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Editorial on the Research Topic

Novel biomarkers for predicting response to cancer immunotherapy
Immune response refers to the process by which immune cells recognize antigen

molecules, activate, proliferate, differentiate and produce immune substances after being

stimulated by antigens. It includes a series of physiological reactions such as antigen

presentation, lymphocyte activation, immune molecule formation and immune effect.

Immune response is the focus of tumor treatment and plays an important role in the

research and clinical application of a variety of malignant tumors. This project summarizes

the role of immune response markers in cancer therapy. The topic consisted of eight

articles, including one review article and seven original research articles, contributed by

multiple authors in the fields of tumor immunology and therapeutics. Our goal is to reveal

the role of novel markers of tumor immune response in tumor therapy.

As a new treatment method, immunotherapy has gradually become the fourth treatment

method in addition to surgery, chemotherapy and radiotherapy. However, due to the limited

response rate of immunotherapy, in order to further improve the efficiency of immunotherapy,

it is urgent to explore new targets of tumor immune response to achieve the purpose of precise

treatment. As the only biomarker that has been confirmed to have predictive function in

prospective clinical trials, PD-L1 has been approved by FDA as an immune checkpoint

inhibitor (ICI) and is widely used in clinical practice. The degree and distribution of TILs in

tumor and its microenvironment can be used as an important predictor of ICI response. Chong

Sun et al. conclude that antibody-based PD-1-PD-L1 inhibitors can induce durable tumor

responses in patients with a variety of advanced cancers (1).The degree and distribution of TILs

in tumor and its microenvironment can be used as an important predictor of ICI response.

Savas P et al. found that CD8+ TRM cells contribute to breast cancer immune surveillance and

are a key target of immune checkpoint inhibition regulation (2). tumor mutation burden is the

focus of research on tumor immune response markers in recent years. The higher the TMB of

the tumor, the higher the immunogenicity of the tumor. Using systemic treatment with the Axl

inhibitor bemcentinib in combination with PD-1 checkpoint blocker treatment, Huiyu Li et al.

found that Axl achieves anti-PD-1-mediated growth control of STK11/LKB1 mutant NSCLC

by expanding CD8+ T cells, the main executor of TCF1+PD-1+ (3).By analyzing the

immunophenotype of 188 melanoma patients treated with ICB, Shen R et al. found that

LAG-3 expression in peripheral blood cells could identify patients with poor prognosis after
frontiersin.org017
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ICB, and this research result has a guiding role for immunotherapy of

LAG+ immune melanoma patients (4).

Gene-expression markers are widely and equally comprehensive

in assessing tumor response to ICI therapy. Jia K et al. showed that

claudin-18 (CLDN18.2) positive gastric cancer (GC) has unique

immune microenvironment characteristics, which makes CLDN18.2

positive GC have relatively fewer CD8/CD4 T cells expressing PD-1/

PD-L1. This results in poor survival of patients receiving anti-PD-1/

anti-PD-L1 therapy, indicating that CLDN18.2 may be a promising

new therapeutic target (5). In addition, Shuai Wang et al. found that

CD47 blockade significantly enhanced the ability of CD103+ DCs to

uptake tumor DNA in the HCC microenvironment, thereby

stimulating the cGAS-STING pathway and promoting the

infiltration and activation of NK cells in HCC, suggesting the role

of CD47 blockade in HCC treatment (6). Similarly, results of a phase

I trial of an anti-CD47 monoclonal antibody (Hu5F9-G) conducted

by Branimir I Sikic et al. in patients with solid tumors and Hodgkin

lymphoma showed that Hu5F9-G was well tolerated in patients with

solid tumors and lymphoma when administered using priming and

maintenance dose regimens (7).

As a class of signaling cytokines, chemokines participate in the

important process of tumor immune response by interacting with

receptors to regulate immune infiltration and activation of host

immune response. By analyzing the chemokine landscape and

immune infiltration in metastatic melanoma samples using

protein markers and RNA transcript imaging based on multiplex

mass spectrometry flow cytometry, Tobias Hoch et al. found that

CXCL9 and CXCL10-enriched tumor microenvironment (TME)

contributes to the generation of a “hot” tumor microenvironment,

It has a predictive effect on OS of melanoma patients (8).
Frontiers in Immunology 028
In summary, the project “Novel markers of tumor immune

response” highlights the important role of the exploration of new

markers of tumor immune response in the prediction of tumor ICI

treatment response, precision immune therapy, and prognosis of

immunotherapy. This research direction provides great prospects

for tumor immunotherapy.
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A Novel M6A-Related Genes
Signature Can Impact the
Immune Status and Predict the
Prognosis and Drug Sensitivity
of Lung Adenocarcinoma
Xuewen Wang1†, Chengfei Zhao2†, Dandan Huang3†, Zhoujie Liu4, Mengmeng Liu4,
Fei Lin3, Yingyu Lu3, Jing Jia3, Liqing Lin3, Xinhua Lin3,5*, Huangyuan Li1,6*
and Zhiwei Chen1,7*

