they could be thought to have a

significant difference, on account of p < 0.001. Then, we calculated

the proportion of five immune subtypes in the two clusters

(Figure 2D). Immunologically Quiet was generally presented in

cluster2 (more than 50%) and was partially observed in cluster1

(less than 50%). On the contrary, Lymphocyte Depleted was the

frequentist immune subtype in cluster1, which took up over 50%.

Moreover, we found that the TME indicator scores of cluster2

seemed to be lower than those of cluster1, which indicated a

weaker immune response (Figure 2E). It also revealed the

difference between the two clusters.

We calculated relating levels of 64 cell types by the xCell

algorithm and clusters in TCGA (Figure 2F). We defined four

subtypes of glioma: pro-neural (PN), classical (CL), neural (NE),

and mesenchymal (ME), among which CL and ME are more severe

(21). It is found that some types of cells are different in the two

clusters with statistical significance. Plasma cells and neurons are

more positively related to cluster2, while macrophages, macrophages

M1, and macrophages M2 are more positively related to cluster1.

Additionally, we used box plots to present the proportions of 22 TME

cell types in tumor tissues with cluster1 and cluster2 (Figure 2G).

Only four cell types had significant differences: B cells memory,

macrophages M0, M1, and neutrophils. B cells memory in cluster2

were higher than in cluster1. Meanwhile, macrophages M1 and

neutrophils in cluster2 were lower than in cluster1.
Distinct genomic profiles of the
two clusters

Considering the apparent differences in overall survival and

immune characteristics in cluster1 and cluster2, genomic profiles

of the two clusters were supposed to be distinct. To validate it, we

analyzed the co-occurrence/mutual exclusivity of the 25 most

altered genes in cluster1 (Figure 3A) and cluster2 (Figure 3B). The

strongest co-occurrent couples of gene mutation in cluster1 and

cluster2 were IDH1 and ATRX, IDH1 and CIC, IDH1 and

FUBP1, ATRX and TP53. IDH1 and EGFR were mutually
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exclusive pairs in cluster1 and cluster2. Higher co-occurrence is

usually functionally linked to the proliferation of gliomas (22, 23).

Then, we used a forest plot to list the 11 most variated genes

between the two clusters (Figure 3C). Except for IDH1 and CIC,

the other nine genes were more likely to mutate in cluster1.

Furthermore, we compared the frequency of different somatic

mutations between the two clusters, including the single-

nucleotide polymorphism (SNP), single nucleotide variant

(SNV), deletion, insertion, and intergenic region (IGR). The

frequency of insertion and deletion seemed to be non-

statistically different, while SNPs were a little more common in

cluster1 (Figure 3D). Among the identified SNVs, C was more

presumably to mutate to T, which was also the most common

mutation in cluster1 (Figure 3E). Transformation of splice region

and missense were more common in cluster1 than in cluster2

(Figure 3F) (24). Amplifications and deletions of chr7 and chr10

have statistically differences in cluster1 and cluster2 (Figure 3G).
Identification of SOX10 as a
prognostic gene

To distinguish the two clusters more accurately and precisely, we

executed machine learning and prediction on the two populations,

screening out the most characteristic genes. Using the LASSO-LR,

XGboost, Boruta, Pamr, and RandomForest machine learning

algorithms, we filtrated 15, 5, 11, 5, and 4 genes, correspondingly

(Figures 4A–E). We used a Venn diagram to take the intersection of

the five algorithms (Figure 4F). These two characteristic genes in the

intersection corner, SOX10 and sex determining region Y (SRY),

were the most potential to best classify the two clusters (25).

Considering that SRY mainly depends male sex, we identified

SOX10 as a biomarker of glioma prognosis.
The prognostic potential of SOX10

We performed a survival analysis of different SOX10

expressions in pan-glioma, LGG, and GBM based on TCGA

and CGGA datasets (Figures 5A, B). The Kaplan–Meier curves

more securely demonstrated that grievous survival mischief in

glioma patients with high SOX10. However, the GBM Kaplan–

Meier curves in TCGA were contrary to those in CGGA, which

could account for the small number of samples of GBM patients

in TCGA. Moreover, we predicted the value of SOX10, IDH, and

subtype measured by receiver operating characteristic (ROC)

curves in TCGA dataset (Figure 5C). The results firmly proved

that SOX10 was a predictor of IDH and subtype. The ROC

curves exhibited high sensitivity and specificity, with all areas

under the curves (AUC) bigger than 0.7 and 0.9.

Additionally, to probe the latent pathological function of

SOX10, the KEGG and GO enrichment analyses were performed.

Figure 5D depicts 20 related pathways in the two selected pathways.
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FIGURE 2

Immune characteristics of the clusters. (A) ESTIMATEScore (B) ImmuneScore. (C) StromalScore of cluster1 and cluster2 in TCGA. ***p < 0.001.
(D) The proportion of five immune subtypes in cluster1 and cluster2. p = 0.004388. (E) The tendency of the difference between two clusters
based on TME indicator scores. (F) Dendrogram corresponding to the 64-cell type level calculated by xCell and clusters in TCGA. *p < 0.05,
**p < 0.01, ***p < 0.001. (G) Box plots of the proportions of 22 TME cell types in tumor tissues with cluster1 and cluster2. The dispersed dots
represent values of TME cell expression in each cluster. **p < 0.01, *p < 0.05, NS, no significance.
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FIGURE 3

Distinct genomic profiles of the two clusters. The co-occurrence or mutual exclusivity of the top 25 most mutated genes in (A) cluster1 and (B)
cluster2. *p < 0.01, `p < 0.05. (C) Demonstration of the 11 most altered genes between the clusters by the forest plot. Frequency comparison
according to (D) variant type, (E) SNV, and (F) variant classification between the two clusters. (G) Amplifications and deletions in two clusters of
SOX family by GISTIC 2.0. ***p < 0.001, **p < 0.01, *p < 0.05, NS, no significance.
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The high expression of SOX10 seems to be correlated with the

negative regulation of regulatory T-cell differentiation, DNA

replication, and mismatch repair. Besides, Figure 5E demonstrates

the abundance of infiltrating immune cell groups with divergent
Frontiers in Immunology 08
130
SOX10 expressions identified by the CIBERSORT, ESTIMATE,

MCP, and TIMER algorithms of TCGA datasets. With the

increasing expression of SOX10, the proportion of B cells, T cell

CD4, and macrophages increased.
A B C

D

E

F

FIGURE 4

Identification of SOX10 as a prognostic gene by machine learning. (A) The assessment of the weighted importance of genes between two
clusters by the LASSO-LR algorithm. (B) The evaluation of feature importance of genes between two clusters by the XGboost algorithm. (C) The
selection of all relevant features of genes between two clusters by the Bruta algorithm. (D) The assessment of genes between two clusters by
the Pamr algorithm. (E) The evaluation of genes between two clusters by the random forest algorithm. (F) Validation of the intersection of
glioma prognostic genes from LASSO, Xgboost, Boruta, Pamr, and Random Forest.
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SOX10 is associated with
immunotherapy response

As manifested in the heatmap (Figure 6A), SOX10 was

negatively correlated with T-cell dysfunction, implying its

potential impact on immunotherapy. Specifically, SOX10

positively correlated with the normalized Z score from
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131
selection log2FC in the CRISPR screen dataset and normalized

expression value from immune-suppressive cell types.

Metabolism has been considered a vital determining factor

in the survivability and potency of immune cells (26). We

explored correlations between SOX10 and enrichment scores

of metabolism-pertinent pathways and cancer-immune cascade

steps by GSVA. Figure 6B concludes that SOX10 was negatively
A B

C

D

E

FIGURE 5

The prognostic potential of SOX10. Kaplan–Meier overall survival analysis of SOX10 in GBM, LGG, and pan-glioma based upon the (A) TCGA and
(B) CGGA datasets. (C) Predictive value of SOX10, IDH, and subtype measured by ROC curves in TCGA dataset. (D) The heatmap for gene set
variation analysis of SOX10 from TCGA. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (E) Heatmap visualized the abundance of infiltrating
immune cell groups with divergent SOX10 degree. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6

Roles of SOX10 in immunotherapy response, metabolism phenotypes, and biomarker relevance. (A) Heatmap showing the correlation with T-
cell dysfunction, normalized Z score, and normalized expression. (B) Correlations between SOX10 and enrichment outcomes of metabolism-
relevant pathways together with cancer-immune cascade steps. (C) Immunotherapy response of SOX10 in immunotherapy cohorts. (D) Immune
effector molecule relevance of SOX10 in immunotherapy cohorts. (E) Biomarker relevance of SOX10 in immunotherapy cohorts.
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associated with cardiolipin biosynthesis, citric acid cycle, trans-

sulfuration, pyrimidine metabolism, ubiquinone, and another

terpenoid. Notably, SOX10 was observed to be correlated with

most steps of the immune cascade.

Then, to thoroughly analyze the prospective merit of SOX10 as a

new immune target in pan-cancer, sensitive drugs predicated on

SOX10 expression were predicted (Figure S1A). We also explored the

semi-inhibition rates of gefitinib and nilotinib. The results showed

that the estimated IC50 was higher in low-expression SOX10 than in

high-expression (Figure S1B, C). Another noteworthy observation

was that SOX10 could significantly predict immunotherapy response,

whose responders were correlated with SOX10 levels (Figure 6C).

Besides, SOX10 could significantly predict the cytokine treatment of

immune effector molecules in four immunotherapy cohorts

(Figure 6D). We also computed the biomarker pertinence of

SOX10 by comparing it with normalized biomarkers based off of

their prognosticative ability of response outcomes and OS of human

immunotherapy cohorts. Fascinatingly, it was found that SOX10 gave

an AUC of more than 0.5 in eight out of the 25 immunotherapy

cohorts (Figure 6E). SOX10 presented a better predictive value than B

clonality, with AUC values over 0.5 in 8 immunotherapy cohorts.

However, the prognosticative ability of SOX10 was lower than that of

the TIDE (AUC > 0.5 in 18 immunotherapy cohorts), MSI score

(AUC > 0.5 in 13 immunotherapy cohorts), TMB (AUC > 0.5 in 8

immunotherapy cohorts), CD274 (AUC > 0.5 in 21 immunotherapy

cohorts), CD8 (AUC > 0.5 in 18 immunotherapy cohorts), IFNG

(AUC> 0.5 in 17 immunotherapy cohorts), T clonality (AUC> 0.5 in

9 immunotherapy cohorts), and Merk 18 (AUC > 0.5 in 18

immunotherapy cohorts).
Single-cell sequencing and SOX10
co-expression on glioma cells

Finally, we utilized single-cell sequencing to analyze the

circumstances of stratification, identification, and SOX10

co-expression on glioma cells. UMAP determined by

Copynumber Karyotyping of Tumors analysis stratified cells

into diploid (average) status and aneuploid (malignant) status

(Figure 7A). At the same time, we identified cell types and used

UMAP to make it intuitionistic, which demonstrated 13 cell

clusters (Figure 7B). Similarly, the co-expression status of

different types of cells is shown in Figure 7C. Figure 7D

shows the division of cell clusters into two groups, based

upon the high and low expression levels of SOX10. In the

high-expression cluster of SOX10, OPC was observed to take

more than 50% of all TME cells, followed by neuroprogenitor

cells (NPC), mesenchyme (MES), and astrocyte (AC)

(Figure 7E). In descending order, the proportion of subtypes

in a low-expression cluster of SOX10 was NPC (less than 50%),

MES, AC, and OPC. The expression level of SOX10 in different

subtypes is shown in the violin plot (Figure 7F). It was found

that SOX10 had a high expression in neoplastic cells,
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astrocytes, neurons, oligodendrocytes and oligodendrocyte

progenitor cells.

Subsequently, we performed enrichment analysis to determine

the correlation between different immune regulatory processes

and SOX10 expressions. High-expression SOX10 was significantly

positively associated with the Notch signaling pathway and

migration and activation regulation of the macrophage. In

contrast, low-expression SOX10 was positively associated with

the activation of MAPK activity, MAPK signaling pathway, and

regulation of T-cell migration (Figure 7G). Moreover, we drew

correlation circles for positively and negatively correlated

checkpoint genes, growth factors, cytokines, and other genes in

the SOX10 high-expression group (Figures 7H–K). For checkpoint

genes, we could see a strong correlation in LGALSS of M1

macrophages and HAVCR2 of microglial cells, macrophages,

M2 macrophages, and M1 macrophages themselves (Figure 7H).

Also, HAVCR2 of M1 and M2 macrophages seemed to be

regulated by LGALS9 of many cells, such as neoplastic cells,

microglial cells, and neural stem cells. As for the growth factors,

IGF2 of unknown cells showed robust correlations with IGF1R,

IGF2R, and INSER of the other six cell types (Figure 7I).

Macrophages may interact with microgial cells via CCL4, and

interact with T cells and oligodendrocyte progentior cells via IL 1B

(Figure 7J). The correlation with other genes could be found in

Figure 7K by the same means.
Differences in cells neighboring SOX10-
expressed cells

We performed multiplex immunofluorescence in the

controlled group and different grades of glioma groups to

further characterize the relationship between SOX10-expressed

cells and neighboring CD68+CD163+ cells, and CD8+ cells. The

results revealed that SOX10 expression is elevated with

the increase in glioma grades (Figures 8A, B). Besides, with the

increase in SOX10 expression, neighboring CD68+ cells,

CD163+ cells, and CD8+ cells are also increased (Figures 8C,

D). The quantity of CD8+ cells at the distance of 0–25 mm and

25–50 mm neighboring SOX10-expressed cells exploded in the

Glioma WHO IV group, while the amount of CD68+CD163+

cells also increased. Hence, we concluded that CD68+CD163+

M2 macrophages, and CD8+ T cells, were the prepotent

infiltrated immune cell types in glioma. Meanwhile, SOX10

expression is a regulator of neighboring immune cells.
Discussion

In recent years, studies revolving around gliomas are mostly

concentrating on the TME, which is suggested to be one of the

main obstacles to improving the prognosis and OS of HGG

patients (27). To explore and clarify the mechanism of how
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FIGURE 7

Stratification, identification, and SOX10 co-expression on glioma cells by single-cell sequencing analysis. (A) UMAP projection determined by
CopyKat analysis. (B) UMAP projections of different cells, color-coded by cell types. (C) Annotation of different cell types and the expression of
SOX10 in each cell type. (D) UMAP projections of two cell groups based on the expression of SOX10. (E) The proportion of glioma subtypes in
the high and low SOX10 expression group. Astrocytes (AC), neural progenitor cells (NPC), mesenchyme (MES), and oligodendrocyte precursor
cells (OPC). (F) Violin plot of SOX10 expression distribution of divergent cell clusters. (G) Enrichment analysis correlating divergent immune
regulatory processes with high and low SOX10 expressions. (H) Correlation circles for positively and negatively correlated checkpoint genes in
the high expression group of SOX10. (I) Correlation circles for positively and negatively correlated growth factors in the high expression group
of SOX10. (J) Correlation circles for positively and negatively correlated cytokines in the high expression group of SOX10. (K) Correlation circles
for positively and negatively correlated other genes in the high expression group of SOX10.
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FIGURE 8

Differences in CD68, CD163 macrophages, and CD8 T cells neighboring SOX10-expressed cells. (A) Multiplex immunofluorescence staining of
SOX10 (pink), CD68 macrophages (yellow), CD163 macrophages (green), CD8 T cells (orange), and DAPI (blue). (B) Multiplex
immunofluorescence images of M2 macrophage markers CD68+ and CD163+, and CD8+ T cell marker CD8+ in control, Glioma WHO I,
Glioma WHO II, Glioma WHO III, and Glioma WHO IV groups, respectively. The scatter diagrams display the quantity of CD68+ cells, CD163+
cells, CD68+CD163+ cells, CD8+ cells, and SOX10 expressed cells and the quantity of CD68⁺CD163⁺ cells along with CD8+ cells at different
locations neighboring SOX10 expressed cells at 0–25 and 25–50 mm. Images of automatically identified staining by the TissueFAXS and
StrataQuest software in (C) Glioma WHO III group and (D) Glioma WHO IV group.
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infiltrating immune cells in the glioma TME influence the

prognosis and OS, much large-scale bioinformatic analyses

have been performed, and several biomarkers have been found

(5, 28, 29). However, as a typical transcription factor family, the

expression of the SOX family in gliomas has not been fully

discussed before. We are the first to evaluate the cluster ability

thoroughly and other characteristics of the SOX family and

analyze SOX10 expression profiles in gliomas in prognostic

potential, immune response, and co-expression in single-cell

sequencing. Significantly, our results suggest that the SOX family

has two distinct clusters regarding gliomas. Compared with

cluster1, cluster2 seems to have a higher OS but weaker

immune response. Correspondingly, the genomic profiles of

the two clusters are dissimilar. IDH has co-occurrent relations

with many other genes, such as ATRX, CIC, and FUBP1, which

are potent regulators of cell growth (30). IDH1 is more likely to

mutate in cluster2. More importantly, our analysis of SOX10

expression files in gliomas implies its predictive ability.

Moreover, overexpression of SOX10 indicates a worse OS and

prognosis. Also, SOX10 has the potential to predict

immunotherapy response and immune effector molecules.

A complex range of genomic alterations also has clinical

implications for glioma classification and prognosis. In SNV

analysis, several frequent somatic mutations in gliomas,

including IDH1, TP53, and ATRX, have been found to present

more in cluster2 than in cluster1 (31, 32). Besides, as mentioned

before, the TME has been reported to influence the gene

expression of gliomas and the infiltration circumstance of

stromal and immune cells, which are significant indicators of

predicting prognosis (33). Data on the ESTIMATE algorithm

show that stromal, immune, and ESTIMATE scores are higher in

cluster1. The results indicate a worse prognosis and shorter OS

in cluster1. Consequently, the SOX family is thought to have the

cluster ability in gliomas to predict malignancy.

The SOX family has been confirmed to be closely associated

with the immune features of the TME. In gliomas, the copious

SOX family has played a crucial role in cell differentiation. Also,

the SOX family and their mRNA expression levels have been

associated with glioma patients’ prognosis (13). In our study, the

high expression of SOX10 is related to shorter OS in glioma.

An epigenome profiling of GBM indicates that SOX10, an

oligodendrocyte forerunner marker and chromatin modifier, is a

dominant regulator in RTK I-subtype tumors (34). It also affects the

glioma TME. This is consistent with our results. Numerous types of

immune cells are enriched in high-SOX10-expression patients in

our analysis of infiltrating immune cell populations. Our results

suggest that an increased expression of SOX10 is associated with the

DNA replication, mismatch pair, and regulation of negative

regulatory T-cell differentiation. With increasing SOX10

expression, B cells, T cell CD4, and macrophages are elevated.

We can infer that SOX10 is correlated with T-cell dysfunction with

the heatmap. As a consequence, we draw a conclusion that SOX10

is a significant regulator in the glioma TME.
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Based on the types of function and activation, macrophages

can be divided into two types: M1 macrophages and M2

macrophages (35). M1 macrophages are induced by LPS, INF-

g, and TNF-a and mainly release TNF-a, CXCL9, and CCL4.

M2 macrophages mainly release TGF-b and CCL1 (36).

Macrophages, especially M2 macrophages, are negatively

associated with the survival of glioma patients (37). In our

study, macrophages elevate in the SOX10 high expression

group. Especially for CD68+CD163+ M2 macrophages

neighboring SOX10-expressed cells, an increased number of

these macrophages are found with the elevation of SOX10

expression. Besides, CD8+ T cells are also found to explode at

the distance of 0–25- and 25–50-mm neighboring SOX10 high-

expression cells. The results indicate that SOX10 regulates the

types and quantity of glioma infiltrated immune cells.

GSVA shows a negative association with SOX10 and

cardiolipin biosynthesis, citric acid cycle, trans-sulfuration,

pyrimidine metabolism, and ubiquinone. SOX10 also has

pleiotropic effects in cancer-immune cascade steps.

Considering metabolism is a vital determining factor in the

survivability and potency of immune cells, SOX10 is supposed to

be a more remarkable biomarker in immunotherapy response

than B clonality (26).

The SOX family has also been found to have the ability to

regulate stem and progenitor cells in adult tissues (38). Our

single-cell sequencing results reveal that SOX10 is highly

expressed in OPC and NPC, indicating a regulatory function.

An immune checkpoint, manifesting the capability of inhibiting

T-cell function, refers to specified molecular interactions at the

interface between antigen-presenting cells and T cells (39). In

melanoma, regulated by fat mass and obesity-associated protein,

enrichment of SOX10 decreases the effect on anti-PD-1 blockade

immunotherapy (40). Similarly, our data imply that SOX10 can

predict anti-PD1 and anti-CTLA4 immune therapy responses.

Besides, we have found correlations between SOX10 and

HAVCR2, LGALS9, and CD70. These results suggest a

coordinated role with SOX10 and those immune checkpoints

in glioma development.

Glioma invasion is driven by autocrine signaling transmitted

by secretory factors that signal through receptors on the tumor,

including growth factors and cytokines (41). We have found that

IGF2R, INSR, and IGF1R have a tight relationship with SOX10

in gliomas. Besides, EGFR amplification and PTEN inactivation

in GBM have recently been shown to regulate the activity of the

DNA repair (42). Overexpression of EGFR drives GBM cell

invasion. Gefitinib is a tyrosine kinase inhibitor targeting EGFR

(43). The semi-inhibition rate demonstrates that the estimated

IC50 is lower in the high-expression SOX10 group than in the

counterpart, which suggests that high-expression SOX10 has

higher sensitivity to gefitinib; in other words, gefitinib is more

effective in gliomas overexpressing SOX10 (44). Our data

indicate that gefitinib might be a molecularly targeted agent

for treating patients with highly expressed SOX10.
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Notwithstanding, the complete comprehensive information,

specific functions, and clarified mechanisms of these SOX families

in gliomas and many other diseases have not been fully explored

and explained. It is reported that as an oncogene, more than 50%

of the cancer patients present NOTCH activation mutations (45).

The activation of NOTCH significantly favors tumor progression

(46). It is accordant with our data. We have discovered through

the enrichment analysis that the high expression of SOX10 has a

positive correlation with the NOTCH signaling pathway. Tumor-

associated macrophages have a complex interaction with glioma

progression (47). In our study, positive regulation of macrophage

chemotaxis and activation are also related to the high expression

of SOX10, which may be the reason for the elevation of

macrophages in the high expression SOX10 group. Therefore, it

can be surmised that the overexpression of SOX10 may activate

macrophages and then elevate the number of CD68+CD163+

macrophages, which are important components of the immune

microenvironment. Then, macrophages release cytokines to

regulate the signaling pathway, such as NOTCH, to affect

glioma progression. Consequently, we infer that the

overexpression of SOX10 can promote glioma progression.

In conclusion, our study demonstrates the outstanding cluster

ability of the SOX family. Cluster2 has a better prognosis and

longer OS than cluster1. Concentrating on SOX10, multiple results

imply that it has a multifaceted prognostic value in gliomas. In

gliomas, SOX10 overexpression corresponds to immune

infiltration and bleak prognosis. However, Gefitinib and

Nilotinib have more utility in patients with highly expressed

SOX10. Except for PD1 and EGFR, our results suggest that the

high expression of SOX10 may also correlate with other potential

immune checkpoints. Given that, SOX10 has the potential to be an

auspicious target for glioma immunotherapy.
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Introduction: Pancreatic adenocarcinoma (PAAD) is a fatal disease

characterized by promoting connective tissue proliferation in the stroma.

Activated cancer-associated fibroblasts (CAFs) play a key role in fibrogenesis

in PAAD. CAF-based tumor typing of PAAD has not been explored.

Methods: We extracted single-cell sequence transcriptomic data from

GSE154778 and CRA001160 datasets from Gene Expression Omnibus or

Tumor Immune Single-cell Hub to collect CAFs in PAAD. On the basis of

Seurat packages and new algorithms in machine learning, CAF-related

subtypes and their top genes for PAAD were analyzed and visualized. We

used CellChat package to perform cell–cell communication analysis. In

addition, we carried out functional enrichment analysis based on

clusterProfi ler package. Finally, we explored the prognostic and

immunotherapeutic value of these CAF-related subtypes for PAAD.

Results: CAFs were divided into five new subclusters (CAF-C0, CAF-C1, CAF-

C2, CAF-C3, and CAF-C4) based on their marker genes. The five CAF

subclusters exhibited distinct signaling patterns, immune status, metabolism

features, and enrichment pathways and validated in the pan-cancer datasets. In

addition, we found that both CAF-C2 and CAF-C4 subgroups were negatively

correlated with prognosis. With their top genes of each subclusters, the sub-

CAF2 had significantly relations to immunotherapy response in the patients

with pan-cancer and immunotherapy.

Discussion:We explored the heterogeneity of five subclusters based on CAF in

signaling patterns, immune status, metabolism features, enrichment pathways,

and prognosis for PAAD.

KEYWORDS

pancreatic adenocarcinoma, immune features, machining learning, prognosis,
immunotherapy, subclusters
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Introduction

Pancreatic adenocarcinoma (PAAD) is a serious threat to

people’s life and health due to its high degree of malignancy and

poor prognosis. According to the latest epidemiological data,

pancreatic cancer is the 12th most common tumor in the world

but the fourth most deadly cancer worldwide (1, 2). Pancreatic

ductal adenocarcinoma (PDAC) is the most common histologic

type of PAAD. PDAC has low resection rate, insensitive radio

chemotherapy, and poor prognosis, and the 5-year survival rate

is less than 7% (1, 3). PAAD develops gradually from genetic

abnormality to abnormal cell proliferation and precancerous

lesions and then to minimal early carcinoma, which takes a very

long time, about 5–20 years. However, it only takes 6 to 20

months to develop from a small tumor to a significant mass and

then to the advanced stage. In addition, because of the painless

and insidious growth of pancreatic masses, most patients with

pancreatic cancer are already diagnosed in advanced stages.

Therefore, the study of the pathogenesis and progression of

PAAD and the search for suitable bimolecular targets are of great

significance to enrich the treatment strategies of pancreatic

cancer and improve the prognosis of patients.

The occurrence and development of tumors are closely related

to their living environment, and the internal environment

composed of tumor cells, mesenchymal cells, immune cells,

vascular endothelial cells, and extracellular matrix (ECM) is called

tumor microenvironment (TME) (4). During the development of

PAAD, a microenvironment is formed, which is favorable for the

survival, proliferation, and distant metastasis of PAAD cells (5). The

poor prognosis of pancreatic cancer may be associated with specific

biological characteristics, such as significant interstitial fibrosis (6).

In recent years, researchers have paid more and more attention to

the stroma of PAAD (7, 8). Dense fibrous tissue surrounding tumor

cells is an important histologic feature of PDAC (9–11). The main

components of interstitium include ECM, immune cells, endothelial

cells, and cancer-associated fibroblast (CAF) (12), and stroma

microenvironment cells interact with tumor cells in a complex

way (13). TME can determine the biological behavior of the tumor,

which, in turn, affects patient prognosis. Therefore, understanding

the biological characteristics of TME is crucial for understanding

the biological behavior of PAAD (14).
Abbreviations: PAAD, pancreatic adenocarcinoma; CAF, cancer-associated

fibroblast; PDAC, pancreatic ductal adenocarcinoma; TME, tumor

microenvironment; ECM, extracellular matrix; GEO, Gene Expression

Omnibus; TISCH, Tumor Immune Single-cell Hub; TCGA, The Cancer

Genome Atlas; ICB, immune checkpoint blockade; CCA, canonical correlation

analysis; DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes

and Genomes; GO, Gene Ontology; GSVA, gene set variation analysis; K-M,

Kaplan–Meier; OS, overall survival; RFS, relapse-free survival; ROC, receiver

operating characteristic.
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Tumor stroma cells are complex, and interstitial cells

interact with each other (7, 15). The relatively abundant cell

components in the stroma are CAFs, and CAFs are closely

related to the significant proliferation of connective tissue of

PAAD cells. CAFs are considered to be fibroblasts that produce

ECM, cytokines, chemokines, and growth factors, with the

primary function of promoting tumor progression (16).

However, some targeted therapy studies on CAFs suggested

that removal of CAFs can promote tumor progression or

metastasis (17, 18), suggesting significant heterogeneity of

CAFs within tumors (19), that is, some CAF subgroups may

play a role in inhibiting tumor progression. A large number of

single-cell transcriptome sequencing studies have further

clarified the significant heterogeneity of CAFs within and

between tumors, as well as the functional classification of

CAFs (20, 21). Currently, commonly accepted cancer-

associated fibroblast (CAF) are categorized as myofibroblastic

CAFs (myoCAFs) and inflammatory CAFs (iCAFs). myoCAFs

are mainly distributed around tumor cells and are mainly related

to the generation of ECM. Some reports suggested that some

subgroups of myoCAFs may be involved in immune regulation

(22). iCAFs mainly secrete cytokines and chemokines to act on

tumor cells. In addition, other small CAF subsets, such as apCAF

(20) and LRRC15 (+) myoCAFs (21), were identified. Of course,

different subsets of cells perform different functions, and as

single-cell sequencing technology continues to mature, more

functional subsets of CAFs may be discovered. At present,

single-cell sequencing studies suggested that representative

markers of myoCAFs were Alpha-smooth muscle actin (a-
SMA), periostin, and matrix metallopeptidase-11 (MMP-11);

representative markers of iCAFs were Interleukin-6 (IL-6), C-X-

C Motif Chemokine Ligand 12 (CXCL12) stromal cell-derived

factor-1 (SDF-1), and Platelet-derived growth factor receptors-

beta (PDGFR-b); and fibroblast activation protein-alpha (FAP-

a) was a co-expression marker of two types of CAFs (20).

However, the origin, function, and biological characteristics of

CAFs need to be further studied.

In the current study, we gained single-cell sequence

transcriptomic data from public databases. We carried out

comprehensive analysis to generate five CAF subclusters and

explore the differences among them. This will provide new

insights into the treatment of PAAD.
Materials and methods

Study design and data collection

The flowchart of present study is shown in Figure 1. Single-cell

sequence transcriptomic data from the GSE154778 and

CRA001160 datasets were collected to analyze the fibroblast cells

(23, 24). Full details can be downloaded from Gene Expression

Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) and Tumor Immune
frontiersin.org
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Single-cell Hub (TISCH; http://tisch.comp-genomics.org/)

databases (25). Among them, we extracted CAF cells to analyze

the features. In addition, seven bulk-sequence data for PDAC—

TCGA (n = 146), ICGC-PACA-AU (n = 267), GSE71729 (n = 125),

GSE62452 (n = 66), GSE57495 (n = 63), ICGC-PACA-CA (n =

182), and E_MTAB_6134 (n = 50)—were enrolled from GEO and

The Cancer Genome Atlas (TCGA) databases based on previous

data (26). Pan-cancer dataset with 31 cancer types was also collected

to verify the features of the single-cell subsets. All data generated or

analyzed during this study are freely available in the previous

publications. Last, to get the immune features of the subset of

single-cells, 10 cohorts with different tumors before or after

immunotherapy [immune checkpoint blockade (ICB)] were

collected in Tumor Immune Dysfunction and Exclusion (TIDE)

database to further analysis (27).
Subset for fibroblast cells

The Seurat R package was used to visualize the CAF cells

from two cohorts (28), including the 1,656 CAFs in GSE154778

and 6,228 CAFs in CRA001160. Top 2,000 genes were integrated

by the method of canonical correlation analysis (CCA) to

integrate CAFs for dimensionality reduction cluster analysis

(Resolution = 0.1, N = 5) (29). We also performed ScaleData,

RunPCA, DimPlot, and t-SNE (t-distributed stochastic neighbor

embedding) based on R packages to analyze and visualize results.
Cell–cell communication analysis

The CellChat R package with full of ligand–receptor

interactions can analyzed the intercellular communication
Frontiers in Oncology 03
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networks between different cell clusters in the single-cell

dataset (30). To access the major signaling inputs and outputs

among subsets and other TME cells, the CellChatDB.human,

netVisual_circle and netVisual_bubble functions were used to

show the strength or weakness of cell–cell communication

networks from the CAF subclusters to other different cell

clusters in single-cell dataset.
Identification of the marker genes of CAF
cell subtypes

FindAllMarkers function was used to list the markers of

subclusters of CAF (31). The min.pct and logfc.threshold

functions were all set as 0.25. The AddModuleScore function

could obtain the signature scores based on differentially

expressed genes (DEGs) (32). The dot plot function was

performed to show the top highest gene expressions in

subcluster (33). The FeaturePlot function was used to show

the distribution of specific signatures of subcluster scores. The

volcano plot based on the marker genes among different subsets

of CAF was displayed.
Functional enrichment analysis for
CAF subsets

The significant Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways and Gene Ontology (GO) functions were

detected by the clusterProfiler R package (34) based on marker

genes among different subsets of CAF. To cluster the special

pathways, the Cytoscape enrichment map function was

performed in the Cytoscape software (35).
FIGURE 1

The workflow diagram depicting collection of data and processing of the analysis to show the framework of our study.
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Prognosis analysis and prediction
analysis of subsets

We first performed the gene set variation analysis (GSVA)

(36) based on the subset signatures of CAF subsets to get the

enrichment scores for these subclusters of CAF in the PDAC

bulk sequence. On the basis of their prognostic information, we

analyzed the prognosis features of subsets of CAF enrichment

score in the cohorts from TCGA and GEO. The cutoff values of

different NMF cell signatures in the different public datasets

were determined by the survminer R package (37) used to plot

Kaplan–Meier (K-M) curves. The prediction value of subsets of

CAF for immunotherapy also was performed by the receiver

operating characteristic (ROC) analysis. The ComplexHeatmap

(38) or pheatmap (39) packages in R visualize the pooled values

of CAF in these cohorts.
Gene expression detecting using
quantitative real-time PCR assays

The human pancreatic CAF-stellate cell named CAF118 was

supplied by Neuromics (Edina, USA) and was cultured using

Stem Cell Complete Low Serum Media (Neuromics, Edina,

USA). The human pancreatic cell HPC-Y5 was purchased

from National Collection of Authenticated Cell Cultures and

was cultured in 90% MEM Eagles with Earle’s Balanced Salts

(EME-EBSS) with 10% FBS (fetal bovine serum). The human

pancreatic cancer cell line SW1990 was purchased from Procell

(Wuhan, China) and cultured in 90% LEIBOVITZ (L-15) with

10% FBS. After extracting the total RNA of the cell lines by the

RNAsimple Total RNA Kit (Tiangen, China), we reverse-

transcribed RNA to acquire cDNA using the PrimeScript RT

reagent Kit (Takara, Otsu, Japan). Finally, on the basis of the

premixed system of 2 ml of cDNA with SYBR Premix Ex Taq

(Takara, Otsu, Japan) and primers, we detected the expression

values of related genes in cell lines by an Applied Biosystems

StepOne Plus Real-Time PCR system (Life Technologies, Grand

Island, NY, USA). The primers of the target gene were supplied

by Sangon Biotech (Shanghai, China). The sequences of the

primers used are listed in Table 1.
Statistical analysis

Routine statistical analyses of the present study were

performed in R 4.0 software. The relationships of sub-CAF

with other special genes were calculated by the Spearman’s

rank correlation. The K-M method, log-rank test, and Cox

regression analysis were performed to detect the prognosis of

subset of CAF in the OS (overall survival) and RFS (relapse-free

survival) in patients with Pancreatic ductal adenocarcinoma
Frontiers in Oncology 04
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(PDAC) and other tumor. The area under the ROC curve was

used to estimate the diagnostic value of GSVA score of subset of

CAF. A two-sided p-value below 0.05 was considered

statistically significant.
Results

Identification of five CAF-related
subtypes for PDAC

Recent SCNA-SEQ studies of human PDAC have shown

that intra-tumor heterogeneity of PDAC is key to the analysis of

tumor-related mechanisms. Extensive fibrous proliferation

caused by CAFs is common in PDAC. In clinical practice, we

often encounter PDAC tumors with unique histological

characteristics. To characterize the CAF subpopulations in

PDAC, we performed unsupervised clustering analysis

(Figure 2A). The all-positive expressed markers (log2FC > 1)

are shown in Figure 2B and Supplementary Table S1. The results

showed that CAFs were divided into five subclusters based on

their marker genes (Figure 2C): CAF-C0 (by marker genes C7

and PTGDS), CAF-C1 (by marker genes COL11A1 and

COL10A1), and CAF-C2 (by marker genes EPB41L4A-AS1

and ENO2). Proportions of sub-CAF in each patient is

different, and that verifies the features for the single-cell

subsets (Figure 2D).
CAF subclusters exhibited distinct
signaling patterns

The major signaling inputs and outputs among subclusters

were different. The characteristics of signaling patterns within

each CAF subgroup were different. The results showed that
TABLE 1 The primer sequences in PCR analysis.

Symbol Sequences (5′-3′)

ADM-F CTGATGTACCTGGGTTCGCT

ADM-R ATGTCCTGGGGCCGAATAAG

Eno2-F CTCTGTGGTGGAGCAAGAGA

Eno2-R ATTGATCACGTTGAAGGCCG

ERO1A-F TTGGATCTGCTGGTGGTCAT

ERO1A-R TCCCTTGACCAGAAGCCAAA

BNIP3-F CGCAGACACCACAAGATACC

BNIP3-R GCGCTTCGGGTGTTTAAAGA

UPP1-F TTGACTGCCCAGGTAGAGAC

UPP1-R TGCCTGCTCTGTTATGACCA

Actin-F ACTTCGAGCAAGAGATGGCC

Actin-R GCTGATCCACATCTGCTGGA
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subcluster CAF-C0 was related to CD99, MK, PDGF, NEGR,

NCAM, BMP, and CD46; CAF-C1 was related to FN1, CD99,

MK, PDGF, NEGR, NCAM, BMP, and CD; CAF-C2 was related

to TGB2; whereas CAF-C4 was related to ITGB2 (Figure 3A).

The cross-linking between CAF and 14 kinds of main TME cells

in each subcluster was also different (Figures 3B, C). CAF-C0

was closely related to adenocyte, epithelial-to-mesenchymal

transition (EMT), endocrine, epithelial, and malignant,

whereas CAF-C1 was closely related to adenocyte, EMT,

endocrine, epithelial, and malignant. CAF-C2 was closely

related to adenocyte, EMT, endocrine, epithelial, and

malignant, whereas CAF-C3 was closely related to adenocyte,

EMT, endocrine, epithelial, and malignant. CAF-C4 was
Frontiers in Oncology 05
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associated with adenocyte, EMT, endocrine, epithelial,

malignant, endothelial, and plasma.
CAF subclusters exhibited distinct
immune and metabolism features

Some subsets based on CAFs were significantly correlated

with immune gene sets, such as CAF-C2 and immune

modulators, other cytokines, C3 and co-inhibitors, immune

checkpoint, MHC class I, and C4 and MHC non-class

(Figures 4A–D). The expression of metabolism-related genes

of CAF in each subclusters was different (Figure 4E). The genes
A

C

B

D

FIGURE 2

(A) To characterize the CAF subpopulations in PDAC, we performed unsupervised clustering analysis and showed that CAFs, which were
categorized into five subclusters (C0, C1, C2, C3, and C4). (B) All-positive markers (log2FC > 1) heatmap of CAF cell subtypes. The colors of the
top bar represent the different subclusters. Yellow indicates higher expression, and purple indicates lower expression. (C) Dot plot of top 10
markers in each cluster. The color represents the average expression. The size of the circle represents the percent. (D) Proportions of sub-CAF
in each patient. The axis represents the ratio of different subclusters for each patient. The colors of the bar represent the different subclusters.
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related to arachidonic acid metabolism (HSD11B1, PDK4,

ALDH1A1, GPX3, PTGDS, GGT5, RBP1, PNLIP, CYP1B1,

ADH1B, PTGIS, and INMT), arginine and proline metabolism

(PLA2G1B, AMY2A, PLA2G2A, ALDH2, MGST1, PLPP3,

CDO1, FMO1, and LTC4S), Cyclooxygenase arachidonic acid

metabolism (FMO3 and DHRS3), and drug metabolism by

cytochrome P450 (GLUL, LAP3, ALDH1A3, STRA6, CHST1,

and CH25H) were highly expressed in CAF-C0. The genes

related to purine metabolism (HSD17B6, ALDH1B1, PLOD1,

ALOX15B, and PYCR1) and pyrimidine metabolism (ENPP1

and SCD) were highly expressed in CAF-C1. Genes associated

with sugar synthesis and metabolism, such as N-glycan

biosynthesis (ENO1), oxidative phosphorylation (HMOX1),

primary bile acid biosynthesis (PKM), retinol metabolism

(ENO2, PTGES, UPP1, and CA12), starch and sucrose

metabolism (PSAT1), and steroid hormone biosynthesis

(PHGDH, GSTA1, and CA9), were highly expressed in CAF-

C2. The genes related to glycerolipid metabolism (CMPK2,

TYMS, and AKR1C1), sphingolipid metabolism (GK), taurine
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and hypotaurine metabolism (NDUFA4L2), and testosterone

biosynthesis (MGLL) were highly expressed in CAF-C3. The

metabolic genes related to lipid and amino acid [such as ether

lipid metabolism (GAPDH and GDA); fatty acid degradation

(CP and VNN2); gluconeogenesis (ENPP2, TPI1, NAMPT,

CA2, and ST6GALNAC5); glycine, serine, and threonine

metabol ism (SAT1 and UAP1); glycosaminoglycan

biosynthesis (RDH10 and CRABP2); hexosamine biosynthesis

(PTGS2), lysine degradation (B4GALT1 and NME1); and

nicotinate and nicotinamide metabolism (ODC1, ANXA1,

HSPA5, and SRM)] were highly expressed in CAF-C4.
CAF subclusters exhibited distinct
enrichment pathways

GO and KEGG analysis suggested differences in their

biological functions of the five subclusters (Figures 5A, B) and

Supplementary Table S2. Interestingly, all five subtypes were
A B

C

FIGURE 3

Cell–cell communication analysis. (A) The major signaling inputs and outputs among subsets. (B) Detailed view of the ligand–receptor
expressed by each cell type and the other cell types for each CAF subclusters. The thicker the lines, the greater the number/intensity of ligand
receptor. The size of the dots represents the number of cells in the subpopulation. (C) Bubble plot showing the ligand–receptor interactions
between CAF clusters and cells. P-values are indicated by circle size. Communication proportion is indicated by color. The redder the color, the
more important the interaction.
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enriched in four pathways: complement and coagulation

cascades, ECM–receptor interaction, proteoglycans in cancer,

and AGE-RAGE signaling pathway in diabetic complications

(Figure 5A). As for CAF-0, there were highly expressed genes

involved in T cell activation, ATP generation from ADP, tumor

necrosis factor production, vasoconstriction, cellular response to

ketone, biosynthesis of amino acids, and so on. For CAF-C1,

there were highly expressed genes involved in regulation of
Frontiers in Oncology 07
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peptide secretion, positive regulation of apoptotic signaling

pathway, negative regulation of cell morphogenesis involved in

differentiation, Wnt signaling pathway, and signaling pathways

regulating pluripotency of stem cells. For CAF-C2, there were

highly expressed genes involved in cellular response to

extracellular stimulus, neutrophil activation involved in

immune response, negative regulation of cell activation, HIF-1

signaling pathway, and arachidonic acid metabolism. For CAF-
A E

B

DC

FIGURE 4

(A) GSVA enrichment results of immune gene sets in sub-CAFs. The z-score represents the rating. (B) Correlation test between sub-CAF and
immune gene sets score. The color of the lines indicates the Mantel’s p-value. The color of the box represents the correlation. (C) Positive
markers in immune genes in sub-CAFs. The redder the color, the higher the expression of the gene in the CAF cluster. The bluer the color, the
lower the expression of the gene in the CAF cluster. (D) TFs of positive markers in sub-CAFs. The bluer the color, the lower the expression of
the gene in the CAF cluster. (E) Positive markers in metabolic genes in sub-CAFs. The bluer the color, the lower the expression of the gene in
the CAF cluster.
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C3, there were highly expressed genes involved in monocyte

chemotaxis and regulation of insulin-like growth factor receptor

signaling pathway. For CAF-C4, there were highly expressed

genes involved in cellular response to decreased oxygen levels,

cellular response to metal ion, negative regulation of small

molecule metabolic process, mitogen-activated protein kinase

(MAPK) signaling pathway, tumor necrosis factor (TNF)

signaling pathway, and IL-17 signaling pathway. We

established networks to elaborate how related genes were

functionally enriched (Figures 5C–G).
Survival analysis of different
CAF subclusters

Volcanic maps of differential genes for comparison of CAF

between two groups were shown in Figure 6A. We can see the

distribution of hazard ratios (HRs) based on sub-CAFs for

tumors in TCGA database from Figure 6B. For ACC
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(adrenocortical carcinoma), GBM (glioblastoma multiforme),

LGG (brain lower-grade glioma), LUSC (lung squamous cell

carcinoma), and UVM (uveal melanoma), HRs predicted by

sub-CAFs were all statistically significant. We collected PAAD

data from seven databases and analyzed the correlation between

CAF subgroup marker genes and patient prognosis. We found

that both C2 and C4 subgroups were negatively correlated with

patient survival (Figures 6C–E).
CAF subclusters exhibited
distinct immunotherapy

To get the immune features of the subset of single-cells, 10

cohorts with different tumors before or after immunotherapy

(ICB) were collected in TIDE database to further analysis. The

results showed that each sub-CAF had different levels of

immunotherapy response (Figure 7). The expression of some

ICP gene HAVCR2 was positively correlated with the GSVA z-
A

B

DC

E

F G

FIGURE 5

Functional enrichment analysis for CAF subsets. (A) Compared clusters of KEGG results. The color represents the P-value, and the size of the
circle represents the ratio of genes. (B) Compared clusters of GO results. The color represents the P-value, and the size of the circle represents
the ratio of genes. (C–G) Networks of functional enrichment analysis elaborated by Cytoscape.
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score of these CAF subclusters (Figure 7A). We calculated the

cell subset score of each sample in the immune therapy dataset

for five CAF clusters and analyzed the correlation with prognosis

by univariate cox analysis (Figure 7B). From Figure 7B,

Nathanson2017_CTLA4 was found to have prognostic value in

the four CAF clusters (CAF-C0, CAF-C1, CAF-C2, and CAF-

C3). Therefore, we selected the Nathanson2017_CTLA4

immunotherapy dataset for CAF-C2 scoring, divided into high

and low groups, and drew the K-M curve, from which we
Frontiers in Oncology 09
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observe the poor prognosis of the low group (Figure 7C). We

also developed a diagnostic model for immunotherapy response,

as shown in Figure 7D.
Quantitative real-time PCR

We selected the marker genes (ADM, ERO1A, ENO2,

BNIP3, and UPP1) of CAF-C2 to detect their expression in
A

B

D

E

C

FIGURE 6

Prognosis analysis and Prediction analysis of subsets. (A) The volcano figure of differential expression analysis of five CAF-clusters. (B) HRs
predicted by subCAFs of TCCA datasets. The color represents the HR value. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Survival curve predicted for
CAF-C2. (D) Survival curve predicted for CAF-C4. (E) HRs predicted by subCAFs of PAAD datasets. The color represents the HR value. *P < 0.05;
**P < 0.01; ***P < 0.001.
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human pancreatic CAF-stellate cell (CAF118), human

pancreatic cell (HPC-Y5), and human pancreatic cancer cell

line (SW1990). Compared with HPC-Y5, ADM (Figure 8A),

ERO1A (Figure 8B), ENO2 (Figure 8C), BNIP3 (Figure 8D), and

UPP1 (Figure 8E) were significantly higher expressed in SW1990

and CAF118.
Frontiers in Oncology 10
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Discussion

PAAD is an aggressive malignancy, of which 95% are PDAC.

In recent years, its morbidity and mortality rates have increased

by an average of 0.3% per year due to changes in lifestyle and

factors such as aging population and increased life expectancy
A B

DC

FIGURE 7

The correlation between CAF clusters and immune therapy. (A) Key ICP genes expression and GSVA z-score correlation test. Red means
positive correlation, and blue means negative correlation. *P < 0.05, **P < 0.01, and ***P < 0.001. (B) HRs predicted by sub-CAFs of immune
therapy datasets. The color represents the HR value. *P < 0.05 and **P < 0.01. (C) K-M curve for Nathanson2017_CTLA4 immunotherapy
dataset based on CAF-C2 scoring. (D) The diagnostic model for immunotherapy response based on CAF-C2.
A B D EC

FIGURE 8

Quantitative real-time PCR. (A–E) Quantitative real-time PCR assays using cell lines for ADM (A), ERO1A (B), ENO2 (C), BNIP3 (D), and UPP1 (E).
**P < 0.01; #P < 0.05; ##P < 0.01.
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(40). Because of the lack of specific symptoms and biological

markers, early diagnosis of PAAD is very difficult. PAAD

progresses rapidly and is inoperable by the time most patients

are diagnosed (41). At the same time, pancreatic cancer is not

sensitive to most treatments (42), so its prognosis is extremely

poor (43). Some studies have shown that the unique interaction

network and high heterogeneity of pancreatic cancer cells and

that their microenvironment may play an important role in the

origin, progression, and drug resistance of pancreatic cancer

cells, and elucidating the inherent complex mechanisms has

completed the common goal of scholars in this field (44, 45).

Despite a lot of work, the results have been poor, with PAAD

showing the lowest improvement in 5-year survival in recent

years compared with other cancers (46). One of the important

reasons lies in the limitations of traditional research methods in

exploring the heterogeneity of tumors. Single-cell sequencing

technology brings hope to break through this dilemma. It can

deeply analyze the distribution, status, and interaction of

different subgroups of cells, which makes up for some

shortcomings of traditional sequencing technology and

provides a new research method. At present, some studies

based on single-cell sequencing technology have gradually

achieved results and gradually gained a new understanding of

the occurrence and progress of PAAD, providing possible targets

for early diagnosis and effective treatment and promoting the

development of precision medicine in the field of PAAD.

Molecular subtyping of PAAD is still in its early stage. In the

clinical evaluation and prognostic analysis of PAAD, TNM stage

and other clinical features are commonly used. However,

because of individual differences in pancreatic cancer, there is

no widely used molecular classification of pancreatic cancer that

is associated with prognosis or has different sensitivity to

treatment (47). Therefore, it is necessary to develop better

methods for clinical diagnosis and prognosis assessment of

PAAD so that patients can early detect cancer and take

reasonable and effective treatment measures.

In recent years, with the continuous optimization and

progress of the second-generation sequencing technology, the

study of tumor bioinformatics has developed rapidly (48).

However, there are a lot of mesenchymal components in PAAD

tissue, which often leads to direct sequencing or inaccurate

sequencing results (49, 50). Genomics studies have revealed

common genomic pathway changes in PAAD, as well as more

common or targeted somatic mutations in addition to the four

major driver genes (51–53). Waddell et al. found that unstable

patients may be more suitable for treatment with drugs involved in

genomic damage repair pathways, such as Poly ADP-ribose

polymerase (PARP) inhibitors or platinum, compared with other

three types (53). More studies on PAAD typing have focused on

transcriptomics. Because of the high content and complex

composition of mesenchyma in PAAD tissues, there are some

differences in sequencing analysis results. Sequencing analysis of

samples with high or enriched tumor cells showed that PAAD
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tended to be divided into two types: classical and basal-like (54, 55).

Studies of samples with relatively low levels of tumor cells, however,

showed that pancreatic cancer types tended to be more diverse (55–

57). This may be mainly due to the complexity of interstitial

components, such as the differences in immune cell infiltration

and interstitial activation. Canonical and basal-like transcriptome

types are of great significance in predicting the prognosis of patients,

but they have not yet played a good role in the classification and

guidance of specific clinical treatment.

To further illuminate the subtyping of PAAD based on CAFs,

we used Seurat 1656 CAFs in GSE154778 and 6228 CAFs in

CRA001160. Our data discriminated five CAF subclusters and

corresponding marker genes. To explore the mechanism of these

CAF subclusters involved in the development of PAAD, we assess

the characteristics of signaling patterns for the five CAF subclusters

and found that these CAF subclusters were all closely related to EMT

and endocrine. RHIM et al. traced that PAAD cells could develop

EMT and obtain mesenchymal phenotype through in vivo pedigree,

some cells after EMT initiated stem cell program, and PAAD cells

with CD24+CD44+ stem cell phenotype weremore likely to enter the

blood circulation and survive (58). Breast cancer cells can also exhibit

fibroblast characteristics and have the ability to differentiate into

myofibroblasts (59). Our results further suggested that CAFs may be

derived from EMT. We found that the expression of metabolism-

related genes of CAF in each subclusters was different. Metabolic

changes are an important feature in the identification of cancer cells.

Many studies have found that CAFs are associated with energy

metabolism of cancer cells, and tumor cells can better adapt to their

rapid growth by modifying the TME. Sun et al. found that hypoxia

can improve the glycolysis activity of CAFs, and lactic acid in

hypoxia CAFs, as a metabolic coupling between CAFs and breast

cancer cells, can improve the mitochondrial activity of cancer cells

through relevant signaling pathways, thus promoting the invasion of

breast cancer cells (60). In addition, in autophagy-related paracrine

mode, CAFs provide substrates (such as lactic acid, pyruvate, and

ketone bodies) for adjacent cancer cells derived from their own

excess glycolysis activity (61). Research has shown that, in breast

cancer, prostate cancer, head and neck carcinoma and lymphoma,

and tumor, the catabolism of fibroblasts, the anabolic metabolism

coupling between cancer cells, and the metabolic coupling drive

fibroblasts of oxidative stress, glycolysis, autophagy, and aging; the

decomposition in the metabolic production of fibroblasts for tumor

growth provides a rich nutrition of microenvironment. The

formation of mitochondrial fuel (lactic acid, ketone bodies, fatty

acids, glutamine, and other amino acids) through a local matrix

promotes tumor growth (62). CAFs can play an important role in

the progression of cancer cells through a variety of metabolic

pathways, which may provide new strategies for the treatment

of PAAD.

In summary, we evaluated the heterogeneity of subclusters

based on CAF for PAAD. The signaling patterns, immune status,

metabolism features, and enrichment pathways of these subclusters

were estimated and determined. Nonetheless, some limitations of
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the current study should not be ignored. The number of cells from

the databases obtained in this study is limited, which varies from

patient to patient. Therefore, more sample size is needed to support

the conclusion. In addition, further high-throughput single-cell

sequencing analysis and in vivo studies should be used to confirm

the conclusions of this study.
Conclusions

We explored the heterogeneity of five subclusters based on

CAF in signaling patterns, immune status, metabolism features,

enrichment pathways, and prognosis for PAAD.
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A transient receptor potential
channel-related model based
on machine learning for
evaluating tumor
microenvironment and
immunotherapeutic strategies in
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Background: Acute myeloid leukemia (AML) is an aggressive hematopoietic

malignancy. Transient receptor potential (TRP) channels in AML still need to be

further explored. A TRP channel-related model based on machine learning was

established in this study.

Methods: The data were downloaded from TCGA-LAML and Genome-Tissue

Expression (GTEx). TRP-related genes (TRGs) were extracted from previous

literature. With the use of Single-Sample Gene Set Enrichment Analysis

(ssGSEA), TRP enrichment scores (TESs) were calculated. The limma package

was used to identify differentially expressed genes (DEGs), and univariate Cox

regression analysis was performed to identify prognostic DEGs. The above

prognostic DEGs were analyzed by Random Survival Forest and least absolute

shrinkage and selection operator (Lasso) analysis to create the TRP signature. The

Kaplan–Meier and receiver operating characteristic (ROC) curveswere plotted to

investigate the efficiency and accuracy of prognostic prediction. Moreover,

genomic mutation analysis was based on GISTIC analysis. Based on ESTIMATE,

TIMER, MCPcounter, and ssGSEA, the tumor microenvironment and

immunological characteristics were expressly evaluated to explore

immunotherapeutic strategies. Enrichment analysis for TRP signature was

based on the Kyoto Encyclopedia of Genes Genomes (KEGG), Gene Ontology

(GO), over-representation analysis (ORA), and Gene Set Enrichment Analysis

(GSEA). Genomics of Drug Sensitivity in Cancer (GDSC) and pRRophetic were

used to carry out drug sensitivity analysis. Conclusively, SCHIP1 was randomly

selected to perform in vitro cyto-functional experiments.
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Results: The worse clinical outcomes of patients with higher TESs were

observed. There were 107 differentially expressed TRGs identified. Our data

revealed 57 prognostic TRGs. Eight TRGs were obtained to establish the

prognostic TRP signature, and the worse clinical outcomes of patients with

higher TRP scores were found. The efficiency and accuracy of TRP signature in

predicting prognosis were confirmed by ROC curves and five external

validation datasets. Our data revealed that the mutation rates of DNMT3A,

IDH2, MUC16, and TTNwere relatively high. The level of infiltrating immune cell

populations, stromal, immune, and ESTIMATE scores increased as the TRP

scores increased. Nevertheless, AML patients with lower TRP scores exhibited

more tumor purity. The TRP scores were found to be correlated with

immunomodulators and immune checkpoints, thus revealing immune

characteristics and immunotherapeutic strategies. The IC50 values of six

chemotherapeutics were lower in the high TRP score (HTS) group. Finally, it

was found that SCHIP1 may be the oncogenic gene.

Conclusion: The results of this study will help in understanding the role of TRP

and SCHIP1 in the prognosis and development of AML.
KEYWORDS

acute myeloid leukemia, TRP, signature, schip1, machine learning
Introduction

Acute myeloid leukemia (AML) is an aggressive hematopoietic

malignancy caused by the malignant transformation of

hematopoietic stem cells or progenitor cells, which is highly

heterogeneous (1). It is the most common acute leukemia in

adults, with an annual incidence of approximately four per

100,000 cases (1). Patients with AML generally have a poor

prognosis (1). Therefore, it is of great significance for clinical

treatment to find molecular markers that can judge the prognosis

and effectively distinguish whether patients can benefit from

treatment. Advances in genomics have greatly improved our

understanding of the pathogenesis of AML, which is one of the

targets in the search for diagnosis and treatment of AML.

The prognosis of the same AML type may be very

heterogeneous. Therefore, it is of great importance to evaluate

the characteristics of each AML patient. In the past 40 years,

many new achievements have been made in pathogenesis, but

there is no innovative progress in the treatment of AML. The

traditional treatment of AML mainly includes three parts:

induction regimen therapy, monitoring after induction

therapy, and treatment after complete remission (CR) (2). In

the post-CR treatment, patients under the age of 60 should

choose the appropriate treatment according to the risk

stratification, indicating the important role of genetic risk

stratification in guiding the treatment of AML. Traditional

cytogenetic classification includes better karyotypes,
02
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intermediate karyotypes, and poor karyotypes. With the

deepening of research on leukemia, people can have more

profound knowledge of the pathogenesis of leukemia, and the

risk classification of AML combined with genetic changes is

more recommended by most guidelines (1). However, the risk

classification of AML needs to be further explored.

Bioinformatics is an interdisciplinary subject involving

mathematics, statistics, computer science, biology, and other

disciplines. After decades of development, bioinformatics is still

a subject with great development prospects (3). In recent years, a

large number of databases containing biological information of

various species have been established worldwide. As the largest

database for cancer research, The Cancer Genome Atlas (TCGA)

(4) database stores rich sequencing data and clinical

information, which can be downloaded by researchers all over

the world for free for research so as to improve the cognitive

ability of doctors and researchers on the disease. AML project, as

one of the earliest and most well-developed projects in TCGA,

stores a large amount of sequencing and clinical data, which can

be used to prospectively explore some disease-related

information and provide directions for clinical and

experimental research.

Transient receptor potential (TRP) was first discovered in

Drosophila (5). When Drosophila bearing the mutant gene is

exposed for an extended time to light, its photoreceptor will

show a transient increase of voltage, so it is named transient

receptor potential channel (5). Mammalian TRP channels are
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composed of 28 cation permeation channels (6), each with six

transmembrane peptides, which assemble into tetramers to form

ion channels (6). TRP channels have various types, such as

TRPC, TRPA, TRPM, TRPN, TRPP, and TRPV (7). TRP

channels are involved in various physiological and pathological

processes of the body and respond to physical or chemical

stimuli in the cellular environment by sensing them (8). TRP

channel is closely related to circulatory (9), urinary (10),

digestive (11, 12), nervous (13, 14), and other systems. It is a

cation channel widely existing in the body, mainly permeating

Ca2+, Mg2+, and other cations (15). By affecting the change of

cation concentration, the TRP channel changes the strength of

the corresponding pathway signal in the cell, leading to the

change of cell function (15). As for AML, TRP was seldom

reported in AML. TRP ion channel TRPM2 could enhance the

proliferation of AML cell lines through multiple pathways (16).

TRP Melastatin Subfamily Member 4 may be an alternative

therapeutic approach for AML (17).

Therefore, TRP may be used as a prognostic and therapeutic

target. However, the TRP channel in AML still needs to be

further explored.

In this study, bioinformatics analysis was used to screen out

genes’ expression of AML, including TRP-related genes (TRGs)

from public databases, and to analyze the characteristics of TRP

enrichment in TCGA-LAML. By combining survival

information and gene expression, 57 prognostic TRGs were

preliminarily identified as possible AML target genes. Through

the Random Survival Forest model and least absolute shrinkage

and selection operator (Lasso) analysis, a predictive model

consisting of eight genes was established and validated in five

external datasets, thus proving good predictive ability. The risk

prognosis model score was used to group the high- and low-risk

groups, and it was found that the risk groups differed in immune

profiles and treatment.
Material and methods

Data collection and preprocessing for
acute myeloid leukemia

The transcriptome expression profile and corresponding

clinical information of patients diagnosed with AML were

downloaded from TCGA-LAML dataset in the UCSC Xena

platform (https://xenabrowser.net/) (18). There were a total of

149 AML patients with corresponding data included in our

study (N = 149). In addition, the transcriptome expression

profile of corresponding normal control samples was

downloaded from Genome-Tissue Expression (GTEx) project

(https://www.gtexportal.org) (19). Meanwhile, five AML cohorts

were collected, including GSE12417 (N = 79), GSE12417 (N =

163), GSE37642 (N = 136), GSE37642 (N417), and TARGET (N

= 187), from Gene Expression Omnibus (GEO; https://www.
Frontiers in Immunology 03
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ncbi.nlm.nih.gov/geo/) or Therapeutically Applicable Research

to Generate Effective Treatments (TARGET; https://ocg.cancer.

gov/programs/target/data-matrix) (20). The GEO data were

generated from the Affymetrix (21) or Agilent (22) platform.

Background correction and normalization for GEO data were

carried out using Robust Multichip Average (RMA) algorithm

(23). The data forms of TCGA and TARGET were transformed

from fragments per kilobase of transcript per million fragments

mapped (FPKM) to transcripts per kilobase million (TPM), of

which the signal strength was similar to the value processed by

RMA (24).
Establishment of transient receptor
potential enrichment score

The list of TRGs was extracted from the previous literature

(25), which was used for enrichment score calculation. There

were eight TRGs included in our study: TRPM1, TRPM2,

TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, and TRPM8. To

identify TRP-related patterns, TRP enrichment scores (TESs)

were calculated for each AML patient using Single-Sample Gene

Set Enrichment Analysis (ssGSEA) algorithm (26). According to

the optimal cutoff value of TESs calculated by R code (27),

patients with AML were divided into the high-TES group

(≥cutoff value) or low-TES group (<cutoff value).
Establishment of transient receptor
potential signature

The limma package was used to identify differentially

expressed genes (DEGs) between the high-TES and low-TES

groups (logFC > 1, p < 0.05) (28). Thereafter, univariate Cox

regression analysis was performed to identify prognostic DEGs

(p < 0.05) (29), and the Random Survival Forest model was

utilized to screen out prognostic DEGs with higher importance

(variable importance >0.3) based on the randomForestSRC

package (30). To establish the TRP signature, the weight of

regression coefficients of the prognostic genes identified by the

Random Forest Algorithm was calculated using Lasso analysis

(31), thus establishing the signature and computing the

TRP score.
Efficacy of transient receptor
potential signature

The TRP score for 149 patients in TCGA-LAML cohort was

estimated according to the method described above. The optimal

cutoff was considered based on R code (27) as the threshold

value to distinguish subgroups with high TRP scores (HTS) or

low TRP scores (LTS). We compared survival differences
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between the two subgroups to assess the relationship between

TRP score and overall survival (OS) by plotting Kaplan–Meier

survival curves (32). Through the timeROC package, the 1-, 3-,

and 5-year survival receiver operating characteristic (ROC)

curves were plotted to investigate the efficiency and accuracy

of prognostic prediction for the TRP score. To further verify the

independence of the TRP score predicting prognosis for AML,

univariate or multivariate Cox regression analyses of the TRP

score and clinicopathological characteristics [age, gender, and

white blood cell (WBC)] were performed.
Genomic mutation analysis for acute
myeloid leukemia with transient receptor
potential score

Somatic mutation profiles of AML were obtained from

cBioPortal (http://www.cbioportal.org/datasets) (33). Meanwhile,

copy number variation (CNV) analysis was carried out after

extracting data from FireBrowse (http://firebrowse.org/) (34).

The genomic characteristics were assessed using Genomic

Identification of Significant Targets in Cancer (GISTIC)

analysis (35).
Evaluation of immunological
characteristics

We used the ESTIMATE (The Estimation of Stromal and

Immune cells in Malignant Tumor tissues using Expression)

algorithm to assess the abundance of immune cells, stromal cell

infiltration level, and tumor purity and expressed them as

immune score, stromal score, and ESTIMATE score,

respectively (36). In addition, in order to comprehensively

analyze the infiltration of immune cells in AML, we further

analyzed the levels of six kinds of cells by using the TIMER 2.0

(Tumor Immune Estimation Resource 2.0) network server

(http://timer.cistrome.org/) (37). We also used MCPcounter

(38) and ssGSEA (26, 39) to assess the relative proportions of

10 immune cells and the infiltration levels of 28 immune cells,

respectively. We extracted several immunomodulators from

literature reported previously to explore the association

between TRP score and immune processes (40).
Enrichment analysis for transient
receptor potential signature

Downloading from the MSigDB database, we acquired gene

sets using for Kyoto Encyclopedia of Genes Genomes (KEGG) or

Gene Ontology (GO) analyses (41). We implemented over-

representation analysis (ORA) (42) and Gene Set Enrichment

Analysis (GSEA) by using the clusterProfiler package (43).
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Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) website

was utilized to screen a wide range of drugs (44). The prediction

model was constructed based on Ridge’s regression between

drug sensitivity and expression profile of cell lines using the

pRRophetic algorithm (45, 46). Subsequently, the IC50 value of

corresponding chemotherapeutics for patients with AML

was calculated.
Cell culture

We randomly selected one gene, SCHIP1, from the TRP

signature to perform in vitro cyto-functional experiments. We

used one AML cell line, called K562, for in vitro assays. We

incubated the AML cell line K562 in the incubator at an

atmosphere of 37°C and 5% CO2 and cultured it in 90%

Roswell Park Memorial Institute 1640 (RPMI 1640) medium

with 10% fetal bovine serum (FBS).
Cell transfections

To perform cell transfections, Hieff Trans™ in vitro siRNA

Transfection Reagent supplied by Yeasen Biotechnology

(Shanghai, China) was used, and the sequences of siRNA were

as follows: si-NC (control group) sense (5′-UUCUUCGAAC
GUGUCACGUTT-3 ′ ) , s i -NC an t i s en s e ( 5 ′ -ACG

UGACACGUUCGGAGAATT-3′), si-SCHIP1 sense (5′-
GGAGUCUGAAUCCUU GGAUTT-3′), and si-SCHIP1

ant isense (5 ′-AUCCAAGGAUUCAGACUCCTT-3 ′) .
According to the kit instructions, the transfection steps were

as follows: cells were collected, plates were spread on a six-well

plate, and the number of cells on the transfection day was 5 × 10

(5) to 2 × 10 (6). OPTI-MEM medium, siRNA, and transfection

reagent were used to prepare siRNA-PEI cationic nucleic acid

transfection reagent complex and added to the cell suspension.

After 4–6 h in a 5% CO2 incubator at 37°C, 2 ml of complete

medium was added and incubated in an incubator for 72 h. The

efficiency of SCHIP1 knockdown in K562 cells was confirmed by

Western blotting assays.
Western blotting assays

Protein was extracted through protein extraction reagents

containing inhibitors. Ten microliters of protease inhibitor

mixture, 10 µl of phenylmethylsulfonyl fluoride (PMSF), and

10 µl phosphatase mixture were added to 1 ml of the extraction

reagent. The bicinchoninic acid (BCA) method was performed

for protein detection: 25 µl of standard and sample to be tested

was added to the microwells, 200 µl of BCA working solution
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was added to each well, the samples were incubated at 37°C for

30 min, and then the absorbance was detected at 562 nm on a

microplate reader. TEMED containing 10% separation glue and

5% concentrate glue for gluing was successively used. After

loading, it was electrophoresed with glycine buffer. After

electrophoresis, a polyvinylidene difluoride (PVDF) membrane

was used for the transmembrane of the gel. After the membrane

transfer, the membrane was blocked with 5% non-fat milk and

then washed three times with TBST. After blocking, the cells

were incubated with primary antibodies at 4°C overnight. Before

and after incubation with a secondary antibody for 1 h at room

temperature, the membrane was washed with TBST three times.

F ina l l y , the co lo r was defined accord ing to the

chemiluminescence kit, photos were taken, and statistics and

analysis were performed on the gel imaging system.
Cell Counting Kit-8 assays

Cells were collected at a concentration of 1 × 10 (4) cells/ml.

Each well of the 96-well plate was inoculated with 100 µl of cell

suspension, and each group had three wells. Ten microliters of

si-SCHIP1 or si-NC was added to the corresponding wells and

then placed into the incubator for routine culture. The next day,

10 µl of Cell Counting Kit-8 (CCK8) solution was added at a

fixed time and incubated in the incubator for 0.5–4 h. Finally, the

absorbance at 450 nm was measured by a microplate reader, and

the cell viability was calculated.
Statistical analysis

Normally distributed variables and non-normally

distributed data between two groups were compared by t-test

and Wilcoxon test, respectively. OS status estimated by Kaplan–

Meier survival curves and Cox regression used for survival

analysis were compared by the survminer package. ROC

curves were plotted by the timeROC package, and heatmaps

were plotted by the pheatmap package. R package ggplot2

(v4.1.2) was used to visualize the data. In vitro assays were

performed for more than three independent experiments or

replicates. p < 0.05 was considered statistically significant.
Results

Characteristics of transient receptor
potential enrichment in TCGA-LAML

We calculated TESs for each AML patient using the ssGSEA

algorithm. The correlations among the TRGs, clinicopathological

characteristics, and TESs are exhibited in Figure 1A. Compared
Frontiers in Immunology 05
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with AML patients with lower TESs, the expressions of TRPM1,

TRPM2, TRPM5, and TRPM5were relatively high; on the contrary,

the expressions of TRPM6 and TRPM7 were relatively low

(Figure 1A). We distinguished AML patients into the HTS group

and LTS group. From Figure 1B, we can observe the significantly

worse clinical outcomes of patients with higher TESs, while the

prognosis of patients with lower TESs was better. Therefore, TES

may be a driving factor for the malignant progression of AML.

There were 107 differentially expressed TRGs identified by

differential analysis (logFC > 1, p < 0.05), which could be

reflected in the volcano map (Figure 1C). We carried out an

enrichment analysis to explore the biological function of these

differentially expressed TRGs. The GO analysis (Figure 1D) showed

that these TRGs were significantly enriched in several immune-

related pathways (neutrophil activation, neutrophil degranulation,

neutrophil activation involved in immune response, neutrophil-

mediated immunity, defense response to bacterium, defense

response to fungus, negative regulation of immune system

process, leukocyte migration, macrophage activation, and

macrophage differentiation). KEGG analysis (Figure 1E) revealed

that these TRGs were significantly enriched in some classical

tumor-related pathways (Transcriptional misregulation in cancer,

IL-17 signaling pathway, Arachidonic acid metabolism, Influenza

A, C-type lectin receptor signaling pathway, Bladder cancer,

Serotonergic synapse, Malaria, Shigellosis, and Melanoma).
Establishment of transient receptor
potential signature

The univariate Cox regression analysis was performed on the

differentially expressed TRGs obtained above. The results revealed

57 prognostic TRGs (Figure 2A), including 24 potential tumor-

protective factors (hazard ratio (HR) < 1) and 33 potential tumor-

promoting factors (HR > 1). Thereafter, the distribution of error

rates generated by the Random Survival Forest model is shown in

Figure 2B, thus identifying the variable importance (variable

importance >0.3, Figure 2B) of 12 TRGs (ZNF608, NAPSB,

CPNE8, ANXA8, LPO, PDCD6IPP1, SLC2A5, SCHIP1,

HOXA4, TRH, LST1, and METTL7B). Lasso analysis was used

to construct the TRP signature, and the TRP score for 149 patients

with AML was calculated. Ultimately, eight TRGs (ANXA8,

CPNE8, HOXA4, LPO, LST1, METTL7B, NAPSB, PDCD6IPP1,

SCHIP1, SLC2A5, TRH, and ZNF608) were obtained to establish

the prognostic signature, and Figure 2C displays the lambda

selection diagram. The heatmap displays the distribution of the

eight TRGs of the signature, clinicopathological characteristics,

and TRP score. It can be clearly observed that high expression of

LPO and TRH may be associated with lower TRP scores, in

contrast to high expression of NAPSB, METTL7B, SLC2A5,

SCHIP1, PDCD6IPP1, and HOXA4, which was associated with

higher TRP scores (Figure 2D).
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FIGURE 1

Characteristics of TRP enrichment scores in TCGA-LAML cohort. (A) Correlation between TRP enrichment scores and the expression values of
eight TRP genes in TCGA-LAML cohort. Yellow represents high gene expression; blue represents low gene expression. (B) Kaplan–Meier curve
showing the correlation between TRP enrichment scores and survival status of AML patients. The blue curve represents the group with lower
TRP enrichment scores, and the red curve represents group with higher TRP enrichment scores. (C) Volcano map of differential analysis
between high and low TRP enrichment groups. There were 107 differentially expressed genes between the two groups. Yellow dots indicate
genes whose expression values differ between the two groups, while blue dots indicate genes whose expression values do not differ between
the two groups. (D) GO enrichment map of 107 differentially expressed genes. (E) KEGG enrichment map of 107 differentially expressed genes.
TRP, transient receptor potential; AML, acute myeloid leukemia; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes Genomes. **,<0.01;
*** ,<0.001; and ****,<0.0001.
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Efficacy of transient receptor
potential signature

The optimal cutoff of TRP scores was set as a threshold value

to distinguish AML patients into the HTS or LTS groups. The

details of clinic information are listed in Supplementary Table
Frontiers in Immunology 07
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S1. The survival curves showed significantly worse clinical

outcomes of patients with higher TRP scores, while the

prognosis of patients with lower TRP scores was better

(Figure 3A). The area under the curve (AUCs) values of 1-year

(AUC = 0.738), 3-year (AUC = 0.796), and 5-year (AUC =

0.858) survival ROC curves predicted by the TRP signature were
A B

D

C

FIGURE 2

Establishment of TRP signature. (A) Forest plot for univariate Cox regression analysis of 57 prognostic TRP-related genes. (B) The distribution of
error rates in Random Survival Forest model and the variable relative importance of 12 TRP-related genes (variable importance >0.3). (C) Lambda
selection diagram for least absolute shrinkage and selection operator (Lasso) analysis. (D) The heatmap displaying the distribution of the eight
TRP-related genes of the signature, clinicopathological characteristics, and TRP enrichment scores. Yellow represents high gene expression;
blue represents low gene expression. TRP, transient receptor potential. **,<0.01; and ****,<0.0001.
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FIGURE 3

Efficacy of TRP signature. (A) Kaplan–Meier survival curve showing survival probability of high TRP score or low TRP score subgroups. The blue
curve represents the group with lower TRP scores, and the red curve represents group with higher TRP scores. (B) The 1-year (0.738), 3-year
(0.796), and 5-year (0.858) survival ROC curves predicted by the TRP signature. (C) The forest figure for univariate Cox regression analysis of
TRP score and clinicopathological features. (D) The forest figure for multivariate Cox regression analysis of TRP score and clinicopathological
features. (E) Univariate Cox regression analysis of the TRP signature in five external validation datasets (GSE12417-GPL570, GSE12417-GPL96,
GSE37642-GPL570, GSE37642-GPL96, and TARGET). (F) GSEA showing cancer-related pathways positively regulated by TRP signature. TRP,
transient receptor potential; ROC, receiver operating characteristic; GSEA, Gene Set Enrichment Analysis.
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all higher than 0.7, suggesting the efficiency of TRP signature in

predicting prognosis for AML (Figure 3B). Furthermore, TRP

signature was an independent prognostic factor for AML

patients as demonstrated by univariate (Figure 3C) and

multivariate (Figure 3D) Cox regression analyses. Finally,

univariate Cox regression analysis was conducted on five

external validation datasets (GSE12417-GPL570, GSE12417-

GPL96, GSE37642-GPL570, GSE37642-GPL96, and TARGET),

and the HRs of the five sets were all greater than 1,

demonstrating the accuracy of the TRP signature that we

constructed in prognost ic predic t ion (F igure 3E ,

Supplementary Figure S1). Based on GSEA, six cancer-related

pathways (MAPK signaling pathway, TOR signaling pathway,

Apoptosis, Wnt signaling pathway, TNF signaling pathway, and

NF-kappa B signaling pathway) were identified, which may be

positively regulated by this signature, which provided insights

for exploring the mechanism of AML (Figure 3F).
Genomic mutation analysis for transient
receptor potential signature

We assessed the genomic characterization landscape of the

HTS group or LTS group by the GISTIC algorithm, as shown in

Figure 4A. Further, we plotted the detailed amplificated or

deleted CNV onco-plots of the HTS and LTS groups

(Figure 4B). From Figure 4B, we can observe that the results

of the two subgroups were similar. DNMT3A, FLT3, RUNX1,

NPM1, TP53, NRAS, CACNA1B, IDH2, MUC16, TTN,

ALOX12B, ASXL1, ATP10B, BBS12, and BRINP3 were the top

15 genes with the highest mutation rate in AML patients with

high TRP scores (Figure 4C). MUC16, IDH2, KIT, TTN,

DNMT3A, PRUNE2, UBR4, WT1, AHNAK, AHNAK2,

CC2D2A, MACF1, NF1, PCLO, and VPS13D were the top 15

genes with the highest mutation rate in AML patients with low

TRP scores (Figure 4C). Thus, the mutation rates of DNMT3A,

IDH2, MUC16, and TTN in the two subgroups were

relatively high.
Evaluation of immunological
characteristics for transient receptor
potential signature

After analysis based on MCPcounter, ssGSEA, and TIMER

algorithms, the abundance of infiltrating immune cell populations

with different TRP scores was displayed in the heatmap

(Figure 5A). From a general view, the level of infiltrating

immune cell populations (Figure 5A), stromal score (Figure 5B),

immune score (Figure 5B), and ESTIMATE score (Figure 5B)

increased as the TRP scores increased. Nevertheless, AML patients

with lower TRP scores exhibited more tumor purity (Figure 5B).

As for gene set variation analysis (GSVA), we focused on
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immune-related pathways positively regulated by TRP signature.

The results showed that the TRP signature may be associated with

adaptive immune response, immune response, innate immune

response, T-cell receptor signaling pathway, interleukin-1-

mediated signaling pathway, interferon-gamma-mediated

signaling pathway, positive regulation of T cell proliferation, and

T-cell activation (Figure 5C).
Immunotherapy and chemotherapy of
transient receptor potential signature

Considering that immunomodulators (IMs) play a critical

role in tumor immunotherapy, we compared the correlation

between immunomodulator levels (Co-stm, Co-ihb, Ligand,

Receptor, Cell adhesion, Antigen presentation, and Other) and

the prognostic TRP signature (Figure 6A). To further evaluate

the relationship between TRP score and immunotherapy, we

calculated the correlation between the TRP scores and the

expression level of four classical immune checkpoints, and we

found that the score was correlated with PDCD1 (R = 0.37, p =

2.5 × e−6), CTLA4 (R = 0.44, p = 1.5 × e−8), CD274 (R = 0.46, p =

2.5 × e−9), and PDCD1LG2 (R = 0.48, p = 7.1 × e−10), which can

provide an important reference for the immunotherapy of AML

(Figure 6B). The IC50 values of six chemotherapeutics (PLX-

4720, 5-Fluorouracil-1073, Dabrafenib-1373, Temozolomide-

1375, LGK974-1598, and Foretinib-2040) were contrasted

using violin figures, and our data revealed that the IC50 values

of the chemotherapeutics mentioned above were lower in the

HTS group than in the LTS group, suggesting that patients with

higher TRP scores were more likely to benefit from these six

chemotherapeutics (Figure 6C).
In vitro assays

To verify the effect of TRP score in vitro, we selected

SCHIP1, as it represents genes of TRP score in further work.

First, our results showed that there was a significant difference in

the expression of SCHIP1 between the tumor and normal, and

the SCHIP1 also had a poor prognosis in TCGA-AML cohort

(Figures 7A, B). Then, after cell transfection, we observed the cell

morphology under the microscope (Figure 7C). As shown in

Figure 7D, 24 h after transfection, the cells in the NC group had

regular shape and uniform size, and there was no significant

difference between the si-NC and NC groups, while the cells in

the si-SCHIP1 group had heterogeneous size and irregular

shape, and some cells showed apoptosis. Forty-eight hours

after transfection, the cell morphology of the NC group and

si-NC group was regular, and there was no significant difference

between the two groups, while the si-SCHIP1 group showed

significant apoptosis. We used Western blotting assays to detect

the knockout efficiency of SCHIP1 gene, and the results showed
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FIGURE 4

Genomic mutation analysis for TRP signature. (A) Genomic characterization landscape of groups with high TRP scores or low TRP scores.
(B) The detailed amplificated or deleted CNV onco-plots of groups with high TRP scores or low TRP scores. (C) Waterfall plot of somatic
mutations in AML between high and low TRP score groups. TRP, transient receptor potential; AML, acute myeloid leukemia; CNV, copy number
variation.
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FIGURE 5

Evaluation of immunological characteristics for TRP signature. (A) Heatmap displaying the abundance of infiltrating immune cell populations
with different TRP scores. (B) The violin chart comparing the differences between high and low TRP scores on stromal score, immune score,
ESTIMATE score, and tumor purity. (C) GSVA for immune-related pathways positively regulated by TRP signature. TRP, transient receptor
potential; GSVA, gene set variation analysis. *,<0.05; **,<0.01; ***,<0.001; and ****,<0.0001.
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that compared with the control group, SCHIP1 gene in the si-

SCHIP1 group was significantly knocked down after cell

transfection (Figures 7E, F). We used CCK8 assay to test the

cell viability of each group (Figure 7G). We found that after 24 h,

the cell viability of the si-SCHIP1 group was significantly lower
Frontiers in Immunology 12
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than that of the control group (p < 0.01). After 48 h, the cell

viability in the si-SCHIP1 group was also significantly decreased

compared with the control group (p < 0.01), while the cell

viability in the si-NC group was significantly increased

compared with the si-SCHIP1 group (p < 0.01).
A B

C

FIGURE 6

Immunotherapy and chemotherapy of TRP signature for AML. (A) Correlation of TRP score with seven immunomodulators in AML. (B)
Correlation between expression of four immune checkpoints and TRP scores. (C) Box plots of estimated IC50 for six chemotherapeutic agents
in the high or low TRP score groups. TRP, transient receptor potential; AML, acute myeloid leukemia.
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Discussion

Since the discovery of AML, a great deal of research has been

carried out on its etiology, development, and treatment. With the

development of technology and in-depth research, many important

prognostic factors have been found, such as age, chromosome typing,

genotyping, and initial and white blood cell count, and patients are

grouped according to these prognostic factors to guide diagnosis and

treatment (47). However, due to the limitation of traditional

clinicopathological features, the clinical prognosis of patients with

AML is still highly heterogeneous. According to the European

LeukemiaNet (ELN) risk classification system, about half of

patients are classified into the intermediate risk group (48). AML is

one of the most common malignant diseases of the circulatory

system. Different types of AM L may have different clinical

manifestations and prognoses. In conjunction with this change,

there is a growing acceptance of early risk stratification for AML to
Frontiers in Immunology 13
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guide further treatment. Clear risk stratification of AML is the

prerequisite for subsequent correct diagnosis and treatment. In this

study, we established risk stratification based on TRP scores. The

survival curves showed significantly worse clinical outcomes for

patients with higher TRP scores, while the prognosis of patients

with lower TRP scores was better. The AUC values of 1-year (AUC=

0.738), 3-year (AUC = 0.796), and 5-year (AUC = 0.858) survival

ROC curves predicted by the TRP scores were all higher than 0.7,

suggesting the efficiency of TRP signature in predicting prognosis for

AML. Furthermore, the TRP score was an independent prognostic

factor for AML patients demonstrated by univariate and multivariate

Cox regression analyses. The accuracy of the TRP score we

constructed in prognostic prediction was recognized by five

external validation datasets. In conclusion, the TRP score system

may be a novel and reliable stratification system for AML.

As a rapidly developing interdisciplinary, bioinformatics uses

computer science and mathematics to drive the development of
frontiersin.or
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FIGURE 7

In vitro cyto-functional experiments for SCHIP1 of AML. (A, B) The expression of SCHIP1 in TCGA between normal and tumor. (B) The prognosis
of SCHIP1 in TCGA. Cell morphology after transfection at 24 h (C or D). NC denotes blank control group, si-SCHIP1 denotes knockdown
SCHIP1 group, and si-NC denotes control group. (E, F) Western blotting assays verifying the transfection efficiency. (G) CCK8 assays comparing
the survival rate of different groups of cells. AML, acute myeloid leukemia; TCGA, The Cancer Genome Atlas; CCK8, Cell Counting Kit-8.
**,<0.01; si-SCHIP1 vs NC for SCHIP1/GAPDH and 24h cell viability; ##, <0.01; si-NC vs si-SCHIP1 for SCHIP1/GAPDH and 48h cell viability;
%%, <0.01; si-NC vs si-SCHIP1 for 48h cell viability.
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biology. Traditional biological studies and clinical studies are often

limited, and the selection of research objectives is often through

theoretical speculation or literature support. However,

bioinformatics research is more macroscopic. Based on the

massive data obtained at the gene level or protein level, high-

throughput sequencing technology and other technologies are

used to screen out some more potential research targets, which

provides possible directions for research. TCGA database is a joint

project of the National Cancer Institute (NCI) and the National

Human Genome Research Institute (NHGRI) so as to help

researchers better understand cancer and promote related

cancer prevention, diagnosis, and treatment progress (4). The

GTEx database stores a large number of human normal tissue

sequencing samples, which can be used to analyze the genetic

differences between tumor samples and normal samples (49). The

GEO database is a project of the National Center for

Biotechnology Information (NCBI), which stores data mainly

from microarray or sequencing data uploaded by various

research institutions and individuals. GPL refers to the type of

sequencing platform used for sequencing data or gene chip data,

and GSE refers to the sequencing data dataset of a series of

samples (50). In this study, we carried out a comprehensive

bioinformatics analysis based on data from TCGA-LAML

dataset in the UCSC Xena platform, GTEx, GEO, and TARGET

datasets. We also used a number of algorithms (KEGG, GO, ORA,

GSEA, GISTIC, ESTIMATE, TIMER, MCPcounter, ssGSEA, and

pRRophetic) to assess functional enrichment pathways, somatic

mutations, immune characteristics, and drug sensitivity in AML.

Bioinformatics analysis contributed to our results.

In addition to using a large number of bioinformatics tools

for analysis, this study also selected a gene, SCHIP1, for the wet

experiment, which is also a highlight of this study. SCHIP1 is

located at chromosome 3q25 and is a relatively unusual protein

initially discovered through interactions with the tumor

inhibitor Merlin/NF2 in the mouse brain, and it is a new

member of the Hippo pathway (51, 52). SCHIP1 plays

different roles in many diseases. SCHIP1 has a variety of

functions and plays an important role in the organization of

Langhock during early brain development and adulthood, and

SCHIP1 is also a cytoplasmic chaperone for cortical cytoskeletal

tonic proteins (53). Studies have shown that SCHIP1 plays an

important role in proteinuria (54). SCHIP1 also promotes the

development and progression of several tumors, including

adrenal tumors, acute lymphoblastic leukemia, renal cell

carcinoma, and colorectal cancer (55–58). Zhang et al.

proposed that IQCJ-Schip1-AS1 could affect the proliferation

of colorectal cancer cells through the pathways of cell cycling,

DNA replication, and p53 (58). In addition, SCHIP1 is an NF2/

Merlin interacting protein in Drosophila, and its coiled-coil

domain interacts with NF2/Merlin to influence the Hippo

pathway (52). After the knockdown of SCHIP1, we found that

the apoptosis of AML cells increased and the cell growth rate
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slowed down, which indicated that SCHIP1 may be a malignant

promoter of AML.

There are limitations to the study. First, we constructed and

validated the risk prognostic model by retrospectively studying

the public database, while more prospective studies are needed

for clinical practicability. Second, due to the older AML project

data in TCGA database, the lack of clinical information is

serious. At the same time, there are few AML data with rich

clinical information, and the lack of clinically relevant data is

inevitable in this study. Finally, different from solid tumors,

which usually detect differential genes by comparing tumor

tissues with adjacent tissues, hematological tumors are

inevitably affected by other external factors due to the lack of

normal bone marrow cells in the samples themselves.
Conclusions

This study determined a risk stratification system based on

TRP score through detailed bioinformatics analysis and initially

confirmed that SCHIP1 is the oncogene of AML.
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Glossary

AML acute myeloid leukemia

GTEx Genome-Tissue Expression

TRG TRP-related gene

ssGSEA Single-Sample Gene Set Enrichment Analysis

TES TRP enrichment score

DEG differentially expressed gene

Lasso least absolute shrinkage and selection operator

ROC receiver operating characteristic

GISTIC Genomic Identification of Significant Targets in Cancer

KEGG Kyoto Encyclopedia of Genes Genomes

GO Gene Ontology

ORA over-representation analysis

GSEA Gene Set Enrichment Analysis

GDSC Genomics of Drug Sensitivity in Cancer

CR complete remission

TCGA The Cancer Genome Atlas

TRP transient receptor potential

TARGET Therapeutically Applicable Research to Generate Effective
Treatments

RMA Robust Multichip Average

FPKM fragments per kilobase of transcript per million fragments mapped

TPM transcripts per kilobase million

HTS high TRP score

LTS low TRP score

OS overall survival

CNV copy number variation

ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression

TIMER Tumor Immune Estimation Resource

RPMI Roswell Park Memorial Institute

FBS fetal bovine serum

PMSF phenylmethylsulfonyl fluoride

PVDF olyvinylidene difluoride

SCHIP1, Schwannomin-Interacting Protein 1
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A novel ganglioside-related risk
signature can reveal the distinct
immune landscape of
neuroblastoma and predict the
immunotherapeutic response

Jiaxing Yang1,2,3,4†, Lei Han2,3,4,5†, Yongliang Sha1,2,3,4,
Yan Jin1,2,3,4, Zhongyuan Li1,2,3,4, Baocheng Gong1,2,3,4,
Jie Li1,2,3,4, Yun Liu1,2,3,4, Yangyang Wang1,2,3,4

and Qiang Zhao1,2,3,4*

1Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital,
Tianjin, China, 2National Clinical Research Center for Cancer, Tianjin Medical University Cancer
Institute and Hospital, Tianjin, China, 3Key Laboratory of Cancer Prevention and Therapy,
Tianjin, China, 4Tianjin’s Clinical Research Center for Cancer, Tianjin, China, 5Department of Cancer
Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
Introduction: Gangliosides play an essential role in cancer development and

progression. However, the involvement of gangliosides in the prognosis and

tumor microenvironment (TME) of neuroblastoma is not entirely understood.

Methods: Consensus clustering analysis was performed to identify ganglioside-

mediated molecular subtypes. LASSO-Cox analysis was conducted to identify

independent prognostic genes, and a novel risk signature was constructed. The

risk signature was validated internally and externally. We further explored the

independent prognosis value, immune landscape, drug susceptibility, and tumor

dedifferentiation of the risk signature. The role of the signature gene B3GALT4 in

neuroblastoma was explored in vitro.

Results: Seventeen ganglioside-related genes were differentially expressed

between INSS stage 4 and other stages, and two ganglioside-related clusters

with distinct prognoses were identified. A novel risk signature integrating ten

ganglioside-related prognostic genes was established. Across the train set and

external validation sets, the risk signature presented high predictive accuracy

and discrimination. The risk signature was an independent prognostic factor

and constructed a nomogram combining multiple clinical characteristics. In

the high-score group, the deficiency in antigen processing and presenting

machinery, lack of immune cell infiltration, and escaping NK cells contributed

substantially to immune escape. The low-score group was more responsive to

immune checkpoint blockade therapy, while the high-score group showed

substantial sensitivity to multiple chemotherapeutic drugs. Besides, the risk
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score was significantly positively correlated with the stemness index and

reduced considerably in all-trans retinoic acid-treated neuroblastoma cell

lines, indicating high dedifferentiation in the high-score group. Additionally,

neuroblastoma cells with downregulation of B3GALT4 present with increased

proliferation, invasion, and metastasis abilities in vitro.

Conclusion: The novel ganglioside-related risk signature highlights the role of

ganglioside in neuroblastoma prognosis and immune landscape and helps

optimize chemotherapy and immunotherapy for neuroblastoma.
KEYWORDS

neuroblastoma, gangliosides, prognosis, immune landscape, dedifferentiation
1 Introduction

Neuroblastoma is the most common extracranial solid

tumor in children, accounting for only 6-10% of all pediatric

malignancies but 12-15% of pediatric cancer-related deaths (1–

3). The prognostic heterogeneity of neuroblastoma has been

wildly characterized. The 5-year event-free survival (EFS) rate in

the low-intermediate risk neuroblastoma exceeds 80%, while the

high-risk group, which accounts for half of the total cases, has a

5-year EFS of only 50% (4). Further survival improvement needs

more precise prognostic information on neuroblastoma, and

novel genetic and molecular predictive biomarkers are urgently

required besides known clinical risk factors.

Gangliosides are glycosphingolipids prevalent on the surface of

cells, characterized by one or more sialic acid residues on

carbohydrate moieties. It is particularly in specialized membrane

domains known as lipid rafts and has a role in cell adhesion and

signal transduction (5–7). Gangliosides are implicated in cancer

development and progression, including tumor proliferation,

invasion, angiogenesis, and metastasis (8). Ganglioside GM3

could decrease the phosphorylation of epidermal growth factor

receptors and inhibit the proliferation of bladder cancer (9).

Ganglioside GM2 is highly expressed in pancreatic ductal

adenocarcinoma and correlated with the activation of TGF-b1
signaling and the promotion of tumor invasion (10). Besides,

ganglioside GM3 and GD3 are involved in angiogenesis

regulation and metastasis in solid tumors (11, 12). However, the

role of gangliosides in neuroblastoma is not entirely understood,

and the double-edged sword function of gangliosides in regulating

malignant characteristics inneuroectodermal-derivedmalignancies

is a critical trait (8, 13, 14). The monosialogangliosides GM3 and

GM1 suppress neuroblastoma, glioma, and astrocytoma

proliferation by interacting with different growth factor receptors

(13). By contrast, GD3 and GD2 of the b-series gangliosides

contribute predominantly to tumor-promoting activities in

malignancies arising from neuroectodermal cells (13). GD3 is
02
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involved in maintaining and enhancing neural stem cell and

glioblastoma self-renewal abilities through EGFR activation (15,

16). Besides, GD3 and GD2 promote proliferation, motility, and

invasion in various malignancies, including breast cancer, small

cell lung cancer, melanoma, and osteosarcoma (13, 17–19).

Importantly, GD2 has become one of the most critical tumor

markers and immunotherapeutic targets for neuroblastoma. The

anti-GD2 monoclonal antibody immunotherapy has been wildly

conducted in neuroblastoma clinical management and presents a

considerable improvement in high-risk neuroblastoma prognosis.

Given the critical and complicated effects of gangliosides on

tumors, it is vital to conduct in-depth studies on the role of

gangliosides in neuroblastoma to predict prognosis and inform

clinical management.

The remarkable efficacy of anti-GD2 monoclonal antibody

suggests the tremendous potential of immunotherapy in

neuroblastoma. Nonetheless, immunotherapeutic approaches in

neuroblastoma continue to face several obstacles. Neuroblastoma

has low immunogenicity due to low mutational load and MHC-I

expression, resulting in a lack of lymphocyte infiltration and

immunological activity in the tumor microenvironment (TME)

(20). Additionally, various immune evasion strategies in TME can

obstruct lymphocyte infiltration and activation (20). Thus, a

comprehensive understanding of the TME is critical for precisely

targeting neuroblastoma with immunotherapy. Interestingly,

previous studies have shown that gangliosides are involved in

regulating TME. Gangliosides on the surface of tumor cells or

shed from cells can suppress cytotoxic T cells or dendritic cells,

contributing to tumor immune evasion (7, 20). Besides,

gangliosides and IFN-g could synergistically inhibit dendritic cell

activity, promoting immune suppression in the TME (21).

Therefore, elucidating the role of gangliosides in TME in

neuroblastoma could facilitate the understanding of tumor

progression and the optimization of immune therapies.

While the involvement of gangliosides in neuroblastoma

prognosis and TME remains to be explored, the bioinformatic
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analysis provides us with a new direction. In the present study,

samples in the GSE49710 dataset were clustered based on

ganglioside-related gene expression, and a risk signature was

constructed to predict neuroblastoma prognosis. Additionally,

we investigated the immune landscapes and escape strategies in

ganglioside-related risk groups. Immunotherapy response and

chemotherapeutic drug sensitivity were further explored in the

high-score and low-score groups. Our findings constructed an

accurate and effective prognostic signature for neuroblastoma

and may help inform the treatment strategy for neuroblastoma.
2 Materials and methods

2.1 Data acquisition and preprocessing

The workflow of this study was presented in Figure S1.

Expression data and corresponding clinical information were

obtained from the Gene Expression Omnibus (GEO) GSE49710

(n=498) (22) andArrayExpress E-MTAB-8248 (n=223) (23). The

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) neuroblastoma gene-expression profile
Frontiers in Immunology 03
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and clinical data (n = 150) were acquired from the UCSC Xena

database (http://xena.ucsc.edu/). TheGSE49710 cohortwas used to

construct the risk signature, with the E-MTAB-8248 and TARGET

datasets serving as external validation. The clinical baseline

characteristics of three data sets were summarized in Table 1.

Expression data were normalized, and log2 transformed. The

expression profile and corresponding immunotherapy

information for the GSE78220 cohort were retrieved from the

GEO database. The expression data of neuroblastoma cell lines

treated with Dimethyl sulfoxide (DMSO) or all-trans retinoic acid

(ATRA) was obtained from GSE155000 in the GEO database.

Thirty-four genes associated with gangliosides were identified by

the Molecular Signatures Database (MSigDB; https://www.gsea-

msigdb.org/gsea/msigdb) and previously published literature

(Table S1) (14).
2.2 Consensus clustering analysis based
ganglioside-related genes

A total of thirty-three ganglioside-related genes were

extracted from the GSE49710 dataset. Given the significant
TABLE 1 Clinical baseline characteristics of three datasets in present study.

Characteristic GSE49710 (N = 498) TARGET (N = 150) E-MTAB-8248 (N = 223)

Gender

Male 287 (57.6%) 88 (58.7%) N/A

Female 211(42.4%) 62 (41.3%) N/A

Stage

1 121 (24.3%) 0 (0.0%) 29 (13.0%)

2 78 (15.7%) 1 (0.7%) 39 (17.5%)

3 63 (12.7%) 9 (6.0%) 36 (16.1%)

4 183 (36.7%) 120 (80.0%) 89 (39.9%)

4S 53 (10.6%) 20 (13.3%) 30 (13.5%)

Age

<18 months 305 (61.2%) 32 (21.3%) 104 (46.6%)

≥18 months 193 (38.8%) 118 (78.7%) 119 (53.4%)

MYCN Status

Normal 401 (80.5%) 119 (79.3%) 176 (78.9%)

Amplified 92 (18.5%) 30 (20.0%) 46 (20.6%)

Unknow 5 (1.0%) 1 (0.7%) 1 (0.5%)

Risk group

Non–high-risk 322 (64.7%) 31 (20.7%) 133 (59.6%)

High-risk 176 (35.3%) 119 (79.3%) 90 (40.4%)

N/A, not available.
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difference between International Neuroblastoma Staging System

(INSS) stage 4 and other stages (24), seventeen ganglioside-

related genes were identified as differentially expressed genes

(DEGs) between these two groups. Unsupervised consensus

clustering analysis based on ganglioside-related DEGs was

performed on GSE49710 and TARGET datasets using the

“Consensus Cluster Plus” R package and the “k-means”

method to discern diverse expression patterns, with the

repetition number set to 1000 to ensure stability (25). The t-

distributed stochastic neighbor embedding (t-SNE) analysis was

conducted using the “Rtsne” package to investigate the

distribution between distinct clusters.
2.3 Identification of differentially
expressed genes between clusters and
functional enrichment analysis

The analysis of differentially expressed genes between

clusters was conducted using the “limma” R package according

to the specified criteria (|log2FC| ≥1 and adjusted p-

value < 0.05). The clusterProfiler R package was used to

perform functional enrichment analysis on these DEGs,

including Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses (26).
2.4 Construction and validation of the
ganglioside-related risk signature

Univariate Cox regression analysis using the “survival” R

package was performed to screen for potential prognostic genes

within ganglioside-related DEGs in the GSE49710 dataset. The

least absolute shrinkage and selection operator (LASSO)-

penalized Cox regression analysis was then conducted to

identify potential signature genes. Finally, the regression

coefficients of ten signature genes were determined using

multivariate Cox regression. The risk score was calculated by

multiplying the expression value of each signature gene by its

corresponding regression coefficient.

According to the median risk score, samples were classified

as low-score or high-score groups. The scatter dot plots were

generated to visualize the association between risk score and

survival status. Survival analysis of overall survival (OS)

probability was performed to evaluate the risk signature

prognostic value using “survival” and “survminer” R packages.

Receiver operating characteristic (ROC) curve analysis was

performed by the “timeROC” R package to assess the

specificity and sensitivity of the risk signature. The unique

capability of risk signature was evaluated using principal

component analysis (PCA) and the R package “ggplot2.” The

ganglioside-related risk signature validation was carried out in

GSE49710, TARGET, E-MTAB-8248, and Tianjin cohorts.
Frontiers in Immunology 04
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2.5 Independent prognostic analysis and
construction of a nomogram

The “survival” R package was used to conduct univariate and

multivariate Cox regression analysis on datasets to determine the

risk signature’s predictive significance in the context of

recognized prognostic indicators. Furthermore, a nomogram

was constructed comprising the risk signature and several

established prognostic factors by the “rms” R package to

predicate 3-year and 5-year OS. Calibration plots were drawn

to assess the accuracy of the nomogram.
2.6 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was conducted to

investigate the biological function differences in low-score and high-

score groups using the R packages “clusterProfiler” and “enrichplot.”