1 Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China, 2 Department of
Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, China, 3 Department of Pharmaceutical
Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China, 4 Department of Pharmacy, First Affiliated Hospital of
Fujian Medical University, Fuzhou, China, 5 Key Laboratory of Nanomedical Technology (Education Department of Fujian
Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China,
6 Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University,
Fuzhou, China, 7 Fuzhou Center for Disease Control and Prevention, Fuzhou, China

Lung adenocarcinoma (LUAD) is a primary cause of cancer-related death around the
world and has a poor outcome and high incidence. Treatment options are, however,
restricted. One of the most critical factors in cancer and metastasis is the N6-
methyladenine (m6A) alteration on RNA. This modification could alter gene expression
and even function at numerous levels, such as the stability, translocation and translation of
RNA splicing. This study aimed to construct an m6A-related genes signature to accurately
predict the prognosis of LUAD patients. From TCGA datasets, the LUAD patient data and
m6A-related genes were retrieved. LUAD patients’ mutational features and differentially
expressed genes (DEGs) were investigated. An univariate and LASSO model with m6A-
related genes were constructed for the prediction of outcomes in LUAD. It was possible to
develop a prognostic nomogram that could quantitatively predict LUAD patients’ overall
survival chances at 1, 3, and 5 years. Research into biological processes and cell
pathways was carried out using GSEA. This study found six m6A-related DEGs in
LUAD patients, and three of these DEGs(HNRNPC, IGFBP3 and IGF2BP1) were linked
to the clinical outcomes of LUAD patients. We found that the overall survival rate for all
LUAD patients with high-risk subgroup was considerably lower. According to ROC
curves, the prognostic signature demonstrated a high degree of accuracy in predicting
future outcomes. In addition, we created a novel nomogram achieved great accuracy with
this one as well. The researchers also found that the novel signature might favorably
modulate the immune response, and high-risk scores samples were more susceptible to
numerous chemotherapeutic medicines. Overall, we developed a m6A-related gene
org July 2022 | Volume 13 | Article 92353319
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prognostic signature that effectively predicted outcomes of LUAD patients and gave an
immunological perspective for creating customized therapeutics.
Keywords: immune microenvironment, prognosis, lung adenocarcinoma, m6A related genes, nomogram
INTRODUCTION

1.76 million people die from lung cancer each year, making it the
most common cause of death in the world (1). Worse still, lung
cancer’s incidence and death are both increasing (2). Lung
adenocarcinoma (LUAD), which accounts for almost half of all
kinds of lung cancer based on histology and prognosis, is on the
rise, particularly in women and young adults (3). Overall LUAD
survival remains dismal in spite of considerable advances in
treatment modalities including surgical treatment, targeted
therapy and early cancer identification (4, 5). LUAD cannot be
detected early by current cytology and imaging screenings,
despite their high sensitivity as cancer screening methods (6).
Therefore, identifying reliable biomarkers for the prediction of
the outcomes of LUAD patients is an absolute necessity.

More than 160 types of post-transcriptional chemical changes
have been discovered in diverse RNAs, according to the 2017
MODOMICS report (7). N6-methyladenosine (m6A), firstly
discovered in the 1970s, is the most prevalent and abundant
posttranscriptional alteration found in eukaryotic mRNA,
according to this research (8). Every component of the
RNA metabolism is thought to be affected by M6A
methylation (9, 10). Three types of enzymes control M6A
modifications: “writers” (methyltransferases such as METTL3/
14/16, RBM15/15B, KIAA1429 and WTAP), “readers” (YTH
domain containing RNA binding proteins and heterogeneous
nuclear ribonucleoproteins such as HNRNPA2B1, HNRNPC,
YTHDC1 and YTHDF1/2/3) and “erasers”. (demethylases,
including FTO and ALKBH5) (11–13). M6A has been linked
to a wide range of malignancies, and it was believed to be a key
player in tumor development and progression (14–16). M6A-
related genes’ potential as new biomarkers has also piqued the
interest of researchers.

In this study, we aimed to construct an m6A-related genes
signature to accurately predict the prognosis of LUAD patients.
Our group used bioinformatics and statistics to create a m6A-
related gene prognostic signature based on data from TCGA
database to reliably predict the outcomes of LUAD patients. An
m6A-associated gene-based prognostic signature was discovered
to have a high level of predictive power. Furthermore, a
nomogram was developed to objectively predict the overall
survival (OS) of LUAD patients.
MATERIALS AND METHODS

Chip Data
RNA‐seq mRNA expression profiles and clinical information of
TCGA‐LUAD cohorts were downloaded from TCGA platform.
Pairs of normal samples were initially extracted from TCGA-
org 210
LUAD cohorts using their barcodes. All datasets included
consisted of 535 LUAD samples and 59 adjacent non-
cancerous samples. Then, FPKM values were converted into
transcripts per million (TPM) values (TPM). Analysis of
numerous samples from the same patients yielded an average
expression value. Supplementary Table 1 displays the clinical
data of all LUAD patients. From the literature and from the
m6Avar database, M6A-related genes that were linked to LUAD
were collected (http://m6avar.renlab.org/) (Supplementary
Table 2).