The reference gene set (“c2.cp.kegg.v7.5.1.symbols.gmt”) was acquired

from MSigDB (http://www.gsea-msigdb.org/gsea/downloads.jsp).
2.7 Immune landscape of the
risk signature

The low immunogenicity of neuroblastoma could be

attributed to a low mutational burden and impairment in the

antigen processing and presenting machinery (APM) (20). APM

scores (APS) were derived in the previous study by gene set

variation analysis (GSVA) based on 18 APM-related genes to

represent antigen processing and presentation efficiency (Table

S2) (27). As an integral element of APM, MHC-I mediates the

recognition and lysis of neuroblastoma cells by cytotoxic T

lymphocytes (CTL). To estimate the quantity of MHC-I

activity, we obtained the gene set associated with the MHC-I

protein complex pathway from the MSigDB (Table S3).

Subsequently, the enrichment score (ES) was calculated in the

single-sample gene set enrichment analysis (ssGSEA) using the

“gsva” R package to reflect MHC-I activity, which was defined as

the MHC score in this study.

The immune infiltration landscape was investigated by

calculating infiltrating scores of 30 different types of TME cells

by ssGSEA (Table S4) (28, 29). Besides, immune, stromal, and

ESTIMATE scores were calculated by the “ESTIMATE”

algorithm to reveal the distinct immune microenvironments

between risk groups (30).

Immune function-related gene sets, including interferon

receptor and natural killer cell cytotoxicity, were gathered

from the Immunology Database and Analysis Portal

(ImmPort, http://www.immport.org) database (Table S5) (31).

Immune function activities were measured by ssGSEA and

compared between risk groups.
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2.8 Development of the stemness index

Themessenger ribonucleic acid stemness index (mRNAsi) was

developed using the one-class logistic regression machine learning

algorithm (OCLR) based on pluripotent stem cell samples from the

Progenitor Cell Biology Consortium dataset (https://www.synapse.

org/, accessed on 16 January 2022). The mRNAsi had been widely

used for tumor dedifferentiation and stemness prediction (32–34).

The workflow was available on https://bioinformaticsfmrp.github.

io/PanCanStem_Web/. ThemRNAsi value was normalized to 0-1,

with increased mRNAsi indicating a greater degree of

dedifferentiation. The stemness index model was constructed in

this work, and themRNAsiwas estimated in theGSE49710 dataset.

Considering the effect of tumorpurityonmRNAsi,wecorrected for

mRNAsi using tumor purity generated by the ESTIMATE

algorithm, and the corrected mRNAsi (c_mRNAsi) was

calculated as mRNAsi/tumor purity.
2.9 Drug sensitivity analysis

The half-maximal inhibitory concentration (IC50) of

commonly used chemotherapeutic agents was predicted by the

“pRRophetic” R package to characterize chemosensitivity in

high-score and low-score groups (35).
2.10 Immunohistochemistry

A total of forty-six paraffin-embedded neuroblastoma

specimens were collected at Tianjin Medical University Cancer

Institute andHospital. This study compliedwith theDeclaration of

Helsinki and was approved by the Ethics Committee of Tianjin

Medical University Cancer Institute and Hospital (E20210027).

Sections were deparaffinized with xylene for 30 mins and gradient

concentrations of alcohol followed by rehydration. The heat-

induced epitope retrieval was conducted by the Tris/EDTA buffer

(Solarbio, Beijing, China), pH of 9.0, at 120°C for 3 mins, and the

sections were immersed in 3% hydrogen peroxide for 30 min and

incubated with the primary ST8SIA2 antibody (dilution 1:100;

Rabbit polyclonal, 19736-1-AP; Proteintech), B3GALT4 antibody

(dilution 1:100; Rabbit monoclonal, ab169759; abcam), and CD8

antibody (dilution 1:4000; Mouse monoclonal, 66868-1-Ig;

Proteintech) at 4°C overnight. After washing with PBS and

incubation with the secondary antibody (PV-6001; ZSGB-BIO;

Beijing, China) at 37°C for 1 hour, the antigenswere detected using

DAB chromogen and counterstained with hematoxylin for 1 min.

The immunoreactivity score (IRS) was generated for semi-

quantitative expression and scored by two independent,

experienced pathologists blinded to the clinical information. The

inconsistencies were discussed to reach a unified result. The IRS

considered staining intensity and the percentage of positive tumor

cells. The staining intensity was assessed in four grades, including
Frontiers in Immunology 05
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negative staining (0 points), weak staining (1 point), moderate

staining (2points), and strongstaining (3points).Thepercentageof

positive tumor cells in the section was divided into five grades,

including 0-5% (0 point), 6-25% (1 point), 26-50% (2 points), 51-

75% (3 points) and 76-100% (4 points). The sample IRS was

calculated by multiplying scores of the staining intensity and

percentage of positive tumor cells. The precents of CD8+ T cells

were quantified as the proportion of CD8A-positive cells in all cells

on 200× photographs.
2.11 Cell lines and cell culture

Neuroblastoma cell lines 9464D and 975A2 were gifted from

Dr. Rimas Orentas at Seattle Children’s Research Institute.

Neuroblastoma cells were maintained in the high-glucose

DMEM medium (Gibco) containing 10% FBS (BI) and 1%

penicillin/streptomycin (Gibco). The cells were cultured in a

humidified incubator at 37°C in a 5% CO2 atmosphere.
2.12 Cell transfection

The small interfering RNA (siRNA) targeting B3GALT4,

and negative control siRNA (si-NC) were purchased from

General Biol (Anhui, China). The manufacturer’s instruction

was followed for cell transfection. Neuroblastoma cells were

transfected with siRNA using the transfection reagent

Lipofectamine®2000 (Invitrogen). The transfected cells were

collected for further experiments after 24h. Quantitative

realtime PCR assay and western blot analysis were performed

to verify the knockdown efficiency.
2.13 Western blot analysis

Cells were lysed in RIPA lysis buffer (Solarbio) for protein

extraction, and the protein concentrations were evaluated by the

BCA method. The proteins were separated by 10% SDS-

polyacrylamide gel electrophoresis (PAGE) and transferred to

PVDF membranes. After incubation in 5% skimmed milk for 1 h

at room temperature, the membranes were incubated overnight

at 4°C with primary antibodies against B3GALT4 (dilution

1:1000; Rabbit monoclonal, ab169759; abcam). After

incubation with the secondary antibody and wash with TBS-T

three times, the band images were visualized by the enhanced

chemiluminescence kit.
2.14 Real-time quantitative PCR

The total RNA was extracted from cells by Trizol reagent

(Invitrogen) and converted to cDNA using the PrimScript RT
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Master Mix (Takara). cDNA amplification was carried out by

SYBR Green PCR Kit (Takara) according to the program: 5

seconds at 95°C for the denaturation, 34 seconds at 60°C for

annealing, followed by 30 seconds at 72°C for extension, and

forty cycles were completed in total. The primer sequences were

designed as follows: B3GALT4: F: 5’-AACGCCATTCGG

GCATCTT-3’, R: 5’-GTTGCGGTAGGAATCCTGGAA-3’; GA

PDH: F: 5’-ACCCTTAAGAGGGATGCTGC-3’, R: 5’-CCCAA

TACGGCCAAATCCGT-3’. The 2−DDCt value was employed to

quantify the relative gene expression levels with GAPDH as the

endogenous control.
2.15 Cell proliferation and colony
forming assay

Cell viability was measured by the Cell Counting Kit-8

(CCK8) assay. Neuroblastoma cells were plated into 96-well

plates for 24h, 48h, and 72h, followed by adding 100µ CCK8

solution (Solarbio) and incubating for 2 hours at 37°C. The

absorbance of each well was measured at a wavelength of 450 nm

(OD450) with a microplate reader. Cells were planted and

cultured for 2 weeks in each well of a 6-well plate for cell

colony formation assay. The colonies were fixed with 4%

paraformaldehyde for 15 minutes, stained with 0.1% crystal

violet for 20 minutes at room temperature, and quantified by

ImageJ software after being photographed.
2.16 Cell invasion and migration assay

The transwell assay was performed to evaluate cell invasion

and migration ability. Eight-micrometer pore-size transwell

filters (Corning) were put in a 24-well plate for the migration

assay, while the upper chambers plated with matrigel (BD

Biosciences) for the invasion assay. Cells in 200 ml FBS-free
medium were seeded onto each upper chamber, and the lower

chamber was added with 600 ml medium with 10% FBS. After

being cultured for 24 hours at 37°C, these invasive and

metastatic cells in the lower side of the filter were fixed by 4%

paraformaldehyde, stained with 0.1% crystal violet solution,

and photographed.
2.17 Sample collection for RNA
sequencing in the Tianjin cohort

Twenty-six neuroblastoma biopsies and corresponding

clinical information were collected at Tianjin Medical

University Cancer Institute and Hospital. This study complied

with the Declaration of Helsinki and was approved by the Ethics

Committee of Tianjin Medical University Cancer Institute and

Hospital (E20210027).
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2.18 RNA quantification and qualification

RNA quantification and qualification were performed

according to the fol lowing steps. RNA purity and

concentration were generated by NanoDrop 2000, and RNA

integrity and quantity were quantified by the Agilent 2100/

4200 system.
2.19 Library construction

The messenger RNA was extracted from total RNA and

fragmented into 300-350 bp fragments. The reverse

transcription was conducted using fragmented RNA and

dNTPs (dATP, dTTP, dCTP, and dGTP) to synthesize the first

strand cDNA, followed by the synthesis of the second strand

cDNA. After the double-strand cDNA remaining overhangs

were converted into blunt ends by exonuclease/polymerase, 3’

ends of DNA fragments were adenylated, and sequencing

adaptors were ligated to the cDNA. Subsequently, the library

fragments were purified. The PCR was used to amplify the

template, and the product was purified to form the final library.
2.20 Sequencing and quality control of
the raw data

After library preparation and sample pooling, Illumina

sequencing was performed on the samples. Raw data in the

formation of FASTQ were processed through in-house perl

scripts. Clean data were formed by reads without low-quality

or adapter and ploy-N. The clean data’s Q20, Q30, and GC

content were assessed. The clean reads were mapped to the silva

database to eliminate the rRNA.
2.21 Reads mapping and quantification of
gene expression level

Paired-end clean reads were aligned to the reference genome

(hg19) using Hisat2 (36). Featurecount was used to count the

reads numbers mapped to each gene (37).
2.22 Statistical analysis

All statistical analysis was performed through R software

(version 4.1.2). Survival curves were generated by the Kaplan-

Meier method and log-rank test for statistical tests. Spearman

rank correlation was used to analyze the correlations between

continuous variables. The Mann-Whitney Wilcoxon or Kruskal-

Wallis test was used to compare continuous variables between

groups. The Pearson chi-square test was used to compare
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categorical variables across groups. Two-sided p < 0.05 was

considered statistically significant.
3 Results

3.1 Consensus clustering analysis of
ganglioside-related genes identified two
clusters of neuroblastoma with
different outcomes

The International Neuroblastoma Staging System (INSS)

had been wildly used in neuroblastoma clinical management,

and INSS stage 4 was an independent risk factor for

neuroblastoma (4). Besides prognosis, there were also

significant differences in biological characteristics between

stage 4 and other stages. To screen crucial ganglioside-related

genes in neuroblastoma, we identified seventeen ganglioside-

related DEGs between the INSS stage 4 (high stage) and other

stages (low stage) (Figure 1A). Consensus clustering analysis was

performed to classify patients with distinct ganglioside-mediated

patterns in GSE49710 based on seventeen ganglioside-related

DEGs expression. k = 2 was selected as the ideal option for

cluster construction, and 498 samples were allocated to clusters

A and B, with 222 and 276 samples, respectively (Figure 1B,
Frontiers in Immunology 07
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Figure S2; Table S6). As shown in Figure 1C, the two clusters

could be clearly distinguished in the t-SNE analysis. Survival

analysis revealed the significant survival advantage of cluster B

over cluster A (P=0.005, Figure 1D). Additionally, the TARGET

dataset was used to verify the consensus clustering result. Two

distinct clusters with significantly different prognoses were

identified in the TARGET dataset (Figure S3A-M; Table S7),

suggesting the stability of the clustering result.

The analysis of the differentially expressed genes was

performed between two clusters in the GSE49710 dataset to

explore the further difference in the biological function in

identified clusters. One hundred and eight DEGs were finally

identified according to |logFC| > 1 and adjusted p-value < 0.05

(Table S8). Interestingly, GO functional enrichment analysis

showed these DEGs were significantly enriched in neural crest

cell development of biological processes, the postsynaptic

membrane of cellular components, and signaling receptor

activator activity of molecular function (Figure S4). In the

KEGG functional enrichment analysis, DEGs were enriched in

the neuroactive ligand receptor interaction and cAMP signaling

pathways (Figure S4). These results suggested a potential role for

gangliosides in neuroblastoma differentiation. Consistent with

the functional enrichment in receptor ligand activity, the role of

gangliosides in cancer cell signaling had been widely

characterized (18).
B C
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FIGURE 1

Identification of ganglioside-related clusters in the GSE49710 dataset. (A) The expression of ganglioside-related genes that were differentially
expressed between samples with high stage (INSS stage 4) and low stage (other stages). (B) Identification of two ganglioside-related clusters
according to the consensus clustering matrix (k = 2) in the GSE49710 cohort. (C) The t-SNE analysis revealed a clear distinction between the
two clusters. (D) Kaplan–Meier curves of overall survival (OS) in the GSE49710 cohort between different clusters.
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3.2 Development and validation of the
novel ganglioside-related risk signature

?>Given the prognostic significance of different clusters, a

ganglioside-related risk signature based on two clusters was

developed in the GSE49710 cohort to predict individual prognosis

accurately. Firstly, the univariate Cox regression analysis of

ganglioside-related DEGs was conducted, and sixteen potential

prognostic genes were recognized (Figure 2A; Table S9). Then,

Lasso-penalized Cox regression analysis was performed, followed by

multivariate Cox regression to identify ten independent prognostic

genes and corresponding regression coefficients. These genes

included ABCA2, B3GALT4, NEU4, ST3GAL1, ST3GAL3,

ST6GALNAC4, ST6GALNAC5, ST6GALNAC6, ST8SIA2, and

ST8SIA3 (Figures 2B, C). These ten genes were used to establish

the ganglioside-related risk signature, and the risk scores were

derived from the expression values of each signature gene and its

corresponding regression coefficient. As shown in Figure 2D, cluster

A presenting with a poor prognosis, received significantly higher

risk scores than cluster B. Samples were then divided into high-

score and low-score groups based on the median risk score. The

expression of ganglioside-related genes was substantially different

between the two groups, with eight elevated genes in the high-score

group (Figure 2E).

Neuroblastoma with high expression of the b-series

gangliosides, including GD1b and GT1b, typically presented
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an excellent prognosis (14). Interestingly, B3GALT4 catalyzed

the first step in converting GD2 to more complex b-series

gangliosides. Considering B3GALT4 serves as the connecting

link of ganglioside in neuroblastoma, we further performed

immunohistochemistry to validate the expression of B3GALT4

in clinical neuroblastoma specimens. Consistent with the results

in the GSE49710 dataset, the immunohistochemistry analysis

showed a significantly low expression of B3GALT4 in samples

with a high stage (Figures 3A, B). ST8SIA2 was involved in the

developmental regulation of polysialic acid and modulated

neuroblastoma adhesion and metastasis. Interestingly, mRNA

levels of ST8SIA2 were highest in stages 1 and 4s neuroblastoma

(38). Consistent with this result, our study also showed that the

expression level of ST8SIA2 was significantly upregulated in

low-stage samples (Figures 3C, D).

Besides, these signature genes were interconnected

(Figure 4A), and the corresponding regression coefficients

were presented in Figure 4B and Table S10. The risk signature

was validated in the GSE49710, E-MTAB-8248, and TARGET

cohorts. Samples in the GSE49710 cohort were divided into two

groups based on the median risk score, and an increase in risk

score was associated with a decrease in survival time (Figure 4C).

As expected, those samples classified as the high-score group had

a considerably poorer prognosis than samples classified as the

low-score group (Figure 4D). Additionally, ROC analysis

demonstrated that the area under the curve (AUC) values of
B C

D E

A

FIGURE 2

Construction of the ganglioside-related risk signature. (A) The forest map of ganglioside-related differentially expressed genes (DEGs) in
GSE49710 cohort generated by univariate Cox analysis (P < 0.05). (B,C) LASSO Cox regression analysis of ganglioside-related prognostic DEGs.
(D) The distribution of risk scores between two ganglioside-related clusters. (E) The expression of ganglioside-related genes between the low-
score and high-score group. (*: P < 0.05, **: P < 0.01, ***: P < 0.001).
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the risk signature for 3- and 5-year OS prediction were 0.891 and

0.902, respectively (Figure 4E). The risk signature performed

better in predicting 3-year OS than established clinical

prognostic factors (Figure 4F).

Moreover, validationwas conductedon theE-MTAB-8248 and

TARGET cohorts. Consistent with the train set, the increase in risk

score was accompanied by a decrease in survival time in E-MTAB-

8248 (Figure S5A) and TARGET (Figure S5E) cohorts. The risk

signature could accurately predict 3-year OS in E-MTAB-8248

(Figure S5B) and TARGET (Figure S5F) cohorts, with AUC values

of 0.807 and 0.667, better than clinical characteristics (Figure S5C

and S5G). Importantly, the risk signature had a vital prognosis

predictive value in both cohorts, exhibiting significantly poor

prognosis in the high-score group (Figure S5D and S5H). The

PCA analysis suggested that the high-score group could also be

separated from the low-score group in all cohorts (Figure S5I-K). In

addition, even in children in COGhigh-risk group or older than 18

months, theprognosisof sampleswith ahigh scorewas significantly

worse than that of low-score samples (Figures S6A-D).

Additionally, we validated the reliability of risk signature with

tissue samples in our center. A total of twenty-six samples with

RNA-seq data were included in this study, and the corresponding

clinical characteristics were shown in Tables S11–12. As expected,

high-score samples in the Tianjin cohort presented low survival
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time (Figure 5A). The risk signature performed excellent sensitivity

and specificity in predicting 3-year and 5-year OS (Figure 5B). The

overall survival and event-free survival were significantly worse for

the sample in the high-score group compared with low-score

samples (P < 0.05, Figures 5C, D). In conclusion, the risk

signature could effectively predict neuroblastoma prognosis after

thorough evaluation and validation.
3.3 Clinical correlation analysis,
independent prognosis analysis, and
construction of a nomogram

There had been several established prognostic factors in

neuroblastoma, including age, INSS stage, MYCN status, and the

clinical risk classification system. We explored the correlation

between the risk signature and these prognostic factors. As

illustrated in Figure 6A, the risk score was significantly

associated with age, MYCN amplification, clinical risk group,

stage, and progression. Patients with unfavorable clinical

characteristics present high scores (Figures 6B-F). Similar

results were observed in the Tianjin cohort, and there were

significant high scores in samples with advanced stage and

unfavorable histology (Figure S7).
B

C D

A

FIGURE 3

Expression validation of ganglioside-related genes by immunohistochemistry (IHC). (A) Representative IHC images showing the expression of B3GALT4
in different stages. Magnification, ×200, ×400. (B) The comparison of B3GALT4 immunoreactivity score (IRS) between samples with high stage and low
stage. (C) Representative IHC images showing the expression of ST8SIA2 in different stages. Magnification, ×200, ×400. (D) The ST8SIA2
immunoreactivity score (IRS) comparison between samples with high stage and low stage.
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In light of the correlation between the risk signature and clinical

characteristics, we investigated the independent prognostic

significance of the risk signature. After univariate and multivariate

cox regression analysis, the risk signature was identified as an

independent prognostic factor in the GSE4910 (Figures 7A, B), E-

MTAB-8248 (Figure S8A), and TARGET (Figure S8B) cohorts,

respectively. To optimize the clinical utilization in individual

prognosis prediction, we incorporated the risk signature and

several clinical risk factors to construct a nomogram in the

GSE49710 cohort (Figure 7C). The nomogram could assign a score

to each prognostic factor and predict 3-year and 5-year OS based on

the sum of scores in each sample (Figure 7C). The calibration curves

were plotted to evaluate the accuracy of the nomogram, and the

nomogram prediction curves were quite close to standard curves in

GSE49710 (Figure 7D), E-MTAB-8248 (Figure 7E), and TARGET

(Figure S8C) cohorts, suggesting an excellent accuracy for prognosis

prediction in all datasets. The nomogram incorporated the risk score

and multiple established prognostic factors and could precisely

predict neuroblastoma prognosis.

3.4 Immune landscape of the
ganglioside-related risk signature

The gene set enrichment analysis (GSEA) was conducted to

elucidate the biological functions behind the variations in
Frontiers in Immunology 10
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prognosis between low-score and high-score groups. As shown

in Figure S9A, the high-score group was significantly enriched in

tumorigenic pathways, including cell cycle, DNA replication,

homologous recombination, ribosome, and spliceosome.

Interestingly, the low-score group was enriched in antigen

processing and presentation and cell adhesion pathways,

implying underlying immune landscape differences between

the two groups (Figure S9B).

Impairment of the antigen-presenting machinery (APM)

contributed heavily to the low immunogenicity of

neuroblastoma. It was widely accepted that antigen

presentation through MHC-I molecules did not function in

neuroblastoma due to low expression levels (20, 39). These

characteristics made neuroblastoma cells almost undetectable

to CD8 T cells. Interestingly, the low-score group was enriched

in the antigen processing and presentation pathway, implying a

potential role of ganglioside in APM of neuroblastoma.

We introduced the APM scores (APS) developed in previous

research (detailed in “Materials and Methods”) as a proxy for

antigen processing and presentation efficiency. As seen in

Figure 8A, the APS was significantly and adversely linked with

the risk score, showing that APM in the high-score group was

suppressed (Figure 8A). Considering MHC-I molecules as a

critical component of APM, the MHC score (described in

“Materials and Methods”) was developed using ssGSEA to
B C
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FIGURE 4

Validation of the ganglioside-related risk signature in the GSE49710 dataset. (A) The correlation coefficient between risk score and signature
genes. (B) Coefficient values of ten signature genes. (C) The distribution of the risk score (top) and survival time (bottom) in the GSE49710
cohort. (D) Kaplan–Meier curves of overall survival (OS) in GSE49710 cohort between different risk groups. (E) The receiver operating
characteristic (ROC) curves of the risk signature for 3-year and 5-year OS prediction in the GSE49710 cohort. (F) The ROC curves of clinical
prognostic factors for 3-year OS prediction in the GSE49710 cohort.
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assess MHC-I activity. As expected, there was a strong negative

association between risk score and MHC score as well as

activated CD8 T cell infiltration (Figures 8B, C), and increased

MHC-I activity was associated with high activated CD8 T cell

infiltration (Figure 8D). Additionally, consistent with the

concept that IFNg could increase MHC-I expression in

neuroblastoma (40), the MHC score was substantially and

positively correlated with the activity of interferon receptors

(Figure 8E). In general, APM impairment contributed

significantly to immune escape in the high-score group, and

the low activity of MHC-I may be an important cause.

Moreover, the absence of leukocytes and the presence of

immunosuppressive myeloid and stromal cells were also efficient

strategies for tumor immune evasion in neuroblastoma.

Interestingly, ganglioside soluble GD2 could reduce T cell

proliferation, suggesting the role of ganglioside in tumor

immune evasion of neuroblastoma. The ESTIMATE method

was used to determine the infiltration levels of immune cells and

stromal cells. The high-score group presented significantly lower

stromal and immune scores than the low-score group

(Figure 8F). As illustrated in Figure 8G, most immune

infiltrating cells were infiltrated at low levels in the high-score

group, demonstrating an immune escape mechanism resulting
Frontiers in Immunology 11
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from the lack of immune cells in the high-score group. In

summary, the immune escape strategy in the high-score group

was partially attributed to the lack of immune cell infiltration.

Tumor-infiltrating lymphocytes were essential constituents

of the tumor immune microenvironment in neuroblastoma.

Recent studies revealed reduced CD8+ T lymphocyte infiltration

in high-risk and advanced-stage neuroblastoma (20). Children

with a rising rate of CD8+ T lymphocytes had a better prognosis,

highlighting that strengthening CD8+ T-cell responses would be a

promising therapy opportunity (41). Consistent with previous

studies, our results showed that samples with high CD8+ T

lymphocyte infiltration presented an excellent prognosis in the

GSE49710 cohort (Figure 9A). Furthermore, the risk signature

was a potent indicator of CD8+ T lymphocyte infiltration.

Compared to samples with a high score, samples with a low

score displayed a significantly greater infiltration of CD8+ T-cells

(Figure 9B). The risk score was adversely and significantly

associated with CD8+ T-cell infiltration and CD8A expression

(Figure 9C). We further performed immunohistochemistry on

tissue samples from the Tianjin cohort to confirm this finding. As

indicated in Figures 9D, E, there was a considerable decrease in

CD8+ T-cell infiltration in the high-score group compared to the

low-score group (Figures 9D, E). In summary, the risk signature
B
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FIGURE 5

Validation of the ganglioside-related risk signature in the Tianjin cohort. (A) The distribution of the risk score (top) and survival time (bottom) in
the Tianjin cohort. (B) The ROC curves of the risk signature for 3-year and 5-year OS prediction in the Tianjin cohort. (C, D) Kaplan–Meier
curves of overall survival (C) and event-free survival (D) in Tianjin cohort between different risk groups.
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could reliably predict CD8+ T-cell infiltration in the immune

microenvironment of neuroblastoma.

It had been shown that gangliosides were involved in

regulating NK cell cytotoxicity through multiple mechanisms

(42, 43). Importantly, antibody-dependent cell-mediated

cytotoxicity (ADCC) mediated by NK cells and neutrophils

was a critical mechanism for anti-GD2 antibody efficacy (44).
Frontiers in Immunology 12
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Neuroblastoma cells lacking MHC-I molecules, which served as

the ligands for killer inhibitory receptors, should be particularly

susceptible to NK cells. Notably, the high-score group with

reduced MHC-I activity exhibited limited NK cell infiltration

and cytotoxicity (Figures 10A, B). NK-mediated elimination of

neuroblastoma seemed to be shielded by other mechanisms that

modify the balance of activating and inhibitory signals on NK
B C
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FIGURE 6

Correlation analysis between clinical characteristics and the risk signature in GSE49710 cohort. (A) Correlation analysis between the risk signature and
clinical characteristics in GSE49710 cohort. (B-F) The comparison of risk scores between samples with different clinical characteristics, including INSS
stage (B), age (C), MYCN status (D), progression (E), and COG risk groups (F). (***: P < 0.001).
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cells (20). Therefore, we compared the expression of ligands for

NK-activating receptors between two risk groups. Apart from

PVR, ligands for the NK cell-activating receptors DNAM-1 and

NKG2D, such as MICA, MICB, and ULBP1, were

downregulated in the high-score group (Figure 10C). The

downregulation of NK-activating receptors may be the

potential reason for the inhibition of NK cells. Taken together,

escaping NK cells was an essential driver of immunosuppression

in the high-score group.

Immune checkpoints (ICs) in the tumor microenvironment

could significantly impact the reactivity of tumor-infiltrating

lymphocytes to neuroblastoma (20). Signature genes were

significantly associated with several ICs, indicating that ICs

may play a role in the ganglioside-related risk signature

(Figure 10D). As seen in Figure 10E, the low-score group had

increased expression of PD-L1 (CD274), CD200R1, and CD200,

while the high-score group had increased expression of B7-H3

(CD276). Briefly, immune evasion strategies were mediated by

different ICs in low-score and high-score groups.
3.5 The ganglioside-related risk signature
could predict immunotherapeutic
response and chemotherapy sensitivity

Immune checkpoint inhibitors (ICIs) had revolutionized

cancer treatment. However, only a small number of patients
Frontiers in Immunology 13
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were responding (45). Considering the dramatic differences in

the immune landscape between the two groups, we investigated

the risk signature’s predictive ability for immunotherapeutic

benefits. Due to the lack of expression data for immunotherapy

of neuroblastoma, we used the immunotherapy dataset of

melanoma, which is also a neuroendocrine tumor, to investigate

the role of the risk signature in immunotherapeutic response

prediction. Figure 11A depicted the distribution of treatment

response at different risk scores in GSE78220, and the risk score

was significantly lower in the immunotherapy-responsive group

than in the non-responsive group (Figure 11B). Additionally,

samples with high scores had a poor prognosis (Figure 11C).

The risk signature had excellent discrimination in predicting

immunotherapy response, presenting an AUC of 0.728

(Figure 11D). In short, our findings showed that the

ganglioside-related risk signature could accurately predict

responsiveness to immune checkpoint blockade therapy. The

low-score group showed a better response to immunotherapy

than the high-score group.

Chemotherapy was the cornerstone of neuroblastoma

treatment, and we examined the susceptibility of the two

groups to commonly used chemotherapeutic drugs in the

established treatment regimen. The IC50 values of four

chemotherapeutic drugs were compared between two groups:

cisplatin, doxorubicin, etoposide, vinblastine. Interestingly, the

IC50 values for these chemotherapeutic drugs were significantly

lower in the high-score group (Figure 11E). Function
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FIGURE 7

Independent prognosis analysis of the risk signature and construction of a nomogram for 3-year and 5-year overall survival (OS) prediction. (A) The
univariate Cox regression analysis in GSE49710 cohort (B). The multivariate Cox regression analysis in GSE49710 cohort. (C) The establishment of a
nomogram that predicted 3-year and 5-year OS in the GSE49710 cohort. (D, E) Calibration curves of the nomogram in the prediction of 3-year and 5-
year OS in GSE49710 (D) and E-MTAB-8248 (E) cohorts. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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FIGURE 8

The immune landscape of the risk signature. (A) The comparison of antigen-presenting machinery (APM) score between different risk
groups (top) and correlation analysis between the risk score and the APM score (bottom). (B) The comparison of MHC score between
different risk groups (top) and correlation analysis between the risk score and the MHC score (bottom). (C) The comparison of activated
CD8 T cell infiltration between different risk groups (top) and correlation analysis between the risk score and the activated CD8 T cell
infiltration (bottom). (D, E) The correlation analysis between the MHC score and the activated CD8 T cell infiltration (D) as well as
interferon receptor activity (E). (F) Comparison of the stromal, immune, and ESTIMATE scores between high-score and low-score
groups. (G) Different infiltration levels of immune infiltrating cells between low-score and high-score groups. (*:P< 0.05, **: P < 0.01,
***: P < 0.001).
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enrichment in the cell cycle and DNA replication of the high-

score group may be the potential reason (Figure S9). These

results suggested that the high-score group could still benefit

from the established chemotherapy regime.
3.6 The high-score group presented with
a high degree of dedifferentiation

The previous study showed that ganglioside was implicated

in maintaining neural stem cell self-renewal capacity (15).

Furthermore, the critical implications of gangliosides in tumor

stem cells have been frequently highlighted (16, 46–48). Recent

research suggested that the low MHC-I expression of

neuroblastoma may reflect the undifferentiated state of the

neural crest (20). These findings implied that gangliosides

might contr ibute to the undi fferent ia ted sta te of

neuroblastoma. Interestingly, DEGs between ganglioside-

related clusters were highly enriched in neural crest cell

development (Figure S4). Therefore, we explored the role of

ganglioside-related risk signature in reflecting the degree of

neuroblastoma dedifferentiation. Firstly, we investigated the

connection between the risk score and the corrected stemness

index mRNAsi (c_mRNAsi). Figure 12A showed a significant

positive correlation between the risk score and c_mRANsi (R =
Frontiers in Immunology 15
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0.62, P < 0.001). Similarly, all signature genes were significantly

correlated with the c_mRNAsi (Figure 12B). We subsequently

validated this result in a dataset of neuroblastoma cell lines. It

had been known that all-trans retinoic acid (ATRA) could

induce differentiation in both primary neuroblastomas and cell

lines. As shown in Figure 12C, neuroblastoma cells treated with

ATRA exhibited a reduced risk score in both BE2C and NGP cell

lines. In addition, the risk score was significantly positively

associated with multiple stemness markers of neuroblastoma,

including CD133, EZH2, and OCT4 (Figures 12D-F). These

results indicated that the high-score group presented with a high

degree of dedifferentiation.
3.7 Downregulated B3GALT4 promoted
the progress of neuroblastoma cells

Considering B3GALT4 as the connecting link of ganglioside

and with the highest absolute value of regression coefficient in

signature genes, the siRNA of B3GALT4 was transfected into

9464D and 975A2 cells, and the role of B3GALT4 in

neuroblastoma was explored. The western blot and RT-qPCR

were performed to verify the downregulation of B3GALT4

expression after transfection for further experiments

(Figures 13A, B). As shown in Figure 13C, the CCK-8 assay
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FIGURE 9

The high-score group presented low CD8+ T-cell infiltration. (A) Kaplan–Meier curves of overall survival between samples with different
infiltration of CD8+ T-cell in the GSE49710 dataset. (B) The comparison of CD8+ T-cell infiltration between high-score and low-score groups in
the GSE49710 dataset. (C) The correlation analysis of the risk score, CD8+ T-cell infiltration, CD8A expression and immune-score in the
GSE49710 dataset. (D) Representative immunohistochemistry (IHC) images showing the infiltration of CD8+ T-cell between different risk groups
in Tianjin cohort. Magnification, ×200, ×400. (E) The comparison of CD8+ T-cell infiltration between different risk groups in Tianjin cohort.
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demonstrated the knockdown of B3GALT4 significantly

promoted cell proliferation in both cell lines (Figure 13C).

Consistent ly , colony formation assay showed that

neuroblastoma cells with downregulation of B3GALT4 present

more cell clones than the control group in both cell lines

(Figures 13D, E). Besides, cells detected in the lower chamber

were significantly increased after transfected with si-B3GALT4

compared to the control group in both invasion and migration

assays (Figures 13F, G). Our findings suggested that B3GALT4

could inhibit the progression of neuroblastoma, verifying the

protective role of B3GALT4 in the risk signature.
4 Discussion

Neuroblastoma is an extraordinarily lethal childhood tumor

characterized by high heterogeneity. Precise and efficient

prognostic prediction is critical to guide treatment. In the

present study, we identified two ganglioside-related clusters

with differential expression patterns and outcomes, indicating

a substantial prognostic significance of gangliosides in

neuroblastoma. To effectively predict the individualized

prognosis of neuroblastoma based on gangliosides, we
Frontiers in Immunology 16
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conducted the Lasso-penalized Cox regression analysis on

ganglioside-related DEGs to identify independent prognostic

genes and developed a ten-gene risk signature. The risk

signature showed excellent discrimination and accuracy in

GSE49710, TARGET, E-MTAB-8248, and Tianjin cohorts.

Additionally, the risk signature was significantly related to

several previously identified prognostic markers and was

demonstrated to be an independent prognostic factor for

neuroblastoma. Besides, a nomogram incorporating multiple

established clinical prognostic characteristics was developed

and verified. In summary, we developed a novel ganglioside-

related risk signature in neuroblastoma that enables reliable and

individualized prognosis prediction.

There are ten genes in the ganglioside-related risk signature.

However, few of them are identified as prognostic genes in

neuroblastoma. ABCA2 encodes a membrane-associated protein

belonging to the ATP-binding cassette transporter superfamily

and is involved in the metabolism of gangliosides (49).

Additionally, ABCA2 is overexpressed in pediatric acute

lymphoblastic leukemia and may contribute to multidrug

resistance (50). B3GALT4 is involved in synthesizing GM1/

GD1 gangliosides and has been identified as a prognostic

marker for osteosarcoma and neuroblastoma (51, 52). Our
B C

D E

A

FIGURE 10

Comparison of NK cell activity and immune checkpoints in the risk signature (A) The comparison of the NK cell infiltration level
between different risk groups (top) and correlation analysis between the risk score and the NK cell infiltration level (bottom). (B) The
comparison of the NK cell cytotoxicity between different risk groups (top) and correlation analysis between the risk score and the NK
cell cytotoxicity (bottom). (C) The boxplot exhibited different expression levels of ligands for NK cell-activating receptors between low-
score and high-score groups. (D) The correlation analysis between the expression of signature genes and established immune
checkpoints. (E) The boxplot demonstrated different expression levels of immune checkpoints between low-score and high-score
groups. (*: P < 0.05, **: P < 0.01, ***: P < 0.001).
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results also showed the inhibition of B3GALT4 could

significantly increase neuroblastoma cell proliferation,

migration, and invasion in vitro. Notably, NEU4 has been

identified as a potential regulator of neuronal development,

with overexpression promoting the acquisition of a stem cell-

l ike phenotype in neuroblas toma ce l l s (53) . The

sialyltransferases are required to synthesize gangliosides, and
Frontiers in Immunology 17
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their aberrant expression is closely related to a poor prognosis in

tumors (54, 55). Among them, ST3GAL1 overexpression

promotes epithelial-mesenchymal transition, migration, and

invasion in ovarian cancer (56), and ST3GAL3 downregulation

inhibits pancreatic cancer cell migration and invasion (57).

Additionally, the sialyltransferases ST6GalNAc4, ST6GalNAc5,

and ST6GalNAc6 contribute to the synthesis and metabolism of
B

C D

E

A

FIGURE 11

The ganglioside-related risk signature could predict immunotherapeutic response and chemotherapy sensitivity. (A) The distribution of
immunotherapy responses at different risk scores in the GSE78220 cohort. (B) The comparison of risk scores between non-response and
response groups in the GSE78220 cohort. (C) Kaplan–Meier curves of overall survival in GSE78220 cohort between different risk groups. (D) The
receiver operating characteristic (ROC) curves for immunotherapy response prediction in the GSE78220 cohort. (E) The boxplot demonstrated
different IC50 (the half maximal inhibitory concentration) values of four chemotherapeutic drugs, including cisplatin, doxorubicin, etoposide and
vinblastine, between low-score and high-score groups. (***: P < 0.001).
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the gangliosides GD1a and GM1b. Overexpression of

ST6GalNAc4 has been crucial for tumor cell glycosylation

modification and lung cancer metastasis, although the roles of

ST6GalNAc5 and ST6GalNAc6 in malignancies remain unclear

(55). Furthermore, the polysialyltransferase ST8SIA2 is also

implicated in small cell lung cancer and glioma metastasis and

invasion (55). Consistent with ST8SIA3 as a risk factor in the

present study, it mediates the sialylation of GM3 and GD3 and

promotes survival, proliferation, clonogenicity, and migration of

glioblastoma cells (55). To summarize, these signature genes are

intimately engaged in the synthesis and metabolism of

gangliosides and play a critical role in tumor development and

progress, supporting the predictive value of the risk signature

in neuroblastoma.

Our result revealed that the low-score group was enriched in

the antigen processing and presentation pathway, implying

potential differences in the immune microenvironment

between the two groups. Gangliosides have been identified as

potent inhibitors of the cellular immune response. Soluble GD2

shed from neuroblastoma cells has been shown to suppress T cell

proliferation and contribute to tumor immune evasion in

neuroblastoma (8, 13, 20). Moreover, anti-GD2 antibodies

have been introduced into the standard treatment regime for
Frontiers in Immunology 18
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high-risk neuroblastoma. Given the critical role of gangliosides

in the neuroblastoma immune microenvironment, we

investigated and compared the immune landscape between the

low-score and high-score groups.

Neuroblastoma has low immunogenicity, characterized by a

low mutational burden and abnormalities in the antigen

processing and presenting machinery. Our findings indicated

that the high-score group exhibited an impairment in APM and

low MHC-I activity, suggesting that the high-score group was

less immunogenic than the low-score group. Interestingly,

increasing researches indicate that the fundamental reason for

MHC-I suppression may be the embryonic origin of

neuroblastoma. Neuroblastoma seems to represent the

underdeveloped neural crest state, characterized by low MHC-

I expression. Neuroblastoma cell line differentiation is associated

with increased MHC-I expression (20, 58). In the present study,

low MHC-I expression in the high-score group may represent a

substantial degree of dedifferentiation. High c_mRNAsi in the

high-score group supports this hypothesis. We also found that

ATRA-induced differentiated neuroblastoma cell lines exhibited

reduced scores. The risk score was also significantly positively

associated with multiple stemness markers of neuroblastoma.

Generally, these results suggested that gangliosides may play a
frontiersin.o
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A

FIGURE 12

The high-score group presented with a high degree of dedifferentiation. (A) The comparison of the corrected mRNAsi (c_mRNAsi) between
different risk groups (top) and correlation analysis between the risk score and the c_mRNAsi (bottom). (B) The correlation analysis between the
c_mRNAsi and signature gene expression. (C) The comparison of risk scores between neuroblastoma cells treated with dimethyl sulfoxide
(DMSO) or all-trans retinoic acid (ATRA) in BE2C and NGP cell lines. (D-F) The risk score was significantly positively associated with multiple
stemness markers of neuroblastoma, including CD133 (D), EZH2 (E), and OCT4 (F). (*: P < 0.05, **: P < 0.01, ***: P < 0.001).
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role in the formation and dedifferentiation of neuroblastoma,

and the ganglioside-related risk signature could reflect the

degree of neuroblastoma dedifferentiation.

Low immunogenicity leads to insufficient infiltration of

lymphocytes into the tumor and poor anti-tumor reactivity

(20). The high-score group with low immunogenicity showed

significantly reduced immune scores and infiltration levels.
Frontiers in Immunology 19
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The CD8+ T-cell, a crucial component of the immune

response to tumors, has been identified as one of the most

significant immunotherapy targets for tumors (59). Recent

research has demonstrated that CD8+ T-cell infiltration is

substantially related to neuroblastoma prognosis (20). We

discovered that the risk signature could predict CD8+ T-cell

infiltration accurately and validated it using tissue samples in
B

C D

E

F

G

A

FIGURE 13

The downregulation of B3GALT4 could promote the progression of neuroblastoma. (A, B) The western blot analysis (A) and quantitative real-
time PCR (B) was performed to validate the downregulation of B3GALT4 after transfection with siRNA in 9464D and 975A2 cells. (C) The CCK-8
assay was performed to measure the proliferation capacity of 9464D and 975A2 cells. (D, E) The colony formation assay (D) and corresponding
statistical analysis (E) of 9464D and 975A2 cells. (F, G) The transwell assays were conducted to determine the effect of down-regulated
B3GALT4 on neuroblastoma migration and invasion capacity in 9464D (F) and 975A2 cells (G). (***, P< 0.001; ****, P< 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1061814
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1061814
the Tianjin cohort. Interestingly, several immunosuppressive

and stromal cells were substantially infiltrated in the low-score

group. ST3GAL1 has been implicated in transforming tumor-

associated macrophage differentiation to a more suppressive

phenotype (55). Consistently, our results also showed that the

expression level of ST3GAL1 was significantly upregulated in

the low-score group. Immunosuppressive cell infiltration

represents a potential immune escape mechanism in the

low-score group, and targeting these cells may be an

effective immunotherapeutic strategy.

Generally, the cytotoxic activity of NK cells is inhibited by

the binding of killer-cell immunoglobulin-like receptors to

MHC-I molecules on normal cells. In contrast, tumor cells

typically lack MHC-I and are thus vulnerable to NK-mediated

killing (20, 39, 60). Surprisingly, the high-score group with low

MHC-I activity had a low NK cell infiltration and cytotoxicity

level, indicating a potent NK cell suppression in this group. The

imbalance of NK cell activation and inhibitory signaling is a

critical mechanism of immune escape in neuroblastoma (20, 39).

We found ligands for NK cell activating receptors, including

MICA, MICB, and ULBP1 were downregulated in the high-score

group. The inhibition of NK cell activation may be the potential

reason for escaping NK cells in the high-score group.

Additionally, previous research showed that overexpression of

B7-H3 molecules could inhibit NK cell cytotoxicity, and we

found that the high-score group exhibited increased B7-H3

expression (60). The escaping NK cell significantly contributes

to immunosuppression in the high-score group. Fortunately, the

anti-GD2 antibody Dinutuximab could restore the NK cell

balance and promote NK cel l cytotoxicity against

neuroblastoma potently, highlighting the need for anti-GD2

immunotherapy in the high-score group (20).

The presence of immune checkpoints is a critical mechanism

by which cancers escape the immune system, and immune

checkpoint inhibitors have made breakthroughs in adult

malignancies. However, the efficacy of ICIs in neuroblastoma

is not satisfactory, and identifying individuals who respond to

immunotherapy is essential. We found that PD-L1 was

significantly overexpressed in the low-score group, indicating

that the low-score group may benefit from ICIs (20). The

ganglioside-related risk signature could effectively predict

immunotherapy response in the ICI-treated cohort, with better

response to immunotherapy in the low-score group. Therefore,

ICIs are potential options for immunotherapy in the low-score

group, further verification by large-scale and multi-center

investigations are required in neuroblastoma.

There are some limitations to this study. There is a shortage

of molecular sequencing data for anti-GD2 therapy in

neuroblastoma, and the risk signature for predicting anti-GD2

antibody immunotherapy response requires additional

confirmation. It is encouraging to note that the anti-GD2

immunotherapy for neuroblastoma has been introduced in
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China, and a relevant clinical trial is in progress in our

institution (CTR20221154). Furthermore, since this study is

based on retrospective data, it requires further validation from

a comprehensive perspective research. The treatment strategies

that we advocated for the different subgroups in the risk

signature, including chemotherapy and immunotherapy,

should be assessed in prospective clinical trials. Additionally,

thorough laboratory investigations are necessary to elucidate the

comprehensive biological functions of signature genes.
5 Conclusion

In this work, we developed a novel ganglioside-related risk

signature that enabled precise prognostic prediction of

neuroblastoma. Additionally, the risk signature identified

distinct immune landscapes and immune evasion strategies

between risk groups and could be used to predict

immunotherapy response. This work emphasizes the critical

role of gangliosides in the prognosis and immune

microenvironment of neuroblastoma, which may inform

clinical evaluation and therapeutic decision-making.
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FIGURE S1

The workflow of the present study.

FIGURE S2

Consensus clustering analysis based on differentially expressed
ganglioside-related genes in the GSE49710 dataset. (A-H) Consensus

score matrix of samples when k = 2-9. (I) CDF of the consensus matrix
for each k (indicated by colors). (J) Relative alterations in the area under

CDF curves. (K) Tracking plot for each k.

FIGURE S3

Consensus clustering analysis based on differentially expressed
ganglioside-related genes in the TARGET dataset. (A-H) Consensus

score matrix of samples when k = 2-9. (I) CDF of the consensus matrix
for each k (indicated by colors). (J) Relative alterations in the area under
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CDF curves. (K) Tracking plot for each k. (L) The t-SNE analysis revealed a
clear distinction between the two clusters in the TARGET cohort. (M)

Kaplan–Meier curves of overall survival in TARGET cohort between
different ganglioside-related clusters.

FIGURE S4

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional enrichment analysis of differentially expressed genes

between ganglioside-related clusters A and B (indicated by colors).

FIGURE S5

Validation of the ganglioside-related risk signature. (A) The distribution of
the risk score (top) and survival time (bottom) in the E-MTAB-8248

cohort. (B) The receiver operating characteristic (ROC) curves of the risk
signature for 3-year and 5-year OS prediction in the E-MTAB-8248

cohort. (C) The ROC curves of clinical prognostic factors for 3-year OS

prediction in the E-MTAB-8248 cohort. (D) Kaplan–Meier curves of
overall survival (OS) in the E-MTAB-8248 cohort between different risk

groups. (E) The distribution of the risk score (top) and survival time
(bottom) in the TARGET cohort. (F) The ROC curves of the risk signature

for 3-year and 5-year OS prediction in the TARGET cohort. (G) The ROC
curves of clinical prognostic factors for 3-year OS prediction in the

TARGET cohort. (H) Kaplan–Meier curves of overall survival (OS) in the

TARGET cohort between different risk groups. (I-K) The principal
component analysis (PCA) of the risk signature in GSE49710 (I), E-

MTAB-8248 (J), and TARGET (K) cohorts.

FIGURE S6

The prognostic value of the ganglioside-related risk signature in samples

in COG high-risk group or older than 18 months. (A-B) Kaplan–Meier

curves of samples in COG high-risk group in GSE49710 (A) and TARGET
(B) cohorts. (C-D) Kaplan–Meier curves of samples older than 18 months

in GSE49710 (C) and TARGET (D) cohorts.

FIGURE S7

Correlation analysis between clinical characteristics and the risk signature

in the Tianjin cohort. (A-E) The comparison of risk scores between

samples with different clinical characteristics in the Tianjin cohort,
including INRGSS stage (A), MYCN status (B), COG risk groups (C),

pathology (D), and INSS stage (E).

FIGURE S8

Independent prognosis analysis of the risk signature and external

validation of the nomogram. (A-B) The univariate and multivariate Cox

regression analysis in E-MTAB-8248 (A) and TARGET (B) cohorts. (C)
Calibration curves of the nomogram in the prediction of 3-year and 5-

year overall survival (OS) in the TARGET cohort.

FIGURE S9

Gene set enrichment analysis (GSEA) of the risk signature. The GSEA in the

high-score (A) and low-score (B) groups.
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Introduction: Hepatocellular carcinoma (HCC) is a common malignant cancer

with a poor prognosis. Cuproptosis and associated lncRNAs are connected with

cancer progression. However, the information on the prognostic value of

cuproptosis-related lncRNAs is still limited in HCC.

Methods: We isolated the transcriptome and clinical information of HCC from

TCGA and ICGC databases. Ten cuproptosis-related genes were obtained and

related lncRNAs were correlated by Pearson’s correlation. By performing lasso

regression, we created a cuproptosis-related lncRNA prognostic model based on

the cuproptosis-related lncRNA score (CLS). Comprehensive analyses were

performed, including the fields of function, immunity, mutation and clinical

application, by various R packages.

Results: Ten cuproptosis-related genes were selected, and 13 correlated

prognostic lncRNAs were collected for model construction. CLS was positively

or negatively correlated with cancer-related pathways. In addition, cell cycle and

immune related pathways were enriched. By performing tumor microenvironment

(TME) analysis, we determined that T-cells were activated. High CLS had more

tumor characteristics and may lead to higher invasiveness and treatment

resistance. Three genes (TP53, CSMD1 and RB1) were found in high CLS samples

with moremutational frequency. More amplification and deletion were detected in

high CLS samples. In clinical application, a CLS-based nomogramwas constructed.

5-Fluorouracil, gemcitabine and doxorubicin had better sensitivity in patients with

high CLS. However, patients with low CLS had better immunotherapeutic

sensitivity.

Conclusion: We created a prognostic CLS signature by machine learning, and we

comprehensively analyzed the signature in the fields of function, immunity,

mutation and clinical application.

KEYWORDS

cuproptosis-related lncRNA score, hepatocellular carcinoma, machine learning,
prognostic model, immunotherapy
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Introduction

Hepatocellular carcinoma (HCC) ranks fifth in most common

carcinoma and second in cancer-related death (1). As a major

histological type, HCC is identified by a high mortality rate and

rapid progression (2). The main treatments for early and advanced

HCC include surgical resection, multi-kinase inhibitors and

immunotherapy. However, the therapeutic effect was limited due to

the treatment resistance or adverse reactions (3–5). Therefore, it is

vital to individually predict the overall survival rate and sensitivity of

the drugs to guide clinical treatment and improve the therapeutic

effect for HCC patients.

Cuproptosis is an innovative cell death pathway in which copper

can directly bind to the tricarboxylic acid (TCA) cycle and cause

protein stress, which eventually results in cell death (6). Copper,

which is essential for life, plays a vital role in regulating homeostasis.

Lack of copper may cause dysfunction of copper-binding enzymes.

However, increasing the level of copper may lead to cell death (7). A

recent study revealed that the level of intracellular copper may

regulate the progression of cancer (8). Thus, increasing the

accumulation of intracellular cancer is considered to be a novel

therapeutic target for cancer cell killing (9). According to the

mechanism, it is necessary to determine the regulators of the novel

form of cell death in HCC patients.

Long noncoding RNAs (lncRNAs) consist of more than 200

nucleotides and mostly do not encode proteins (10). The functions

of some lncRNAs have been widely studied, and they are involved in

regulating chromatin dynamics, genes, cell differentiation, growth and

development (11). Thanks to next-generation sequencing, thousands

of lncRNAs have been revealed to be abnormally expressed in various

cancers (12). Most importantly, many lncRNAs were associated with

prognosis in many types of cancer as well as potential therapeutic

targets (13–15).

In our study, we constructed a novel machine learning-based

cuproptosis-related lncRNA prognostic signature for HCC patients

with bioinformatic analysis. We performed functional, immune and

mutational analyses to comprehensively evaluate the created model.

Moreover, our model can guide the clinical treatment with

satisfactory results.
Methods

Data extraction

Ten cuproptosis-related genes were obtained from a previous

article. The related data, including transcriptome RNA sequencing

and clinical data, were extracted from The Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/) and International Cancer

Genome Consortium (ICGC) (https://dcc.icgc.org) online databases.

Patients in both datasets were collected based on the following

criteria: (a) pathological diagnosed with LIHC (Liver hepatocellular

carcinoma); (b) available clinical information (including age, gender,

stage, and complete follow-up information); (c) available gene

expression matrix. Finally, we collected 340 patients in the TCGA-

LIHC cohort and 226 patients in the ICGC-LIHC cohort. The cohort
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of DNA methylation and copy number were obtained from UCSC

Xena (https://xena.ucsc.edu/), which belongs to University of

California Santa Cruz.
Establishment of the cuproptosis-related
prognostic lncRNA signature

We explored the correlation between 10 cuproptosis-related genes

and lncRNAs by performing Pearson’s correlation with a P-value <

0.05. The network was constructed by R the package “Igraph”. To

filter the prognostic lncRNAs and establish the cuproptosis-related

prognostic lncRNA signature, we performed LASSO regression. The

corresponding coefficients (b) of the signature were obtained. The

cuproptosis-related lncRNA score (CLS) was calculated by the

following formula: CLS = ∑ [expression (cuproptosis-related

prognostic lncRNA signature)*b]. The cutoff value was the median

CLS value in each data set.
Validation of the cuproptosis-related
prognostic lncRNA signature

We constructed the lncRNA signature by using the TCGA dataset

as the training cohort. Afterward, the ICGC dataset was used for

validation as the testing cohort. To evaluate the capacity of prediction,

we calculated the concordance index (C-index) by using the R

package “Pec”. The area under the curve (AUC) analysis was

obtained to assess the reliability of our signature with the R

package “timeROC”. The heatmap was created by the R package

“pheatmap”. Kaplan-Meier (K-M) analysis was performed in TCGA

and ICGC cohorts with the R package “survival”.
RNA isolation and RT-qPCR

We isolated RNA using an RNeasy Mini Kit (QIAGEN, Hilden,

Germany). The RNA was reversed to cRNA by utilizing a High-

Capacity RNA-to-cDNATM Kit (Thermo Fisher Scientific, Hilden,

Germany). Afterward, we performed RT-qPCR with PowerUpTM

SYBRTM Green Master Mix (Thermo Fisher Scientific, Hilden,

Germany) based on the manufacturer’s instructions. The sequences

of the lncRNA primers are shown (Table S2). The relative expression

was calculated using the 2-DDCt method.
Nomogram establishment based on CLS

We performed the univariate Cox regression and multivariate

Cox regression with the R package “survival”. To individually predict

the overall survival rate, we established a CLS-based nomogram

according to the Cox regression analysis by the R package “RMS”.

Then, we obtained the calibration curves and AUCs by utilizing the R

packages “rms” and “survivalROC” respectively. Moreover, the

decision curve analysis (DCA) was analyzed with the R package

“rmda” to further evaluate the superiority of the nomogram.
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Functional and immune analyses

The correlation heatmap was analyzed by the R package “ggcor”.

After obtaining the differentially expressed genes, we introduced an

online resource called Metascape (https://metascape.org) to

determine the enrichment items. Gene set enrichment analysis

(GSEA) was used to analyze the enriched pathways. The immune-

correlated pathways were isolated from a previous article (16). Other

pathways of interest were obtained from a published article (17). We

obtained the homologous recombination deficiency (HRD) score,

cancer-testis antigen (CTA) score and intratumor heterogeneity from

an article (18). The R package “cibersortR” was utilized to obtain the

relative abundance of each tumor-infiltrating immune cell (TIC) in

each sample. Moreover, the tumor microenvironment was analyzed

by ESTIMATE algorithm.
Mutational analyses

The mutational data were extracted from the TCGA using the R

package “TCGAbiolinks”. We created the mutational waterfall plot

and the lollipop chart with the R package “maftools”. The tumor

mutational burden (TMB) of each sample was calculated.

Furthermore, the mutational spectrum of mutational signatures was

determined based on the R package “MutationalPattern”.
Clinical decision based on CLS

The genomics of drug sensitivity in cancer (GDSC) database

(www.cancerRxgene.org) was introduced. The half-maximal

inhibitory concentration (IC50) was calculated with the R package

“pRRophetic”. The immunophenoscore (IPS) was calculated with a

reported algorithm (19). We performed subclass mapping analysis

(20) to assess the response to PD-1 and CTLA4 in an existing dataset

containing comprehensive immunotherapy information in

melanoma patients (21).

The response to immunotherapy was detected by tumor immune

dysfunction and exclusion (TIDE) mode (http://tide.dfci.harvard.

edu) (22). Five biomarkers, including IPS, interferon gamma

(IFNG), CD274, CD8 and myeloid-derived suppressor cell (MDSC),

were compared with CLS to evaluate the accuracy of prediction

according to the AUC analyses. In addition, the database

ConnectivityMap (https://clue.io/) was utilized to figure out the

potential small molecule drugs and the corresponding mechanism

of action.
Statistical analyses

R software (version 4.0.4) was used for all statistical analyses.

Adobe Illustrator was used for managing all figures. We performed

the correlation analyses by Pearson’s correlation. The Wilcoxon test

was used to analyze the difference between two groups. The

proportion of the data was evaluated via the chi-squared test. A P-

value less than 0.05 was considered to be significant. *P < 0.05, **P <

0.01, ***P < 0.001, ****P < 0.0001.
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Results

Ten cuproptosis-associated genes and
related lncRNAs were identified

According to a recent high-quality article (6), we collected 10

cuproptosis-associated genes for further research (Table S1). First, we

analyzed the fold change, mutational frequency, methylation and

hazard ratio of ten cuproptosis-associated genes (Figure 1A). DLAT,

DLD, GLS, LIPT1, MTF1, PDHB and FDX1 were highly expressed in

HCC, while PDHA1 and LIAS were downregulated in HCC. CDKN2A

was considered to be the most frequently mutated gene. The lowest

methylation level was found in the GLS gene. DLAT was found to be a

risk factor in HCC. Afterward, we performed Pearson’s correlation to

identify 242 correlated lncRNAs with a P-value < 0.05, and the result
A

B

FIGURE 1

Identification of cuproptosis-related genes and corresponding
lncRNAs. (A) The fold change, mutational frequency, methylation level
and Hazard ratio of the ten cuproptosis-related genes. (B) The
correlated lncRNAs of the ten cuproptosis-related genes. *P-value <
0.05, **P-value < 0.01, ***P-value < 0.001.
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was exhibited using a circle plot (Figure 1B). Two hundred and twenty

four lncRNAs were selected.
Construction of a prognostic signature
based on 13 cuproptosis-related lncRNAs

To identify the most stable prognostic model, we performed Lasso

regression and revealed that the 13-lncRNA and 14-lncRNA models

were suitable for prognostic signature construction. Since only one

lncRNA was not included in the 13-lncRNA model, we eventually

selected the 13-lncRNA model as the principle of simplicity

(Figure 2A). The lasso regression model of the 13 lncRNAs

(lambda=0.04139117) is shown (Figure 2B). Then, we performed

ridge regression and obtained the same result (Figure 2C). In

addition, we introduced a new scoring system, the cuproptosis-

related lncRNA score (CLS), to evaluate the risk level in HCC. By

detecting the C-index, which is used for the assessment of prediction

capacity and reliability (23), we uncovered that the C-index was the

highest in CLS compared to stage, age and sex in both TCGA and

ICGC databases (Figure 2D). The results illustrated that CLS may act

as a suitable signature with a high prediction capacity in HCC.

Furthermore, we also performed AUC analysis to evaluate our

model in TCGA and ICGC datasets (Figures 2E, S1A), and the

results indicated that CLS was better than some traditional

prediction markers. Then, we calculated the CLS in each sample

and ranked the order from low to high CLS. The survival status and
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the expression of 13 lncRNAs in each sample are illustrated in both

datasets (Figures 2F, S1B). The results revealed that high CLS patients

obtained a worse survival status, and that most lncRNAs in our model

were highly expressed in high CLS patients except PLGLA. Afterward,

we performed the RT-qPCR to detect the mRNA expression of 13

lncRNAs in the LX2 hepatic stellate cell line and Hep3B HCC cell line

(Figure 2G). In addition, we pointed out that the overall survival (OS)

rate was lower in high CLS patients by performing Kaplan-Meier

analysis in the TCGA and ICGC databases (P < 0.001) (Figures 2H,

S1C). We subsequently performed AUC analysis to assess the

accuracy of our CLS system, the AUCs at 1-, 3-, and 5-year were

0.774, 0.685 and 0.71, respectively, in the TCGA database (Figure 2I)

and 0.692, 0.729 and 0.903, respectively, in the ICGC database (Figure

S1D), which showed that our CLS system was satisfactory for

prognostic prediction.
Establishment of a CLS-based nomogram
for HCC

We analyzed the univariate Cox regression and multivariate Cox

regression in both TCGA and ICGC cohorts (Figures 3A, B) to figure

out the possible independent prognostic factors. We announced that

stage and CLS were the independent prognostic factors in HCC

patients, and that the CLS was even better than stage. Thus, we

created a CLS-based nomogram for HCC patients to predict the

prognosis individually (Figure 3C). With the CLS-based nomogram,
A

B

D

E

F

G

I

H

C

FIGURE 2

Prognostic signature based on CLS was created. (A) Lasso regression of the cuproptosis-related lncRNAs. (B) Identification of the tuning parameter in
Lasso model. (C) The coefficients in Lasso model. (D) The C-index of CLS, stage, age and gender in TCGA and ICGC databases. (E) The AUC of CLS, age,
gender and stage in TCGA. (F) The survival status and the expression of the 13 cuproptosis-related lncRNAs of each sample ranked from high to low CLS.
(G) The mRNA expression of 13 cuproptosis-related lncRNAs in HCC cell line Hep3B compared to the hepatic stellate cell line LX2. (H) Kaplan-Meier
analysis of the high and low CLS patients. (I) The 1-, 3- and 5-year AUC of the prognostic signature. *P-value < 0.05, ***P-value < 0.001
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we could calculate the survival rate of less than 1-, 3- and 5-year for

each HCC patient. Subsequently, we created a calibration curve to

assess the accuracy of our constructed nomogram (Figure 3D). The

calibration curves illustrated a satisfactory capacity. And the AUC of

the nomogram was the largest compared to age, sex and stage

(Figure 3E), which demonstrated that the CLS-based nomogram

was stable and had a high capacity for prognostic prediction.

Furthermore, we performed the 1-, 3- and 5-year DCA (Figures 3F-

H), DCA was used to assess the usefulness of the models we

interested. We evaluated the usefulness of each model by net

benefit (24). In this analysis, the CLS-based nomogram showed a

larger net benefit compared to other models, the result revealed that

the CLS-based nomogram was worthy of application in the clinic.
Functional analyses of the CLS model

We built a heatmap to exhibit the correlation and the significance

between CLS and hallmark gene sets (Figure 4A). For example, CLS had

a positive correlation with MTORCI signaling with a p-value less than

0.001. In total, the majority of cancer-related pathways were
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significantly related to CLS, with a positive/negative correlation.

Then, after obtaining the differentially expressed genes, we performed

the enrichment analysis using Metascape. The top five enriched items

in high CLS samples were mitotic cell cycle, microtubule cytoskeleton

organization, cell cycle checkpoints, DNA metabolic process and

meiotic cell cycle (Figure 4B). The top five enriched items in the low

CLS samples were monocarboxylic acid metabolic process, metabolism

of lipids, drug ADME, fatty acid omega-oxidation and small molecule

catabolic process (Figure 4C). Furthermore, we performed GSEA to

detect the pathways enriched in samples (Figures 4D, E). Cell cycle,

homologous recombination, oocyte meiosis, RNA degradation and

spliceosome were significantly enriched in high CLS samples.

Complement and coagulation cascades, drug metabolism cytochrome

P450, fatty acid metabolism, oxidative phosphorylation and primary

bile acid biosynthesis were significantly enriched in low CLS samples.

Moreover, we built a heatmap to explore the expression and correlation

of some pathways of interest (Figure 4F). We discovered that myeloid

inflammation and MHC class I were upregulated in high CLS samples,

while cytolytic activity, type I and II IFN responses were upregulated in

low CLS samples. The type II IFN response, however, was negatively

correlated with CLS with the most significant.
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FIGURE 3

Construction of a CLS-based nomogram. (A) Univariate Cox regression in TCGA and ICGC cohorts. (B) Multivariate Cox regression in TCGA and ICGC
cohorts. (C) Construction of a nomogram by various parameters. (D) Calibration curve of the CLS-based nomogram. (E) AUC analysis for the constructed
nomogram. (F) One-year DCA for the nomogram. (G) Three-year DCA for the nomogram. (H) Five-year DCA for the nomogram.
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Immune analysis of the CLS model

First, we detected the enrichment and the correlation of the 22

TICs in samples. By generating a heatmap, we revealed that M2

macrophages, B memory cells, T regulatory cells, neutrophils, T

follicular helper cells and CD4 memory activated T cells were

significantly highly expressed in high CLS samples, while T gamma

delta cells, NK resting cells, monocytes and M0 macrophages were

upregulated in low CLS samples. Among them, M2 macrophages had

the most significant positive correlation with CLS (Figure 5A). Then

we calculated the immune and stromal scores and tumor purity

(Figure 5B). We found that the tumor purity was higher in high CLS

samples, while the immune and stromal scores were higher in low

CLS samples. The results uncovered that high CLS could easily lead to

tumorigenesis. In addition, we detected the relative expression of six

checkpoints between high and low CLS samples (Figure 5C). CLTA-4,

LAG-3, PD-1, PD-L1 and TIM-3 were highly expressed in low CLS

samples, which indicated that low CLS patients had a better response

to immunotherapy. Furthermore, a correlation between CLS and

ESTIMATE/checkpoints was detected (Figure 5D). CLS was

negatively correlated with stromal score and positively correlated

with tumor purity. Nevertheless, CLS and checkpoints had a

significantly negative correlation. Finally, the CTA score, HRD

score and intratumor heterogeneity were evaluated. The expression

of CTA was normal in the adult testis, but aberrant in several types of

carcinoma (25). CTA score was associated with tumorigenesis and

proliferation and was positively correlated with CLS. The CTA score

was much higher in patients with high CLS (Figure 5E). The

definition of HRD was that cells were uncapable to repair DNA

double-strand breaks via homologous recombination repair pathway

(26). As a characteristic of tumor tissue, HRD was positively
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correlated with CLS, and patients with high CLS had higher HRD

score than patients with low CLS (Figure 5F). Intratumor

heterogeneity, one of the reasons for the failure of cancer treatment

and the determinative factor of the tumor microenvironment (27),

was positively correlated with CLS. Intratumor heterogeneity was

higher in high CLS patients (Figure 5G). Above all, patients with high

CLS may have higher invasive and treatment resistance.
Mutational analysis of the CLS model

We detected the correlation and mutation counts in high and low

CLS samples. However, we did not find any significance in all

mutation counts (Figure 6A) and non-synonymous mutation

counts (Figure 6B). Then, we exhibited a mutational waterfall plot

in high and low CLS samples, and the top 20 genes with the most

mutational frequency are listed (Figure 6C). The most frequently

mutated gene was TP53 in all samples (26%), followed by TTN (22%)

and CTNNB1 (23%). In addition, we compared the mutants between

high and low CLS samples (Figure 6D). The results revealed that

TP53, CSMD1 and RB1 had more mutants in high CLS samples. Since

TP53 was found to be the most significantly mutated gene between

the two groups, we illustrated the mutational types of TP53 in high

and low CLS samples by generating a lollipop chart (Figure 6E). We

found that 25.2% of mutations in high CLS samples were missense

mutations, which was only 9% in low CLS samples. The percentage of

other mutational types was higher in high CLS samples. Subsequently,

we analyzed the mutation signatures in the two groups. By comparing

five mutational signatures, we found that a difference existed between

high and low CLS samples (Figures 6F, G). For instance, in signature

B, many mutations occurred in the low CLS group but not in the high
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FIGURE 4

Functional analyses of the CLS model. (A) The correlation between CLS and the Hallmark cancer-related pathways. (B) The enriched items in high CLS
samples in Metascape. (C) The enriched items in low CLS samples in Metascape. (D) The top five enriched items in high CLS samples by GSEA. (E) The
top five enriched items in low CLS samples by GSEA. (F) The expression of the interested pathways in each sample and the correlation between
interested pathways and CLS.
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CLS group. In addition, we detected the frequency of amplification

and deletion in each arm (Figure 6H). The results indicated that many

deletions were existed in high CLS samples. In arms 3q, 12p, 12q and

22q, the mutational frequency of amplification was higher in high

CLS samples but lower in the 5q and Xq arms. By detecting the total

frequency of amplification (Figure 6I) and deletion (Figure 6J), we

revealed that samples with high CLS showed higher amplification and

deletion frequencies.
Application of the CLS model in
clinical treatment

Neoantigens, which are specifically expressed in tumor tissue,

have been proved to be the vital T cell-mediated immunotherapy
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targets for tumor patients (28). The expression of neoantigens were

detected in high and low CLS samples (Figure 7A). We observed a

negative correlation between CLS and neoantigens; moreover, the

neoantigens was upregulated in low CLS samples. The results

demonstrated that the patients with low CLS may have a

satisfactory response to immunotherapy. By detecting the

proliferation score, we concluded that the correlation was

significantly positive between CLS and proliferation, and the

proliferation score was higher in high CLS samples (Figure 7B),

which indicated that high CLS patients had a higher capacity of

proliferation. Next, we detected the estimated IC50 of four

chemotherapeutic drugs, which are normally used in HCC

treatment (Figure 7C). The results showed that patients with high

CLS had better sensitivity to 5-fluorourcil, gemcitabine and

doxorubicin in the TCGA dataset. The same result was obtained in
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FIGURE 5

Immune analyses of the CLS model. (A) The expression and correlation between the TICs and CLS. (B) The ESTIMATE score (including immune and
stromal score) and tumor purity in high and low CLS samples. (C) The relative expression of six immune checkpoints in high and low CLS samples. (D)
The correlation between CLS and immune checkpoints/ESTIMATE. (E) The correlation between the CTA score and the CLS, and the level of CTA score in
high and low CLS samples. (F) The correlation between the HRD score and the CLS, and the level of HRD score in high and low CLS samples. (G) The
correlation between the intratumor heterogeneity and the CLS, and the level of the intratumor heterogeneity in high and low CLS samples. *P-value <
0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001. ns, not significant
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the ICGC dataset (Figure S2A). In addition, we calculated the IPS in

each patient in two datasets (Figures 7D, S2B). The results showed

that the low CLS patients had a higher IPS, which indicated that

patients with low CLS may have a better response against

immunotherapy. Moreover, the subclass mapping displayed that

patients with low CLS had a better PD-1 response (Figure 7E), and

a similar result was found in the ICGC dataset (Figure S2C).

Furthermore, we used the TIDE algorithm to predict the

immunotherapeutic sensitivity, and we detected the response rate in

two subgroups in the TCGA dataset (Figure 7F). Patients with a low

CLS had a better percentage of response than those with a high CLS.

In the ICGC cohort, however, the response rate was higher in low CLS

patients, with a P-value = 0.05 (Figure S2D). Finally, we performed

the ROC analysis to compare our CLS model to five widely utilized
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biomarkers in the TCGA (Figure 7G) and ICGC databases (Figure

S2E). The results uncovered that the CLS model had great accuracy

for immunotherapeutic prediction and may act as a novel biomarker

for HCC patients. Moreover, we predicted some potential small

molecule drugs with related mechanisms by using MoA analysis

(Figure S3), and the results may lead us to identify possible

therapeutic methods for HCC patients.
Discussion

In our study, we constructed and validated a novel prognostic

signature based on CLS for HCC patients. We assessed our CLS

model systematically. In the functional assessment, we confirmed that
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FIGURE 6

Mutational analyses of the CLS model. (A) The correlation between the all mutation counts and the CLS, and the number of all mutation counts in high
and low CLS samples. (B) The correlation between the non-synonymous mutation counts and the CLS, and the number of all mutation counts in high
and low CLS samples. (C) The waterfall plot of the top 20 altered mutation in high and low CLS samples. (D) The differentially mutated genes between
high and low CLS samples. (E) The proportion and the types of the TP53 mutation in high and low CLS samples. (F) The number of mutations in five
mutational signatures in high CLS samples. (G) The number of mutations in five mutational signatures in low CLS samples. (H) The amplification and
deletion frequency in each arms between high and low CLS samples. (I) The total frequency of amplification in high and low CLS samples. (J) The total
frequency of deletion in high and low CLS samples. TMB, Tumor mutational burden.
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CLS had a high correlation with cancer-related pathways. In addition,

cell cycle and immune related pathways were enriched. By performing

immune analysis, we announced that the tumor characteristics were

more obvious in high CLS samples, which was related to invasion and

resistance to the treatment. In mutational evaluation, more

mutational frequency was found in high CLS samples, and the

same went for amplification and deletion. We utilized our CLS

model for predicting the clinical treatment response. We revealed

that 5-florouracil, gemcitabine and doxorubicin had more sensitivity

in high CLS patients. Nevertheless, patients with low CLS showed a

better response to immunotherapy.
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Thirteen lncRNAs were selected and was verified to be highly

expressed in hepatocellular carcinoma. A previous article also

reported that C10orf91 was upregulated in HCC and correlated

with poor prognosis (29). One published article demonstrated that

the lncRNA CECR7 was upregulated in HCC and related to OS (30).

Other published research uncovered that lncRNA SNHG4 was

highly expressed in liver cancer tissues compared to normal liver

tissues; moreover, the expression of lncRNA SNHG4 was associated

with OS (31). LncRNA BPESC1 was also reported to correlate with

OS, and HCC patients with high expression of BPESC1 had worse

OS (32).
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FIGURE 7

The clinical application of CLS model. (A) The expression and the correlation of the neoantigens in high and low CLS samples. (B) The expression and
correlation of the proliferation score in high and low CLS samples. (C) The estimated IC50 of 5-fluorouracil, cisplatin, gemcitabine and doxorubicin in high
and low CLS samples. (D) The IPS of each patients with high or low CLS. (E) TIDE analysis of the PD1 and CTLA4 response in patients with high and low CLS.
(F) The proportion of the TIDE response in high and low CLS patients. (G) The AUC analysis of the CLS and biomarkers. IPS, Immunophenoscore.
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By performing correlation analysis, we revealed that CLS was

highly correlated with some cancer-related pathways, such as mitotic

spindle, DNA repair, G2/M checkpoint, PI3K-AKT-MTOR signaling,

MTORC1 signaling, E2F targets and MYC targets. The source of our

CLS model was the cuproptosis-related lncRNAs, which had a high

correlation with the level of copper. Currently, studies have proven

that the level of copper correlates with various biochemical processes.

One published article pointed out that a high level of copper enhanced

the drug resistance and was involved in DNA damage repair in cancer

cells (33). One previous article demonstrated that copper

accumulation reduced the proportion of cells in G2/M phase via

Ras/PI3K/Akt signaling (34). In addition, another article reported

that a novel copper nanocomplex inhibited cell proliferation and

caused the cell death via the PI3K/AKT/mTOR signaling pathway in

cervical cancer cells (35). These results were consistent with

our findings.

We analyzed the tumor microenvironment and the enrichment of

TICs in each sample. Many tumor immune cells were enriched. M2

macrophages, for example, were reported to have tumor-promoting

activities promoting cell proliferation, migration, angiogenesis and

immunosuppression, subsequently resulting in poor outcome of HCC

(36). This result coincided with our findings that M2 macrophages

were significantly enriched in high CLS samples, which had

unfavorable outcomes of HCC. Previous research illustrated that

infiltration of regulatory T cells inhibit the anti-tumor immune

response and is correlated to unsatisfactory prognosis (37).

Neutrophils have been proved to promote the progress of

tumorigenesis and associated to poor prognosis (38). Our result

showed that regulatory T cells and neutrophils were enriched in

high CLS patients, which was a good explanation of high CLS patients

with a poor overall survival. According to the analysis of the tumor

microenvironment, the tumor purity was higher and the immune and

stromal scores were lower in the high CLS samples. The result was

corresponded to the findings that the high CLS patients had higher

progression of HCC and worse survival status. By detecting the

relative expression, we revealed that immune checkpoints were

highly expressed in low CLS samples except PD-L2. The results

indicated that the checkpoint inhibitors may have a better response

in low CLS patients. In addition, in the analysis of clinical application

of this article, we predicted the effect of chemotherapy and

immunotherapy in high and low CLS patients. The results

demonstrated that the chemotherapy was sensitive in high CLS

patients, while immunotherapy was better in low CLS patients. The

reversed result can be explained by the treatment chosen according to

the progress of the HCC. Low CLS patients may be in the early stage

of the HCC, patients may get more benefits from immunotherapy

because of the easier mobilization of the immune system. However,

the effect of immunotherapy may decreased in advanced HCC

patients because of the immune escape and T cell exhaustion.

Moreover, in TIDE analysis, the response of PD-1 and CTLA4 was

better in low CLS patients with HCC. Currently, some

immunotherapy trials have been performed, which have shown

similar results. One of them demonstrated that anti-CTLA-4

monoclonal antibody had promising outcomes in HCC patients

(39). Another study reported that an antibody against PD-1 was
Frontiers in Immunology 10202
well tolerated and had an acceptable objective response rate (40). In

addition, the combination of an anti-CTLA-4 monoclonal antibody

(tremelimumab) and an anti-PD-L1 monoclonal antibody

(durvalumab) was found to be tolerable and enhanced the

antitumor effect (41). Overall, the immunotherapy is a potential

method for HCC patients, especially for the patients with low CLS.

We know that instability of the gene is one of the characteristic of

most carcinomas. Mutation drives the occurrence and development of

the most type of cancers (42). In our study, we revealed three genes

that had more mutations in high CLS samples. TP53, which is the one

of the most frequently mutated genes in HCC, plays a vital role in

apoptosis and cell cycle regulation (43). Studies have indicated that

TP53 mutation may cause cancer progression (44). Moreover,

patients with mutated TP53 had worse OS and relapse-free survival

times (45). CSMD1 is considered to be a tumor suppressor gene in

many types of cancer, such as breast cancer (46), colorectal cancer

(47), gastric cancer (48) and HCC (49); thus, the mutation of the

CSMD1 may cause the proliferation of the cancer. One published

article revealed that the mutation of CSMD1 may promote the

progression of esophageal cancer (50). Interestingly, one article

demonstrated that CSMD1 mutation co-occurred with TP53

mutation (51). In our research, we also detected the concurrent

mutation of TP53 and CSMD1 in high CLS samples. As a tumor

suppressor gene, RB1 is a negative regulator in the progression of the

cell cycle via the regulation of the E2F transcription factors (52, 53).

Mutation of RB1 may cause cancer genesis (54). Together, the result

was sensible that the patients with a high frequency of mutated genes

TP53, CSMD1 and RB1 may have a worse survival status.

We were aware of the study having some limitations. First, our

results were obtained based on the online databases, and clinical trials

with large samples are necessary. Second, we could not find the

immunotherapy information for HCC; instead, we verified the results

in a melanoma cohort. Thus, a novel HCC cohort is needed for the

further analyses.

In this article, we established and verified a novel prognostic CLS

model by machine learning. Meanwhile, We performed systematic

analyses, including function, mutation, immunity and clinical

application, to ensure the stability and value of the constructed

model for the purpose of utilization of our model in the clinical

assessment and treatment.
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SUPPLEMENTARY FIGURE 1

Prognostic signature based on CLS in ICGC database. A. The AUC of CLS, age,

gender and stage in ICGC database. B. The survival status and the expression of
the 13 cuproptosis-related lncRNAs of each sample ranked from high to low

CLS in ICGC database. C. Kaplan-Meier analysis of the high and low CLS patients
in ICGC database. D. The 1-, 3- and 5-year AUC of the CLS-based prognostic

signature in ICGC.

SUPPLEMENTARY FIGURE 2

The clinical application of CLS model in ICGC database. A. The estimated IC50
of 5-fluorouracil, cisplatin, gemcitabine and doxorubicin in high and low CLS

samples in ICGC. B. The IPS of each patients with high or low CLS in ICGC. C.
TIDE analysis of the PD1 and CTLA4 response in patients with high and low CLS

in ICGC. D. The proportion of the TIDE response in high and low CLS patients in

ICGC. E. The AUC analysis of the CLS and biomarkers in ICGC.

SUPPLEMENTARY FIGURE 3

MoA analysis in HCC.
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Background: Bladder urothelial carcinoma (BLCA) is associated with high mortality

and recurrence. Although mRNA-based vaccines are promising treatment

strategies for combating multiple solid cancers, their efficacy against BLCA

remains unclear. We aimed to identify potential effective antigens of BLCA for

the development of mRNA-based vaccines and screen for immune clusters to

select appropriate candidates for vaccination.

Methods: Gene expression microarray data and clinical information were retrieved

from The Cancer Genome Atlas and GSE32894, respectively. The mRNA splicing

patterns were obtained from the SpliceSeq portal. The cBioPortal for Cancer

Genomics was used to visualize genetic alteration profiles. Furthermore,

nonsense-mediated mRNA decay (NMD) analysis, correlation analysis, consensus

clustering analysis, immune cell infiltration analysis, and weighted co-expression

network analysis were conducted.

Results: Six upregulated and mutated tumor antigens related to NMD, and

infiltration of APCs were identified in patients with BLCA, including HP1BP3,

OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2. The patients were subdivided into

two immune clusters (IC1 and IC2) with distinct clinical, cellular and molecular

features. Patients in IC1 represented immunologically ‘hot’ phenotypes, whereas

those in IC2 represented immunologically ‘cold’ phenotypes. Moreover, the

survival rate was better in IC2 than in IC1, and the immune landscape of BLCA

indicated significant inter-patient heterogeneity. Finally, CALD1, TGFB3, and

ANXA6 were identified as key genes of BLCA through WGCNA analysis, and their

mRNA expression levels were measured using qRT-PCR.
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Conclusion: HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2 were identified

as potential antigens for developing mRNA-based vaccines against BLCA, and

patients in IC2 might benefit more from vaccination.
KEYWORDS

bladder urothelial carcinoma, immune clusters, immune landscape, mRNA vaccine,
tumor antigens
Introduction

Bladder cancer (BC) is one of the most prevalent cancers

worldwide. An estimated 83,730 new BC cases and 17,200 BC-

related deaths were reported in the United States of America in

2021 (1). Increasing evidence implicates that BC is a clinically and

genetically heterogeneous disease that is characterized by poor

therapeutic efficacy and rapid tumor progression (2–4). More than

90% of BC cases are histologically categorized as bladder urothelial

carcinoma (BLCA), which can present as non-muscle-invasive (75%)

and muscle-invasive (25%) BC (NMIBC and MIBC, respectively) (4).

Although the 5-year survival rate is as high as 90%, patients with

NMIBC often relapse and progress to MIBC. Patients with MIBC

usually have a poor prognosis because of aggressive metastasis and

delayed diagnosis (5, 6). In addition to surgery, platinum-based

chemotherapy is the first-line treatment for advanced or metastatic

BLCA, which may extend median overall survival (OS) by

approximately 1 year with a limited response rate (7, 8). However,

non-responsive patients may lose the opportunity to receive

additional therapeutic intervention for tumor development.

Immune checkpoint blockade has recently emerged as a valuable

treatment option for MIBC; however, its clinical benefits are observed

only in a small proportion of patients (9, 10). These studies highlight

the need for novel therapeutic strategies that may improve the clinical

outcomes of patients with BLCA.

In the context of the ongoing coronavirus disease 2019 (COVID-

19) pandemic, development of vaccines has been recognized as the

top priority of pharmaceutical and biotechnology industries

worldwide (11, 12). Therapeutic cancer vaccines are designed to

reprogram the immune system of patients, specifically cytotoxic T

lymphocytes, to safely and efficiently eliminate cancer cells (13).

Antigens used for developing cancer vaccines include whole tumor

cells, peptides, viral vectors, dendritic cells, DNA or RNA (14). The

significant technological innovation and development investment in

the last decade have made mRNA an optimal vehicle to carry tumor-

specific antigens (15). Furthermore, mRNA-based vaccines are

promising strategies for cancer therapy owing to their high efficacy,

rapid development capabilities, safe administration and low-cost

manufacturing as compared with other vaccine types (15–17).

Recent preclinical and clinical trials have verified the viability of

mRNA vaccines encoding tumor-specific antigens to combat multiple

cancers, including lung cancer (18), prostate cancer (19), melanoma

(20) and other cancers (15). However, tumor-specific or tumor-

associated antigens (TSAs or TAAs, respectively) vary greatly
02206
among individuals. Recognizing immunogenic tumor neoantigens

and relieving inhibitory tumor microenvironment (TME) are the

main obstacles to developing mRNA vaccines against BLCA (16).

Several studies have shown that disruption of transcriptional

regulation at different stages can lead to the accumulation of a large

number of abnormal transcripts in cancer cells (21). These aberrant

transcripts usually harbor premature termination codon; even if they

are transcribed, they may be subsequently degraded by an mRNA

surveillance pathway termed nonsense-mediated mRNA decay

(NMD) (22). A relationship between NMD and tumor immunity is

frequently observed and recognized as an attractive target for cancer

therapy in some cases (22, 23). Recent studies have demonstrated that

transcripts that harbor aberrant splicing patterns and frameshift

mutations express antigenic peptides, with the disruption of normal

NMD functionality (24). Therefore, it is important to perform a

comprehensive analysis of alternative splicing (AS) patterns and

NMD for developing individualized mRNA vaccines against tumors.

In this study, we investigated the potential BLCA antigens for

developing mRNA vaccines and elucidated the immune landscape to

identify eligible patients for vaccination. We confirmed six tumor

antigens relevant to NMD, AS and antigen-presenting cell infiltration

and defined two immune clusters of patients with BLCA. The two

immune clusters presented distinct clinical, molecular and tumor

immune microenvironment (TIME) characteristics, which were

consistent in TCGA and GSE32894 cohorts. In addition, we assessed

the immune landscape of BLCA by analyzing the expression profile of

immune-related genes in individual patients. Finally, we identified

CALD1, TGFB3, and ANXA6 as key genes of BLCA throughWGCNA

analysis and measured their mRNA expression levels using qRT-PCR.

Therefore, the present study provides information regarding the

complicated TIME in patients with BLCA and offers a reliable

reference for developing and administering cancer vaccines.
Materials and methods

Identification of tumor antigens

Data extraction
The RNA-sequencing data and clinical information of patients

with BLCA were retrieved from The Cancer Genome Atlas (TCGA)

(https://tcga-data.nci.nih.gov/tcga/) and Gene Expression Omnibus

(GEO) (GSE32894, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE32894). The inclusion criteria were as follows: (1) RNAs that
frontiersin.org
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were detectable in >30% of the samples and (2) OS time > 30 days.

The detailed clinical characteristics of the patients enrolled in this

study are summarized in Supplementary Table 1. The original gene

IDs of the respective datasets were transformed into the

corresponding gene symbols based on annotation information on

the platform. In addition, the expression profiles were indicated as

transcripts per millions for subsequent analyzes. The batch effects

between different datasets were corrected using the ‘ComBat’method.

Profiling of AS events
The mRNA splicing patterns of 18 healthy patients and 399

patients with BLCA were retrieved from TCGA SpliceSeq portal

(https://bioinformatics.mdanderson.org/TCGA SpliceSeq/). The

percent spliced-in index (PSI) value, ranging from 0 to 1, is the ratio

between reads including or excluding the designated exons and

indicates the efficiency of certain splicing events (25). To improve the

reliability of the results, the primary PSI data that contained vacancy

values were removed. The overlapping sets between different AS events

were visualized using UpSet plots drawn using the Upset R package

(26). To determine cancer-associated AS events (CASEs) in BLCA, we

compared the PSI values of AS events between normal and BLCA

tissues, and the P-value was adjusted using the Benjamini–Hochberg

(BH)method. AS events with an absolute log2 (fold change) ≥ 1 and an

adjusted P-value < 0.05 were considered statistically significant.

cBioPortal analysis
The ‘maftools’ R package and cBioPortal for Cancer Genomics

(cBioPortal, https://www.cbioportal.org/) were used to retrieve the

mutation data from TCGA database to compare and visualize

potential genetic variations in each sample (27). Statistical

significance was defined as P-value < 0.05.

NMD analysis
We identified genes with abnormally upregulated AS events and

frameshift mutations as candidate antigens against BLCA. Many

studies have highlighted the relationship between NMD and tumor

immunity and revealed the potential of NMDas a therapeutic target for

cancers in some cases (24). Further NMD analysis may assist in

developing individualized tumor vaccines, such as for melanoma

(23). Patients with BLCA were divided into the low- or high-

expression groups according to the median expression of NMD

factors (UPF1, UPF2, UPF3A and UPF3B). Subsequently, the

expression levels and AS events of candidate genes between the two

groups were analyzed. P-value was calculated using the ‘ggpubr’

package (stat_compare_means function), with P-value < 0.05 as

the threshold.

TIMER analysis
The Tumor Immune Estimation Resource (TIMER, https://

cistrome.shinyapps.io/timer/) is a public online database that allows

systematic evaluation of the immune infiltration data for different

cancers from TCGA (28). In this study, TIMER was used to assess and

demonstrate the Spearman correlation between the abundance of tumor-

infiltrating immune cells (TIICs) and the expression of tumor antigens.

Purity adjustments were performed using Spearman’s correlation

analysis. Statistical significance was defined as P-value < 0.05.
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Prediction of the peptides of antigens for
BLCA samples

The Cancer ImmunomeAtlas (TCIA, https://tcia.at/home) was used

to screen for peptides of neoantigens for each BLCA sample with default

parameters. A list of peptides was obtained by selecting the ‘Neoantigens’

tab after inputting candidate genes for antigens in the TCIA filter.
Identification of immune clusters

Immune-related gene data extraction
A total of 1894 immune-related genes (IRGs) were retrieved from

The Immunology Database and Analysis Portal (ImmPort, https://

www.immport.org/shared/home) (29) and a study of Charoentong

et al. (30) for both discovery (TCGA) and validation (GSE32894)

cohorts. We choose this data matrix as the validation cohort because

it represents one of the most comprehensive datasets, including the

most survival data as well as clinical stage and tumor grade. After

filtering these candidate IRGs associated with prognosis, 233

prognostic genes in 399 BLCA samples and 371 prognostic genes in

224 BLCA samples were identified in the discovery and validations

cohort, respectively.

Identification and validation of
immune clusters

Consensus clustering was performed to determine robust

immune clusters according to the expression profiles of 233

prognostic IRGs using the ‘ConsensusClusterPlus’ package.

Specifically, the algorithm of partition around medoids was used for

500 bootstraps, with 80% patients being resampled and ‘1-Pearson

correlation’ as the distance metric in TCGA cohort. The cluster

number was tested from 2 to 9, and the optimal one was identified

to yield the least ambiguous cluster assignments across clustering

permutations and the most stable consensus matrix. The immune

clusters were further confirmed in the GSE32894 cohort using similar

settings. The coherence of the identified immune clusters was

quantified in the two cohorts via in-group proportion and

Spearman’s correlation analyzes. The prognostic significance of

these immune clusters in the discovery cohort was estimated via

Kaplan–Meier survival analysis and validated in the validation cohort.

Clinical features of these immune clusters, including stage, grade,

clinical T stage and sex, were assessed using the ‘ggplot2’ R package.

Molecular, cellular and immunological features of
the BLCA immune clusters

Tumor mutation burden (TMB) and mutated gene counts were

visualized among the BLCA immune subtypes using the ‘maftools’ R

package. In addition, copy number variations (CNVs) were compared.

The correlation of the immune clusterswith immune checkpoints (ICPs)

and NMD factors was analyzed using the Wilcoxon test. Multiple

biomarkers have been identified to predict the prognosis of

BLCA. Therefore, the association between different BLCA biomarkers

from The Cancer Genome Interpreter (CGI, https://www.

cancergenomeinterpreter.org/home) and the immune clusters was

assessed (31). The anticancer immune activity of the immune clusters

was estimated using the Tracking Tumor Immunophenotyping (TIP,

http://biocc.hrbmu.edu.cn/TIP/) (32). Furthermore, the TME-based
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ESTIMATE approach was used to compute the immune scores of the

immune clusters, and the ‘CIBERSORT’ R package was used to compare

the infiltration of immune cells.

Immune landscape analysis
To further reveal the distribution of immune clusters in each

patient, graph learning-based dimensionality reduction analysis was

performed using gene expression data. The maximum number of

components was set to 4. Moreover, an approach used by Mao et al.

(33) was adopted for dimensionality reduction using the

Discriminative Dimension Reduction Tree algorithm and the

reduceDimension function of the ‘Monocle’ package. The immune

landscape was demonstrated using the function plot cell trajectory,

and the plots corresponding to different immune clusters were

represented in different colors. In addition, Pearson correlation

analysis was used to examine the correlation among 22 TIICs in

individual principal components, and differences in the abundance of

TIICs between clusters were analyzed using the Wilcoxon test.

Weighted gene co−expression
network analysis

Prognostic IRGs were used to perform weighted co-expression

network analysis (WGCNA) to obtain gene co-expression modules

using the ‘WGCNA’ package (34). The soft-thresholding power was

selected according to the scale-free network topology criterion to

construct a correlation adjacency matrix. The resulting modules were

used toestimatemoduleeigengenes (MEs)andquantifymodulesimilarity.

UnivariateCoxregressionanalysiswasperformed to identifymodules that

were remarkably associated with patient survival (P < 0.05). Furthermore,

Kyoto Encyclopedia of Genes andGenomes (KEGG) enrichment analysis

was performed for genes in each module to annotate gene functions and

pathways using the ‘clusterProfiler’ package (35). Module membership

(MM) shows the correlation between genes and modules, and genes with

MM > 0.85 were defined as hub genes in the prognostic modules.

Quantitative validation of hub genes using
quantitative real-time polymerase chain
reaction (qRC-PCR)

To validate hub gene expression levelsmeasured by themicroarray,

the qRT-PCR analyzes were applied using Applied Biosystems 7500

Fast Real-Time PCR System (Thermo Fisher Scientific) with SYBR

Premix Ex TaqTM kit (Takara, Dalian, China). Total RNAwas isolated

from 40 pairs of BLCA and tumor-adjacent normal tissues using

TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.).

Reactions were performed at 50 °C for 5 s (1 cycle) 95 °C for 15min

(1 cycle), followed by 95 °C for 15 s and 60 °C for 1 min (40 cycles).

Each sample was run in triplicate. Relative mRNA levels were

normalized against GAPDH. Data were analyzed using the 2−DDCq

method. The primer sequences were listed in Supplementary Table 2.
Results

Identification of potential tumor antigens
of BLCA

To identify potential antigens of BLCA, we first screened out

aberrant AS events and overexpressed genes that could express TAAs.
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An integrated profile of AS events was established using the RNA-seq

data of patients retrieved from TCGA database. Initially, 39,508 AS

events were detected from 18,888 genes, accounting for approximately

92.78% of the potential protein-coding genes (36). The AS events are

divided into seven types according to the splicing patterns, including

alternate acceptor site (AA), alternate donor site (AD), retained intron

(RI), exon skipping (ES), alternate promoter (AP), alternate terminator

(AT) and mutually exclusive exons (ME) (Figure 1A). Among these

splicing events, ES was themost predominant pattern identified, whereas

ME was the least predominant (Figure 1B). Given that a single gene may

have multiple AS events, an UpSet plot was generated to visualize the

intersecting genes of eachAS type.We found thatME always occurred in

conjunction with other AS events in most cases, whereas PTK2 had all

seven AS events (Figure 1C). To screen for BLCA-specific AS events, we

conducted differential expression analysis by comparing 399 BLCA

samples with 18 normal samples and identified 2736 CASEs

(Figures 1D, E). Among these CASEs, 2352 were upregulated in 1776

genes, whereas 384 were downregulated in 340 genes (Figure 1F).

Although ES was the predominant pattern, AP accounted for the

highest proportion of CASEs, followed by AT (Figure 1G). The

inconsonant distribution patterns among all AS events and CASEs

suggested that each AS event played a distinct role in

BLCA carcinogenesis.

Furthermore, we analyzed the mutation landscape of BLCA

samples from TCGA and found that TP53 had the highest

mutation rate (49%) (Supplementary Figure 1A). Tumor genomic

mutations contribute to the appearance of neoantigens, and

frameshift-mutation-derived peptides have been reported to have

the highest immunogenicity (37). A total of 1451 genes with

frameshift mutations encoding TSAs or TAAs were screened by

evaluating fractional genomic alterations (Supplementary

Figure 1B) and mutation counts (Supplementary Figure 1C) in

patients, and TTN, TP53, MUC16, KMT2D, ARID1A, KDM6A,

SYNE1, PIK3CA, KMT2C and RB1 were identified as the most

frequent genetic mutations according to fractional genomic

alterations (Supplementary Figure 1D) and mutation counts

(Supplementary Figure 1E). This finding was consistent with the

overall landscape of mutations. In addition, these 10 genes had the

highest mutation count, suggesting underlying genomic interactions.

Therefore, based on the combined analysis of the expression and

mutation data of patients with BLCA, 153 overexpressed genes with

frameshift mutations were identified as potential candidate antigens.
Identification of tumor antigens associated
with NMD and antigen-presenting cells

Recently, transcripts harboring frameshift mutation and

abnormal AS patterns have been reported to produce antigenic

peptides by regulating NMD, which is a determinant of the efficacy

of cancer immunotherapy (38). NMD-associated tumor antigens were

selected from the identified genes as latent targets for mRNA vaccine

development by analyzing the AS events and mutation landscape. We

screened for differentially expressed genes in four groups: UPF1,

UPF2, UPF3A and UPF3B (Figures 2A–D). The results revealed that

most of the top 20 genes were significantly positively correlated with

NMD expression in each group. In addition, we analyzed differences
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in the PSI value of 885 CASEs from 153 genes in the four NMD

groups and found that the PSI values of a majority of CASEs were

significantly higher in the high-NMD-expression group than in the

low-NMD-expression group. The top 20 CASEs among four groups

are shown in Figure 2E–H. Finally, six potential antigens, namely,

HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI and EIF4A2, were

identified through the intersection of overexpressed genes, genes

with frameshift mutations and NMD-related genes (Supplementary

Figure 2). Analysis of immune cell infiltration demonstrated that

elevated expression of HP1BP3, OSBPL9, ZCCHC8, FANCI and

EIF4A2 was associated with enhanced infiltration of B cells,

macrophages and/or DCs (Supplementary Figures 3A–E). In

addition, high SSH3 expression was associated with the infiltration

of immune cells with some fluctuant (Supplementary Figure 3F).

These results suggest that the six neoantigens produced during

oncogenesis can be processed and presented by APCs, leading to

the initiation of immune responses, and hence are promising targets

for developing mRNA vaccines against BLCA with underlying
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immune activation functions. The peptides of six neoantigens

predicted based on TCIA data are listed in Supplementary Table 3.
Identification of potential immune clusters
of BLCA

The heterogeneity of TME poses a challenge to cancer

immunotherapy, especially in BLCA (39). Therefore, systematic

investigation of immunotyping is of great importance to

differentiate among patients with BLCA with diverse TIME, which

may help in selecting eligible patients for vaccination. In this study,

the expression profiles of 1894 IRGs in patients with BLCA were

retrieved from TCGA database, and 233 IRGs were identified to be

associated with prognosis and used to perform consensus clustering

analysis. Based on the consensus accumulative distribution function

and delta area (Figures 3A, B), we determined k as 2 for stable

clustering of IRGs and obtained two immune clusters designated as
A B

D E

F

GC

FIGURE 1

Profiling of integrated AS events detected in BLCA. (A) Schematic representation of seven different AS events. (B) The total number of AS events and the
corresponding genes for each AS event in BLCA. (C) UpSet plot of interactive genes among seven different types of AS events. (D) Heatmap of CASEs
between BLCA and normal tissues (|log2FC| ≥ 1, adjusted P < 0.05). (E) Volcano plot of CASEs identified in BLCA. (F) The total number of CASEs and the
corresponding genes for each AS event in BLCA. (G) UpSet plot of interactive genes among seven different types of CASEs.
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IC1 and IC2 (Figure 3C). Principal component analysis revealed that

patients in the two clusters were distributed in different directions

(Figure 3D). In addition, survival was different between the two

clusters; patients in IC1 had a poor prognosis (Figure 3E). Subtype

distribution across different clinicopathological features revealed that

patients with different stages, grades and clinical T stages were
Frontiers in Immunology 06210
regularly clustered (Figures 3F–H). However, the sex of patients

was unsuitable for further differentiation because sex distribution

between the two clusters was similar (Figure 3I). The results obtained

in TCGA cohort were validated in the GSE32894 cohort using the

same approach, and 224 patients with BLCA were divided into two

immune clusters (Supplementary Figures 4A–D). We then compared
A B
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C

FIGURE 2

Identification of tumor antigens associated with nonsense-mediated mRNA decay factors. (A–D) The top 20 differentially expressed genes in four
groups, including (A) UPF1, (B) UPF2, (C) UPF3A, and (D) UPF3B. (E–H) The top 20 CASEs in four groups, including (E) UPF1, (F) UPF2, (G) UPF3A and (H)
UPF3B. *** P < 0.001, **** P < 0.0001.
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the distribution of different clinicopathological features in two

clusters in the GSE32894 cohort (Supplementary Figures 4E–G).

These immune clusters also had significant differences in survival,

and patients in IC1 had a poorer OS (Figure 3J), suggesting the

stability and reproducibility of the established immune clusters.

Therefore, these immune clusters can be used as effective

prognostic biomarkers for BLCA and are superior to conventional

clinical indicators.
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Association of immune clusters with
mutation status

It has been reported that TMB and somatic mutation rates can be

used to evaluate immunotherapeutic efficacy (40). In this study, TMB and

mutations were calculated in the two clusters using the mutation data

retrieved fromTCGAdatabase. Nodifferenceswere observed inTMBand

the number of mutated genes between the two clusters (Figures 4A, B).
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FIGURE 3

Identification of immune clusters of BLCA. (A) Cumulative distribution function curve and (B) delta area of immune-related genes in TCGA cohort. (C)
Sample clustering heatmap. (D) Principal component analysis demonstrating two distinct clusters reflecting immune status. (E) Survival analysis of BLCA
immune clusters in TCGA cohort. (F–I) Distribution of IC1–2 based on (F) stage, (G) grade, (H) clinical T stage and (I) sex in TCGA cohort. (J) Survival
analysis of BLCA immune clusters in the GSE32894 cohort.
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After analyzing the distribution of the top 20 mutations between two

immune clusters, we found that TMBwas less extensive in IC1 than in IC2

(93.95 versus 96.09%, respectively). TP53mutationwas significantlymore

frequent in CI1 than in CI2; however, contradictory results were observed

regarding the mutation levels of TTN, MUC16 and KMT2D (Figure 4C,

D). It has been reported that copy number alterations (CNAs) are one of

themost important hallmarks of the progression ofmalignancies (41).We

found that the frequency of somatic CNVs was significantly lower in

patients in IC1 than in patients in IC2 (Figure 4E). In addition, the

GISTIC score (G-score) of each patient was evaluated, with an absolute

value greater than the threshold of 0.4 based on TCGA data. We found

that the G-score variedmarkedly between the two clusters and was higher

in IC2 (Figure 4F). The distribution of CNVs, with either deletions or

gains, across all chromosomes was also assessed in the two clusters

(Figures 4G, H). These results suggested that the immune clusters could

assess the TMB, somaticmutation rates and CNAs of patients with BLCA

to a certain extent, whichmay provide a basis for development of vaccines

in the future.
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Association of immune clusters with ICPs
and NMD factors

ICPs and NMD factors play an important role in anti-tumor

immunity, which may affect the response to mRNA vaccines (9, 23).

Therefore, we further examined the expression patterns of ICPs and

NMD factors in different clusters. A total of 43 ICP-related

modulators were detected in TCGA cohort; of which 38 (88.4%)

exhibited significant differences between immune clusters

(Supplementary Figure 5A). Among these 38 differentially

expressed ICP-related genes, only three (TNFRSF14, TNFRSF25

and TNFSF15) were downregulated, whereas almost all other genes

were upregulated in IC1. In addition, 36 (90.0%) out of 40 ICP-related

genes were differentially expressed in the GSE32894 cohort, and all of

them were upregulated in IC1 (Supplementary Figure 4B).

Furthermore, four NMD factors were identified in both TCGA and

GSE32894 cohorts. Two factors, namely, UPF1 and UPF3A, were

diversely expressed in the two clusters in TCGA cohort and were
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FIGURE 4

Association of immune clusters with mutation. (A) Tumor mutation burden and (B) mutation count across IC1 and IC2. Waterfall diagram of top 20
mutated genes in (C) IC1 and (D) IC2. (E) Association of immune clusters with somatic CNVs. (E, F) Association of immune clusters with G-score.
(G, H) Gain or loss frequencies of CNVs across chromosomes in (G) IC1 and (H) IC2.
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upregulated in IC2 (Supplementary Figure 5C). Moreover, UPF3A

expression was significantly different in the GSE32894 cohort and had

the same expression pattern as that of TCGA cohort (Supplementary

Figure 5D). Overall, the immune clusters mimicked the expression

levels of ICPs and NMD factors, thus serving as potential biomarkers

for predicting the efficacy of mRNA vaccines. mRNA vaccines may

function better in IC2 owing to the relatively low expression of ICPs

and high expression of NMD factors.
Association of immune clusters with
tumor markers

We systematically identified 16 prognostic and diagnostic

markers of BLCA based on the CGI database. Of these genes, 10

had significantly different expressions between the two immune

clusters in both TGCA and GSE32894 cohorts. The expression of

CD274, FANCC and TUBB3 was significantly higher in IC1 than in

IC2, whereas that of ERBB2, ERBB3, ERCC2, FGFR3, TP53, TSC1

and TSC2 was lower (Supplementary Figures 6A, B). However, these

10 markers have not been approved by the FDA and are either

undergoing investigation in early trials or pre-clinical studies;

therefore, their clinical applicability remains to be investigated.

Currently, nuclear matrix protein 22 (NMP-22) is the most

frequently used prognostic marker for BLCA, and patients with

high expression have a significantly poorer prognosis (42).

Therefore, we analyzed the expression of NMP-22 in patients with

BLCA. Serum NMP-22 in IC2 in the TCGA cohort was significantly

upregulated (Supplementary Figure 6C), while there was no

significant difference in GSE32894 between the two clusters

(Supplementary Figure 6D). Overall, the results revealed that the

immune clusters were superior to other currently available cancer

biomarkers in predicting patient outcomes.
Association of immune clusters with
immune microenvironment characteristics

Considering that the efficacy of mRNA vaccines is greatly

associated with the immune status tumors, immune activity scores

were first assessed using the TIP approach for analyzing and

visualizing the status of anti-cancer immunity in the two immune

clusters using RNA-seq data of patients with BLCA retrieved from

TCGA. The overall score differed significantly between the two

clusters, with patients in IC1 having a higher abundance of

antitumor immune cells (Figure 5A). To further confirm the

feasibility of clustering, we used the ESTIMATE algorithm to assess

the immune features of BLCA in both TCGA and GSE32894 cohorts

according to the expression of immune cell components. We found

that patients in IC1 had higher stromal, immune and ESTIMATE

scores but lower tumor purity and cytolytic activity (CYT)

(Figure 5B). These results are consistent with those of previous

studies, which have reported that low tumor purity (43) and CYT

(44) serve as robust indicators for unfavorable prognosis.

Furthermore, we examined differences in the abundance of 22

TIICs between the two clusters and found higher enrichment scores
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in IC1 (Figure 5C). For example, patients in IC1 had higher

infiltration of naive B cells, activated memory CD4 T cells,

macrophages and neutrophils (Figure 5D). Subsequent analyzes in

the GSE32894 cohort yielded similar results (Figures 5E–G).

Moreover, patients in IC1 had significantly higher infiltration of a

majority of immune cells, including but not limited to memory B

cells, plasma cells, CD8 T cells and activated memory CD4 T cells.

Therefore, IC1 was considered an immunologically ‘hot’ phenotype,

whereas IC2 was considered an immunologically ‘cold’ phenotype.

Based on the abovementioned analyzes, we speculated that immune

clusters can evaluate the immune status of BLCA and may help in

selecting eligible patients for mRNA vaccination. These vaccines may

be involved in the activation of various TIICs in immunologically

‘cold’ IC2. The six pan-cancer immune categories (C1–C6) defined by

Thorsson et al . were closely related to prognosis and

immunoregulation in tumors (45). As shown in Figure 5H, a

distinct distribution of C1–C6 was observed in IC1 and IC2. In

addition, there was a large degree of overlap in the proportion of C1–2

between the two immune clusters. The proportion of C1, C3 and C4

increased significantly, whereas that of IC2 decreased significantly in

IC2 as compared to IC1. Patients in IC2 with a longer survival

duration may be associated with the high proportion of C3 samples in

IC2. These results facilitated a deeper understanding of the

characteristics of the immune microenvironment in BLCA while

further complementing previous studies.
Immune landscape of BLCA

The immune gene expression profiles were integrated to assess the

immune landscape of BLCA (Figure 6A). We found that the overall

pattern of IC1 and IC2 distribution was reversed in the immune

landscape. Principal component 1 (horizontal axis) had a positive

correlation with activated memory CD4 T cells and M1 macrophages

but a negative correlation with activated dendritic cells and naive CD4

T cells. In addition, principal component 2 (vertical axis) was most

positively correlated with plasma cells and Tregs but most negatively

correlated with activatedmemory CD4 T cells, resting NK cells andM1

macrophages (Figure 6B). The correlations among different immune

cells between two principal components further demonstrated the

accuracy of our approach. Heterogeneity can be found within the

same cluster, and IC1 presented opposing distribution. Therefore, we

stratified IC1 into two subclusters (IC1A and IC1B) based on the

distribution of immune cell populations (Figure 6C). Considerable

differences in the proportion of certain immune cells were observed.

IC1B had a higher enrichment score of M0macrophages and activated

dendritic cells and a lower enrichment score of CD8T cells (Figure 6D),

suggesting that mRNA vaccines may be more effective in IC1B. In

addition, we conducted the survival analysis of extremely distributed

samples in the immune landscape and found that the survival rate of

state 5 was significantly higher than that of state 1, suggesting that

immune cluster-based immune landscape can be used to assess patient

outcomes (Figures 6E, F). Collectively, the immune landscape based on

immune clusters precisely identified immune components in each

patient and predicted their outcomes, thus facilitating individualized

mRNA vaccination.
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Identification of immune gene co-
expression modules and hub genes of BLCA

WGCNA was performed to identify immune gene co-expression

modules containing immune genes associated with the effectiveness of

mRNA vaccines. No outliers were found in the sample clustering
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(Figure 7A), and a soft-threshold power of b = 3 (scale-free R2 = 0.85)

was selected to ensure a scale-free network (Figures 7B, C).

Subsequently, the representation matrix was converted to an

adjacency matrix and then to a topological matrix. Considering the

minimum module size of 30 genes as a criterion, a dendrogram was

constructed using the average-linkage hierarchy clustering method.
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FIGURE 5

Association of immune clusters with immune microenvironment characteristics. (A) Distribution of immune activity scores in IC1 and IC2. (B) Association
of immune subtypes with immune scores, stromal scores, tumor purity and CYT in TCGA cohort. Heatmap (C) and bar plot (D) of the relationship
between immune clusters and immune cell subpopulations in TCGA cohort. (E) Association of immune subtypes with immune scores, stromal scores
and tumor purity in the GSE32894 cohort. Heatmap (F) and bar plot (G) of the relationship between immune clusters and immune cell subpopulations in
the GSE32894 cohort. (H) Distribution of individual immune categories in the two immune clusters. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001;
ns, not significant.
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MEs were calculated by merging the closed modules with a deep split

of 5 and a height of 0.2 (Figure 7D). Eventually, four modules that

contained similar gene patterns were identified, and the grey module

included genes that were not present in any module (Figure 7E). We

further examined MEs in the two immune clusters and noticed

significantly different distribution of all three modules (except the

grey module). IC1 had a higher number of MEs in the brown and

turquoise modules, whereas IC2 showed higher eigengenes in the blue

module (Figure 7F). Further prognostic correlation results suggested

that the blue, turquoise and brown modules were distinctly associated

with the prognosis of BLCA (Figure 7G). Moreover, functional

enrichment analysis indicated that genes in the blue module were
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relevant to BC, those in the turquoise module were associated with

pathways in cancer and those in the brown module were associated

with natural killer cell-mediated cytotoxicity (Figures 7H–J).

Eventually, three hub genes with relevance > 85% to MEs of three

modules were identified, including CALD1, TGFB3 and ANXA6.

These hub genes can be used as predictive and prognostic biomarkers

and for identifying eligible patients with BLCA for mRNA

vaccination. qRT-PCR was applied to examine the relative mRNA

levels of CALD1, TGFB3 and ANXA6 in 40 pairs of BLCA and

adjacent normal tissues. Results demonstrated that the expression

levels of these 3 genes were higher in BLCA tissues than in tumor-

adjacent normal tissues (Supplementary Figure 7).
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FIGURE 6

Immune landscape of BLCA. (A) Immune landscape of BLCA. Each point represents a patient, and the immune clusters are color-coded. (B) Correlation
between two principal components and immune cells. (C) Immune landscape of the subclusters of BLCA immune clusters. (D) The proportion of certain
immune cells in the IC1A–B subclusters. (E) Immune landscape of samples from five extreme locations and (F) their prognoses. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001; ns, not significant.
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Discussion

BLCA is one of the most aggressive malignancies with significant

tumor heterogeneity,multidrug resistance and uncontrolledmetastasis (3,

5). Cisplatin combined with gemcitabine has been established as a

standard therapeutic strategy for the management of patients with

advanced BLCA; however, clinical benefits are limited (6, 7).

Immunotherapy has revolutionized treatment paradigms in oncology,

especially with the clinical success of immune checkpoint inhibitors;

however, its effectiveness in BLCA remains unknown (10). mRNA-based

vaccines with cancer antigens represent a promising alternative

immunotherapeutic strategy, with multiple ongoing human clinical
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trials (15). A recent study demonstrated that a combination of mRNA

vaccine and immune checkpoint inhibitor can enhance the immune

response againstmelanoma and inhibit tumor progression (20).However,

the efficacy of mRNA vaccines in patients with BLCA remains unknown.

In this study, we systematically profiled the aberrant AS events and

mutational landscape of BLCA for future development of individualized

mRNA-based cancer vaccines. To elucidate the clinical relevance of the

selected antigens, their correlation with NMD factors and immune cell

infiltration was examined. Six tumor antigens (HP1BP3, OSBPL9, SSH3,

ZCCHC8, FANCI and EIF4A2) were correlated with the expression of

NMD factors and infiltration of APCs, which may be promising

candidates for mRNA vaccines. These findings revealed the
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FIGURE 7

Identification of immune gene co-expression modules and hub genes of BLCA. (A) Sample clustering. (B) Scale-free fit index and (C) mean connectivity
for various soft-thresholding powers. (D) Dendrogram of immune genes clustered based on the average-linkage hierarchy clustering method. (E) The
number of genes in each module. (F) Differential distribution of MEs of each module in BLCA immune clusters. (G) Prognostic analysis of the blue,
turquoise and brown modules. The top KEGG terms enriched in the (H) blue, (I) turquoise and (J) brown modules. ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1097472
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1097472
importance of these candidates in the development of BLCA, which can

be recognized and presented directly to T cell receptors to eradicate

tumor cells and induce antitumor immunity. Although functional

validation and clinical evaluation of these candidate genes require

further investigation, previous studies have demonstrated their

potential for developing mRNA vaccines against tumors. In recent

years, several studies have focused on the role of EIF4A2 in regulating

immune responses and numerous cellular and pathophysiological

processes, which serves as a prognostic biomarker and is correlated

with immune infiltration in multiple cancers, including BLCA (46, 47).

Because therapeutic effects of mRNA vaccines vary between

individuals, patients with BLCA were divided into two immune

clusters (IC1 and IC2) based on their immune-related gene profiles to

identify eligible patients for vaccination. The two immune clusters

possessed distinct clinical, molecular and TIME features. For example,

patients in IC2 had a better prognosis in both TCGA and GSE32894

cohorts, suggesting that the immune cluster could serve as a prognostic

biomarker for BLCA. In addition, we observed that the predictive power

of IC2 was superior to conventional tumor biomarkers such as NMP-22.

In addition, this cluster can be used to predict the response to vaccine

therapy. Elevated rates of somatic CNVs in IC2 are suggestive of greater

responsiveness tomRNAvaccines.With regard to the expression of ICPs

andNMD factors,mRNA vaccinesmight have better efficacy in IC2. The

immune activity of the two immune subtypes was assessed via TIP

analysis. IC2 had strikingly lower immune activity, suggesting that

mRNA vaccines targeting IC1 might reinforce its immune response.

Given that the tumor immune status is critical for the efficacy of

mRNA vaccines, we further investigated the immune cell components

and found a strikingly distinct TIME in the two immune clusters. This

finding suggested that the two clusters might have varying mechanisms

for regulating immune escape in tumors, which may require

individualized therapeutic strategies. In addition, we found that IC2

had an immunologically cold phenotype with less infiltration of

immune cells (an ‘immune desert’) and immunologically inactive ‘non-

inflamed’ tumors. This phenotypemay be related to the lack of APCs and

tumor antigens, resulting in T cell anergy and insensitivity to antigen

activation. To reinvigorate the immune system of such patients against

tumor cells, mRNA-based vaccines that trigger immune cell infiltration

may be an appropriate option. However, IC1 had a favorable

immunologically hot phenotype, characterized by the increased

infiltration of immune cells and immunologically active ‘inflamed’

tumors. Therefore, ICBs are especially advantageous for patients in IC1,

which may further regulate the production of CD8+ T lymphocytes and

the suppression of Tregs, inducing antitumor immunity (48, 49). Recent

studies have highlighted the role of inflammation in tumorigenesis and

tumor progression, revealing a close relationship between inflammation

and BLCA (50, 51). An inflammatory phenotype with a high density of

macrophagesmight, at least partially, lead to poor outcomes in patients in

IC1 (51). Another important consideration in determining the prognosis

is the preponderance of the immune-suppressive or -stimulatory

environment. In a study, patients with BLCA were divided into C1-C6

subtypes, except for the C5 subtype, based on previous immunotyping

studies among 33 cancer types (45). The C3 subtype was associated with

the best prognosis, followed by the C1, C2, C4 and C6 subtypes. Our data

showed substantial variations in the proportion of five categories in IC1

and IC2. Patients in IC2with a longer survival durationmay be associated

with the high proportion of C3 samples in IC2.Moreover, the proportion
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of C2 (IFN-g dominant) in IC1 was significantly higher than that in IC2,

whereas the proportion of C4 (lymphocyte failure) showed the opposite

trend. This finding provides further verified the ‘hot’ phenotype of IC1

and the ‘cold’ phenotype of IC2. Therefore, mRNA vaccine

administration in IC2 might stimulate the immune response, thus

converting the ‘cold’ TME to ‘hot’ by increasing the infiltration of

inflammatory immune cells (49). Therefore, our results are reliable and

complement the classification schemes previously developed.

Furthermore, the complex immune landscape of BLCA

demonstrated substantial heterogeneity among individuals and within

the same immune subgroups, thus facilitating the accurate determination

of immune cell components in each patient to aid in developing

individualized mRNA vaccines. Intra-cluster heterogeneity observed in

IC1was based on the distribution of immune cell groups. The infiltration

of M0 macrophages and activated dendritic cells was higher and that of

CD8 T cells was lower in IC1B than in IC1A, suggesting that the

therapeutic efficacy of mRNA vaccines may be better in patients in

IC1B. In such patients, novel treatment strategies based on mRNA

vaccines combined with chemotherapy or immunotherapy may

modulate both TME and immune response of the host, which is

considered more conducive to successful therapy (52).

Furthermore, we used WGCNA to construct co-expressed gene

modules and identified three key modules (blue, turquoise and

brown) significantly correlated with each immune cluster, which

was of fundamental importance in investigating the underlying

biological mechanisms of the clusters. Subsequent KEGG analysis

suggested that the three modules had substantial disparity among the

involved pathways, suggesting that the classification method had high

discrimination power. In addition, CALD1, TGFB3 and ANXA6 were

identified as immune hub genes (MM > 0.85), which may serve as

biomarkers for predicting the outcomes of patients with BLCA and

selecting eligible patients for mRNA vaccination.

Therefore, this study provides critical insights into developing

mRNA vaccines for other diseases. The emergence of the COVID-19

pandemic made mRNA vaccines an innovative and promising platform

(53). Although mRNA vaccines have protected millions of patients with

COVID-19 and prevented many deaths worldwide, the evolving variants

such as D614G require these vaccines to be updated periodically (54).

Therefore, there are significant implications for improving the clinical

treatment of COVID-19 by determining specific antigens and eligible

patients for mRNA vaccine administration.

Conclusion

In conclusion, HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI and

EIF4A2 were identified as potential antigens for developing mRNA

vaccines against BLCA. In addition, patients in IC2 may benefit more

from mRNA vaccination. These findings provide new sights into

developing mRNA vaccines against BLCA and defining the eligible

population for mRNA vaccination.
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Immune-related risk score:
An immune-cell-pair-based
prognostic model for
cutaneous melanoma
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Guanxiong Zhang1,2,3,4,5, Guangtong Deng1,2,3,4,5,
Yuancheng Liu1,2,3,4,5, Juan Su1,2,3,4,5 and Kai Huang1,2,3,4,5*
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Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China,
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4Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University,
Changsha, China, 5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South
University, Changsha, China, 6Department of Dermatology, Peking University First Hospital, Peking
University, Beijing, China, 7Department of Dermatological Surgery, Hospital for Skin Diseases, Institute of
Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
Background: Melanoma is among the most malignant immunologic tumor types

and is associated with high mortality. However, a considerable number of

melanoma patients cannot benefit from immunotherapy owing to individual

differences. This study attempts to build a novel prediction model of melanoma

that fully considers individual differences in the tumor microenvironment.

Methods: An immune-related risk score (IRRS) was constructed based on

cutaneous melanoma data from The Cancer Genome Atlas (TCGA). Single-

sample gene set enrichment analysis (ssGSEA) was used to calculate immune

enrichment scores of 28 immune cell signatures. We performed pairwise

comparisons to obtain scores for cell pairs based on the difference in the

abundance of immune cells within each sample. The resulting cell pair scores, in

the form of amatrix of relative values of immune cells, formed the core of the IRRS.

Results: The area under the curve (AUC) for the IRRS was over 0.700, and when the

IRRS was combined with clinical information, the AUC reached 0.785, 0.817, and

0.801 for the 1-, 3-, and 5-year survival, respectively. Differentially expressed genes

between the two groups were enriched in staphylococcal infection and estrogen

metabolism pathway. The low IRRS group showed a better immunotherapeutic

response and exhibited more neoantigens, richer T-cell receptor and B-cell

receptor diversity, and higher tumor mutation burden.

Conclusion: The IRRS enables a good prediction of prognosis and immunotherapy

effect, based on the difference in the relative abundance of different types of infiltrating

immune cells, and could provide support for further research in melanoma.

KEYWORDS

cutaneous melanoma, cell pair, tumor infiltrating immune cell, prognosis model,
immunotherapy response
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Introduction

Cutaneous melanoma is a highly malignant tumor derived from

melanocytes and is the most invasive and complex of all skin cancers

(1). In 2020, the total number of new melanoma cases in the world

was 325,000 with 57,000 deaths; these numbers are predicted to

increase to 510,000 new cases with 96,000 deaths by 2040 (2). The

occurrence of melanoma is caused by interactions between genetic

susceptibility and environmental exposure (3), that is, an

accumulation of genomic changes, including the mutation burden

driven by high-intensity ultraviolet light and prolonged exposure to

ultraviolet, which makes melanoma the most immunogenic tumor

type with the ability to induce an immune response that can inhibit

melanoma growth (4, 5). Immune checkpoint inhibitors, whose main

targets are programmed cell death protein 1 (PD1), programmed cell

death 1 ligand 1 (PDL1), and cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), have been successfully used in the treatment of

melanoma. The total effective rate of immune checkpoint inhibitors in

patients with advanced melanoma is 32.9%–58.0% (6). However, only

a third of melanoma patients show a durable response to immune

checkpoint therapies (7). Biomarkers for the prediction of prognosis

and immunotherapy effect in melanoma patients remain elusive.

However, previous studies have shown that cytotoxic T lymphocyte

(CTL) dysfunction and exhaustion result in lower response and

sensitivity to immunotherapy (8). This means that the immune

microenvironment is closely related to the effectiveness of immune

checkpoint inhibitors.

Tumor-infiltrating immune cells (TIICs), including T cells, B

cells, macrophages, and natural killer cells, form an important

component of most solid tumors and have an essential role in the

host antitumor immune response, which can affect tumor progression

via antitumor activity or immunosuppression (9, 10). During the

process of tumor development, including elimination, balance, and

escape, the dual function and plasticity of TIICs lead to complexity

and changes in the antitumor response (11, 12). For example, in many

tumor types, patients with high levels of CD8+ T-cell infiltration tend

to have a better prognosis. On the contrary, patients with obvious

infiltration of immunosuppressive cells, such as regulatory T cells,

tend to have a worse prognosis. Therefore, the quantity and quality of

TIICs are key determinants of prognosis (9). The value of TIICs in

prognosis prediction and drug resistance analysis has been verified in

a variety of tumors, including melanoma (7, 13–15). The American

Joint Committee on Cancer (AJCC) guidelines are widely used to

evaluate the prognosis of melanoma patients. However, TNM staging

mainly describes the invasion and metastasis of tumor tissue at the

pathological level, which cannot take into account the composition of

tumor-infiltrating cells in the immune microenvironment. Although

there are many prognostic models that incorporate immune gene

expression, few studies have constructed prognostic models directly

based on TIICs. This may be because of the different methods used for

determining the specific content of infiltrating cells, which are affected

by various measurement factors such that it is difficult to establish a

unified standard.

In this study, we develop a prognostic prediction model for

melanoma based on TIICs. We adopt the relative value of cell

fraction to form a cell pair algorithm. In addition, we present an
Frontiers in Immunology 02221
online nomogram, of which the IRRS is the core, including clinical

indicators, to facilitate the use of the IRRS by clinicians.
Materials and methods

Study design and data collection

The integrated research design is presented in Figure 1.

Transcription profiles and clinical data of cutaneous melanoma

patients were obtained from The Cancer Genome Atlas (TCGA;

https://portal.gdc.cancer.gov/; TCGA-SKCM cohort). After

removing cases with duplication, lack of expression profiles, or lack

of survival data, the data of 458 patients were included in the training

group for the construction of the IRRS score. The GSE65904,

GSE54467, GSE91061, and GSE115821 datasets from the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)

and a cohort from Liu et al. were used as testing sets for validation

(16–20). Missing values in the clinical or pathological data of patients

were filled using the missForest package (21–28).
Establishment and validation of the cell
pair algorithm

We carried out single-sample gene set enrichment analysis

(ssGSEA) to analyze the expression of corresponding markers of 28

immune cell types (29), thereby obtaining the abundance of these cell

types in patient tumor tissues. Then, the cells related to prognosis

were screened by univariate Cox (uni-Cox) regression (P< 0.05).

The prognosis-related immune cells were termed A cells, and the

A cells were paired with all 28 immune cells (termed B cells) in turn to

form a set of A|B pairs. If the A-cell abundance exceeded the B-cell

abundance for a given cell pair, the value of that pair was recorded as

1; otherwise, it was recorded as 0. This method enables the relative cell

abundance to be considered without dependence on the absolute

number; this avoids the variation caused by the use of different

methods for gene measurement and annotation and differential cell

abundance analysis. A matrix containing values of 0 or 1 was

constructed, from which cell pairs with 0 or 1 accounting for more

than 80% of the total were removed. In the human body, the content

of some immune cells is much higher than that of other immune cells,

such as neutrophils. The remaining cell pairs were screened by uni-

Cox regression analysis (P< 0.05) to obtain those correlated with

prognosis. We applied the least absolute shrinkage and selection

operator (LASSO) Cox regression analysis (glmnet package) to

avoid overfitting and obtain the remaining cell pairs. Then, each

cell pair was assigned the optimal coefficient by multivariate Cox

(multi-Cox), and the IRRS was generated as follows:

IRRS =oScore  AjB� Coef _AjB
The receiver operating characteristic (ROC) curves, the Kaplan–

Meier survival curves, the GEO datasets, and the cohort from Liu et al.

were used to verify the effectiveness of the IRRS in predicting

prognosis and immunotherapy effect.
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Differentially expressed genes and analysis

The differentially expressed genes between the high and low IRRS

groups were analyzed using the DESeq2 package, with threshold |log2

fold change (FC)| ≥2 and Benjamini–Hochberg-adjusted P-value<0.05

(30). Functional enrichment analysis and clustering of the identified

biological processes were conducted using the clusterProfiler R

package (31).

The main regulator (MR) is a gene located at the hub of a

regulatory network that controls a large number of target genes

(termed as its regulon). We used the MR4Cancer tool (http://cis.

hku.hk/MR4Cancer) to identify potential MRs that could explain the

DEGs between the high and low IRRS groups (32). An MR network

diagram was drawn using Cytoscape.
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Genomic features

We used the maftools package to draw the OncoPrint, and the

Fischer test was used to evaluate differences in gene mutation

frequency between the two groups (33). The somaticInteractions

function in the maftools package was used to accurately evaluate

the exclusive occurrence and co-occurrence of mutations in pairwise

comparisons of the 25 genes with the highest mutation frequency.

The DeconstructSigs package was used to analyze the cosmic

mutation signature of each patient (34).

Significant deletion or amplification events in the regions of

the genome were investigated with GISTIC 2.0, a revised

computational program used to identify somatic copy number

alterations (35).
FIGURE 1

Overview of the workflow. (A) The data of this study were from The Cancer Genome Atlas (TCGA) and GEO cohorts. (B) The immune-related risk score
(IRRS) was constructed by the relative value of cell abundance, that is, cell pairs. (C) Discovered the difference in the genomic features between the high
and low IRRS through DEG, mutation, and CNV. (D) Immunologic changes based on the IRRS was analyzed by the TCR and BCR, MHC, neoantigens, and
checkpoints. (E) The prognosis and immunotherapy predictive effects were confirmed. (F) A nomogram based on the IRRS was constructed and
validated.
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Immunologic changes

T-cell receptor (TCR), B-cell receptor (BCR), and neoantigen data

were from the research of Thorsson et al. (36). Tumor immune

dysfunction and exclusion (TIDE) score and microsatellite instability

(MSI) score were obtained using the official TIDE website (http://tide.

dfci.harvard.edu/) (37). The statistical significance of the MSI score

was evaluated by Welch’s t-test, and other indexes were evaluated by

the Wilcoxon rank-sum test.
Construction and validation of the
nomogram model

A nomogram was constructed to predict specific outcomes

based on the IRRS and clinical variables using the rms package

(38). ROC curves, calibration curves, and decision curve analysis

(DCA) curves were drawn to verify the reliability of the nomogram.
Frontiers in Immunology 04223
In addition, the nomogram was compared with the traditional TNM

staging system by calculating the integrated discrimination

improvement (IDI). Finally, the Dynnom package (cran.r-

project.org/web/packages/rms) was used to generate an online

version of the nomogram model with an interactive interface for

clinical applications.
Results

Construction and validation of the IRRS

A total of 28 immune cell types from 458 melanoma patients

(TCGA data) were analyzed. A total of 19 immune cell types related to

prognosis were identified by uni-Cox analysis (P< 0.05) (Figure 2A).

After pairing, 532 immune cell pairs were screened and entered into

LASSO Cox regression analysis, and 11 immune cell pairs were

retained (Figures S1, S2).
A

B D

E F G

C

FIGURE 2

Construction and validation of the IRRS. (A) The 19 candidate cells screened based on uni-Cox analysis. (B–D) The Kaplan–Meier curves of survival
probability for patients in the TCGA-SKCM, GSE54467, and GSE65904 cohorts. (E) The ROC curve for patients in the TCGA-SKCM cohort. (F)
Comparison of immunotherapeutic responses (P< 0.01) for patients in the GSE91061, GSE115821, and Liu et al. cohorts. (G) Comparison of C-index
between the IRRS and tumor stage, TMB, and driver mutations (BRAF, NF1, and RAS) in the TCGA.
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We then carried out multi-Cox regression to generate the best

coefficients for the corresponding immune cell pairs; only six

immune cell pairs were included in the final model (Table 1).

Patients with melanoma were classified into high IRRS or low IRRS

groups based on the median IRRS score. Compared with patients

in the high IRRS group, patients in the low IRRS group had longer

overall survival (hazard ratio = 0.45, 95% confidence interval 0.35–

0.59, log-rank test P< 0.001). To confirm the predictive effect of the

IRRS, an ROC curve analysis was performed; the area under the

ROC curve (AUC) values were 0.711, 0.711, 0.676, and 0.677 for

the 1-, 2-, 3-, and 5-year survival, respectively (Figures 2B, E).

To further assess the reproducibility and validity of the IRRS, we used

external datasets, including GSE65904 and GSE54467, to validate its

prognostic value. We also used the median as a group point to plot the

Kaplan–Meier curve. Notably, the patients in the high-risk group had

shorter overall survival. In addition, in the three anti-PD1 treatment

cohorts of GSE91061, GSE115821, and Liu et al., patients with low IRRS

exhibited significantly better immunotherapeutic response (P< 0.01)

(Figures 2C, D, F).
The independent predictive ability
of the IRRS

To estimate whether the IRRS was independent of other

clinical or pathological factors of melanoma patients, multi-Cox

regression was performed, in which covariables included age,

gender, body mass index, ulceration, Breslow depth, Clark level,

T stage, N stage, M stage, tumor stage, and the IRRS. Multi-Cox

analysis showed that the IRRS, age, and ulceration were

independent predictive factors for the prognosis of melanoma

patients (Table 2). The C-index of the IRRS was higher than

those of the other independent predictive factors (0.647 for the

IRRS vs. 0.600 and 0.626 for age and ulceration, respectively). To

further confirm the predictive performance of the IRRS, we also

compared the C-index values for the IRRS with those for tumor

stage, tumor mutation burden (TMB), and driver mutations

(BRAF, NF1, and RAS); the results showed that the IRRS had

the best predictive effect with respect to prognosis (Figure 2G).

Furthermore, the high IRRS group had significantly worse overall

survival than the low IRRS group, regardless of whether the patients

were in the early or late TNM stages (Figure 3).
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Enrichment analysis of differentially
expressed genes

Screening identified 422 upregulated genes and 915 downregulated

genes in the high-risk group compared with the low-risk group (|log2 FC

| > 2, P< 0.05) (Figure 4A). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis of the differentially upregulated

genes showed that these genes were mainly enriched in Staphylococcus

aureus infection and estrogen signaling pathway (Figure 4B). In the low

IRRS group, GSEA showed significant enrichment, with enrichment

scores over 0.7 in 22 pathways, including 12 immune-related pathways.

In addition to S. aureus infections, some pathways related to viral

infection have also been enriched. Figure 4C shows the eight immune-

related pathways with the highest enrichment scores.

We used MR4Cancer to identify the MRs, which were prioritized

based on DEGs through overrepresentation analysis and GSEA.

Among them, the eight transcriptional regulators with the most

nodes were selected and used to plot a network of the MRs and

DEGs from the MRs obtained by the analysis of upregulated DEGs in

the high IRRS group (Figure 4D). Notably, FOXN1 was found to

orchestrate the expression of 236 DEGs.
Genomic features of the IRRS

Based on the maftools analysis, the top 20 most frequently altered

genes were identified (Figure 5A). Among these genes, MUC16 was

more frequently altered in the low IRRS group, and NRAS–BRAF was

the most mutually exclusive pair in the high IRRS group. On the other

hand, the most frequently co-occurring gene changes in the low IRRS

group were for the pair RP1–MUC16 (Figure 5C).

Then, we analyzed the cosmic mutation signatures and found that

signature 7 was higher in the low-risk group, which was related to

ultraviolet radiation. In addition, the low IRRS group showed higher

TMB and MSI (Figure 5B).
The IRRS and immunological mechanism

Immune checkpoint blockade has become a promising strategy

for the treatment of many cancers. Therefore, we studied the

expression of key immune checkpoint molecules, including PDCD1,
TABLE 1 The final immune cell pairs and the corresponding coefficient generated by multi-Cox regression.

Immune cell pairs Coefficient

Effector_memory_CD8+T_cell|CD56 dim_natural_killer_cell −0.201895537

Type_2_T_helper_cell_|Effector_memory_CD8_T_cell 0.162775185

Immature_B_cell_|Effector_memory_CD4+T_cell −0.167620476

Natural_killer_T_cell_|Immature_B_cell 0.376203094

MDSC_|_Monocyte −0.146018787

Natural_killer_cell|Central_memory_CD8_T_cell −0.32046159
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CD247, PDCD1LG2, TIGIT, CTLA-4, HAVCR2, IDO1, and LAG3.

Cutaneous melanoma patients with low IRRS scores had a higher

expression of immune checkpoint molecules, indicating that patients

in the low-risk group were more likely to exhibit better

immunotherapeutic responses (Figure 5D).

We also analyzed adaptive receptors, including TCR and BCR

Shannon diversity, and new antigens, including single nucleotide

variant (SNV) and indel new antigens. The results showed that the

group with low IRRS had higher TCR and BCR diversity and more

new antigens (Figure 5B). HLA genes control the adaptive immune

response by presenting antigens to T cells. The antigen-presenting

genes that we analyzed all showed high expression in the low IRRS

group (Figure 5D).

TIDE uses T-cell dysfunction and exclusion markers to simulate

immune escape in tumors with different CTL levels, which can be

used to predict the effects of immunotherapy. The high IRRS group

had a higher TIDE score, indicating that the patients in the high-score

group would have a poorer response to immunotherapy than those in

the low-score group (P< 0.05).
Frontiers in Immunology 06225
Copy number variation

Significant differences in copy number variation were detected

between the high IRRS and low IRRS groups (Figure 6A).

Importantly, focal amplification peaks in some immune-related

gene areas were observed in the low IRRS group, such as

PDCD1LG2(9p24.1) (Figures 6B, C). We annotated specific

amplified genes in the high and low IRRS groups through gene

ontology biological processes and then clustered the top 10

biological processes. Compared with those in the high IRRS group,

the genes amplified in the low IRRS group were more enriched in

immune-related processes (Figures 6D, E).
Nomogram based on the IRRS

Four independent prognostic clinical characteristics associated with

overall survival were identified by uni-Cox analysis (P< 0.05) and

multi-Cox regression (Figure 7A). These factors, which comprised age,
TABLE 2 Univariable and multivariable Cox regression analyses of the IRRS and survival in the TCGA cohort.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

IRRS 458 2.718 (2.030–3.639) <0.001 2.899 (2.123–3.959) <0.001

Age 458 1.025 (1.015–1.034) <0.001 1.018 (1.008–1.028) <0.001

Gender 458

Male 284 Reference

Female 174 0.878 (0.662–1.164) 0.365

BMI 458 0.965 (0.931–1.000) 0.048 0.985 (0.952–1.020) 0.400

Ulceration 458

No 214 Reference

Yes 244 2.523 (1.907–3.338) <0.001 1.970 (1.458–2.662) <0.001

Breslow depth 458 1.026 (1.013–1.040) <0.001 1.006 (0.989–1.024) 0.486

M 458

M0 435 Reference

M1 23 1.752 (0.926–3.316) 0.085

N 458

N0 277 Reference

N1, N2, N3 181 1.710 (1.292–2.262) <0.001 1.416 (0.615–3.263) 0.414

T 458

T0, T1, T2 149 Reference

T3, T4 309 1.738 (1.301–2.324) <0.001 1.159 (0.843–1.593) 0.363

Tumor stage 458

Stage 0, I, II 263 Reference

Stage III, IV 195 1.654 (1.253–2.182) <0.001 1.212 (0.530–2.770) 0.649
fron
The bold values represents P-value < 0.05, that is, the relevant prognostic predictive factors are statistically significant.
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ulceration, Breslow depth, and N stage, were combined with the IRRS

score and used to construct a nomogram to quantitatively estimate the

survival rate of patients with cutaneous melanoma (Figure 7B).

Although a nomogram can enable visualization of a prognostic

model to a great extent, it still requires a ruler to measure continuous

variables, which may lead to error because of subjective judgment.

Therefore, we developed an online website for clinicians (https://

irrsmelanoma.shinyapps.io/IRRSSKCM/), where the predicted
Frontiers in Immunology 07226
survival rate can be easily determined by inputting values of clinical

factors (Figure 7C).

The calibration results of our nomogram were intuitively

consistent with the actual calibration results (Figure 7F). The ROC

curve analysis indicated that the nomogram had a good predictive

effect on prognosis (the AUC values for the 1-, 3-, and 5-year survival

were 0.785, 0817, and 0.801, respectively) (Figure 7D). According to

the DCA curve, the nomogram had the highest overall net benefit
FIGURE 3

The Kaplan–Meier survival curves according to different TNM stages of patients from the TCGA-SKCM classified into high- and low-risk groups based on
the IRRS score.
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within the threshold probability compared with a separate IRRS score

or a separate clinical feature (Figure 7E). In addition, we compared

the nomogram based on the IRRS with traditional AJCC TNM

staging; the IDI values for 3, 5, and 10 years were 26.9% (P< 0.001),

28.8% (P< 0.001), and 32.5% (P< 0.001), respectively.
Discussion

In our study, first, we focused on the influence of TIICs on the

prognosis of melanoma patients. Although there have been previous

studies exploring the predictive value of immune genes, few prognosis

models focusing on the components and content of tumor-infiltrating

cells have been established (39–42). Then, we established a cell pair

score matrix generated by comparing the abundance of immune cells

in pairs, and the IRRS was constructed on the basis of this matrix.

Finally, we not only verified the predictive ability of the IRRS but also

analyzed its immune and genetic characteristics. An online

nomogram integrating the IRRS and clinical information was

constructed to avoid errors caused by the measurement process

used by clinicians and for further visualization.

The advantages of our model are as follows. First, errors may be

introduced into the models by the use of different methods of gene

sequencing, continuous updating of annotations, different methods

for infiltrating cell analysis, and batch effects; however, the proportion
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of TIICs exists in a relatively stable range. The adoption of relative

values avoids the abovementioned issues. Second, the construction of

cell pairs also enables the consideration of interactions between cells

and personal immune factors. Therefore, this method improved the

predictive ability of the IRRS. In the verification using cohorts from

the GEO, the IRRS showed good prediction efficiency with respect to

prognosis and immunotherapy response. Through multi-Cox analysis

and stratification analysis of the IRRS, we could confirm that the IRRS

was independent of other clinical or pathological factors.

In the differential gene expression analysis and KEGG enrichment

analysis, the upregulated genes in the high IRRS group were found to

mainly affect S. aureus infection, estrogen signaling pathway, and

pathways related to lipid metabolism (arachidonic acid metabolism,

linoleic acid metabolism, etc.). Previous studies have shown that

increased colonization of S. aureus in squamous cell carcinoma might

promote carcinogenesis by inducing chronic skin inflammation (43).

Lutchminarian et al. reported a role of pathogenic bacteria in increasing

the risk of postoperative complications (44). However, there have been

few studies on the direct induction of melanoma carcinogenesis by

epidermal microbiota, and whether the change in skin microbiota is the

cause or result of melanoma remains to be studied (45). There are gender

differences in the incidence of melanoma. The mortality, recurrence, and

metastasis rates of melanoma in pregnant women have been found to be

higher than those in a non-pregnant control group. Moreover,

melanoma-related mortality and sentinel node positivity are higher in
A B

DC

FIGURE 4

Screening of differentially expressed genes and the master regulator. (A) Volcano plot of differentially expressed genes between the low- and high-risk
groups in the TCGA cohort. (B) KEGG enrichment of differentially expressed genes. (C) Gene set enrichment analysis of the high IRRS and low IRRS
groups. (D) Network of the MRs and DEGs upregulated in the high IRRS group. Orange: eight MRs with the most nodes. Genes related to the KEGG
enrichment pathway corresponding to each color: yellow, Staphylococcus aureus infection; green, estrogen signaling pathway; blue, both above; dark
blue, arachidonic acid metabolism; purple, other DEGs.
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women aged 40 to 49 (46). These results suggest that increased estrogen is

closely related to the occurrence of melanoma (47). In addition, Conforti

et al. confirmed that estrogen could resist the effects of immune

checkpoint inhibitors by promoting macrophage polarization (48). A

variety of fatty acids are related to the occurrence and development of

cancer. An abnormal arachidonic acid metabolic pathway is mainly due
Frontiers in Immunology 09228
to the activation of the COX and LOX pathways, which further affects the

occurrence of inflammation and cancer (49). COX-1, COX-2, and LOX

are the main drug inhibitor targets of this pathway (50). With the

increasing use of immunotherapy, there are excellent prospects for

combination treatments involving inhibitors of this pathway acting on

specific alkyl receptors (51). Linoleic acid and a-linoleic acid reduce the
A

B

DC

FIGURE 5

Genomic features and immunologic changes of the high- and low-score groups. (A) Mutation of top 20 most frequently altered genes in melanoma
patients with high and low IRRS. (B) Cosmic mutation signature 7, tumor mutation burden, microsatellite instability, neoantigens, and TIDE score in the
high- and low-score groups. (C) Heatmap depicting the co-occurrence or exclusivity of the top 25 most mutated genes in the high IRRS group (left
upper corner) and the low IRRS group (lower right corner). (D) Association between HLA and immune checkpoint molecules and the IRRS. *P<0.05
**P<0.01 ***P<0.001.
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production of melanin bymelanocytes (52). Thus, lipid-related metabolic

pathways may represent therapeutic targets in malignant melanoma. In

addition, in the high IRRS score group, 236 upregulated DEGs were

regulated by FOXN1 as a master regulator. FOXN1 plays an important

part in wound healing (53). A possible reason for this upregulation of

FOXN1 is that melanoma patients in the high-risk group tend to have

worse tumor progression and often develop skin ulceration. Our findings
Frontiers in Immunology 10229
about the MRs may provide new therapeutic targets and potential

approaches to treat patients with malignant melanoma.

Antigen presentation ability, tumor immunogenicity, and gene

changes can all affect the immune activity of tumors and influence the

effectiveness of immunotherapy (54). The high immunogenicity of

melanoma makes tumor immunotherapy with checkpoint inhibitors

an important treatment option for advanced melanoma patients. The
A

B

D E

C

FIGURE 6

Copy number alterations in the high- and low-score groups. (A) Copy number profiles of the high IRRS score (above) and low IRRS score (below) groups.
(B) Detailed cytobands with focal amplification (red) and deletion (blue) peaks identified in the high IRRS group. (C) Detailed cytobands with focal
amplification (red) and deletion (blue) peaks identified in the low IRRS group. (D) Circular plot of the top 10 biological processes and corresponding
enriched genes in the high IRRS. (E) Circular plot of the top 10 biological processes and corresponding enriched genes in the low IRRS.
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higher TCR, BCR, and HLA diversity in the low IRRS group suggested

higher antigen presentation ability in this group. Moreover, the higher

levels of SNV or indel neoantigens in the low IRRS were the result of

tumor-specific mutations, which determine tumor immunogenicity

and increase responsiveness to checkpoint inhibitors (54, 55). In

many solid tumors, MSI-H and high TMB are biomarkers of

therapeutic benefit (56–58). The low IRRS group had a higher

median value for both of these indicators, demonstrating a higher

frequency of gene mutation, especially in genes related to ultraviolet

exposure (mutation signature 7), which is related to increased

sensitivity to checkpoint inhibitor drugs (59, 60). We also analyzed

several important immune checkpoints that are related to tumor cell

apoptosis (61), T-cell co-inhibition signal, lymphocyte activation (62),

and T-cell immunoglobulin mucin (63). The expression levels of

immune checkpoints in the high IRRS group were significantly lower

than those in the low IRRS group, indicating that the low IRRS group

may show a better response to immunotherapy.
Frontiers in Immunology 11230
In addition, the high IRRS group showed mutual exclusion of NRAS

and BRAF. Previous studies have suggested a low incidence of NRAS–

BRAF combined mutation, especially in soft tissue malignant melanoma

(64). Kumar et al. reported exclusivity between BRAF and NRAS

mutations in melanoma, and SPRY4 was a potential mediator of this

synthetic response to dual oncogene inhibition (65). Petti et al. showed

that the forced expression of NRAS in a single BRAF melanoma line led

to growth arrest, that is, when the twomutations coexisted, the viability of

cancer cells was impaired (66). On the one hand, this is consistent with

our results in the high IRRS score group; that is, there was a higher degree

of NRAS–BRAF mutual exclusion in the group with a poor prognosis.

On the other hand, the coexistence of double mutations indicates a

potential new approach to the treatment of melanoma.

In conclusion, we have introduced the use of relative values,

established the IRRS as a prognostic indicator for melanoma, and

provided insight into the role of TIICs in the occurrence and

development of melanoma and the effects of immunotherapy.
A B

D

E F

C

FIGURE 7

Construction of the nomogram. (A) The prognostic clinical factors screened based on uni-Cox regression. (B) The nomogram for predicting the survival
rate of melanoma patients, including four independent clinical prognostic factors and the IRRS. (C) The online version of the nomogram. (D) The ROC
analysis of the nomogram. (E) DCA of the nomogram. (F) The calibration curve of the nomogram. ***P<0.001.
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Conclusion

The IRRS shows a good ability to predict prognosis and

immunotherapy effect in melanoma, based on differences in the

relative abundance of different types of TIICs, and could provide

support for further research in melanoma.
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Harbin, China, 2Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated
Hospital of Harbin Medical University, Harbin, China, 3The Department of Inpatient Central Operating
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Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University,
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Background: The protein-coding gene RAB22A, a member of the RAS oncogene

family, is amplified or overexpressed in certain cancers. However, its action

mechanism in hepatocellular carcinoma (HCC) remains unclear. Here, we aimed

to examine the connection between RAB22A and survival prognosis in HCC and

explore the biological significance of RAB22A.

Methods: A database-based pan-cancer expression analysis of RAB22A was

performed. Kaplan–Meier analysis and Cox regression were performed to

evaluate the association between RAB22A expression and survival prognosis in

HCC. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and Gene Set Enrichment Analysis (GSEA), various potential biological

functions and regulatory pathways of RAB22A in HCC were discovered. Tumor

immune infiltration was studied using the single sample gene set enrichment

analysis (ssGSEA) method. N6-methyladenosine modifications and the

regulatory network of competitive endogenous RNA (ceRNA) were verified in

the TCGA cohort.

Results: RAB22A was upregulated in HCC samples and cell lines. A high RAB22A

expression in HCC was strongly correlated with sex, race, age, weight, TNM

stage, pathological stage, tumor status, histologic grade, TP53 mutation status,

and alpha fetal protein (AFP) levels. Overexpression of RAB22A indicated a poor

prognosis was related to overall survival (OS), disease-specific survival (DSS), and

progression-free interval (PFI). GO and KEGG analyses revealed that the

differentially expressed genes related to RAB22A might be involved in the

proteasomal protein catabolic process, ncRNA processing, ribosome ribosomal

subunit, protein serine/threonine kinase activity, protein serine kinase activity,

Endocytosis, and non-alcoholic fatty liver disease. GSEA analyses revealed that

the differentially expressed genes related to RAB22A might be involved in the T

cell receptor, a co-translational protein, that binds to the membrane, axon

guidance, ribosome, phagocytosis, and Eukaryotic translation initiation.

RAB22A was correlated with N6-methyladenosine expression in HCC and
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established RAB22A-related ceRNA regulatory networks. Finally,RAB22A

expression was positively connected the levels of infiltrating with T helper

cells, Tcm cells, and Th2 cells,In contrast, we observed negatively correlations

with cytotoxic cells, DCs, and pDCs cells.Moreover,RAB22A expression showed a

strong correlation with various immunomarkergroups in HCC.

Conclusions: RAB22A is a potential therapeutic target for improving HCC

prognosis and is closely related to immune cell infiltration.
KEYWORDS

RAB22A, hepatocellular carcinoma, cancer immune infiltrates, prognosis, biomarker,
bioinformatics analysis
1 Introduction

Hepatocellular carcinoma (HCC) is the sixth most diagnosed

cancer and the fourth leading cause of cancer death worldwide, with

approximately 841,000 new cases and 782,000 deaths annually (1).

Many key factors, including infection with hepatitis B or C and

contact with foods contaminated with aflatoxin, contribute to HCC

development (2). Surgery is the typical treatment for HCC;

however, the disease is prone to relapse and metastasis, making it

difficult to cure (3). Therefore, there is an urgent need to identify

new relevant biomarkers to improve the early diagnosis, prognostic

assessment, and treatment of HCC.

RAB22A is a small GTPase that belongs to the RAB protein

family, specifically, the RAB5 subfamily (4). This protein is mainly

located in early endosomes, Golgi bodies, and late endosomes.

RAB proteins are involved in the regulation of vesicular traffic and

exosome formation (5). Studies have found that the RAB5

subfamily (including RAB5, RAB21, RAB22A, and RAB22B) is

primarily involved in the endocytosis, transport, and metabolism

of growth factor receptors and may thus be associated with cancer

progression (6–8). RAB22A expression is elevated in several

malignancies, including breast, colorectal, and osteosarcoma

cancer (9–11). It accelerates the progression of malignant

tumors via various mechanisms, for instance, miRNA

downregulation (11), recycling of extracellular matrix

metalloproteinase inducer (EMMPRIN) (12), and hypoxia-

inducible factor (13). Nevertheless, the function of RAB22A in

HCC remains unclear.

Furthermore, RAB22A has multiple immune functions and is a

novel immunomodulatory factor. Accurate intracellular transport

of MHC-I molecules in dendritic cells (DCs) and T lymphocytes

depends on RAB22A function (14). RAB22A is also part of the

accommodative immune response and is absorbed by a process that

separates it from the envelope proteins and spreads it throughout

the body (15). Previous research has identified RAB22A as the main

endosomal target in pathogen infection and a critical regulator of

microbial infection and intracellular transport (16). In summary,

RAB22A may have a significant prognostic and immunological

significance in HCC.
02234
In the current study, we analyzed the expression of RAB22A in

HCC and paracancerous tissues using multiple datasets and in vitro

experiments. Additionally, we examined the connection between

RAB22A and survival prognosis in HCC and explored the biological

significance of RAB22A by performing enrichment and protein-

protein interaction (PPI) network analyses and determining the

correlation with immune cell infiltration. Furthermore, we

constructed ceRNA regulatory networks involving RAB22A in

HCC. Our study proposes a possible connection between RAB22A

expression and the presence of immune infiltrates in HCC.
2 Materials and methods

2.1 Database source and processing

Gene expression and clinical data were extracted from multiple

databases (Supplementary Table 1) and RAB22A expression levels

from RNA-seq data (TPM) of patients with HCC were analyzed.

The Supplementary Materials and Methods (17–19) presents

detailed information on the included data.
2.2 Patients and clinical samples

The First Affiliated Hospital of Harbin Medical University

provided 30 matched sets of HCC and nearby non-tumor liver

samples from patients undergoing hepatectomy between

February 2020 and June 2022. This project was approved by

the First Affiliated Hospital of Harbin Medical University’s

Ethics Committee.
2.3 Western blotting and quantitative
real-time PCR

Total proteins and total RNA were extracted from HCC

samples. Details of the experimental procedures are provided in

the Supplementary Materials and Methods.
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2.4 Tumor immune infiltration analysis

We used the single sample gene set enrichment analysis

(ssGSEA) method (20, 21) and TIMER database (22, 23) to

investigate the relationships between RAB22A expression and

immune cell infiltration, as detailed in the Supplementary

Materials and Methods.
2.5 Gene set enrichment analysis

Enrichment analyses of relevant functional pathways were

performed using the GO and KEGG databases (Supplementary

Tables 3, 4) and GSEA (Supplementary Tables 5, 6), as detailed in

the Supplementary Materials and Methods (24, 25).
2.6 Prediction and construction of
ceRNA networks

Multiple databases were used to predict and screen the lncRNA-

miRNA-mRNA (RAB22A) ceRNA network online. Details are

provided in the Supplementary Materials and Methods.
2.7 Protein interaction network and
module analysis

We created the protein–protein interaction (PPI) network using

the Search Tool for the Retrieval of Interacting Genes (STRING)

database (Supplementary Table 6) (26, 27), as detailed in the

Supplementary Materials and Methods.
2.8 Statistical analysis

The R package (version 3.6.3) was used for statistical analyses and

plotting. RAB22A expression in unpaired and paired samples was

analyzed using theWilcoxon rank sum test, andWilcoxon signed rank

test, respectively, with the pROC (1.17.0.1) package for ROC analysis.

The RAB22A expression level was analyzed by querying the GEO,

TIMER, and UALCAN databases (18). Using the KMmethod and log-

rank test, we compared the differences in 10-year OS, DSS, and PFI

between patients with high RAB22A expression and those with low

RAB22A expression in TCGA. Cox analysis was used to determine the

correlation between RAB22A expression and clinical features. p < 0.05

was considered to indicate significance.
3 Results

3.1 RAB22A is upregulated in HCC

First, we examined the RAB22A expression levels in different

malignancies by assessing TCGA databases. RAB22A was highly
Frontiers in Immunology 03235
expressed in 33 malignant tumors, including HCC (Figure 1A).

In addition, RAB22A was highly expressed in the GEO datasets

GSE121248, GSE87630, GSE76427, GSE84005, GSE57957, and

GSE39791 HCC samples (p < 0.001) (Figures 1B–G). Western

blot analysis of human normal liver cells (L02) and HCC cells

(Hep G2, SK-Hep1, Huh7, HCCLM3, and MHCC97-H)

validated the high expression of RAB22A in HCC cell lines

(Figure 1H). The same results were obtained through qRT-

PCR (p < 0.001) (Figure 1K). Next, we extracted 30 pairs of

proteins from HCC and adjacent tissues and analyzed them

using western blotting, which revealed that RAB22A was highly

expressed in the former (Figure 1I). Results of western blot

analysis of the liver and adjacent tissues are shown in

Supplementary Figure 1. The high RAB22A mRNA expression

levels in HCC tissues were further substantiated using qRT-PCR

(p < 0.001) (Figure 1L). Immunohistochemistry (IHC) results

also verified that RAB22A was upregulated in HCC tissues

(Figure 1J). Finally, a receiver operating characteristic (ROC)

curve was created. The ROC curve enclosed by the axes is the

area below the curve (AUC). The AUC for RAB22A was 0.891,

suggesting its remarkable diagnostic value for HCC (Figure 1M).
3.2 Association of RAB22A expression with
clinical characteristics

Using the UALCAN database to perform subgroup analysis of

numerous pathological characteristics, we found that RAB22A

transcript levels were elevated in patients with HCC. (Figure 2A).

The sub-group analysis of cancer stage, ethnicity, sex, age, weight,

tumor grade, and TP53 mutation showed that the expression of

RAB22A in HCC patients was significantly higher than that in the

normal group (Figures 2B–H).

Logistic regression analysis showed that the increased

expression of RAB22A in HCC was significantly correlated with

sex (OR = 0.627 for male vs. female, p = 0.036), weight (OR = 0.567

for weight > 70kg vs. ≤ 70kg, p = 0.009), histological grades

(OR=1.611 for G3 and G4 vs G1 and G2, p = 0.028), and tumor

status (OR = 1.619 for with tumors vs. tumor free, p = 0.026).

Conversely, RAB22A expression was not associated with age, M

stage, T stage, N stage, height, BMI, AFP, or vascular

invasion (Table 1).

Next, we collected data from TCGA database to determine the

clinicopathological parameters of RAB22A in different patients with

HCC. Detailed information on the clinical data is provided in

Table 2. After excluding cases without the necessary clinical data,

374 cases with a median age of 61.5 (range: 49.25−70.00) years and

male preponderance of 67% were included. High expression of

RAB22A in HCC was positively associated with tumor status

(tumor-free vs. with tumor, p = 0.033), sex (female vs. male, p =

0.047), weight (≤ 70 vs. > 70, p = 0.012), and histological grade

(grades 3 and 4 vs. grades 1 and 2, p = 0.031). These results indicate

that the overexpression of RAB22A in HCC is closely related to the

clinicopathological characteristics.
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3.3 Prognostic value of RAB22A in HCC

Kaplan–Meier survival curves were analyzed to determine the

connection between RAB22A expression and overall survival (OS),

disease-free survival (DSS), and progression-free interval (PFI) in

the prognosis of patients with HCC. Increased levels of RAB22A
Frontiers in Immunology 04236
expression were inversely related to prognosis (Figures 3A–C).

Additionally, subgroup analysis was performed on patients with

low RAB22A expression and AFP < 400, and these patients had

better OS, DSS, and PFI prognosis (Figures 3D–F). However, the

groups with AFP (ng/mL) > 400 showed no significant differences

(Supplementary Figures 2A–C). The high expression of RAB22A in
A

B D

E F G

IH J

K L M

C

FIGURE 1

Expression level of RAB22A in HCC was verified in TCGA and GEO databases and in vitro experiments. (A) Comparison of the expression levels of
RAB22A in different cancerous and normal tissues. (B–G) CEO database analysis of RAB22A expression in HCC tissues. (H) Western blotting assay of
RAB22A protein expression levels in L02, Hep G2, SK-Hep1, Huh7, HCCLM3, and MHCC97-H cell lines. (I) Western blotting assay of RAB22A protein
expression levels in HCC and adjacent tissues. (J) RAB22A protein levels in normal liver and HCC were measured using IHC. (K) qRT-PCR assay of
RAB22A mRNA expression levels in L02, Hep G2, SK-Hep1, Huh7, HCCLM3, and HCCH97-H cell lines. (L) qRT-PCR assay of RAB22A mRNA
expression levels in 30 pairs of HCC and adjacent tissues. (M) ROC curves were created to investigate the value of RAB22A in identifying HCC
tissues. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significance.
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stage M0 liver cancer was associated with poor OS, DSS, and PFI in

a subgroup of patients (Figures 3G–I). The subgroups of T3 versus

T4, stages III vs. IV, and tumor versus tumor-free status had

significantly worse OS (Supplementary Figures 1D–F). Finally, we

compared predictive variables in patients with HCC obtained by

univariate regression analysis to those obtained via multivariate

survival analysis (OS) (Supplementary Table 7). Pathologic stage
Frontiers in Immunology 05237
(stages I and II compared with stages III and IV; p <0.001), tumor

size (T stages 1 and 2 versus T stages 3 and 4; p < 0.001), metastatic

spread (M stages 0 and 1; p = 0.017), and tumor status (without or

with tumor; p < 0.001) were highly significant in the univariate

analysis. The multivariate analysis showed that with tumor (p =

0.014) was significant, suggesting that it is an independent

risk factor.
TABLE 1 Association between RAB22A expression and clinicopathologic parameters by Logistic regression.

Characteristics Total (N) Odds Ratio (OR) P value

Age (>60 vs. <=60) 373 0.851 (0.566-1.279) 0.438

M stage (M1 vs. M0) 272 2.912 (0.368-59.271) 0.357

Gender (Male vs. Female) 374 0.627 (0.403-0.969) 0.036

T stage (T3&T4 vs. T1&T2) 371 1.510 (0.942-2.437) 0.089

N stage (N1 vs. N0) 258 2.953 (0.373-60.136) 0.351

Weight (>70 vs. <=70) 346 0.567 (0.369-0.867) 0.009

Height (>=170 vs. < 170) 341 0.748 (0.484-1.152) 0.189

BMI (>25 vs. <=25) 337 0.758 (0.493-1.163) 0.205

AFP(ng/ml) (>400 vs. <=400) 280 1.608 (0.921-2.831) 0.096

Vascular invasion (No vs. Yes) 318 0.960 (0.604-1.526) 0.863

Histologic grade (G3 & G4 vs. G1 & G2) 369 1.611 (1.053-2.475) 0.028

Tumor status (With tumor vs. Tumor free) 355 1.619 (1.061-2.478) 0.026
fron
The bold values indicates that the correlation analysis between RAB22A and clinicopathological parameters are statistically significant.
A B D

E F G H

C

FIGURE 2

Box plot showing the relative transcription of RAB22A in individual cancer stages, race, gender, age, weight, tumor grade, and TP53 mutation status
in a subgroup of patients with HCC. (A) RAB22A in normal and HCC tissues. (B) RAB22A in normal individuals or in patients with stages 1–4 liver
cancer. (C) RAB22A in normal and LIHC samples based on patient ethnicity. (D) RAB22A in normal individuals and males and females with HCC.
(E) RAB22A in healthy subjects of any age and patients aged 21–40, 41–60, 61–80, and 81–100 years with HCC. (F) RAB22A in healthy subjects of
any weight and normal weight patients, extreme weight patients, obese patients, and extremely obese patients. (G) RAB22A in normal subjects and
patients with different liver cancer tumor grades. (H) RAB22A in normal and TP53-mutant or TP53-non mutant patients. *p < 0.05, **p < 0.01, ***p <
0.001, NS, no significance.
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TABLE 2 Correlation between clinicopathological variables and RAB22A expression.

Characteristic Low expression of RAB22A High expression of RAB22A P value

n 187 187

T stage, n (%) 0.166

T1 96 (25.9%) 87 (23.5%)

T2 49 (13.2%) 46 (12.4%)

T3 36 (9.7%) 44 (11.9%)

T4 3 (0.8%) 10 (2.7%)

N stage, n (%) 0.622

N0 126 (48.8%) 128 (49.6%)

N1 1 (0.4%) 3 (1.2%)

M stage, n (%) 0.623

M0 132 (48.5%) 136 (50%)

M1 1 (0.4%) 3 (1.1%)

Pathologic stage, n (%) 0.293

Stage I 93 (26.6%) 80 (22.9%)

Stage II 47 (13.4%) 40 (11.4%)

Stage III 36 (10.3%) 49 (14%)

Stage IV 2 (0.6%) 3 (0.9%)

Tumor status, n (%) 0.033

Tumor free 110 (31%) 92 (25.9%)

With tumor 65 (18.3%) 88 (24.8%)

Gender, n (%) 0.047

Female 51 (13.6%) 70 (18.7%)

Male 136 (36.4%) 117 (31.3%)

Race, n (%) 0.940

Asian 79 (21.8%) 81 (22.4%)

Black or African American 8 (2.2%) 9 (2.5%)

White 88 (24.3%) 97 (26.8%)

Age, n (%) 0.502

<=60 85 (22.8%) 92 (24.7%)

>60 102 (27.3%) 94 (25.2%)

Weight, n (%) 0.012

<=70 82 (23.7%) 102 (29.5%)

>70 95 (27.5%) 67 (19.4%)

Height, n (%) 0.228

< 170 96 (28.2%) 105 (30.8%)

>=170 77 (22.6%) 63 (18.5%)

BMI, n (%) 0.246

<=25 84 (24.9%) 93 (27.6%)

>25 87 (25.8%) 73 (21.7%)

(Continued)
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3.4 GSEA and GO/KEGG
enrichment analyses

GO and KEGG pathway co-expression analyses of RAB22A-

related genes in liver cancer mRNA sequencing data with 371

patients from the TCGA were performed using the functional

module of Linkedomics. The top 50 marker genes and their

connections with RAB22A expression are displayed on the heat

map (Figures 4A, B; Supplementary Table 8). These findings

revealed a widespread effect of RAB22A on the transcriptome.

Next, we conducted an enrichment analysis using the GO and

KEGG databases to support the concept that RAB22A-related DEGs

play a biological role in HCC (Figures 4C, D). The results of GO

analysis showed that these DEGs were related to biological

processes (BP), cellular components (CC), and molecular

functions (MF). In the GO analysis, DEGs were enriched in

diverse biological pathways, including proteasomal protein

catabolic process, ncRNA processing, ribosome ribosomal

subunit, protein serine/threonine kinase activity, and protein

serine kinase activity. In the KEGG analysis, DEGs were highly

concentrated in endocytosis and non-alcoholic fatty liver disease.

GSEA was used to analyze the biological functions related to

RAB22A expression.

The later criteria were enrichment score | NSE | > 1 (p < 0.05),

according to which the five most positively relevant signal pathways

were selected. GO analysis revealed that RAB22A expression was

strongly positively correlated with the processes of homophilic cell

adhesion via plasma membrane adhesion, immunoglobulin, T cell

receptor, and plasma membrane signaling receptor complex

(Figure 4E). The expression of RAB22A was inversely linked to

that of co-translational proteins that bind to the membrane, the

cytosolic ribosome, the structural components of the ribosome, the

ribosomal subunit, and the nonsense-mediated decay of nuclear-
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transcribed mRNA catabolic processes (Figure 4H). KEGG analysis

revealed that RAB22A expression was most strongly negatively

connected with axon guidance, extracellular matrix receptor

interaction, focal adhesion, FCgR-mediated phagocytosis, and the

interaction with neuroactive ligand receptors (Figure 4F). The

ribosome, Parkinson’s disease, retinol metabolism, oxidative

phosphorylation, and complement and coagulation cascades were

the top five most negatively correlated pathways (Figure 4I).

REACTOME pathway analysis determined that phospholipids

play a role in phagocytosis, Fc gamma receptor FCGR-dependent

phagocytosis, CD22-mediated B cell receptor (BCR) regulation, and

FCGR activation, and that second messenger is activated by BCR

antigen that all positively correlated with RAB22A expression

(Figure 4G). Eukaryotic translation initiation, eukaryotic

translation elongation, translocation, the response of eukaryotic

initiation factor 2 alpha subunit kappa B cyclin N2 to amino acid

deprivation, co-translational protein of SRP-dependent targeting to

the membrane, and nonsense-mediated decay were all negatively

correlated with RAB22A expression (Figure 4J).
3.5 PPI network analysis

The PPI network of co-expressed genes conforming to the

STRING conditions was assembled and visualized using

Cytoscape, and analysis of the interactions among 108 DEGs in

the HCC group was conducted. A total of 51 proteins and 534 edges

were screened (Figure 5A; Supplementary Table 9).

After screening 12 nodes and 212 edges, a primary gene cluster

with a total score ≥ 14,000 was discovered (Figure 5B). Finally, we

screened the top 10 central genes, namely RAB22A, RABGEF1,

VPS45, VPS18, VPS11, MON1A, VPS39, VPS16, ZFYV20, and

VPS8 (Figure 5C).
TABLE 2 Continued

Characteristic Low expression of RAB22A High expression of RAB22A P value

Residual tumor, n (%) 0.217

R0 170 (49.3%) 157 (45.5%)

R1 6 (1.7%) 11 (3.2%)

R2 1 (0.3%) 0 (0%)

Histologic grade, n (%) 0.031

G1 35 (9.5%) 20 (5.4%)

G2 92 (24.9%) 86 (23.3%)

G3 55 (14.9%) 69 (18.7%)

G4 3 (0.8%) 9 (2.4%)

AFP(ng/ml), n (%) 0.126

<=400 118 (42.1%) 97 (34.6%)

>400 28 (10%) 37 (13.2%)
fron
The bold values indicates that the correlation analysis between RAB22A and clinicopathological parameters are statistically significant.
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3.6 Role of RAB22A and m6A methylation
regulators in HCC

M6A methylation affects the development of HCC (24–27).

The expression of RAB22A was compared with that of the 23

M6A methylation genes reported in the literature to verify this

conclusion (Figure 6A). RAB22A expression was closely

connected with that of the 23 m6A-related genes in HCC
Frontiers in Immunology 08240
(Figures 6B–X). Moreover, groups were formed according to

RAB22A median expression. By analyzing the differences in the

23 m6A methylation genes in RAB22A between the high- and

low-expression groups of patients with HCC, we observed that

the expression levels of all genes in the RAB22A high-expression

group were upregulated (Figure 6Y). Overall, we observed an

obvious relationship between m6A methylation and RAB22A

expression levels in HCC.
A B
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C

FIGURE 3

Kaplan–Meier survival plots comparing the relationship between RAB22A and prognosis in HCC. (A–C) Survival curves of OS, DSS, and PFI between
RAB22A-high and -low patients with HCC. (D–F) OS, DSS, and PFI survival curves of patients with HCC with high and low RAB22A expression of AFP
(ng/mL) ≤ 400. (G–I) Survival curves comparing OS, DSS, and PFI in patients with HCC at the M0 stage with high and low expression of RAB22A.
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FIGURE 4

Enrichment of biofunction and associated gene analysis of RAB22A in HCC. (A, B) Heat map showing genes positively and negatively associated with
RAB22A in liver cancer (top 50). Positively associated genes are indicated in red, while negatively associated genes are in green. (C) The enriched
terms in GO categories in HCC. (D) KEGG pathway analysis based on RAB22A-associated DEGs. (E) The five most positively correlated pathways
were revealed by GO term analysis. (F) KEGG pathway analysis revealed the five most positively correlated pathways. (G) The five most positively
correlated pathways were identified via REACTOME pathway analysis. (H) The five most negatively correlated pathways were identified via GO term
analysis. (I) KEGG pathway analysis identified the five most negatively correlated pathways. (J) The five most negatively correlated pathways were
identified via REACTOME pathway analysis.
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3.7 Construction of a triple regulatory
network for RAB22A-associated ceRNA

Increasing evidence has demonstrated the regulatory effect on

the lncRNA-miRNA-mRNA ceRNA network in HCC. The Venn

diagram showed 41 overlapping miRNAs in the Targerscan,

starBase, and MiRDB databases (Figure 7A). Five human-derived
Frontiers in Immunology 10242
miRNAs (miR-328-3p, miR-3163, miR-2114-5p, miR-664b-3p, and

miR-204-5p) were verified to negatively correlate with RAB22A

expression (Figure 7B). The expression of RAB22A and target

microRNAs is displayed as a scatter plot (Figures 7C–G). We

consulted the Rnalnter and starBase databases to predict lncRNAs

that can have a mutual effect on target miRNAs (miR-204-5p and

miR-328-3p) (Figures 7H–I). The expression levels of lncRNAs and
A

B C

FIGURE 5

PPI network enrichment analysis. (A) The PPI network was built based on PPI pairs identified by the STRING dataset. (B) Hub gene clusters were
selected from the PPI network (criteria of total scores ≥ 14,000). (C) Top 10 hub genes in the PPI network.
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miRNAs were inversely correlated, which accounted for the mutual

influence between the two. We used the starBase database to filter

and identify lncRNAs that were adversely associated with the two

target miRNAs in HCC. Nine HCC-related ceRNA regulatory

networks were constructed (Figure 7J).
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3.8 Association of RAB22A expression with
immune cell infiltration

Using the ssGSEA method, we verified the strong connection

between RAB22A and immune cells (Figure 8A). The expression of
A

B D E F G
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FIGURE 6

Correlation analysis of RAB22A expression levels with m6A-related gene expression in HCC tissues. (A) Correlation of RAB22A expression levels with
m6A gene expression in HCC. (B–X) Scatter plot showing the relationship between RAB22A and the m6A gene. Differences in 23 M6A-related genes
between the RAB22A high-expression group and RAB22A low-expression group in liver cancer patients (Y).**p < 0.01, ***p < 0.001, NS,
no significance.
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RAB22A was positively connected with T helper cells, Tcm cells,

and Th2 cells (p < 0.001) but negatively with cytotoxic cells, DCs,

and pDCs (p < 0.001) (Figures 8B–G). RAB22A may be heavily

involved in the T-cell immune response to HCC. Moreover,

RAB22A expression in HCC correlated with various immune cell

markers (Table 3). In the M2 macrophages in HCC, we found that

RAB22A expression was substantially relevant to the expression of

the immunological markers CD163, VSIG4, and MS4A4A. These
Frontiers in Immunology 12244
results indicate that RAB22A caused the macrophages in HCC to

adopt an M2 phenotype. The expression of RAB22A was

substantially linked to 66 immunological markers, including

CD8A, CD3D, and T-bet, in an analysis of functional T-cell

immunity indicators. Furthermore, RAB22A expression was

linked to immunological markers for B cells, T cells, TAMs, and

neutrophils (Table 3). The TIMER database was utilized to

determine whether RAB22A expression in HCC was connected
A B

D E F G
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C

FIGURE 7

Prediction of ceRNA networks in HCC. (A) Venn diagram results showing 41 overlapping miRNAs in Targerscan, starBase, and MiRDB databases.
(B) Five miRNAs screened for negative correlation with RAB22A expression. (C–G) Scatter plots showed that miRNAs were significantly correlated
with mRNAs. (H, I) Prediction of lncRNAs bound to target miRNAs using miRNet and starBase online databases and displayed as a Venn diagram,
including hsa-miR-204-5p and hsa-miR-328-3p. (J) Sankey diagram showing the RAB22A-related ceRNA regulatory network.
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with immune cell invasion levels. The results indicated that the

CNV of RAB22A was related to the level of neutrophil infiltration.

(Figure 8H). Subsequently, the infiltration of macrophages, T helper

cells, Tcm, and Th2 cells increased (p < 0.001) in the RAB22A high-

expression group; however, cytotoxic cells, DCs, and pDCs

decreased (p < 0.001) (Figure 8I). These results verified that the

increased expression of RAB22A in HCC is tightly linked with the

infiltration of immune cells.
4 Discussion

RAB22A is a member of the RAS oncogene family that controls

membrane properties and vesicle budding, delamination,

movement, and fusion and is central to ensuring that cargo is
Frontiers in Immunology 13245
transported to its correct destination. RAB22A is referred to in the

early formation of endosomes and regulates vesicle transport

(28, 29).

Furthermore, RAB22A is a critical oncogene that has a crucial

impact on the course of many different forms of cancer (12, 30).

RAB22A promotes the epithelial–mesenchymal transition of

papillary thyroid cancer cells, thereby promoting their

proliferation, migration, and invasion (31). CD147 is recycled by

RAB22A to control lung carcinoma cell motility and invasion (13).

In metastatic breast cancer, hypoxia facilitates MV production and

HIF-dependent RAB22A gene expression (14). In addition,

RAB22A is involved in a miRNA downregulation mechanism in

which the overexpression of small GTPases promotes tumor growth

and carcinogenesis. Several tumor models, including kidney,

colorectal, glioma, and bile duct cancer, have utilized RAB22A as
A B
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F G
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C

FIGURE 8

Relationship between the expression of RAB22A and microenvironment of immune infiltrating cells in HCC. (A) Forest plot depicting the relationship
between RAB22A expression levels and the relative abundance of the 24 immune cells. (B–G) Scatter plots showing the degree of differentiation of
pDCs, T helper cells, DCs, Th2 cells, cytotoxic cells, and Tcm cells between the high and low RAB22A expression groups. (H) SCNA showed that the
expression of RAB22A correlated with the degree of immune cell infiltration. (I) Scatter plot showing the correlation of 24 immune cells with RAB22A
expression levels. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significance.
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TABLE 3 Correlation analysis of RAB22A expression with immune cell biomarkers.

Description
Gene markers LIHC

Cor P -value

CD8+ T cell CD8A -0.463 <0.001

CD8B -0.418 <0.001

T cell (general) CD3D -0.446 <0.001

CD3E -0.561 <0.001

CD2 -0.517 <0.001

B cell CD19 -0.338 <0.001

CD79A -0.487 <0.001

Monocyte CD86 -0.515 <0.001

CD115 (CSF1R) -0.530 <0.001

TAM CCL2 -0.525 <0.001

CD68 -0.440 <0.001

IL10 -0.472 <0.001

M1 Macrophage INOS (NOS2) -0.089 0.099

IRF5 0.003 0.962

COX2 (PTGS2) -0.501 <0.001

M2 Macrophage CD163 -0.480 <0.001

VSIG4 -0.488 <0.001

MS4A4A -0.512 <0.001

Neutrophils CD66b (CEACAM8) -0.106 0.049

CD11b (ITGAM) -0.330 <0.001

CCR7 -0.552 <0.001

Natural killer cell KIR2DL1 -0.043 0.422

KIR2DL3 -0.184 <0.001

KIR2DL4 -0.186 <0.001

KIR3DL1 -0.105 0.050

KIR3DL2 -0.221 <0.001

KIR3DL3 -0.050 0.357

KIR2DS4 -0.036 0.510

HLA-DPB1 -0.490 <0.001

HLA-DQB1 -0.454 <0.001

HLA-DRA -0.480 <0.001

HLA-DPA1 -0.485 <0.001

BDCA-1 (CD1C) -0.426 <0.001

Dendritic cell BDCA-4 (NRP1) -0.195 <0.001

CD11c (ITGAX) -0.330 <0.001

Th1 T-bet (TBX21) -0.436 <0.001

STAT4 -0.259 <0.001

STAT1 -0.192 <0.001

(Continued)
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a target gene for miRNAs (32–34). Changes in RAB22A in HCC

may be significant as hepatocytes always maintain high metabolic

levels and active vesicular transport; nevertheless, the potential

effect on RAB22A in HCC is unclear.

In the present study, we first found that RAB22A was

upregulated in HCC and various malignant tumors by analyzing

multiple databases. Subsequently, we verified the elevation of

RAB22A expression in HCC cell lines and HCC samples using

western blotting, qRT-PCR, and IHC in vitro. Overexpression of

RAB22A in HCC tissues was closely associated with

clinicopathologic features. The ROC curve analysis suggested

RAB22A as a promising diagnostic biomarker for differentiating

HCC from normal tissues. Moreover, the overexpression of

RAB22A was interrelated with a poor prognosis of HCC, as

indicated by OS, DSS, and PFI.

To elucidate the potential biological functions and regulatory

pathways of RAB22A, we investigated genes encoding RAB22A-

related proteins and co-expression genes in HCC tissues. mRNA

sequencing data with HCC were evaluated in the TCGA database,

while the DEGs associated with RAB22A in HCC were shown in a heat

map. Insights gained from pathway enrichment analyses using GO and

KEGG indicated that RAB22A has far-reaching effects on the

transcriptome. Through enrichment pathway analysis, we verified
Frontiers in Immunology 15247
that these DEGs were involved in proteasomal protein catabolic

process, ncRNA processing, ribosomes, and ribosomal subunits,

protein serine/threonine kinase activity, GTPase combining, herpes

simplex virus type 1 infection, multiple neurodegenerative illnesses,

and Alzheimer’s disease pathways. Next, we analyzed 30 signaling

pathways positively and negatively correlated with RAB22A expression

using GSEA. Overexpression of RAB22A was linked to processes such

as cell adhesion via the plasma membrane (35), nonsense-mediated

decay of nuclear-transcribed mRNA (36), axon guidance (37),

oxidative phosphorylation (38), FCGR activation (39), and eukaryotic

translation elongation (40) in a GSEA of HCC. Overall, we suggest that

RAB22A may participate in various cellular immune functions and

intracellular transport and may facilitate the advance of HCC by

adjusting these signaling pathways.

Subsequently, we built a PPI network using Cytoscape. One

central gene cluster (total score ≥ 14,000) and the top 10 central

genes were filtered, namely RAB22A, RABGEF1, VPS45, VPS18,

VPS11, MON1A, VPS39, VPS16, ZFYV20, and VPS. These findings

provide important insights for subsequent study designs and

experimental validations.

M6A methylation has been examined to elucidate the

mechanisms of HCC since it has been proven to affect cancer via

numerous mechanisms (41). m6A is a critical player in HCC (42, 43).
TABLE 3 Continued

Description
Gene markers LIHC

Cor P -value

IFN-g (IFNG) -0.296 <0.001

TNF-a (TNF) -0.431 <0.001

Th2 GATA3 -0.499 <0.001

STAT6 -0.003 0.957

STAT5A -0.250 <0.001

IL13 -0.013 0.813

Tfh BCL6 -0.009 0.866

IL21 -0.160 0.003

STAT3 -0.233 <0.001

IL17A -0.040 0.457

Th17 FOXP3 -0.226 <0.001

CCR8 -0.320 <0.001

STAT5B 0.162 0.003

TGFb (TGFB1) -0.410 <0.001

T cell exhaustion PD-1 (PDCD1) -0.429 <0.001

CTLA4 -0.413 <0.001

LAG3 -0.234 <0.001

TIM-3 (HAVCR2) -0.512 <0.001

GZMB -0.345 <0.001

Treg FOXP3 -0.226 <0.001
fro
The bold values indicates that the correlation analysis between RAB22A and biomarker of immune cell is statistically significant.
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Methyltransferases (the “Writers”), demethylases (the “Erasers”), and

methylated reading proteins have access to the same m6A

methylation (Readers). Methylation transferases, such as METTL3/

14, WTAP, and KIAA1429, are primarily responsible for catalyzing

the m6A alteration of adenosine on mRNA. Demethylases, such as

FTO and ALKHB5, facilitate the demethylation of m6A. Methylation

reading proteins, such as YTHDF 1-3 and YTHDC 1-3, recognize

RNA methylation and play a role in regulatory processes, such as

RNA translation, degradation, and miRNA processing (44). Further

analysis of the connection between RAB22A expression and m6A

methylation proteins revealed a positive and significant association

between RAB22A expression and the expression of methylation

transferases, demethylases, and methylated reading proteins.

Patients with HCC have a poor prognosis because m6A-modified

proteins are highly elevated in the disease, and their overexpression

increases the disease progression. Several reports have verified that

IGF2BP1, YTHDF1, and RBM15 are all highly elevated in HCC and

contribute to its development and progression. These findings

indicate that m6A may alter the RAB22A gene to enhance the

consistency of its mRNA, hence boosting the occurrence and

development of HCC. Evidence for lncRNA-miRNA-mRNA

ceRNA networks’ regulatory role in cancers is mounting (45).

Based on these predictions, we constructed a ceRNA regulatory

network that predicted that RAB22A might affect several critical

pathways of HCC regulatory mechanisms. We intend to conduct

further experiments to validate this network.

Cancer cells that invade Immune cells, known as tumor-

infiltrating immune cells (TIICs), play a key regulatory role in

tumorigenesis and development (46). The HCC prognosis may

be affected by the presence of TIICs, which are essential for HCC

development (28–30). TIICs facilitate a tangled web of cellular

interactions that boost the immunosuppressive milieu, facilitate

immune escape, and ultimately aid in tumor progression.

Changes in the immune environment of the liver can cause

liver lesions, such as chronic inflammation and fibrosis/cirrhosis

(22, 47). RAB22A is a regulator of immune functions.

Independent studies have also shown that Th2 cells contribute

to cancer development and progression (48, 49). Effector T

helper cell subgroups are essential for coordinating immune

responses to diverse infections and participate in the

nosogenesis of numerous inflammatory disorders, including

autoimmunity and allergies (50). pDCs are a sentinel cell type

that can test pathogen-derived nucleic acids and reactions via the

rapid and significant production of type I interferons, primarily

in autoimmune diseases, immune deficiencies, and cancer (51).

Cytotoxic T cells and DCs are also essential effectors of

antitumor immunity (40, 52). These findings suggest that

RAB22A plays an indispensable role in regulating immune cell

infiltration in HCC.

We also demonstrated that RAB22A expression was significantly

correlated with 66 immune markers. These results indicate that the

upregulation of RAB22A expression in HCC is linked to immune cell

infiltration. Understanding the function of RAB22A in immune

activation will help to facilitate future research using various immune

cell types and animal models.
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Although our study identified the molecular mechanism of

RAB22A in HCC through bioinformatics analysis, there remain

limitations. Firstly, to elucidate the effect of RAB22A on HCC,

several subjective factors, such as the treatment details received by

patients and follow-up, should be considered simultaneously.

However, some experiments were conducted in different centers,

thereby limiting the information or causing inconsistency in the

public database, which led to some errors. Secondly, the number of

patients with cancer in the experimental control group was different

from that in the current study; hence accessional studies are needed

to eliminate the error caused by sample offset.

Thirdly, multicenter investigations based on communal databases

seek to compensate for the paucity of single-center studies. However,

retrospective studies have drawbacks, including inconsistent

interventions and a lack of data. Since this study is retrospective,

prospective investigations should be undertaken to eliminate

analytical bias. Based on previous verifications, the results are

robust; advancements in single-cell and spatial transcriptomics

technologies allowed for the increased use of single-cell multi-

omics technologies to gain insights into complex cellular

ecosystems and biological processes. Currently, there is a gap in the

rapidly growing single-cell multi-omics data, while effective methods

for comprehensive analysis of these inherently sparse and

heterogeneous data are limited. Therefore, new algorithms, such as

SMGR (53) and spaCI (54), have been derived to address this gap.

Single-cell multi-omics gene co-regulation algorithms provide

multiple regulatory stages to study the control of cellular

heterogeneity and complex biological mechanisms, which provide

great clinical value for identifying mechanisms, targets, and

predictors to enhance translational therapy. The spaCI algorithm

can detect upstream transcription factors (TFS) mediating the L-R

signaling axis, which provides insights into the underlying molecular

mechanisms of the intercellular crosstalk. These emerging algorithms

can be used to verify the biological mechanism of RAB22A in HCC.

In summary, we demonstrated, to the best of our knowledge, for

the first time that RAB22A promotes carcinogenesis via m6A

methylation and ceRNA network processes and is strongly linked

with HCC development, poor survival, and immune infiltration.
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Zongwei Huang1,2, Ying Li1,2, Wenquan Hong1,2, Xin Chen1,2,
Desheng Wang4* and Sufang Qiu1,2*

1Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian
Cancer Hospital, Fuzhou, China, 2Fujian Provincial Key Laboratory of Translational Cancer Medicine,
Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,
3Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical
University, Sanming, China, 4Department of Otolaryngology, Fujian Medical University Union Hospital,
Fuzhou, China
Background: The prognosis of nasopharyngeal carcinoma (NPC) has been

recognized to improve immensely owing to radiotherapy combined with

chemotherapy. However, patients with metastatic NPC have a poor prognosis.

Immunotherapy has dramatically prolonged the survival of patients with NPC.

Hence, further research on immune-related biomarkers is imperative to establish

the prognosis of metastatic NPC.

Methods: 10 NPC RNA expression profiles were generated from patients with or

without distant metastasis after chemoradiotherapy from the Fujian Cancer

Hospital. The differential immune-related genes were identified and validated

by immunohistochemistry analysis. The method of least absolute shrinkage and

selection operator (LASSO)was used to further establish the immune-related

prognostic model in an external GEO database (GSE102349, n=88). The immune

microenvironment and signal pathways were evaluated in multiple dimensions at

the transcriptome and single-cell levels.

Results: 1328 differential genes were identified, out of which 520 were

upregulated and 808 were downregulated. Notably, most of the immune

genes and pathways were down-regulated in the metastasis group. A

prognostic immune model involving nine hub genes. Patients in low-risk group

were characterized by survival advantage, hot immune phenotype and benefit

from immunotherapy. Compared with immune cells, malignant cell exhibited the

most active levels of risk score by ssGSEA. Accordingly, intercellular

communications including LT, CD70, CD40 and SPP1, and the like, between

high-risk and low-risk were explored by the R package “Cellchat”.
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Conclusion: We have constructed a model based on immunity of metastatic

NPC and determined its prognostic value. The model identified the level of

immune cell infiltration, cell-cell communication, along with potential

immunotherapy for metastatic NPC.
KEYWORDS

immunotherapy, bioinformatics, metastatic nasopharyngeal carcinoma, immune
microenvironment, mRNA transcriptome sequencing and single cell sequencing
Introduction

Nasopharyngeal carcinoma (NPC), an Epstein-Barr virus

(EBV)-associated cancer that is prevalent in Southern China (1),

has been recognized to have a favorable prognosis owing to

radiotherapy combined with chemotherapy during the past

decades. Apart from EBV infection, human papillomavirus

(HPV) infection, alcohol and tobacco consumption, smoking, and

the consumption of salt-preserved foods have recently been

identified as high-risk factors (2). Although most patients reach

complete clinical remission, it has been suggested that patients with

recurrence or metastasis have a poor prognosis. The application of

intensity-modulated radiotherapy has improved the treatment

outcome of NPC, especially the local control rate, but the impact

on distant metastasis is minimal. The 5-year survival rate of patients

with early-stage NPC can reach more than 90% with a relatively low

rate of 60% for patients with advanced stage (3). Hence, currently,

the focus should be on the cure of metastatic NPC. Exploring new

therapeutic targets and developing new molecularly targeted drugs

are definitely the direction of future research. In addition, exploring

the molecular mechanism of distant metastasis of NPC and

screening high-risk groups will also facilitate individualized

response in the initial treatment.

Immune checkpoint blockade (ICB)-based immunotherapy,

such as programmed cell death ligand 1 (PD-L1) and interferon

(IFN)-g, has dramatically changed the treatments of cancer to

prolong the patients’ survival (4). Particularly, the clinical

research of immunotherapy has contributed majorly to the

individual treatments of malignant tumors (5). However, the

most well-known research recommends Pembrolizumab as

the first-line treatment for PD-L1-positive recurrent or metastatic

head and neck squamous cell carcinomas (6). The response to

immunotherapy for the treatment of metastatic NPC

is inconclusive.

In recent years, the assessment of immunotherapy efficacy has

become a major challenge for clinicians to individualize treatment.

Although no accepted immune-related risk model for predicting

prognosis exists, the reported models have shown decent predictive

validity in certain cancers (7–12). The focus of immune-related

prediction models is not only restricted to the genomic level but also

extended to the transcriptome level, single-cell level, and so on (13–

18). However, there are not many studies on immune-related
02252
prognosis models integrating single-cell RNA and mRNA levels

in metastatic NPC. Therefore, it is of great significance to explore

novel immune-related diagnostics and therapeutics for patients

with metastatic NPC.

This study aimed to (i) identify the immune-related genes, (ii)

reveal the underlying pathway associated with metastatic NPC, (iii)

establish the prognostic immune model and evaluate its prognostic

value, and (iv) validate the predictive validity of the model from

various aspects.
Materials and methods

Patients’ samples

10 NPC tumor tissue samples were obtained from the patients

who were diagnosed and treated at the Fujian Cancer Hospital

between May 9, 2013, and August 2, 2016. All 10 patients met the

following eligibility criteria: newly diagnosed NPC, received

standardized radiotherapy and chemotherapy, ≥18 years old,

adequate hematological, renal and hepatic functions, and no other

malignant diseases. All the patients provided written informed

consent. The study was approved by the Ethics Committee of

Fujian Cancer Hospital and Fujian Medical University Cancer

Hospital (approval number SQ2019-035-01). The tissue samples

were stored in liquid nitrogen for subsequent RNA extraction.

During the 5 years of follow-up, 5 samples were from patients

with disease progression after radiotherapy and chemotherapy,

containing 3 liver metastases, 1 bone metastasis, and 1 lung

metastasis. While the other 5 samples were evaluated as having a

complete or partial response after the treatment.

As an external validation cohort, RNA-seq data of NPC from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/,

GSE102349) were selected to verify the reliability and applicability

of the data of this study (19, 20). The single-cell dataset GSE150430

was designed to validate the accuracy of the model at the individual

cell level and to probe the communication of cells and ligand

receptors in the immune microenvironment of NPC. Also, the

tumor tissue biopsies of 74 NPC patients treated in our hospital in

2021 and 2022 were used for the immunohistochemistry to validate

CD8 T cell infiltration and immune checkpoints expression,

including 11 cases in the metastatic group and 63 cases in the
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non-metastatic group (Supplementary Table 1). The 8th edition of

the American Joint Committee on Cancer (AJCC) Staging Manual

was used to restage all the patients.
Immunohistochemistry analysis

NPC biopsies were fixed with 10% formalin overnight and

processed into 5-mm-thick paraffin sections. The slides were then

analyzed by immunohistochemistry with anti-human CD8 (Cat #

ab237709; Abcam), anti-human PD1 (Cat # ab52587; Abcam), and

anti-human PD-L1 (Cat # ab213524; Abcam) followed by HRP

secondary antibody (Cat #ab205718; Abcam) and DAB staining.

Images were obtained using a microscope (BX43; Olympus, Japan).

Histochemistry score (H-score) was used to evaluate the expression.

H-score = (percentage of cells of weak intensity × 1) + (percentage

of cells of moderate intensity × 2) + (percentage of cells of strong

intensity × 3).
Construction and validation of immune-
related prognostic model

The R package “ggplot2” was employed to visualize DEGs from

sequencing data of NPC samples in Fujian Cancer Hospital (21).

The cut-off values met the following two conditions: fold-change of

>2 and the p-value of<0.05. Gene ontology (GO) (22, 23) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

(24) were applied to further explore the pathways of DEGs

enrichment. A false-discovery rate of<0.05 was set as the cut-off

value. The immune gene data was downloaded through the

ImmPort data portal (www.immport.org/immport-open/public/

home/home), and 2,498 immune-related genes were obtained.

Then the intersection of the DEGs and the immune-related genes

was selected as differentially expressed immune-related genes.

Progression-free survival (PFS) was subjected to minimum

absolute shrinkage and selection operator (LASSO) Cox

regression with 10-fold cross-validation to screen for DEGs with

prognostic value on the basis of the univariate Cox analysis. The R

package “glmnet” was employed to determine the gene signatures

containing the biomarkers most helpful for prognosis (25). The

prognosis risk score was established by linearly combining the

following formula:

risk score =on
1(exp� coef )

where exp denotes the gene expression value, while coef refers to the

coefficient of a gene in LASSO analysis.

To assess the predictive power of our prognostic risk model,

receiver operating characteristic (ROC) for 1- and 3-year survival

were performed in the validation cohort GSE102349 using the R

package “timeROC”. Next, the samples were divided into high-risk

and low-risk groups according to the best cut-off value of the risk

score from the R package “survival” for survival analysis. The

survival curves were compared using the Kaplan-Meier method
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and the log-rank test. The univariate and multivariate Cox

regression models were applied to determine whether the risk

score was an independent prognostic factor.
Immune- and carcinogenesis-related
estimation in multiple dimensions

To evaluate the infiltration of immune cells from several

aspects, we adopted multiple immune scoring approaches, like

TIMER and ssGSEA algorithms (26, 27). The immune scores and

tumor purity were estimated by the R package “ESTIMATE” (28).

From an earlier study, we retrieved a group of six inhibitory

immune checkpoints that displayed immune therapeutic efficacy

(29). Gene sets that displayed T cell-inflamed gene expression

profile (GEP) and tertiary lymphatic structure (TLS) were

acquired (30, 31). Furthermore, we assessed the enrichment of 10

oncogenic pathways using the ssGSEA method (32). The score of

activation minus the score of repression represented the final score

of each pathway. We used a validated set of 31 genes related to cell

cycle progression (CCP) to estimate the rate of cell proliferation

(33). The cluster score was calculated as the average expression level

of CCP-related pathways by subtracting the mean level.
Prediction of the immunotherapy response

To assess the predictive efficacy of the model for

immunotherapy efficacy, we collected several immunotherapy

cohorts from the GEO database and the TIGER website (http://

tiger.canceromics.org/#/), including nasopharyngeal carcinoma-

GSE102349, melanoma-GSE91061, melanoma-PRJEB23709,

NSCLC-GSE126044. We visually compared the proportion of

patients with and without response to immunotherapy in high-

and low-risk groups.
Single-cell RNA-seq analysis

This study performed quality control, downscaling, and

clustering of scRNA-seq data as well using Seurat (v.4.0.4) (34).

To ensure data quality, genes detected in less than 3 cells and cells

with less than 250 genes detected were excluded, and the percentage

of mitochondria was limited to less than 35% (35). Data were

processed by the logNormalize method for normalization. The

nonlinear dimensionality reduction method Uniform Manifold

Approximation and Projection for Dimension Reduction

(UMAP) was utilized for unsupervised classification and unbiased

visualization of cell populations on two-dimensional maps (36).

TISCH (http://tisch.comp-genomics.org/) provides detailed cell

type annotations at the single-cell level (35). After that, the

“FindAllMarkers” function was configured to identify marker

genes in each cluster using a filter value of absolute log2 fold

change (FC) ≥ 0.3 and a minimum cell cluster fraction of 0.25.
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Risk score calculation in
single-cell samples

A risk score of each single cell sample from GSE150430 was

calculated by single sample Gene Set Enrichment Analysis

(ssGSEA) method and was completed using the “GSVA” and

“GSEABase” packages in R. We used single-cell data as a

reference, apply a newly developed deconvolution algorithms

(CIBERSORTx) to the bulk transcriptome data to quantitatively

estimate cell-type proportions for each tumor in GEO

database (37).
Cell–cell chat analysis

CellChat v1.1.3 software inferred cell-cell communication based

on ligand-receptor interactions (38). Cell groups with less than 10

cells were filtered out of cell-cell communication. Pairwise tests

were performed on communication probability values to assess

their statistical significance.
Statistical analysis

Statistical analysis was done using R software (V.3.6.1) and

SPSS software (ver. 25.0). Wilcoxon rank sum test and chi-square

test were conducted for continuous and categorical variables,

respectively. For all analysis, two-by-two pairs indicate statistically

significant differences. *, **, *** and **** indicate, respectively <0.05,

<0.01, <0.001, and <0.0001.
Results

Identification of differential immune-
related expressions in NPC

The schematic diagram presents the workflow of our study

(Figure S1). The RNA-seq profiles were generated for the NPC

samples of 10 patients treated at the Fujian Cancer Hospital, 5 of

whom were assigned to the non-metastasis group, while the other 5

were in the metastasis group owing to distant metastasis after

chemoradiotherapy. The baseline characteristics of patients in the

metastatic and non-metastatic groups could be seen in Table 1

(n=10). In general, PCA indicated distinct transcriptional profiles

between the metastatic group and the non-metastatic group (Figure

S2A). Then, 1328 DEGs were conspicuously illustrated in the

volcano plot, with 520 upregulated genes and 808 downregulated

genes (Figure 1A). The KEGG and GO analyses are the universally

applicable statistical methods of enrichment analysis. The DEGs

were enriched in the immune-related pathways of the bubble chart

containing signal transduction, adaptive immune system, innate

immune system, and hemostasis (Figure 1B). Simultaneously, they

were also centralized in the cell periphery, plasma membrane, and

immune system processes (Figure 1C). The expression levels of the
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top 154 immune-related genes selected from the DEGs can be

significantly distinguished between the two groups in the heat-map

(Figure 1D). Overall, immune gene expression and immune

signaling pathway were down-regulated in the metastasis group,

indicating a potential “immune-cold” tumor phenotype in the

metastasis group. For the validation, Therefore, we performed

immunohistochemistry staining of CD8 T cell, PD1, and PD-L1.

Our immunohistochemistry analysis showed that PD1 and PD-L1

expressions were down-regulated, and the infiltration of CD8 T cells

was decreased in the metastasis NPC group (n=11) compared to the

non-metastasis group (n=63, Figures 1E, F).
Establishment and validation of the
risk model

The LASSO logistic regression model was applied to establish

the prognostic immune biomarkers, which involved 9 hub genes

(A2M, APLNR, CD8B, RAC3, PRDX2, ULBP1, TMSB15B,

KIR3DL2, and SEMA4F; Figure 2A). The standard for high and

low risk scores was evaluated based on cut points associated with

the median risk score. Cut-off value of 1.31 for the risk model was

identified, which served to divide the patients into high-risk group

(with levels of risk score ≥ 1.31) and a low-risk group (with levels of

risk score< 1.31). The risk scores were significantly distinguished

between the clinical stages I–III and stage IV in GSE102349 (Figure

S2B), which indicated that the clinical stage of the tumor could be

one of the critical factors in assessing the effect of the treatment. The

risk scores were also apparently different between the metastasis

and non-metastasis groups in our hospital cohort (Figure S2C).

Patients in the high-risk group had worse tumor metastatic

presentation, which is indicative of a worse prognosis (Figure 2B).

This finding was further validated in a cohort of patients from

Fujian Cancer Hospital (Figure 2C).

It was found that APLNR, KIR3DL2, CD8B, and A2M were

upregulated in the low-risk group, while PRDX2, ULBP1,

TMSB15B, SEMA4F and RAC3 were upregulated in the high-risk

group (Figure 2D). The assumption could be proposed that the

former 4 genes were protective biomarkers, while the latter 5 genes

were risk biomarkers. The area under the ROC curve (AUC) was

0.79 at 1-year, and 0.81 at 3-years, respectively, indicating a high

predictive value (Figure 2E). Combining the results of univariate

(Figure 2F) and multivariate (Figure 2G) Cox analysis, it appeared

that risk scores could be an independent prognostic factor

compared to other clinical traits.
Expression profiles and prognostic potency
of nine hub genes

In the mRNA sequencing data of NPC from Fujian Cancer

Hospital, the expressions of the nine immune-related hub genes

were apparently different in the metastasis and non-metastasis groups

(Figure 3A). Of the 9 genes, CD8B, APLNR, A2M and KIR3DL2 were

upregulated in the non-metastasis group where the patients would
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have lower risk and gain better outcomes. In contrast, SEMA4F,

PRDX2, RAC3, ULBP1 and TMSB15B were upregulated in the

metastasis group where the patients would have higher risk and

suffer worse outcomes (Figure 3A). To verify the predictive validity of

nine hub genes for prognostic outcome, survival analysis

demonstrated promising prognostic differentiation (Figures 3B–J).
Enrichment pathways of hub genes and
correlation with oncogenic pathways,
proliferative activity

The pathway in which the gene is enriched tends to indicate that

the gene plays a role in that physiological process. Using the GSEA

method, the high-risk group was mainly distributed into the E2F,
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G2M checkpoint, and MYC targets, which were closely related to

interactions on angiogenesis, extracellular matrix remodeling, and

tumor cel l -endothel ial ce l l interact ions (Figure 4A).

Correspondingly, the low-risk group was mainly distributed in

the INF-g, INF-a, and inflammatory responses, which were

closely related to antitumor effect in anti-tumor immune

response (Figure 4B).

Moreover, patient samples from high- and low-risk groups

showed significant differences in scores across the ten

carcinogenic pathways (Figure 4C). Patients in the high-risk

group had higher oncogenic pathogenic activity, predicting that a

higher risk of cancer progression was involved. And the CCP scores

corroborated this finding, with patients in the high-risk group

having high CCP scores, which suggested that the tumors had

stronger proliferative activity (Figure 4D).
TABLE 1 The baseline characteristics of patients in the metastatic and non-metastatic groups (n=10).

Variables metastatic group (n=5) non-metastatic group (n=5) P valuea

Gender 1.000

Male 4 4

Female 1 1

Age 0.167

≤50 2 5

>50 3 0

T stage 0.524

T1-2 1 3

T3-4 4 2

N stage 1.000

N0-1 1 2

N2-3 4 3

M stage 0.008

M0 0 5

M1 5 0

Clinical stage 0.008

II-III 0 5

IV 5 0

Survival 0.048

Alive 1 5

Dead 4 0

Pathological typeb 1.000

WHO I 0 1

WHO II 1 1

WHO III 4 3
fro
aP values were two-sided using Fisher’s exact test, bPathological type includes WHO type I: keratinizing squamous cell carcinoma, WHO type II: non-keratinizing differentiated carcinoma and
WHO type III: non-keratinizing undifferentiated carcinoma.
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Assessment of the tumor immune
microenvironment and immune
checkpoints

Here, we estimated how the immune microenvironment differed

between patients in high- and low-risk groups in terms of immune

scores and levels of immune cell infiltration. The patients from the

low-risk group had higher immune scores but lower tumor purity

(Figures 5A, B). Additionally, the compositions of the 29 immune-cell

types were significantly different in the high- and low-risk groups

(Figure 5C). In the low-risk group, almost all levels of immune cell
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infiltration were higher than in the high one, including B cells, CD8 T

cells, dendritic cells (DC), macrophages (Figure 5D). Moreover, there

were significant statistical differences in the immune checkpoint

inhibitors (CTLA-4, HAVCR2, SIGLEC15, TIGIT, PD1 and LAG3)

between the high- and low-risk groups (Figure 5E).
Predictive power for immunotherapy
efficacy

We were the first to evaluate GEP and TLS score, and showed

that there were higher levels of immune cell receptors in low-risk
A B

D

E

F

C

FIGURE 1

The differentially expressed immune-related genomic biomarkers in nasopharyngeal carcinoma (NPC). (A) All 1328 differential genes assessed from
the tumor tissues are shown in the volcano plot; red dots for upregulated genes (520 genes), while blue dots represent downregulated genes (808
genes); (B, C) Statistics of enrichment analysis using KEGG and GO were concentrated on the immune-related cellular components, biological
processes and pathways in the bubble charts; (D) The top 154 immune-related genes were significantly differentiated between the metastasis and
non-metastasis group in the heatmap; (E, F) Immunohistochemical staining results of CD8, PD1, and PD-L1 in metastatic and non-metastatic NPC
samples from Fujian Cancer Hospital. **P < 0.01, ***P < 0.001.
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patients (Figures 6A, B). Subsequently, the same results were

observed in numerous immune-related indicators (Figure 6C).

These results suggested that tumors stimulate more immune cell

activation and strong ligand-receptor activation in patients in the

low-risk group, laying the biological foundation for a positive

response to this immunotherapy. As Figure 6D–G showed,
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patients in the low-risk group had a higher immune response in a

cohort of patients with whether nasopharyngeal carcinoma or

melanoma, or non-small cell lung cancer. It was evident that the

patients of the high-risk group had less chance of benefiting from

immunotherapy, which represented a worse prognosis when

compared with the patients of the low-risk group (Figure 6H).
B C

D E

F G

A

FIGURE 2

Establishment and validation of the immune-related risk model. (A) The LASSO logistic regression model was applied to establish prognostic immune
biomarkers which involved 9 signatures (A2M, APLNR, CD8B, RAC3, PRDX2, ULBP1, TMSB15B, KIR3DL2 and SEMA4F) identified by the GEO dataset
(GSE102349); (B, C) The Kaplan-Meier plot of the immune-related genes in GSE102349 (B) and Fujian Cancer Hospital corhort (C) revealed the
statistical significance between the high- and low-risk groups; (D) Patient survival status and expression of 9 hub genes in high and low risk groups;
(E) Receiver operating characteristic (ROC) curves of 1-year and 3-year survival in GSE102349; (F, G) Univariate (F) and multivariate (G) Cox
regression analyses for the immune-related risk score model as an independent prognostic factor.
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Immune landscapes and cellular
communication at the single-cell level

A cluster of 29 distinct cell types in GSE150430 cohort was

defined by two-dimensional spatial visualization of UMAP analysis

(Figure 7A). Cell lineages were distributed to each cluster by gene

expression with reference to the human primary cell atlas data in

TISCH. As a result, cells were annotated (Figure 7B). We targeted
Frontiers in Immunology 08258
the most significantly differentially expressed genes in each cluster

to better understand the species of cell fascicles (Figure S3A). In the

identified cell subsets, the GSVA and ssGSEA algorithm was

employed to calculate the performance of the nine hub genes at

the single-cell level. Significantly higher risk scores were observed in

malignant cells than in B cells and CD8 T cells (Figures 7C, S3B).

The same conclusion can be drawn in the cellular localization map

(Figures S3C, D). Moreover, the percentage of B cells and CD8 T
A B
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I
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C

FIGURE 3

Expression profiles and prognostic potency of nine hub genes. (A) The 9 immune-related signatures were significantly different between the non-
metastasis group and metastasis group of this hospital cohort. (B–J) A2M, APLNR, CD8B, RAC3, PRDX2, ULBP1, TMSB15B, KIR3DL2 and SEMA4F had
extraordinary differences of survival probability between the high-risk and the low-risk groups in GSE102349. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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cells in the low-risk samples was notablely higher than that of the

high ones; however, the percentage of malignant cells in the high-

risk samples was significantly higher than that of the low ones

(Figures 7D, E). This was consistent with previous findings

indicat ing that the high-risk scores predicted worse

biological behavior.

Next, we carried out functional exploration. The major

pathways enriched for differential genes between high- and low-

risk groups were those related to intercellular adhesion and immune

cell activation, suggesting that the response to distant metastasis

and immune resistance differed between high and low-risk groups

(Figure 7F). Also, active pathways were observed to vary in the

high- and low-risk groups, like LT, TGFb, SEMA3, KIT, FGF and

CD70 pathways being active in the high group while CALCR,

CD40, and SPP1 pathways being vibrant in the low group

(Figures 7G, S3E). In Figures 7H, I, the distinction of CD70 and
Frontiers in Immunology 09259
SPP1 signaling pathways in high- and low-risk groups was more

intuitive. Finally, the intracellular expression of nine hub genes is

exhibited (Figure 7J). It can be seen that the expression of PRDX2,

TMSB15B, ULBP1, and RAC3 was specifically increased in

malignant cells, and the high expression of these genes coincides

with a worse survival prognosis (Figures 3E–H).
Discussion

In this study, we screened nine hub genes to construct an

immune-related risk model from differently expressed genes of

metastatic and non-metastatic NPC patients in Fujian Cancer

Hospital. The model accurately predicted overall survival and was

strongly associated with immune infiltration at both the

transcriptome level and the single-cell level.
B

C D

A

FIGURE 4

Enrichment pathways of hub genes and correlation with oncogenic pathways, proliferative activity. (A, B) The high-risk group (A) was mainly
distributed in the E2F target, G2M checkpoint and MYC target using the GSEA method and the low-risk group (B) was mainly distributed in the INF-g,
INF-a and inflammatory responses using the GSEA method; (C) Patient samples from high- and low-risk groups showed significant differences in
scores across the ten carcinogenic pathways; (D) Patients in the high-risk group having high CCP scores. ***P < 0.001, **** P < 0.0001, nsP > 0.05.
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In NPC, polygenic models for predicting prognosis based on

gene expression levels have been rarely reported. More attention

has focused on predicting prognosis at the miRNA level, single gene

level. Prediction models are constructed by integrating various

different factors, such as clinicopathological features, imaging

features, genomic features, etc. A study identified a prognostic

predictive risk model for patients with nasopharyngeal carcinoma

based on three miRNA signatures (ebv-miR-BART19-3p, hsa-miR-

135b, hsa-miR-141), which can be used to predict the overall

survival of patients with nasopharyngeal carcinoma. (3-year ROC

= 0.76) (39). In a CT-based and PET-based signatures for

individual induction chemotherapy (IC) in advanced NPC, the

researchers proposed a radiomics nomogram with a C-index of
Frontiers in Immunology 10260
0.754 [95% confidence interval (95% CI), 0.709-0.800] in the

training set and 0.722 (95% CI, 0.652-0.792) in the test set (40).

Another study investigated the prognostic significance of tumor-

infiltrating immune cells and microenvironment-relevant genes in

NPC (NPC) and their correlations. A risk score model composed of

DARC, IL33, IGHG1, and SLC6A8 was established with a good

performance for PFS prediction (AUC = 0.738) (41). In our study,

one of the novelties is the construction of a predictive model for

metastatic NPC, and the good predictive accuracy achieved. The

area under the ROC curve (AUC) of our model was 0.79 at 1-year,

and 0.81 at 3-years, respectively, indicating a high predictive value.

We filled the research gap of genetic prognostic prediction model

for metastatic NPC. The results of the study are expected to provide
B

C

D

E

A

FIGURE 5

Assessment of the tumor immune microenvironment and immune checkpoints. (A, B) The immune scores (A) and scores of tumor purity (B)
between the high- and low-risk group had notable statistical differences in the violin plot; (C) The compositions of the 29 immune-cell types were
significantly different in the high- and low-risk groups; (D) B cells, CD8 T cells, dendritic cells (DC), macrophages infiltration were negatively related
to the risk scores; (E) Immune checkpoint inhibitors (CTLA-4, HAVCR2, SIGLEC15, TIGIT, PD1 and LAG3) between the high- and low-risk groups had
notable statistical differences in the box plots. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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a theoretical basis for accurate prognostic assessment of

metastatic NPC.

Although improving the responsiveness of immunotherapy is

very promising for the treatment of metastatic tumors, the

effectiveness of strategies to improve the immune response to

cancer varies from patient to patient, due to the heterogeneity of

cancer cells and immune cells in TME, the crosstalk of biological
Frontiers in Immunology 11261
signaling pathways, and the varying composition of specific

immune cells (42). Our study proposes a robust risk prediction

model based on metastatic NPC cases in Fujian Cancer Hospital,

which can accurately predict the prognosis and immunotherapy

efficacy of metastatic NPC patients.

Tumor-infiltrating lymphocytes determine the progression

and aggressiveness of tumors and are a source of important
B
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FIGURE 6

Predictive power for immunotherapy efficacy. (A, B) GEP (A) and TLS (B) score were higher in the low-risk group; (C) numerous immune-related
indicators were over-expressed in low-risk patients; (D–G) Patients in the low-risk group had a higher immune response in a cohort of patients with
whether nasopharyngeal carcinoma (D) or melanoma (E-F), or non-small cell lung cancer (G); (H) The high-risk patients had a worse prognosis
when compared with the patients of the low-risk group in melanoma cohorts. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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prognostic information for patients (43, 44). In this study, samples

from the low-risk group had higher immune scores, lower scores

of tumor purity, and higher value of immune checkpoint

inhibitors simultaneously. It can be reasonably speculated that

the patients from the low-risk group will benefit from

immunotherapy as compared with patients from the high-risk
Frontiers in Immunology 12262
group. The well-established prognostic model could make an

obvious distinction of the patients with metastatic NPC to

predict the risk of poor prognosis. For the advanced patients

ass igned to the low-r isk group, the combinat ion of

chemoradiotherapy and immunotherapy would be an

appropriate choice to attempt a better outcome.
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FIGURE 7

Immune landscapes and cellular communication at the single-cell level. (A, B) A cluster of 29 distinct cell types in GSE150430 cohort was defined by
two-dimensional spatial visualization of UMAP analysis; (C) Risk scores for samples in different cell subsets; (D) The proportion of cell composition in
high- and low-risk groups; (E) Immune cell infiltration in high- and low-risk groups using CIBERSORTx; (F) The major pathways enriched for
differential genes between high- and low-risk groups; (G) Active pathways were observed to vary in the high- and low-risk groups; (H, I) CD70 and
SPP1 signaling pathways in high- and low-risk groups; (J) The intracellular expression of nine hub genes. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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The pro-oncogenic pathways, including E2F, G2M checkpoint

and MYC targets pathway, favor tumor cells to promote growth,

migration, invasion, and angiogenesis. In our analysis, GESA

identified the enrichment of E2F, G2M checkpoint, and MYC

targets pathway in the high-risk group, which may contribute to

the dismal prognosis. On the contrary, inflammatory response

contributes to cancer cell death by inducing an anti-tumor

immune response and therefore accounts for a favor prognosis of

low-risk group.

Recently, the prediction and evaluation of the efficacy and

outcome after immunotherapy for a specific tumor or the patient

with a specific tumor is a hot spot in the development of

contemporary medica l treatment . Tumors and their

microenvironments constantly interact with each other (45).

According to the type and number of infiltrated immune cells, it

can be divided into hot tumors and cold tumors. Hot tumors refer to

tumors that have triggered the body’s immune responses with a

certain number of immune cell infiltration, which tend to respond

well to immune checkpoint inhibitors. While cold tumors are

considered as those with few immune cells where it is difficult to

stimulate the autoimmune responses and where immune checkpoint

inhibitors could not play an effective role when compared with hot

tumors. In this study, the risk model we constructed can predict

immune cell infiltration in patients and even infer specific immune

cell content levels in both transcriptome level and single-cell level. In

addition, patients in the high-risk group had a large proportion of

malignant cells in their cellular composition, whereas immune cells in

the low-risk group had a large proportion. There was also a dramatic

difference in the ligand receptors for cellular communication between

the high- and low-risk patients. The low-risk group or the non-

metastasis group had high immune scores and abundant immune cell

infiltration, which means that they have a hot tumor component and

superior immune response in their bodies, indicating a higher

likelihood of benefiting from immunotherapy and a better

prognosis. Therefore, accurate prediction of our model holds great

value for individualized treatment and efficacy detection in clinical

settings for advanced NPC patients.

Immunotherapy drugs targeting PD-L1 and CTLA-4 are playing

an increasingly critical role in the treatment of malignant tumors (46).

The expression levels of PD-L1 or other immune checkpoints will

directly affect the therapeutic effect of immune checkpoint inhibitors,

by which the application of immune checkpoint inhibitors can be

guided. TLS is an ectopic lymphoid-like structure that is mostly

formed in tissues where inflammation occurs (47). In recent years,

many studies have revealed that tumor-infiltrating B lymphocytes (48)

and tumor-associated TLS have a non-negligible correlation with the

response to immune-checkpoint blockade treatment, which provides a

new biological marker for the clinical decision-making of

immunotherapy. In this study, there are a higher number of B

memory lymphocytes and increased immune checkpoint expression

in the low-risk group, which insinuates more opportunity to benefit

from immunotherapy. The accuracy of the risk model predictions was

likewise validated in multiple immunotherapy cohorts.
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To the best of our knowledge, our study presented the first

immunopredictive risk model for metastatic NPC based on realistic

cases. However, our study had some limitations. A major limitation

was the lack of a prospective NPC cohort to validate the prognostic

role and stratification performance of the model. In addition, the

role of predicting immunotherapy efficacy in real-world settings

needs further investigation.
Conclusions

We have constructed a model based on immunity of metastatic

NPC and determined its prognostic value. In addition, the model

identified cell-cell communication between tumor and immunity,

along with potential therapeutic approaches to target metastatic NPC.
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SUPPLEMENTARY FIGURE 1

The schematic diagram of this study.

SUPPLEMENTARY FIGURE 2

(A) PCA cluster analysis of the metastatic group (group M) and the non-

metastatic group (group N); (B, C) The risk score was significantly
distinguished between (B) clinical stage I–III and stage IV in GSE102349

(n=73) as well as (C) metastatic and the non-metastatic patients in Fujian

Cancer Hospital dataset (n=10).

SUPPLEMENTARY FIGURE 3

(A) The cell annotation and the specially expressed genes in each cluster; (B)
Risk scores for samples in different cell subsets; (C, D) Comparison of cellular

composition of high and low risk groups; (E) The signaling pathway of high

and low risk groups in comparison.
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Background: Glioma is one of the deadliest malignant brain tumors in adults, which

is highly invasive and has a poor prognosis, and long non-coding RNAs (lncRNAs)

have key roles in the progression of glioma. Amino acidmetabolism reprogramming

is an emerging hallmark in cancer. However, the diverse amino acid metabolism

programs and prognostic value remain unclear during glioma progression. Thus, we

aim to find potential amino-related prognostic glioma hub genes, elaborate and

verify their functions, and explore further their impact on glioma.

Methods: Glioblastoma (GBM) and low-grade glioma (LGG) patients’ data were

downloaded from TCGA and CCGA datasets. LncRNAs associated with amino acid

metabolism were discriminated against via correlation analysis. LASSO analysis and

Cox regression analysis were conducted to identify lncRNAs related to prognosis.

GSVA and GSEA were performed to predict the potential biological functions of

lncRNA. Somatic mutation data and CNV data were further built to demonstrate

genomic alterations and the correlation between risk scores. Human glioma cell

lines U251 and U87-MG were used for further validation in vitro experiments.

Results: There were eight amino-related lncRNAs in total with a high prognostic

value that were identified via Cox regression and LASSO regression analyses. The

high risk-score group presented a significantly poorer prognosis compared with the

low risk-score group, with more clinicopathological features and characteristic

genomic aberrations. Our results provided new insights into biological functions in

the above signature lncRNAs, which participate in the amino acid metabolism of

glioma. LINC01561 is one of the eight identified lncRNAs, which was adopted for

further verification. In in vitro experiments, siRNA-mediated LINC01561 silencing

suppresses glioma cells’ viability, migration, and proliferation.

Conclusion: Novel amino-related lncRNAs associated with the survival of glioma

patients were identified, and a lncRNA signature can predict glioma prognosis and

therapy response, which possibly has vital roles in glioma. Meanwhile, it emphasized

the importance of amino acid metabolism in glioma, particularly in providing deeper

research at the molecular level.
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1 Introduction

Gliomas are among the most severe and common primary human

brain malignancies with a dismal prognosis and a very low 5-year

survival rate, which are characterized by an immunosuppressive

microenvironment (1–3). Currently, the clinical treatment includes

surgery, chemotherapy, radiotherapy, targeted therapy, and

immunotherapy in gliomas (4, 5). However, patients with gliomas

remain to have a poor prognosis, especially in high-grade gliomas (6).

Hence, further exploring the mechanism of glioma is of great

significance for finding new targets for the treatment of glioma.

The microenvironment is recognized as playing a vital role in

the development and progression of tumors (7, 8). In recent years, it

has been recognized as an emerging hallmark of cancer (9, 10),

which plays a major role in cancer occurrence and development.

Metabolism reprogramming has been recognized as having a

critical role in both cancer progression and effective immune

responses in the tumor microenvironment (11). Metabolism must

be altered to meet the rapid biosynthetic demands for growing

tumors in metabolism proliferating cancer (12). As with sugar

metabolism, amino acid metabolism is also an ordered process,

which is important for the maintenance of cellular homeostasis

(13). Amino acid transport is a vital aspect of amino acid

metabolism. Amino acids and their metabolites play a critical role

in metabolism and are essential to life (14). Cancer cells need large

amounts of energy and compounds to meet the requirements of

metabolic reprogramming. Amino acid metabolism affects the

prognosis of tumor (15). The uptake and metabolism of amino

acids are increased in cancer cells via upregulation of specific amino

acid transporters (16). Amino acids promote the proliferation and

survival of cancer cells in the context of genotoxic, oxidative

damage, nutritional change, and stress (11, 16). Currently, a new

focus on the amino acid metabolism of glioma is considered to play

a major role in glioma. Therefore, better knowledge of amino acid

metabolism in terms of cancer is strongly warranted.

Long non-coding RNA (lncRNA) has been reported to be

involved in multiple physiological and pathological processes and

has shown an essential role among them (17). Glioblastoma cells

increase under conditions of hypoxic stress (18, 19). Amino acid

metabolism-related risk signatures can be used to predict the

prognosis for glioma (19). In addition, studies have demonstrated

that lncRNA has shown a crucial role in the proliferation,

progression, invasion, and prognosis of gliomas (20–22).

Therefore, research about new lncRNAs as novel biomarkers will

provide deeper insights into the progression and prognosis of

glioma with the purpose of strengthening the management of

the disease.

Previous studies have indicated that amino-related lncRNAs are

involved in the prognosis of malignant tumor (23, 24). However, the

role of amino acid‐related gene sets remains unclear in glioma.

Herein, we collected data from The Cancer Genome Atlas (TCGA)

and Chinese Glioma Genome Atlas (CGGA) databases by using
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multiple algorithms to investigate the prognostic value of amino-

related lncRNAs and correlation in the microenvironment

of glioma.
2 Methods

2.1 Data resources

Human gene expression profiles and corresponding clinical

information on glioma were downloaded from TCGA dataset

(http://cancergenome.nih.gov) and the CGGA dataset (http://

www.cgga.org.cn/). TCGA dataset was regarded as the training

set, the CGGA dataset as the validation set. Log2(tpm+0.001) was

used to normalize the data of gene expression. We collected 672

samples from TCGA dataset and 322 samples from the CGGA

dataset. Somatic mutation and copy number variation (CNV) data

were obtained from the dataset of TCGA.
2.2 Screening for prognostic lncRNAs
associated with amino acids

To extract the amino-related lncRNA, gene set variation

analysis (GSVA) was implemented using the GSVA R package.

The amino-related gene sets were extracted from the Molecular

Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/

msigdb/i). A correlation analysis was conducted using the limma

package of R statistical software. Amino-related lncRNAs were

characterized via correlation analysis on the basis of Gene

Ontology (GO) information of the target amino-related gene sets.

Then, a univariate Cox regression analysis was performed to

analyze all the lncRNAs related to the glioma patients’ overall

survival, and a multivariable Cox regression analysis was used to

further select and identify lncRNAs that exhibited independent

prognostic value. LASSO regression analysis was used in the

construction of the lncRNAs with prognostic gene signatures.

Then, we obtained a set of prognostic lncRNAs and regression

coefficients (b) (Figure 1).
2.3 LncRNAs used for consensus clustering

Consensus clustering was performed to identify glioma

subgroups (GBM and LGG) and cluster amino-related genes from

TCGA dataset using the ConsensusClusterPlus R package.

Permuting clustering runs by changing the category number k =

2 to k = 10. Based on a relatively high consistency within the

clusters, cumulative distribution function (CDF) and a relatively

small incremental change in area under the CDF curve were used to

determine the optimal number of clusters k. Survival analyses were

conducted with R statistical software and packages.
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2.4 Genomic alteration cluster

Somatic mutation analysis and copy number variation (CNV)

were utilized to determine whether the risk score levels were related

to specific genomic characteristics in gliomas via TCGA dataset.

The somatic mutation data were analyzed with the “maftools” R

package, and the genes with the most frequent somatic mutations

were screened and presented. The enrichment of genomic events

was determined by GSITIC analysis through an online analysis

platform (https://www.genepattern.org).
2.5 Constructing a prognostic risk score
model based on the clinical features and
risk score

Univariate survival analyses were carried out by using the Cox

proportional hazards regression package for the risk score and clinical

features (age, gender, risk, IDH status, grade, 1p/19q)with a cutoff of p-

value less than 0.05. Then, the multivariate Cox regression model was

built based on the selected features, and visualization was achieved

through a nomogram chart with the Regplot package. The area under
Frontiers in Immunology 03268
the curve (AUC) value of the receiver operating characteristic (ROC)

curve was established as an effective risk model to evaluate the

prognosis of high-risk and low-risk patients. Both the calibration

curve and AUC were carried out to evaluate the risk model.
2.6 Gene set variation analysis

Gene set variation analysis (GSVA) was performed using the

ClusterProfiler package of R to calculate the enrichment analysis

within TCGA and CGGA samples. The correlation between the risk

score and GO terms was performed based on the significant GO

terms of biological processes identified (p < 0.05), and a high

correlation coefficient was selected.
2.7 Predicting the response
to immunotherapy

The TIDE algorithm (http://tide.dfci.harvard.edu/) and the

submap algorithm on the GenePattern website (https://

cloud.genepattern.org/gp) are used to predict the likelihood of
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FIGURE 1

(A) Cross-validation in LASSO regression; dashed lines indicate the best-fit log (l) value. (B) LASSO coefficients of the lncRNAs that have
independent prognostic value. (C) Coefficient profie of the eight signature lncRNAs. (D-F) Difference in K-M curves of the DSS between high- and
low-risk groups in the dataset of TCGA. (G) The ROC for predicting the survival at 3 and 5 years in TCGA dataset. The AUC of the risk score model
showed good accuracy in the dataset of TCGA. (H) ROC for predicting the survival at 3 and 5 years in the dataset of CGGA.
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response to immune checkpoint blockade for individual samples

and subtypes.
2.8 Cell culture, treatments, and
siRNA transfection

Human glioma cells (U251 and U87) were purchased from

Procell Life Science & Technology Company (Hubei, China). The

logarithmic growth phase cells were grouped into the following

groups: control group, siRNA-negative control (NC) group, and

LINC01561-siRNA group. Cells were treated with 5 µl siRNA, and

Lipofectamine 2000 was diluted in Opti-MEM medium for 5 min.

They were then mixed and incubated at room temperature for

20 min. The composite was then added to the cell culture plate.

Following transfection for 48 h, the cells were collected for the

subsequent experiments.
2.9 RT-qPCR assay

RT-qPCR assay was performed. The primers of b-actin (F:

ACCCTGAAGTACCCCATCGAG, R: AGCACAGCCTGGA

TAGCAAC) and LINC01561 (F:CCAGGAGGAGCAGAGAAAGC,

R: CCCAGCTGCTGTCTGGTTTA) were designed using Primer

Premier 5.0. The total RNAs were extracted and then reversely

transcribed into cDNA by HiScript Q RT SuperMix for RT-qPCR.

The expression levels of b-actin and LINC01561 were quantified and

calculated with the method of 2-DDCT. The reaction conditions were

as follows: 95°C for 10 min, then 95°C for 15 s, and 60°C for 30 s, for a

total of 40 cycles.
2.10 Validation in vitro cell experiments

Cell viability was carried out by using a cell counting kit-8

(CCK-8) assay. Cell migration was measured by the Transwell

migration assay.
2.11 Colony formation assay

Colony forming ability was assessed by a colony formation

assay. Cell proliferation was evaluated and measured by using the 5-

ethynyl-2′-deoxyuridine (EdU) assay kit (RiboBio, China). Each

group has three biological replicates. Detailed vitro experimental

protocol can be found in the supplemental material (Table S1).
2.12 Statistical analysis

Statistical calculations were performed using R statistical

analysis package (version 3.5.3). One-way ANOVA followed by

the Tukey posttest was used to identify the differences among

groups, respectively. Correlations between categorical variables

were assessed using chi-square tests. Overall survival analysis was
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evaluated using the Kaplan–Meier method, followed by Cox

regression analysis. The ClusterProfiler package was performed to

measure the enrichment analysis in TCGA and CGGA samples.

Both the somatic mutations and CNA data were obtained through

TCGA database. A comparison was accepted to be statistically

significant when a p value was <0.05.
3 Results

3.1 Identification of prognostic lncRNAs
related to amino acids

The workflow diagram of this study is illustrated in Figure 2. In

total, in TCGA and CCGA datasets, 13,895 lncRNAs were extracted

via intersecting the lncRNAs. Univariate and multivariate Cox

regression analyses were carried out to find information on the

lncRNA expression level of patients between the lncRNA and

overall survival (OS) via the survival R package. There were 417

and 396 lncRNAs with significant prognostic potential screened out

by univariate and multivariate Cox regression analysis (p < 0.05),

respectively. Meanwhile, LASSO regression is an effective method

for high-dimensional data and predictors. Then, in both TCGA and

CCGA datasets, there were eight considered amino-related

lncRNAs regarded with independent prognostic values identified

via LASSO regression (Figures 1A, B), and the coefficient profile of

the eight signature lncRNAs is illustrated in Figure 1C. They were

AL357060.1, HOXA-AS3, LINC01561, Z95115.1, AL353796.1,

LEF1-AS1, AC005224.3, and TMEM220-AS1. Then, a prognostic

amino-related lncRNA signature was built (Figures 1D–F). The

sensitivity and specificity of the eight-lncRNA prognostic model

were determined by measuring the area under the receiver

operating characteristic (AUC) and ROC between 3-year survival

and 5-year survival. The AUC was 0.922 at 3-year survival and

0.900 at 5-year survival in TCGA dataset. The AUC was 0.819 at 3-

year survival and 0.826 at 5-year survival in the CGGA dataset

(Figures 1G, H). It can be seen that the AUC of the ROC and risk

scoring models predicting the survival rates at 3 and 5 years show

good accuracy in the two datasets.
3.2 Consensus cluster analyses of the 8
lncRNA expression

Based on the analysis of TCGA data, genes related to prognosis

were identified. Consensus clustering analysis was applied for

grouping the samples of glioma patients. With the expression

similarity based on the dataset of TCGA, clustering stability rises

from k = 2 to k = 10. The incremental change is small in the area

under the CDF curve when k = 2 (Figures 3A, B). Hence, k = 2 was

considered an optimal choice. Consensus clustering of gliomas was

clustered into two clusters as follows: cluster 1 and cluster 2.

Moreover, cluster 1 was associated with a worse poor prognosis.

Meanwhile, cluster 1 was worse than cluster 2 in overall survival

(OS), disease-specific survival (DSS), and progression-free interval

(PFI) (Figures 3D–L). Based on the eight prognostic-related
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lncRNAs, the results of the principal component analysis of the two

clusters showed that there was an obvious separation between the

survival probability distribution and PCI distribution in TCGA and

CGGA datasets (Figures 3C, S3C).
3.3 Establish and validate the risk
score model

According to the median risk score, patients were assigned into

high-risk and low-risk groups. The results showed that high-risk

patients had a significantly worse prognosis than the low-risk group

in both TCGA dataset and CGGA dataset (p < 0.05, Figures 1, S1).

To further evaluate the clinical endpoints derived from the two risk

groups, DSS, OS, and PFI were used to compare the survival results

of the patients in TCGA dataset. OS was used to compare the

survival results of the patients in the CGGA dataset. Univariate

analysis shows that when we use DSS, OS, and PFI as clinical

endpoints, the high-risk group showed a worse prognosis than the

low-risk group in TCGA dataset (Figures 1D–F, S1A–F) and OS in

the CGGA dataset (Figures S1G–I).
3.4 Risk models of different subgroups
of gliomas

To explore the survival status of different subgroups of gliomas,

single-factor Cox regression analysis was performed on the 1p/19q

status, gender, age, pathological grade, IDH type, MGMT

methylation status, cancer type, and other factors in TCGA

database. In addition to the gender of patients, other subtypes are

associated with prognosis. Patients with MGMT methylation had

lower risk scores (Figures S2A–I). The patient’s risk is related to age.
Frontiers in Immunology 05270
Patients older than 45 years of age have a higher risk than patients

younger than 45 years. 1p/19q no deletion and IDH wild type have

higher risk scores with a poor prognosis. As the pathological grade

of glioma increases, the risk score also increases and has a poor

prognosis. These results demonstrate that clinical features were

significantly associated with the risk score of the model, and a

significant positive correlation between high-risk scores and

dangerous clinical features was observed (Table 1).
3.5 Correlation between genomic
alterations and the glioma risk model

Analysis of somatic mutation and CNV showed that there were

significant differences between the low-risk and high-risk groups.

Compared with the overall population, high-risk groups of patients

had more gene mutations on chromosomes 7 and 10 and fewer gene

mutations on chromosome 1. 9p is prone to copy number deletion

gene mutation, and 1q, 4q, 7p, and 12q are prone to copy number

amplification gene mutation in the high-risk group (Figures 4C, D).

IDH1, TP53, ATRX, andCICwere themain variant genes in the low-

risk group, whereas TP53, IDH1, ATRX, and EGFR were the main

CNV genes in the high-risk group. Patients with low-risk scores had

significantly higher mutation frequencies of IDH1 and TP53 than

high-risk score patients (IDH1, 90% vs. 33%; TP53, 47% vs. 38%)

(Figures 4A, B). The risk of IDH1 missense mutations is significantly

reduced within the high-risk group. IDH1 missense mutations are

related to low-grade gliomas and may bring patients better

prognoses. The variation of CIC (27%) mainly occurred in the low-

risk group. PTEN (18%)mutationsmainly occur in high-risk groups.

Studies have shown that PTEN deficiency can cause PAX7 to be up-

regulated, which in turn promotes the carcinogenic transformation

of NSC, which may be associated with a poor prognosis.
FIGURE 2

Study design flowchart.
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3.6 Functional assays of the selected
prognostic lncRNAs

To further verify the potential function and target gene of the

eight prognostic lncRNAs, GSVA was used to perform with TCGA

and CGGA data. It can be seen that the representative GO

terminology is significantly related to the prognostic lncRNA in

TCGA dataset. Samples from the high-risk group were enriched

with more biological processes related to amino acid metabolism

compared with the low-risk group. In both datasets of TCGA and

CGGA, the 20 most significant biological processes of amino

metabolism correlated with risk score were identified by
Frontiers in Immunology 06271
correlation analysis of both TCGA and CGGA datasets,

respectively (Figure 5). The most enriched functions of lncRNAs

included regulation of cellular amino acid metabolism processes,

aromatic amino acid family metabolism, cell-modified amino acid

biosynthesis, aromatic amino acid family metabolic process, and

amino sugar metabolism. Among them, cell-modified amino acid

biosynthesis, aromatic amino acid family metabolic processes, and

amino sugar metabolic processes are strongly and positively

correlated. The lncRNA risk model is involved in the regulation

of the tumor microenvironment, directly or indirectly promoting

tumor cell growth, tumor blood vessel formation, migration and

invasion, and inhibiting cell apoptosis.
G

D

A B

E F

IH

J K L

C

FIGURE 3

Consensus Cluster analyses of the 8 lncRNA expressions in the TCGA dataset. (A) Clustering stability for k=2 to 10. (B) The incremental change is small
under the CDF curve area when k = 2. (C) The consensus clustering of gliomas was clustered into two clusters in principal component analysis (PCA). (D–L)
The K-M plots of the difference in OS, DSS, and PFI between cluster 1 and cluster 2 in TCGA datasets.
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3.7 Prognostic nomogram assessment of
overall survival prediction

Based on the association between clinicopathological

characteristics and risk score, a nomogram was conducted

based on age, glioma risk, 1p/19q, IDH mutation, and glioma
Frontiers in Immunology 07272
grades to predict the survival rate of patients (Figure 6A). The

predicted 3- and 5-year survival was agreed strongly with the actual

rates in TCGA and CGGA datasets (Figures 6B, D). The AUC

and ROC were performed to compare the survival rate at 3 and

5 years and the risk score model showed a good consistency

(Figures 6C–E).
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FIGURE 4

(A, B) Two groups of somatic mutation profiles. (C, D)Deleted and amplified chromosomal regions were presented in blue and red in high- and low-risk groups.
TABLE 1 Clinical baseline characteristics between high- and low-risk groups in TCGA dataset.

Characteristic N High (N = 322) Low (N = 323) p-value

Age 645 <0.001

96 (30%) 222 (69%)

226 (70%) 101 (31%)

Gender 645 >0.9

Female 136 (42%) 136 (42%)

Male 186 (58%) 187 (58%)

Cancer 645 <0.001

GBM 136 (42%) 1 (0.3%)

LGG 186 (58%) 322 (99.7%)

IDH 638 <0.001

Mutant 113 (36%) 308 (95.7%)

WT 203 (64%) 14 (4.3%)

1p/19q 641 <0.001

Codel 30 (9.4%) 138 (43%)

Non-codel 289 (90.6%) 184 (57%)

MGMT 614 <0.001

Methylated 171 (59%) 292 (90.4%)

Unmethylated 120 (41%) 31 (9.6%)
fron
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3.8 LINC01561 is a prognosis-related
biomarker of gliomas correlated with
immune infiltration

LINC01561 has been reported in other cancers, but its effect on

glioma has not been reported. Hence, LINC01561 was chosen for

further analysis. We compared GBM and LGG samples in TCGA

dataset with normal samples in the GTEx dataset in the GEPIA

online database (http://gepia.cancer-pku.cn). The expression of

LINC01561 in the tumor samples is higher than that in the
Frontiers in Immunology 08273
normal samples, but significant differences were found only in the

LGG samples (Figure 7A).

In addition to the lncRNA signature, the prognostic value in

gliomas was also further confirmed. GSVA results also indicated that

LINC01561 may be involved in regulating the prognosis of gliomas.

The tumor immune microenvironment is considered closely

associated with cancer initiation, prognosis, and response to

immunotherapy (25). Submap analysis manifested that the high

risk-score group is more sensitive to anti–PD-1 therapy and CTLA4

therapy (nominal p value <0.05, Figure 7B), suggesting that it may
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FIGURE 5

(A–B) Heatmaps of the identified amino acid metabolism functions, clinicopathological characteristics, and risk score in the TCGA and CGGA
datasets. (C–D) Heatmap of immune infiltrating cells in different levels of the risk score in TCGA and CGGA datasets. (E–F) Heatmap of inflammatory
signature genes under different risk score levels in both the TCGA and CGGA datasets.
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FIGURE 6

(A) Nomogram of summing the points for each variable. (B, D) The difference in K-M plots of the nomogram predicted OS between high- and
lowrisk groups in both TCGA and CGGA datasets. (C, E) Nomogram of ROC curves and AUC values in both TCGA and CGGA datasets.
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benefit from immunotherapy. Moreover, the correlation between

LINC01561 and immune activity was explored. The correlation

analysis showed that the infiltration of pDC, TFH, Tem, CD8T cells,

and Tgd were positively associated with the expression of LINC01561,

whereas TH17 cells, NKCD56bright cells, B cells, Treg, mast cells, DC,

Th1 cells, NK cells, T helper cells, cytotoxic cells, NK CD56dim cells,

iDC, eosinophils, aDC, T cells, neutrophages, macrophages, and Th2

cells were negatively associated. On the level of the inflammatory

response, the expression of LINC01561 was positively correlated with

IgG, MHC-II, STAT1, LCK, MHC-I, HCK, and interferon. These

results hinted that LINC01561 was involved in regulating the immune

microenvironment of gliomas (Figures 7C–F).
3.9 LINC01561 affected glioma cell viability,
migration, and proliferation

To know the role of LINC01561 on glioma, we further

conducted the effects of the increased level of LINC01561 in

glioma cell lines (U251 and U87-MG) in in vitro experiments.

The SiRNA technique was conducted to interfere with the mRNA

expression of LINC01561 successfully, and it was confirmed by RT-

PCR. CCK‐8 assay results showed inhibited cell viability after

silencing LINC01561 expression. To further know the effect of

LINC01561, a colony-forming assay was also conducted to suggest
Frontiers in Immunology 09274
that the viability of glioma cells was significantly inhibited after

LINC01561 was knocked down by siRNA. To further detect

whether LINC01561 affects the metastasis of glioma, Transwell

experiments were performed to assess the migration and invasion of

glioma cell. These results demonstrated that siRNA-mediated

LINC01561 silencing suppresses the invasion of glioma.

Furthermore, the EdU proliferation assay indicated that inhibition

of LINC01561 expression can lead to a significantly decreased EdU‐

positive rate of glioma cells (Figures 8, S4).
4 Discussion

Glioma accounts for 80% of all malignant brain tumors (25) and is

one of the most frequently occurring malignant central nervous system

tumors in adults with a highly invasive and a poor prognosis (26).

Currently, the prognosis of glioma patients was judged according to the

criteria of the WHO classification in clinic (27). The development of

molecular typing in gliomas has progressed rapidly based on the

development of sequencing technology and bioinformatic

technologies in recent years. Surgery is often unable to remove or

completely resect the tumor because it is characterized by a highly

invasive potential ability due to the aggressive growth of glioma and

peripheral brain tissue, and residual tumor cells are difficult to be treated

by radiation and chemotherapy thoroughly (28, 29). New targets for
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FIGURE 7

(A) Comparison of LINC01561 expression in different groups. (B) The differences of the risk score were compared using submap analysis in the anti-
PD-1 response and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) response. (C-F) Correlograms between immune cell infiltration,
inflammation activities, and LINC01561 expression in TCGA dataset and the CGGA dataset. ***p < 0.001.
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therapeutic approaches are significant for improving the prognosis of

patients with glioma. Altered cellular metabolism is considered a

hallmark of glioma cell biology (30, 31). Carbohydrates, lipids, and

amino acids utilized by glioma cells and their initiating cells in the

hypoxic lesions have important roles in the tumor microenvironment

(30). Previous accumulating research mainly focused on lipid

metabolism and glucose metabolism in glioma (32). Currently, a new

focus on the amino acid metabolism of glioma is considered to play a

major role in theglioma(33). In comparisonwithnormal glioma tissues,

glioma tissues exhibited higher expression levels of amino acid.

LncRNAs have been reported to be involved in many cellular

processes, which have been found abnormally expressed in many

cancers (34). However, detailed analyses of lncRNAs and amino acid

metabolism in glioma have not been reported previously;moreover, the

role of amino acid metabolism remains unclear in glioma.
Frontiers in Immunology 10275
In our study, eight amino-related lncRNAs associated with glioma

prognosis by bioinformatics analysis were found, namely, AL357060.1,

HOXA-AS3, LINC01561, Z95115.1, AL353796.1, LEF1-AS1,

AC005224.3, and TMEM220-AS1, which had significant differences

in the expression in normal brain and glioma tissue. Therefore, an

accurate predict prognostic lncRNA signature of patients was

established. Of note, the amino acid metabolism-related risk

signature identified in our study is still considered to be an

independent prognostic factor after adjusting to the clinical and

molecular features. The metabolic conditions of amino acid

metabolism hold great potential and accurate predictive power for

clinicopathological features. Together, combining the risk signature

and other constraints can better predict a prognosis in patients with

glioma. Moreover, in terms of further investigating the lncRNA

signature, some researchers make an innovative methodological
G

D

A B

E F

H

C

FIGURE 8

(A) Expression results of the CCK-8 assay of the silencing LINC01561 at different time points: 24, 48, 72, and 96h. (B) Relative expression levels of
LINC01561 in control, siRNA-NC, and LINC01561-siRNA groups. (C, D) The results of Transwell assay in the control, siRNA-NC, and LINC01561-
siRNA groups. (E, F) EdU assay showing the proliferation cells (U87-MG); EdU (red) and DAPI (blue) were stained. (G, H) Results of the colony-
forming assay in LINC01561 expression. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns p > 0.05.
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contribution, like having someone develop a new system assay for

investigating associations on patterns of gene expression (35).

Long non-coding RNAs have been reported as new potentially

promising therapeutic targets involved inmultiple cancers (36).HOXA-

AS3 has been reported to be upregulated in human pulmonary artery

smooth muscle cells in the presence of hypoxia (5). HOXA-AS3 can

regulate chemoresistance in several types of cancer (37). The expression

ofHOXA-AS3 increased in gliomapatient samples and glioma cell lines

(38). LINC01561, a newly identified tumor-related lncRNA, has critical

regulatory roles in several tumors including non-small-cell lung

carcinoma (39), lung squamous cell carcinoma (40), and breast cancer

(41).However,noreportshave shownthe involvementofLINC01561 in

glioma and its underlying mechanisms remain unknown. TMEM220-

AS1 was identified as a new prognostic lncRNA biomarker in

hepatocellular carcinoma. Downregulated lncRNA TMEM220-AS1

was associated with poorer prognosis in hepatocellular carcinoma

(42). LEF1-AS1 is an lncRNA whose expression was significantly

upregulated in glioma tissues and cell lines. The knockdown of LEF1-

AS1 represses cell proliferation and suppressed tumor growth while

activating apoptosis in glioma via the downregulated LEF1-AS1/miR-

489-3p/HIGD1A axis (43). AL357060.1 has been reported as a new

potential prognostic biomarker for hepatocellular carcinoma (44), but

there is no report of its role in glioma. Low-risk patients have

significantly longer progression-free and overall survival compared

with the high-risk group.

Our study provided new insights into biological functions in the

above signature lncRNAs, which participate in the amino acid

metabolism of glioma. These lncRNAs mainly regulate amino acid

biosynthesis, modification, catabolism, and translation. Amino acids

(AAs) are essential for the function and survival of the cell. Pathways of

glucose, amino acids, and fatty acid metabolism are involved in glioma

reprogramming. Recently, great progress has been made in single-cell

analysis (45), which is being generally used in terms of tumor study

(33). Some scholars have developed a novel approach of the single-cell

multi-omics co-regulatory algorithm to broaden our understanding of

the underlying mechanisms in complex tumor (46). There is currently

a lack of high-quality single-cell gene expression data for glioma. Our

team is currently working with single-cell sequencing of glioma and

will use this method as a reference for future research.

In the case of metabolic reprogramming of glioma, carbohydrates,

lipids, and amino acids were efficiently utilized in glioma cells with

hypoxic lesions. This ensures adequate energy to improve glioma rapid

growth and migration while altering the role of cell features and its

microenvironment (30). The tumor microenvironment holds an

indispensable role in tumor metastasis. In recent years, the role of the

immune microenvironment has been the subject of intensive research

in gliomas (47). Immunotherapy, tumor microenvironment, and a

combination of several efficaciousmethods have piqued ever-increasing

interest (48). They include NK and T-cell dysfunction, T-cell and

myeloid-derived suppressor cell expansion, immunosuppressive

glioma cell surface factors and cytokines, and tumor

microenvironment hypoxia. Gliomas have created a profoundly

immunosuppressive environment, both topical and systemic within

the tumor (49). Immunosuppressive tumor microenvironment

reprogramming improved antitumor effectiveness (27). Moreover,

tumor microenvironment-targeted therapies for gliomas may be a
Frontiers in Immunology 11276
comprehensive source of the immune landscape and offers insights

into possible strategies to overcome tumor with practical significance.

MAT2A is an essential amino acid, and a high expression ofMAT2Aor

an inhibitor of MAT2A can reduce the proliferation of glioma cells.

Histone methylation is promoted by MAT2A, and cells can be

prompted to proliferate in a methionine-restricted environment,

which is associated with the progression of glioma (50). Compared

with normal cells, rapidly proliferating tumor cells need higher demand

for proteinogenic amino acids, and the bioavailability of the use of

amino acids is affected largely in human proteomes (51). There were

tight associations between serine, glycine, and other non-essential

amino acids and tumorigenesis and tumor development. Much

research has been devoted to molecular biomarkers that may

contribute to the diagnosis or treatment of glioma, which revealed a

series of biomarkers associated with the prognosis of glioma. Initiation

and development of glioma involve metabolic alterations and genetic

and epigenetic alterations on the molecular level, including lncRNA

expression. However, the effects ofmolecular biologicalmechanisms on

amino acid metabolism are poorly understood. Therefore, amino-

related lncRNAs found in our study provided new insights to be

considered as new genetic biomarkers for the prognosis and

treatment of glioma.

As mentioned above, LINC01561 is a novel identified tumor-

related lncRNA associated with the progression and poor prognosis

of glioma. However, to date, no reports have investigated the

involvement of LINC01561 in glioma and its underlying

mechanisms remain unknown. We, therefore, have selected

LINC01561 for further study of verification analysis.

Our study revealed a negative correlation between LINC01561

expression and the prognosis of glioma patients, indicating that

LINC01561 can serve as a reliable predictor of glioma prognosis. It

was somewhat that lncRNA exhibited the highest prognostic value.

Moreover, LINC01561 was involved in regulating the immune

microenvironment of gliomas, which plays a crucial role in tumor

initiation and prognosis (25).

Based on our in vitro experiments, we found that siRNA-mediated

inhibition of LINC01561 suppressed the proliferation of U87-MG and

U251 cells, as confirmed by the CCK-8, colony formation assays, and

EdU assays. Transwell experiments revealed that silencing LINC01561

inhibits glioma cell invasion, indicating that downregulation of

LINC01561 significantly hindered glioma progression. Taken

together, these results demonstrate that LINC01561 is a novel

identified tumor-related lncRNA playing an important regulatory

role in glioma, potentially involved in multiple biological processes.
5 Conclusion

In this study, our bioinformatics analysis identified eight novel

amino acid-related lncRNAs associated with glioma patient survival

and established an lncRNA signature for prognostic and therapeutic

prediction. These findings suggest that the identified lncRNAs may

play important roles in glioma, highlighting the importance of

amino acid metabolism in glioma and the need for further research.

Although our study identified and selected several key lncRNAs,

such as LINC01561, more detailed studies are still required to
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elucidate their roles in regulating amino acid metabolism and their

specific mechanisms of action. Therefore, further studies are

warranted to advance our understanding of glioma and develop

more effective management strategies for this disease.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

Conception and design: QL and ZX. Foundation support: QL

and ZX. Experiment: LP, and BY. Acquisition and analysis of data:

KL, LP, ZX, and QL. Interpretation of data: ZX and QL. Drafting the

manuscript and revising for submission quality: QL, BY, KL, LP,

and ZX. Study supervision: LP and ZX. All authors contributed to

the article and approved the submitted version.
Funding

This work was supported by the Natural Science Foundation of

Hainan Province (No. 821QN1005) and the Science Foundation of

AMHT Group (NO.2022YK04).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Immunology 12277
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1014378/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

(A-F) The difference in K-M plots of the OS and PFI between high- and low-

risk groups in the dataset of TCGA. (A-F) The difference in K-M plots of OS
between high- and low-risk groups in the dataset of CGGA.

SUPPLEMENTARY FIGURE 2

The survival status of different subgroups of gliomas. (A) Age, (B) Cancer type,
(C) Gender, (D) Grade, (E) IDH type, (F) MGMT status, (G) 1p/19q status, (H)
Cancer subtype, (I) Combined cancer subtype.

SUPPLEMENTARY FIGURE 3

Consensus Cluster analyses of the 8 lncRNA expressions in the CCCA dataset.
(A) Clustering stability for k=2 to 10. (B) The incremental change under the

CDF curve area. (C) The consensus clustering of gliomas was clustered into

two clusters in principal component analysis (PCA). (D-F) The difference in K-
M plots of the OS between the cluster 1 and cluster 2 in CGGA dataset.

SUPPLEMENTARY FIGURE 4

(A) The results of Transwell assay in control, siRNA-NC, and LINC01561-
siRNA groups in U251 cells. (B, C) The EdU assay showing the U251 cells

proliferation; EdU (red) and DAPI (blue) were stained.

SUPPLEMENTARY TABLE 1

In Vitro Cell Experiments supplementary materials
References
1. van Hooren L, Vaccaro A, Ramachandran M, Vazaios K, Libard S, van de Walle
T, et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs
responses to checkpoint blockade in glioma. Nat Commun (2021) 12(1):4127. doi:
10.1038/s41467-021-24347-7

2. Szopa W, Burley TA, Kramer-Marek G, Kaspera W. Diagnostic and therapeutic
biomarkers in glioblastoma: Current status and future perspectives. BioMed Res Int
(2017) 2017:8013575. doi: 10.1155/2017/8013575

3. Cheng Q, Tang A, Wang Z, Fang N, Zhang Z, Zhang L, et al. CALD1 modulates
gliomas progression via facilitating tumor angiogenesis. Cancers (Basel) (2021) 13
(11):2705. doi: 10.3390/cancers13112705

4. D'Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, et al.
Sonodynamic therapy for the treatment of intracranial gliomas. J Clin Med (2021) 10
(5):1101. doi: 10.3390/jcm10051101

5. Anghileri E, Di Ianni N, Paterra R, Langella T, Zhao J, Eoli M, et al. High tumor
mutational burden and T-cell activation are associated with long-term response to anti-
PD1 therapy in lynch syndrome recurrent glioblastoma patient. Cancer Immunol
Immunother (2021) 70(3):831–42. doi: 10.1007/s00262-020-02769-4

6. Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, et al. Role of exosomes in the
progression, diagnosis, and treatment of gliomas. Med Sci Monit (2020) 26:e924023.
doi: 10.12659/MSM.924023

7. Zhou F, Chen B. Acute myeloid leukemia carrying ETV6 mutations: Biologic and
c l in i c a l f e a tu re s . Hemato logy ( 2018) 23(9 ) : 608–12 . do i : 10 .1080 /
10245332.2018.1482051
8. Du H, Huang Y, Hou X, Yu X, Lin S, Wei X, et al. DT-13 inhibits cancer cell
migration by regulating NMIIA indirectly in the tumor microenvironment. Oncol Rep
(2016) 36(2):721–8. doi: 10.3892/or.2016.4890

9. Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic
reprogramming: The emerging role in tumor microenvironment remodeling and its
influence on cancer progression. Signal Transduct Target Ther (2020) 5(1):242. doi:
10.1038/s41392-020-00359-5

10. Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular
carcinoma cells as well as immune microenvironment: A review. Cell Prolif (2020) 53
(3):e12772. doi: 10.1111/cpr.12772

11. Wang W, Zou W. Amino acids and their transporters in T cell immunity and
cancer therapy. Mol Cell (2020) 80(3):384–95. doi: 10.1016/j.molcel.2020.09.006

12. Avolio R, Matassa DS, Criscuolo D, Landriscina M, Esposito F. Modulation of
mitochondrial metabolic reprogramming and oxidative stress to overcome
chemoresistance in cancer. Biomolecules (2020) 10(1):135. doi: 10.3390/biom10010135

13. Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism.
Metabolites (2021) 11(2):83. doi: 10.3390/metabo11020083

14. Alfarsi LH, El-Ansari R, Craze ML, Masisi BK, Mohammed OJ, Ellis IO, et al.
Co-Expression effect of SLC7A5/SLC3A2 to predict response to endocrine therapy in
oestrogen-Receptor-Positive breast cancer. Int J Mol Sci (2020) 21(4):1407. doi:
10.3390/ijms21041407

15. Wang L, Zhao X, Fu J, XuW, Yuan J. The role of tumour metabolism in cisplatin
resistance. Front Mol Biosci (2021) 8:691795. doi: 10.3389/fmolb.2021.691795
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1014378/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1014378/full#supplementary-material
https://doi.org/10.1038/s41467-021-24347-7
https://doi.org/10.1155/2017/8013575
https://doi.org/10.3390/cancers13112705
https://doi.org/10.3390/jcm10051101
https://doi.org/10.1007/s00262-020-02769-4
https://doi.org/10.12659/MSM.924023
https://doi.org/10.1080/10245332.2018.1482051
https://doi.org/10.1080/10245332.2018.1482051
https://doi.org/10.3892/or.2016.4890
https://doi.org/10.1038/s41392-020-00359-5
https://doi.org/10.1111/cpr.12772
https://doi.org/10.1016/j.molcel.2020.09.006
https://doi.org/10.3390/biom10010135
https://doi.org/10.3390/metabo11020083
https://doi.org/10.3390/ijms21041407
https://doi.org/10.3389/fmolb.2021.691795
https://doi.org/10.3389/fimmu.2023.1014378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lei et al. 10.3389/fimmu.2023.1014378
16. Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of amino acids in cancer. Front
Cell Dev Biol (2020) 8:603837. doi: 10.3389/fcell.2020.603837

17. Xu S, Tang L, Liu Z, Yang K, Cheng Q. Bioinformatic analyses identify a
prognostic autophagy-related long non-coding RNA signature associated with immune
microenvironment in diffuse gliomas. Front Cell Dev Biol (2021) 9:694633. doi:
10.3389/fcell.2021.694633

18. Zhang B, Chen Y, Shi X, Zhou M, Bao L, Hatanpaa KJ, et al. Regulation of
branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma.
Cell Mol Life Sci CMLS (2021) 78(1):195–206. doi: 10.1007/s00018-020-03483-1

19. Brożyna AA, Jóźwicki W, Jetten AM, Slominski AT. On the relationship
between VDR, RORa and RORg receptors expression and HIF1-a levels in human
melanomas. Exp Dermatol (2019) 28(9):1036–43.

20. Gao W, Li H, Liu Y, Zhang Y, Zhao H, Liu F. Long non−coding RNA FLVCR1
−AS1 promotes glioma cell proliferation and invasion by negatively regulating miR
−30b−3p. Mol Med Rep (2020) 22(2):723–32. doi: 10.3892/mmr.2020.11149

21. Zong Z, Song Y, Xue Y, Ruan X, Liu X, Yang C, et al. Knockdown of LncRNA
SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating
miR-499a-5p/LMX1A/NLRC5 pathway. J Cell Mol Med (2019) 23(8):5048–62. doi:
10.1111/jcmm.14362

22. Huang L, Jiang X, Wang Z, Zhong X, Tai S, Cui Y. Small nucleolar RNA host
gene 1: A new biomarker and therapeutic target for cancers. Pathol Res Pract (2018) 214
(9):1247–52. doi: 10.1016/j.prp.2018.07.033

23. Yin X, Yin Y, Dai L, Shen C, Chen N, Li J, et al. Integrated analysis of long non-
coding RNAs and mRNAs associated with malignant transformation of gastrointestinal
stromal tumors. Cell Death Dis (2021) 12(7):669. doi: 10.1038/s41419-021-03942-y

24. Li Y, Huo J, He J, Ma X. LncRNA MONC suppresses the malignant phenotype of
endometrial cancer stem cells and endometrial carcinoma cells by regulating theMiR-636/
GLCE axis. Cancer Cell Int (2021) 21(1):331. doi: 10.1186/s12935-020-01730-w

25. Han W, Hu P, Wu F, Wang S, Hu Y, Li S, et al. FHL3 links cell growth and self-
renewal by modulating SOX4 in glioma. Cell Death Differ (2019) 26(5):796–811. doi:
10.1038/s41418-018-0152-1

26. Hu Q, Huang K, Tao C, Zhu X. Protein disulphide isomerase can predict the
clinical prognostic value and contribute to malignant progression in gliomas. J Cell Mol
Med (2020) 24(10):5888–900. doi: 10.1111/jcmm.15264

27. Yang R, Zhang Z, Fu S, Hou T, Mu W, Liang S, et al. Charge and size dual
switchable nanocage for novel triple-interlocked combination therapy pattern.
Advanced Sci (Weinheim Baden-Wurttemberg Germany) (2020) 7(18):2000906. doi:
10.1002/advs.202000906

28. Sukumari-Ramesh S, Prasad N, Alleyne CH, Vender JR, Dhandapani KM.
Overexpression of Nrf2 attenuates carmustine-induced cytotoxicity in U87MG human
glioma cells. BMC cancer (2015) 15:118. doi: 10.1186/s12885-015-1134-z

29. Zhu Y, Jia J, Zhao G, Huang X, Wang L, Zhang Y, et al. Multi-responsive
nanofibers composite gel for local drug delivery to inhibit recurrence of glioma after
operation. J nanobiotechnol (2021) 19(1):198. doi: 10.1186/s12951-021-00943-z

30. Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic remodeling in glioma immune
microenvironment: Intercellular interactions distinct from peripheral tumors. Front
Cell Dev Biol (2021) 9:693215. doi: 10.3389/fcell.2021.693215

31. Di Ianni N, Musio S, Pellegatta S. Altered metabolism in glioblastoma: Myeloid-
derived suppressor cell (MDSC) fitness and tumor-infiltrating lymphocyte (TIL)
dysfunction. Int J Mol Sci (2021) 22(9):4460. doi: 10.3390/ijms22094460

32. Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome response mediated
by cold stress in lotus japonicus. Front Plant sci (2016) 7:374. doi: 10.3389/
fpls.2016.00374

33. Way GP, Greene CS. Bayesian Deep learning for single-cell analysis. Nat
Methods (2018) 15(12):1009–10. doi: 10.1038/s41592-018-0230-9
Frontiers in Immunology 13278
34. Jiang H, Wu FR, Liu J, Qin XJ, Jiang NN, Li WP. Effect of astragalosides on long
non-coding RNA expression profiles in rats with adjuvant-induced arthritis. Int J Mol
Med (2019) 44(4):1344–56. doi: 10.3892/ijmm.2019.4281

35. Song Q, Wang H, Bao J, Pullikuth AK, Li KC, Miller LD, et al. Systems biology
approach to studying proliferation-dependent prognostic subnetworks in breast cancer.
Sci Rep (2015) 5:12981. doi: 10.1038/srep12981

36. Song J, Xu Q, Zhang H, Yin X, Zhu C, Zhao K, et al. Five key lncRNAs
considered as prognostic targets for predicting pancreatic ductal adenocarcinoma. J Cell
Biochem (2018) 119(6):4559–69. doi: 10.1002/jcb.26598

37. Chen D, Xie S, Wu Y, Cui Y, Cai Y, Lan L, et al. Reduction of bladder cancer
chemosensitivity induced by the effect of HOXA-AS3 as a ceRNA for miR-455-5p that
upregulates Notch1. Front Oncol (2020) 10:572672. doi: 10.3389/fonc.2020.572672

38. Wu F, Zhang C, Cai J, Yang F, Liang T, Yan X, et al. Upregulation of long
noncoding RNAHOXA-AS3 promotes tumor progression and predicts poor prognosis
in glioma. Oncotarget (2017) 8(32):53110–23. doi: 10.18632/oncotarget.18162

39. GaoW, Qi CQ, FengMG, Yang P, Liu L, Sun SH. SOX2-induced upregulation of
lncRNA LINC01561 promotes non-small-cell lung carcinoma progression by sponging
miR-760 to modulate SHCBP1 expression. J Cell Physiol (2020) 235(10):6684–96. doi:
10.1002/jcp.29564

40. Shi Y, Li Y, Yan C, Su H, Ying K. Identification of key genes and evaluation of
clinical outcomes in lung squamous cell carcinoma using integrated bioinformatics
analysis. Oncol Lett (2019) 18(6):5859–70. doi: 10.3892/ol.2019.10933

41. Jiang R, Zhao C, Gao B, Xu J, Song W, Shi P. Mixomics analysis of breast cancer:
Long non-coding RNA linc01561 acts as ceRNA involved in the progression of breast
cancer. Int J Biochem Cell Biol (2018) 102:1–9. doi: 10.1016/j.biocel.2018.06.003

42. Du W, Chen W, Shu Z, Xiang D, Bi K, Lu Y, et al. Identification of prognostic
biomarkers of hepatocellular carcinoma via long noncoding RNA expression and copy
number alterations. Epigenomics (2020) 12(15):1303–15. doi: 10.2217/epi-2019-0385

43. Cheng Z, Wang G, Zhu W, Luo C, Guo Z. LEF1-AS1 accelerates tumorigenesis
in glioma by sponging miR-489-3p to enhance HIGD1A. Cell Death Dis (2020) 11
(8):690. doi: 10.1038/s41419-020-02823-0

44. Ye J, Zhang J, Lv Y, Wei J, Shen X, Huang J, et al. Integrated analysis of a
competing endogenous RNA network reveals key long noncoding RNAs as potential
prognostic biomarkers for hepatocellular carcinoma. J Cell Biochem (2019) 120
(8):13810–25. doi: 10.1002/jcb.28655

45. Ji Z, ZhouW,HouW, Ji H. Single-cell ATAC-seq signal extraction and enhancement
with SCATE. Genome Biol (2020) 21(1):161. doi: 10.1186/s13059-020-02075-3

46. Song Q, Zhu X, Jin L, Chen M, Zhang W, Su J. SMGR: A joint statistical method
for integrative analysis of single-cell multi-omics data. NAR Genomics Bioinf (2022) 4
(3):lqac056. doi: 10.1093/nargab/lqac056

47. KlemmF,Maas RR, BowmanRL,KorneteM, SoukupK,Nassiri S, et al. Interrogation
of the microenvironmental landscape in brain tumors reveals disease-specific alterations of
immune cells. Cell (2020) 181(7):1643–60.e17. doi: 10.1016/j.cell.2020.05.007

48. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted
therapy: Insight into future of molecular approaches. Mol cancer (2022) 21(1):39. doi:
10.1186/s12943-022-01513-z

49. Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson
DS, et al. Immune suppression in gliomas. J neuro-oncol (2021) 151(1):3–12. doi:
10.1007/s11060-020-03483-y

50. Wang L, Hu B, Pan K, Chang J, Zhao X, Chen L, et al. SYVN1-MTR4-MAT2A
signaling axis regulates methionine metabolism in glioma cells. Front Cell Dev Biol
(2021) 9:633259. doi: 10.3389/fcell.2021.633259

51. Zhang H, Wang Y, Li J, Chen H, He X, Zhang H, et al. Biosynthetic energy cost
for amino acids decreases in cancer evolution. Nat Commun (2018) 9(1):4124. doi:
10.1038/s41467-018-06461-1
frontiersin.org

https://doi.org/10.3389/fcell.2020.603837
https://doi.org/10.3389/fcell.2021.694633
https://doi.org/10.1007/s00018-020-03483-1
https://doi.org/10.3892/mmr.2020.11149
https://doi.org/10.1111/jcmm.14362
https://doi.org/10.1016/j.prp.2018.07.033
https://doi.org/10.1038/s41419-021-03942-y
https://doi.org/10.1186/s12935-020-01730-w
https://doi.org/10.1038/s41418-018-0152-1
https://doi.org/10.1111/jcmm.15264
https://doi.org/10.1002/advs.202000906
https://doi.org/10.1186/s12885-015-1134-z
https://doi.org/10.1186/s12951-021-00943-z
https://doi.org/10.3389/fcell.2021.693215
https://doi.org/10.3390/ijms22094460
https://doi.org/10.3389/fpls.2016.00374
https://doi.org/10.3389/fpls.2016.00374
https://doi.org/10.1038/s41592-018-0230-9
https://doi.org/10.3892/ijmm.2019.4281
https://doi.org/10.1038/srep12981
https://doi.org/10.1002/jcb.26598
https://doi.org/10.3389/fonc.2020.572672
https://doi.org/10.18632/oncotarget.18162
https://doi.org/10.1002/jcp.29564
https://doi.org/10.3892/ol.2019.10933
https://doi.org/10.1016/j.biocel.2018.06.003
https://doi.org/10.2217/epi-2019-0385
https://doi.org/10.1038/s41419-020-02823-0
https://doi.org/10.1002/jcb.28655
https://doi.org/10.1186/s13059-020-02075-3
https://doi.org/10.1093/nargab/lqac056
https://doi.org/10.1016/j.cell.2020.05.007
https://doi.org/10.1186/s12943-022-01513-z
https://doi.org/10.1007/s11060-020-03483-y
https://doi.org/10.3389/fcell.2021.633259
https://doi.org/10.1038/s41467-018-06461-1
https://doi.org/10.3389/fimmu.2023.1014378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ping Zheng,
The University of Melbourne, Australia

REVIEWED BY

Noha Mousaad Elemam,
University of Sharjah, United Arab Emirates
Siriporn Jitkaew,
Chulalongkorn University, Thailand
Kai Wang,
Amgen, United States

*CORRESPONDENCE

Shuyun Zhang

13214501198@163.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 11 January 2023
ACCEPTED 29 March 2023

PUBLISHED 26 April 2023

CITATION

Dong J, Zhang R, Xia Y, Jiang X, Zhou K,
Li J, Guo M, Cao X and Zhang S (2023) The
necroptosis related gene LGALS3 can be
used as a biomarker for the adverse
progression from chronic HBV infection to
HCC.
Front. Immunol. 14:1142319.
doi: 10.3389/fimmu.2023.1142319

COPYRIGHT

© 2023 Dong, Zhang, Xia, Jiang, Zhou, Li,
Guo, Cao and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 26 April 2023

DOI 10.3389/fimmu.2023.1142319
The necroptosis related gene
LGALS3 can be used as a
biomarker for the adverse
progression from chronic
HBV infection to HCC

Jianming Dong1†, Rongzheng Zhang1†, Yan Xia1†, Xu Jiang2,
Kun Zhou1,3, Jiaqi Li 1, Mengrui Guo1,
Xinyang Cao1 and Shuyun Zhang1*

1Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2Department of Parasitology, Harbin Medical University, Harbin, China, 3Beidahuang
Industry Group General Hospital Department of Clinical Laboratory, Harbin, China
The number of patients with hepatocellular carcinoma (HCC) caused by hepatitis

B virus (HBV) infection remains large, despite the remarkable effectiveness of

antiviral drugs and vaccines for HBV in preventing and treating HBV infection.

Necroptosis is closely related to the occurrence of inflammation, clearance of

viral infection, and tumor progression. Presently, little is known about the

changes in necroptosis-related genes in the progression from chronic HBV

infection (CHI) to HBV-related hepatic fibrosis (HBV-HF) and HBV-related

hepatocellular carcinoma (HBV-HCC). In this study, Cox regression analysis

was performed using GSE14520 chip data and a necroptosis-related genes

survival prognosis score (NRGPS) was established for HBV-HCC patients.

NRGPS was constructed using three model genes (G6PD, PINK1 and LGALS3),

and verified by data sequencing in the TCGA database. The HBV-HCC cell model

was established by transfection of pAAV/HBV1.2C2, constructed by homologous

recombination, into HUH7 and HEPG2 cells. The expression levels of G6PD,

PINK1, and LGALS3 were detected using RT-qPCR. We further analyzed the

expression of the model genes in GSE83148, GSE84044, and GSE14520 and

found that LGALS3 was consistently highly expressed in CHI, high fibrosis score

and high NRGPS. In addition, immune microenvironment analysis showed that

LGALS3 was not only associated with the infiltration of regulatory T cells in the

immune microenvironment but also with expression of CCL20 and CCR6. The

expression levels of model genes, FOXP3 and CCR6, were analyzed using RT-

qPCR in peripheral blood mononuclear cells of 31 hepatitis B surface antibody

positive patients, 30 CHI, 21 HBV-HF, and 20 HBV-HCC. In further cell-model

experiments, we analyzed the expression of CCL20 by RT-qPCR and the changes

in cell proliferation and migration by CCK8 and transwell assays, respectively, in

HBV-HCC cell models after LGALS3 knockdown. The findings of this study

suggest that LGALS3 could be a biomarker for adverse progression following
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chronic HBV infection and may also be involved in the regulation of the immune

microenvironment, making it a potential therapeutic target.
KEYWORDS

necroptosis related gene, HBV infection, hepatocellular carcinoma, immune
microenvironment, prognosis
1 Introduction

Hepatitis B virus (HBV) infection is a worldwide epidemic, with

an estimated 257 million patients with chronic hepatitis B

worldwide. Furthermore, about 887,000 people die each year from

diseases related to HBV infection, such as HBV-related hepatic

fibrosis (HBV-HF) and HBV-related hepatocellular carcinoma

(HBV-HCC). In China, 77% of hepatic fibrosis and 84% of

hepatocellular carcinoma cases are caused by HBV (1). During

chronic HBV infection (CHI) progression, the activity of the

necroptotic pathway in diseased liver tissues is often enhanced (2).

Necroptosis is an important means of interacting with

pathogenic microorganisms, in addition to the immune system,

and it is mainly composed of receptor-interacting protein kinase 1

(RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed

lineage kinase domain-like (MLKL) protein. The changes in the

conformation of the MLKL protein and translocation to the cell

membrane, as well as the flow of Na+, Ca2+, and other cations

increases the intracellular osmotic pressure. Furthermore, it can

also directly form pore structures on the cell membrane, leading to

cell destruction and release of a large number of cell contents. The

leaked cell contents also form damage-related molecular patterns

that allow for a massive invasion of surrounding immune cells,

triggering intense inflammation (3, 4). Infected cells are eliminated

through necroptosis and virus transmission is limited by the release

of inflammatory mediators that promote the activation of innate

and adaptive immunity (5). In this study, we used the Gene

Expression Omnibus (GEO) database to develop prognostic

markers of HBV-HCC composed of three necroptosis-related

genes (NRGs), including LGALS3, G6PD, and PINK1. The

relative-expression levels of model genes mRNA in HEPG2,

HUH7, LX2, and peripheral blood mononuclear cells (PBMCs)

were measured by RT-qPCR. Finally, the cancer genome atlas

(TCGA) database was analyzed to verify the necroptosis-related

genes survival prognosis score (NRGPS). LGALS3, a member of the

galactoagglutinin family, is a vital gene in the regulation of the liver

immune microenvironment (6, 7) and is significantly associated

with increased risk of liver failure, cirrhosis, chronic active hepatitis

B, and shorter survival time for hepatocellular carcinoma (HCC) (8,

9). Analysis of the relationship between LGALS3 and adverse

disease progression after persistent HBV infection and its

immune microenvironment may help understand the role of

necroptosis in chronic HBV infection, which is of great

significance for the prevention and treatment of adverse disease
02280
progression. Therefore, this study aimed to analyze the relationship

between LGALS3 and adverse disease progression after persistent

HBV infection and its immune microenvironment.
2 Materials and methods

Figure 1, a flowchart, illustrates this study’s design and procedure.
2.1 Acquisition of data from patients with
HBV infection

We downloaded the following gene expression profiles from the

GEO database: GSE83148, GSE84044, and GSE14520. As the

GSE14520 dataset contained two different batches of expression

profile chip datasets, we selected the Affymetrix HT Human

Genome U133A Array dataset, which contained the majority of

patients, to avoid batch processing effects. Sequencing data from 89

HBV-HCC were obtained from TCGA. Supplementary Table 1

shows the specific clinical information.
2.2 Identification of differentially
expressed NRGs

Overall , 583 NRGs were obtained from GeneCards

(www.genecards.org/) and their expression levels were obtained

by intersection with gene expression data from GSE14520, using the

“limma” R package, and with | log2 fold change (FC) | > 1 and

adjusted p < 0.05 as filter conditions. Finally, differentially expressed

necroptosis-related genes (DENRGs) were obtained from the tumor

and paracancerous tissues. The “pheatmap,” “ggpubr,” “ggrepel,”

“dplyr,” “ggplot2,” and “rcircos” R packages were used to generate

heat maps, volcano maps, and chromosome pattern maps of

DENRGs. Gene ontology (GO) analysis was performed using the

“clusterprofiler,” “enrichment plot,” and “ggplot2” R packages.
2.3 Construction and validation of
the NRGPS

Follow-up time ≥ 30 days was used as inclusion criteria. The

“caret” R package was used to divide the 212 HBV-HCC patients
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randomly into the training and test sets in a ratio of 6:4. Table 1

presents the specific clinical information for the training and test

sets. Univariable Cox regression analysis was performed for 24

DENRGs in the training set using “survival” and “survminer” R

packages to screen for DENRGs associated with prognosis in the
Frontiers in Immunology 03281
training set. Subsequently, based on the survival information of the

samples, including survival time and survival state, combined with

the expression values of prognostic related genes in each sample,

through multivariable Cox regression analysis and stepwise

regression algorithm, the gene combination with the greatest
TABLE 1 There was no significant difference between the two groups of clinical phenotypes.

Parameters Training set Test set P value

N 129 83

Age >55 years (%) 29.46 32.53 0.636

Gender, male (%) 88.37 83.13 0.279

TNM stage 0.236

I 53 36

II 46 30

III 30 17

OS time, median (IQR) 4.33 (1.5–4.82) 4.22 (1.48–4.71) 0.482
fron
OS, overall survival; IQR, interquartile range.
FIGURE 1

Flowchart of this study.
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impact on survival was found, combined with the corresponding

regression coefficient to construct NRGPS, the calculation formula

is as follows:

NRGPS =oN
i=1(Exp(genei)� Coef (genei))

Kaplan–Meier curve analysis was performed using “survival”

and “survminer” R packages to determine the survival rate of high

and low NRGPS groups. Time-dependent receiver operating

characteristic curve analysis was performed using “survivalROC”

R package to evaluate the prognostic value of survival indicators.

Moreover, “Rtsne” package principal component analysis was used

to reduce the dimensionality of the multivariable data in the

NRGPS, and the data was visualized. Univariable and

multivariable Cox regression analyses were conducted to evaluate

the independent prognostic value of the NRGPS. Additionally,

“c2.cp.kegg.v7.5.1. symbols.gmt” was used as the reference file,

and Gene Set Enrichment Analysis (GSEA) was performed using

“limma,” “GSEABase,” “GSVA”, and “pheatmap”. Finally, the

potential biological processes and risk paths differing between the

high and low NRGPS in the GSE14520 cohort were visualized. A

nomogram based on NRGPS was developed using the “rms” R

package to predict the prognosis of patients with HBV-HCC. The

TCGA dataset was used as an external validation of NRGPS.
2.4 Prognostic analysis of existing
prognostic models of necroptosis-related
genes in HCC

We collected several studies (10–15) on the construction of

prognostic models of HCC patients using NRGs, and conducted a

Kaplan–Meier curve analysis of 89 patients with HBV-HCC in the

TCGA database using the prognostic models in the literature to

determine whether the prognostic models in the literature are

suitable for HBV-HCC.
2.5 Drug sensitivity analysis

Differences in drug sensitivity between high and low NRGPS

groups were analyzed using “ggplot2” and “pRRophetic” R packages

in the TCGA cohort. A Ridge regression model was constructed

using the pRRophetic algorithm based on the genomics of drug

sensitivity in cancer cell line and TCGA gene expression profiles to

calculate the difference in IC50 of chemotherapy drugs between the

high and low NRGPS groups. Additionally, we downloaded the

drug structures using the PubChem database (https://

pubchem.ncbi.nlm.nih.gov/).
2.6 Immune cell infiltration analysis and
functional analysis

In GSE83148, GSE84044, GSE14520, and TCGA cohorts, single-

sample gene set enrichment analysis (ssGSEA) was conducted using
Frontiers in Immunology 04282
the “GSVA” R package to analyze related immune cells and immune

pathways in the microenvironment and predict the degree of immune

cell infiltration. Furthermore, “reshape2,” “limma,” “tidyverse,”

“corrplot,” and “ggplot2” R packages were used to analyze and map

the correlation of modeling genes with chemokine receptors and

ligands, immune cellsand function.
2.7 Clinical specimen collection

From February 2022 to August 2022, 1 mL of EDTA

anticoagulant peripheral blood was collected from 71 outpatients at

the Second Affiliated Hospital of Harbin Medical University as an

experimental specimen, including 30 cases of CHI, 21 cases of HBV-

HF, and 20 cases of HBV-HCC. The EDTA anticoagulant peripheral

blood of 31 healthy patients with hepatitis B surface antibody positive

(HBsAb+) was used as the control group. The inclusion criteria are

shown in Supplementary Table 2. The clinical information is shown

in Supplementary Table 3. Human whole blood mononuclear cell

isolation solution was used to extract mononuclear cells and, after

addition of 1 mL Seven RNAkey™ Reagent (SM129-02, Seven,

China), samples were frozen at -80°C and stored until further use.
2.8 Construction of HBV-HCC cell model

BasedonGenBank: JQ688404.1Whole genomeofHBVC2subtype

and 1.2 fold gene sequence of pAAV/HBV1.2 plasmid constructed by

Huang et al. (16): NT140-NT3182/1-NT1987 using pAAV-MCS as

carrier, pAAV/HBV1.2C2 recombinants were constructed by gene

synthesis and homologous recombination. The process was completed

by Beijing Liuhe Huada Genomics Technology Co., LTD. pAAV-MCS

carrierwas purchased fromHarbin Suit BiotechnologyCo., Ltd.Ahigh-

purity Midiprep Kit (ZP104-1, Zoman, China) was used to extract the

plasmid. Moreover, HEPG2 and HUH7 cells were purchased from

Wuhan Procell Life Technology Co., Ltd.; LX-2 cells were purchased

from Shanghai Gaining Biotechnology Co. Ltd. Additionally, HEPG2,

HUH7, and LX-2 were cultured in Dulbecco’s modified Eagle medium

(DMEM) high-glucose medium (D6429, Sigma, USA) with 10% fetal

bovine serum (11011-8611, Every Green, China) and 5% CO2 at 37°C.

The pAAV/HBV1.2C2 and pAAV-MCS empty vectorswere transfected

into HEPG2 and HUH7 cells using a liposome transfection reagent

(C0533, Beyotime, China), and co-transfected with the pmaxGFP

plasmid. HUH7# and HEPG2# denote the HUH7 and HEPG2 cell

lines after transfection with pAAV/HBV1.2C2. The supernatants were

collected after 48 h. HBsAg expression in the supernatant of the cells

transfected with pAAV/HBV1.2C2 was detected using a HBsAg

diagnostic kit (S10980090, Wantai, China).
2.9 LGALS3 gene knockdown

pAAV/HBV1.2 or pAAV-MCS were transfected using

Lipo8000™ transfection reagent (C0533, Beyotime, China) into

HEPG2 and HUH7 cells in six-well plates. After 24 h, the
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transfection medium was replaced with the culture medium.

Lipo8000™ transfection reagent was used to transfect siRNA with

LGALS3 knockdown (si-LGALS3) or negative control (si-NC)

(General, Anhui, China) into HEPG2# and HUH7#. After 48h,

supernatants and cells were collected. Cells were added to 0.5 mL

Seven RNAkey™ Reagent (SM129-02, Seven, China), frozen at -80°C,

and stored until further use. siRNA sequences are listed in

Supplementary Table 4.
2.10 RT-qPCR

Supplementary Table 4 presents the Primer sequences. Total

RNA was extracted from cells using Seven RNAkey™ Reagent

(SM129-02, Seven, China), and cDNA was synthesized using a

reverse transcription kit (SM131-02A, Seven, China) according to

the manufacturer’s instructions. The SYBR Green Master Mix kit

(SM133-02, Seven, China) and an RT-qPCR instrument (SLAN-

96p, Shanghai Hongshi, China) were used for RT-qPCR.

Additionally, GAPDH was used as an internal control, and

quantification was based on the 2-DDCt method.
2.11 CCK8 assay

The CCK8 assay kit (SC119-01, Seven, China) was used to detect

the proliferation ofHBV-HCC cells after si-LGALS3 transfection. Cells

(1× 105 cells/well) were cultured withDMEMmedium containing 10%

fetal bovine serum. Additionally, after culture at 37°C for 24 h, 10 mL
CCK8was added to eachwell. Subsequently, cells were incubated at 37°

C for 1 h, and absorbance was measured at 450 nm.
2.12 Transwell assay

Transwell chambers were used to determine the migration

efficiency of the HBV-HCC cells after si-LGALS3 transfection.

Cells (2 × 104 cells/well) were added to the upper chamber with

serum-free DMEMmedium (aperture 8.0 mm), with lower chamber

containing DMEM supplemented with 20% fetal bovine serum.

After culturing at 37°C for 24 h, the upper chamber cells were wiped

with cotton swabs, the cells that passed through the membrane were

fixed with 4% paraformaldehyde, stained with 0.1% crystal violet,

and then washed with PBS thrice. Finally, the migrating cells in five

random fields were counted using an optical microscope.
2.13 Statistical analysis

R (version 4.1.2), GraphPad Prism (version 8.0) and SPSS statistical

software (version 25.0.0) were used for statistical analysis. Mann–

Whitney U test was used for comparison between the two groups.

Kruskal-Wallis H test was used to compare multiple groups. Spearman

correlation statistics was used to test the association. p < 0.05 was
Frontiers in Immunology 05283
considered statistically significant, with the symbols ***, **, *, and ns

representing p < 0.001, p < 0.01, p < 0.05, and not significant, respectively.
3 Results

3.1 Identification and functional
enrichment analysis of DENRGs

In the GSE14520 dataset, we identified 24DENRGs in tumor and

adjacent non-tumor tissues. The expression levels of C9, C7, EGR1,

ID1, C6, ZFP36, TXNIP, CCL2, PINK1, andAHSGwere significantly

higher in adjacent non-tumor tissues than those in tumor tissues. The

expression levels of CDC7, G6PD, CCT6A, BAG2, IRAK1, LGALS3,

AURKA, VIL1, TP53I3, CCT3, SNRPE, NQO1, BUB1B, and

IGF2BP3 in normal tissues were significantly lower than those in

tumor tissues (Figures 2A, B). Figure 2C shows the chromosomal

localization of the 24 DENRGs. To explore the role of DENRGs in

HBV-HCC, we performed gene ontology pathway enrichment

analysis on the 24 DENRGs. Particularly, gene ontology analysis

was used to determine the 24 DENRGs enrichment pathways in

HBV-HCC in terms of biological process, cellular component, and

molecular function. The results showed positive regulation of cellular

protein localization, protein stability, neuronal death, and enhanced

protein serine kinase activity (Figure 2D).
3.2 Development and validation of the
NRGPS system

The prognostic value of the 24 candidate DENRGs was

investigated by conducting univariable Cox regression analysis on

129 patients with HBV-HCC in the training set. The results showed

that CCT3, CCT6A, VIL1, PINK1, LGALS3, and G6PD significantly

correlated with HBV-HCC prognosis (Figures 3A–G). Multivariable

Cox regression analysis was performed for the above mentioned six

genes, and the NRGPS estimated using PINK1, LGALS3, and G6PD

was obtained according to the following formula: NRGPS = (-0.4025×

PINK1 expression)+ (0.2081× LGALS3 expression)+ (0.2371× G6PD

expression). Our results revealed that higher NRGPS scores were

associated with higher risk, higher mortality, and shorter survival

time in the training, test, and TCGA cohorts (Figures 4A–F). The heat

map shows that G6PD and LGALS3 were highly expressed in the high

NRGPS group, and PINK1 was highly expressed in the low NRGPS

group (Figures 4G–I). In the principal component analysis, patients

with different NRGPS scores could be clearly divided into two clusters

(Figures 4J–L). Kaplan–Meier curves showed that the overall survival

of the high-NRGPS group was shorter than that of the low-NRGPS

group (Figures 4M–O). In the time-dependent receiver operating

characteristic analysis, the areas under the 1-year curve of the

training, test, and TCGA cohorts were 0.637, 0.687, and 0.696,

respectively. Additionally, the 2-year area under the curve were

0.699, 0.686, and 0.683, respectively, and those of the 3-year area

under the curve were 0.695, 0.659, and 0.685, respectively (Figures 5A–
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C). These results indicated that the NRGPS has high specificity and

sensitivity for predicting the prognosis of HBV-HCC.
3.3 Independent prognostic analysis of
NRGPS and GSEA

This study evaluated whether NRGPS can be an independent

prognostic indicator. Univariable and multivariable Cox regression

analyses were performed to determine the associations between

prognosis and age, gender, TNM stage, and NRGPS. Similarly, the

correlation between age, gender, T stage, and NRGPS was analyzed in

TCGA cohort. Univariable Cox regression analysis showed that

NRGPS was correlated with patient prognosis in the GSE14520 and

TCGA cohorts (Figures 5D–F). Multivariable Cox regression analysis

confirmed that the NRGPS was an independent predictor of survival

after adjusting for other clinical confounding factors in the GSE14520

and TCGA cohorts (Figures 5G–I). The Kyoto Encyclopedia of Genes

and Genomes sets from the high- and low-NRGPS groups were used

for GSEA to investigate the differences in biological characteristics

between the two groups. High NRGPS enriched pathways included
Frontiers in Immunology 06284
“cell cycle,” “spliceosome,” “ecm receptor interaction,” “DNA

replication,” and “ribosome.” The enriched pathways in the low

NRGPS group were “metabolism of cytochrome P450,” “metabolism

of cytochrome P450 xenogeneic organisms,” “retinol metabolism,”

“complement,” “steroid hormone biosynthesis,” “valine leucine,” and

“isoleucine degradation” (Figures 6A, B). These results suggest that

high NRGPS expression is associated with tumor progression and

metastasis. We combined the NRGPS with clinical variables to

construct a nomogram to be more suitable for clinical application.

Receiver operating characteristic curves showed that the nomogram

had a good predictive performance for the 1-, 1.5-, and 2-year overall

survival of patients with HBV-HCC (Figures 6C, D).
3.4 Applicability of the HCC model in
HBV-HCC data

The results showed that the prognostic model for HCC

constructed using the available literature did not predict the

survival time of patients with HBV-HCC (Figure S1). In contrast,

the NRGPS had a better predictive ability.
B

C D

A

FIGURE 2

Identification and functional enrichment analysis of DENRGs. (A) The heatmap of 24 DENRGs in tumor and normal tissues. (B) The volcano plots of
24 DENRGs in tumor and normal tissues. (C) Chromosome schema maps of 24 DENRGs. (D) The GO enrichment analysis of the DENRGs.
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3.5 Drug sensitivity analysis

The differences in drug sensitivity between high and low

NRGPS and the two- and three-dimensional structures of the

drugs are shown in Figure S2.

3.6 Analysis of immune microenvironment

Using the ssGSEA algorithm, the infiltrating states of 16 types of

immune cells and the activities of 13 types of immune-related
Frontiers in Immunology 07285
functions in the GSE83148, GSE84044, GSE14520, and TCGA

cohorts were studied. The results showed that regulatory T cells

(Tregs), activated dendritic cells, immature dendritic cells,

macrophages, Th2 cells, and neutrophils were significantly

increased in patients with chronic HBV infection, and high

fibrosis score and NRGPS were observed in the GSE83148,

GSE84044, and GSE14520 cohorts (Figures 7A–C). The same

trend was observed for immune checkpoints and cytokine-

cytokine receptors (CCR) (Figures 7D–F). High expression of

Tregs, macrophages, and Th2 cells are often associated with a
B

C D

E F

G

A

FIGURE 3

Development of the NRGPS System. (A) The forest map of 6 prognostic genes were obtained by Univariable Cox regression analysis. (B–G) Kaplan-
Meier curve of 6 prognostic genes.
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poor tumor prognosis. We also analyzed the relationship between

infiltrating immune cells and the immune function of the three

model genes in the immune microenvironment of the GSE83148,

GSE84044, GSE14520, and TCGA cohorts. The results showed that

LGALS3 was more associated with increased infiltration of immune

cells and expression of immune pathway compared to G6PD

and PINK1.
Frontiers in Immunology 08286
Furthermore, LGALS3 expression was significantly and

positively correlated with the expression of CCR and immune

checkpoint genes, as well as Treg cell infiltration (Figures 8A–C).

As important components of the CCR, chemokines and chemokine

receptors regulate cell migration, adhesion, localization, and

intercellular interactions and are highly involved in tumor

development. Among them, CCR2-CCL2, CXCR4-CXCL12, and
B C

D E F

G H I

J K L

M N O

A

FIGURE 4

Validation of the NRGPS System. (A–C) The graphs of Training set, Test set and TCGA cohort. (D–F) The scatter plots of Training, Test set and TCGA
cohort. (G–I) The expression of 3 DENRGs in high and low NRGPS. (J–L) PCA analysis in Training set, Test set and TCGA cohort. (M–O) Kaplan-
meier survival analysis in Training set, Test set and TCGA cohort. NRGPS, necroptosis-related gene prognostic score; DENRGs, differentially
expressed necroptosis-related genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1142319
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2023.1142319
CCR6-CCL20, three pairs of chemokines and their receptors,

contribute to forming the inhibitory immune microenvironment

and have an obvious effect on promoting tumor progression.

Further analysis of the correlation between LGALS3 and

chemokines and their receptors showed that LGALS3 expression

was significantly and positively correlated with the expression of

CCR6 and CCL20 in the CHI, HBV-HF, and HBV-HCC

microenvironments (Figures 8D–F). Figure S3 shows analysis of

the TCGA cohort immune microenvironment.
3.7 Changes in model genes with
disease progression

LGALS3 and G6PD were highly expressed in the CHI, S2-S4,

and tumor groups, and PINK1 was highly expressed in the normal,

S0-S1 and paracancerous tissues (Figures 9A–C). Among the

PBMCs, PINK1 was the most expressed in the normal group

(Figure 9D). Compared with the normal group, LGALS3 and
Frontiers in Immunology 09287
G6PD were significantly upregulated in all stages of HBV

infection (Figures 9E, F).
3.8 Expression of CCR6 and FOXP3 in
PBMCs in different patients

The expression of CCR6 and FOXP3 genes was significantly

increased after HBV infection (Figures S4A–B); however, there was

no significant correlation with the expression of LGALS3 in PBMCs

(Figures S4C–H).
3.9 Analysis of transfection efficiency

The transfection efficiency of HEPG2 was 61.38 ± 2.44% and

that of HUH7 was 81.85 ± 2.68% (Figure S5A). ELISA results

showed that HEPG2 and HUH7 cells produced HBsAg after

transfection with pAAV/HBV1.2C2 (Figure S5B).
B C

D E F

G H I

A

FIGURE 5

Validation of the NRGPS System. (A–C) The ROC curve of Training set, Test set and TCGA cohort verifies the prediction ability of this prediction
model. (D–I) The Univariable and Multivariable COX regression analyses results of NRGPS.
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3.10 Verification of gene expression

qRT-PCR was used to detect the expression of each gene in the

cells. After transfection with pAAV-MCV and pAAV/HBV1.2C2,

G6PD expression in HEPG2 was significantly increased, whereas

PINK1 and LGALS3 expression showed no significant changes

(Figures 10A–C). Compared to pAAV-MCV plasmid transfection,

the expression of the G6PD gene was increased, and PINK1 gene

expression was decreased in HUH7 cells transfected with pAAV/

HBV1.2C2; however, there was no significant difference in LGALS3

expression (Figures 10D–F). The expression level of the G6PD gene

in HEPG2# and HUH7# was significantly higher than that in LX2

(Figure 10G), the expression level of the PINK1 gene in LX2 was

significantly higher than that in HEPG2# and HUH7# (Figure 10H),

and the expression level of the LGALS3 gene in HEPG2# was

significantly higher than that in LX2 (Figure 10I).
3.11 Analysis of in vitro LGALS3 function

After LGALS3 knockdown in the HEPG2# and HUH7# cell

lines, LGALS3 gene expression was downregulated and CCL20
Frontiers in Immunology 10288
expression was also significantly decreased (Figures 11A, B).

Moreover, the results of the CCK8 cell proliferation assay showed

that the proliferation of cancer cells decreased significantly after

LGALS3 knockdown (Figure 11C), and the results of the transwell

assay showed that LGALS3 knockdown significantly affected the

migratory ability of cancer cells (Figures 11D, E).
4 Discussion

NRGs play a vital role in the development of HCC, and many

studies have used them to establish risk-prediction models for

prognosis prediction of patients with HCC (10–15). However,

currently established prognostic models using NRGs for HCC are

not applicable to patients with HBV-HCC, and the role of NRGs in

the adverse progression of chronic HBV infection remains unclear.

In this study, we systematically analyzed the expression level and

correlation of NRGs in HBV-HCC and paracarcinoma tissues.

Gene ontology analysis revealed 24 DENRGs that were enriched

for pathways related to the proliferation and migration of tumor

cells (17, 18). In addition to HBV-HCC tissues, LGALS3 expression

was also upregulated in CHI tissues and tissues with high fibrosis
B

C D

A

FIGURE 6

GSEA analysis and Nomogram. (A) GSEA in the high-NRGPS group. (B) GSEA in the low-NGPS group. (C) Nomogram. (D) The ROC curve of Nomogram.
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scores. Subsequently, univariable and multivariable Cox regression

analyses established a prognostic model comprising G6PD, PINK1,

and LGALS3. Univariable and multivariable Cox, Kaplan–Meier,

and receiver operating characteristic curve analyses all indicated

that the NRGPS had good predictive performance and could be

used as an independent prognostic indicator for patients with HBV-

HCC. The gene expression and predictive power of the model were

verified in our constructed HBV-HCC cell model and

TCGA dataset.
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LGALS3, also known as Galectin-3, encodes the carbohydrate-

binding protein Galectin-3, which is a member of the

galactoagglutinin family. It is mainly localized in the cytoplasm

but is also expressed in the nucleus, cell surface, and extracellular

(19). Galectin-3 expression in peripheral blood and liver is

associated with the progression of chronic and acute liver failure,

liver fibrosis, HCC, and other liver diseases (20–22). Moreover, our

experimental data revealed persistent upregulation of the LGALS3

gene in the HBV-infected group. It has been suggested that the
B

C D

E F

A

FIGURE 7

Immune microenvironment analysis. The boxplot of 16 immune cell differences in (A) GSE83148, (B) GSE84044, (C) GSE14520. The boxplot of 13
immune signaling pathway differences in (D) GSE83148, (E) GSE84044, (F) GSE14520. *P <0.05, **P <0.01, ***P < 0.001, ns, not significant
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1142319
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2023.1142319
HBV-X protein produced by HBV in hepatocytes can transactivate

the Galectin-3 promoter or upregulate Galectin-3 expression

through the CREB/ATF-transcription pathway after HBV

infection, and this phenomenon is more obvious in normal liver

cells than in hepatoma cells (23). As reported in the literature,

LGALS3 expression in HEPG2 and HUH7 cells did not change

significantly after transfection with the HBV plasmid, which results

from the high expression of LGALS3 in HCC cells that reduces the

influence of HBV on LGALS3 expression.
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The changes in the immune microenvironment are closely

related to the occurrence and progression of the disease. Galectin-

3 plays a role in many cellular functions, including apoptosis, innate

immunity, and T-cell regulation, and is a vital component of the

immune microenvironment (24, 25). HBV has multiple

immunosuppressive effects, a key factor in the progression of

HBV infection from chronic infection to HCC (26). In ssGSEA

analysis, we found that the expression of Treg cells and immune

checkpoints was upregulated in the chronic HBV infection, high
B

C D

E F

A

FIGURE 8

Correlation analysis between 3 DENRGs and immune microenvironment. The relationship between 3 DENRGs and immune microenvironment in
(A) GSE83148, (B) GSE84044, (C) GSE14520. Correlation analysis of 3 DENRGs with chemokines and chemokine receptors in (D) GSE83148,
(E) GSE84044, (F) GSE14520.
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fibrosis score, and high-NRGPS groups. Additionally, our

population analysis results showed that the expression of FOXP3,

a key transcription factor of Treg cells, was higher in the

experimental group than in the control group. Tregs can inhibit

the proliferation of CD8+T cells and the production of granzyme A

and B and perforin, ultimately leading to a decline in the normal

immune defense and surveillance functions of CD8+T cells in the

microenvironment (27, 28). High infiltration of Tregs and

upregulation of immune checkpoints promoted the formation of

an immunosuppressive microenvironment (6, 29), which is

conducive to the persistency of the HBV infection and to the

escape of tumor cells from the surveillance of the immune system.
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Further analysis of the immune microenvironment showed that

high expression of LGALS3 was positively correlated with immune

checkpoint gene expression, CCL20, CCR6, and Treg cells in

patients with CHI, HBV-HF, or HBV-HCC. Chemokines are

essential for immune cell transport and promote the recruitment

of immune cells to immunoreactive sites during inflammation (30).

Currently, it is known that CCL20 exclusively combines with CCR6

to form the CCR6-CCL20 axis, involved in regulating immune

system homeostasis (31). CCL20 is a cytokine that can promote

Treg cell infiltration, and the CCR6-CCL20 axis regulated Tregs

migrate into the tumor microenvironment, thereby leading to

tumor progression and poor prognosis in patients with HCC (32–
B

C D

E F

A

FIGURE 9

Expression of G6PD,PINK1 and LGALS3 in disease progression. Expression of G6PD, PINK1 and LGALS3 in (A) GSE83148, (B) GSE84044 and
(C) GSE14520. (D–F), The expression of G6PD, PINK1 and LGALS3 in PBMCs. *P <0.05, **P <0.01, ***P < 0.001, ns, not significant.
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35). Moreover, the oversecretion of CCL20 by myoblasts in cirrhotic

HCC promotes the production of HCC by regulating aerobic

glycolysis through the CCR6-receptor and the ERK/PKM2-

signaling pathway (36). All of these highlight the important role

of CCL20 in disease worsening after HBV infection. Although there

was no significant correlation between LGALS3 and the expression

of CCR6 and FOXP3 in PBMCs, the expression of CCL20 in

HEPG2# and HUH7# decreased significantly after LGALS3

knockdown. LGALS3 may be involved in the formation of an

immunosuppressive microenvironment by influencing the
Frontiers in Immunology 14292
expression of CCL20, leading to adverse disease progression. In

addition, LGALS3 is associated with the metabolism of HCC and

lymph node metastasis, which is a key regulatory factor for tumor

cell proliferation and migration (37, 38). Furthermore, the

proliferation and migration of HEPG2# and HUH7# cells

decreased significantly after the LGALS3 knockdown.

In conclusion, our findings identified the important role of a key

gene, LGALS3, in disease progression after HBV persistence

infection. However, this study has some limitations. First, we

could not collect HBV-HCC liver tissue samples to verify the
B C

D E F
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A

FIGURE 10

Expression of model genes in hepatocellular carcinoma cell lines. (A) Expression of G6PD in HEPG2 and HEPG2#. (B) Expression of PINK1in HEPG2
and HEPG2#. (C) Expression of LGALS3 in HEPG2 and HEPG2#. (D) Expression of G6PD in HUH7 and HUH7#. (E) Expression of PINK1in HUH7 and
HUH7#, (F) Expression of LGALS3 in HUH7 and HUH7#. (G) Expression of G6PD in LX2, HEPG2# and HUH7#. (H) Expression of PINK1in LX2, HEPG2#

and HUH7#. (I) Expression of LGALS3 in LX2, HEPG2# and HUH7#. *P <0.05, ns, not significant.
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predictive power of our model. Second, the prognostic model

established in this study still needs to be further verified in

multicenter, large-scale clinical studies.
5 Conclusion

This study successfully constructed a prognostic model for HBV-

HCC comprising G6PD, PINK1, and LGALS3, and analyzed the key

role of LGALS3 in adverse disease progression after HBV persistence
Frontiers in Immunology 15293
infection. Moreover, LGALS3 was demonstrated to be a potential

therapeutic target for the adverse progression of HBV

persistence infection.
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FIGURE 11

LGALS3 knockdown affects the proliferation and migration of hepatocellular carcinoma cells and the expression of CCL20. (A) Changes of CCL20
before and after LGALS3 knockdown in HEPG2#. (B) Changes of CCL20 before and after LGALS3 knockdown in HUH7#. (C) Cell proliferation before
and after knockdown was detected by CCK8. (D, E) Transwell assay showed that cell migration ability decreased after LGALS3 knockdown. *P <0.05,
***P <0.001.
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