Cell Lines and Cell Transfection
All cell lines (16-HBE, NCI-H1299, NCI-H1703, NCI-H2126,
NCI-H460, SPC-A1 and A549) were obtained from the Chinese
Academy of Sciences (Shanghai, China). Cells were grown in
RPMI 1640 nutrient solution (Gibco, USA). There was 10% FBS
in all the media. All cell lines were grown in 5% CO2 at 37°C for
the duration of the study.

ComiFECT transfection reagent was used for the cell
transfection (Comiike, Nantong, Jiangsu, China). Silent
IGF2BP1-targeting siRNAs (si-NC) and negative controls were
bought from Genomeditech Co., Inc.

RT‐PCR
TRIzol® reagent (Invitrogen, Shanghai, China) was applied
to extract the total RNA from LUAD cells, and 300 ng
extracted RNAs were reverse transcribed into cDNA by
the use of ReverTra Ace qPCR RT Kit (Toyobo, China).
THUNDERBIRD SYBR® qPCR Mix (Toyobo, Japan) was used
for quantitative PCR (Roche, Shanghai, China). The GAPDH
was applied as an endogenous control mRNA for normalizing
the expressions of targeting mRNAs. Each sample was examined
three times. Data from curves was then gathered to confirm the
specificity of the PCR. The relative expression fold change of
miRNAs was calculated by the 2-DDCt methods. Primer sequences
were as follows: IGF2BP1, 5’-GCGGCCAGTTCTTGGTCAA-3’
and 5’- TTGGGCACCGAATGTTCAATC-3’; GAPDH, 5’-
ACAACTTTGGTATCGTGGAAGG -3’ and 5’- GCCATCACG
CCACAGTTTC -3’.

Cell Counting Kit-8 (CCK-8) Assay
Cell viabilities were examined by the use of the CCK-8 kit (FineTest,
Wuhan Fine Biotech Co., Ltd, Wuhan, Hubei, China). After the
transfections, 100 µL cells (5×103 cells per well) were seeded in 96-
well plates. At 0, 24, 48, and 72 hours, 10µL of CCK-8 solution was
added to each well. A microplate reader was applied to examine the
absorbance at 450 nm after 1 hour of incubation.

Transwell Assay
NCI-H460 and NCI-H1299 cells transfected with si-IGF2BP1
and its corresponding control cells were seeded onto pre-treated
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Matrigel. 500 mL and 100 ml of culture medium were added into
the upper and lower chambers, respectively. 24 h later, the cells
were stained with 0.1% crystal violet. Subsequently, a microscope
was applied to observe cell staining.

Extraction of M6A-Related Gene Matrix
and Identification of Differentially
Expressed Genes (DEGs)
The expressing matrix of TCGA genes was selected to extract
M6A-related genes expression patterns. The DEGs were
discovered through the use of the R program ‘limma’, with the
log2 fold-change (log2 FC) criterion of more than 1.5 and the
false discovery rate (FDR) less than 0.05.

Selection of Potential Survival-
Associated Genes
With the help of the survival packages, we ran a univariate cox
analysis on all of the DEGs. In accordance with this classification,
DEGs with p-values less than 0.05 were designated prognostic-
associated genes and identified as candidate genes for further
investigation as a result of the classification process.

Developments of a Prognostic Model
We employed LASSO to create a better risk score model in order
to better forecast m6A genes and LUAD. In the next step, we
used R’s survival and glmnet packages to perform LASSO assays
on TCGA’s candidate genes. Finally, the genes and their
coefficients were figured out. On the basis of the established
prognostic model, LUAD patients were categorized into high-
risk (median) and low-risk (median) groups. The OS differences
were compared using Kaplan-Meier assays and the log-rank
tests. The “survivalROC” packages were used to produce the
time-dependent ROC curve, which was then used to test the
predicted accuracy of the prognostic risk score mode of
operation (17).

Cluster Analysis and Principal
Component Analysis
The cluster analysis was used to construct a principal component
analysis (PCA). In addition, clinical data were retrieved from
LUAD specimens for further analysis. In the following step, the R
software was used to conduct a correlation analysis between
clinical features and clustering results. Once everything was
finished up, the heatmap was constructed using the R
computer language’s ggplots package.

GSVA
R package “GSVA” was used to run GSVA on the gene profile in
order to compare the differences in biological processes between
low- and high-risk groupings of the risk score (18). It was
possible to utilize the GSVA approach, which is non-
parametric and unsupervised, to evaluate pathway changes or
biological processes when an expression matrix sample was
provided as input. “c2.cp.kegg v7.1 symbols” gene sets were
utilized as the reference gene sets in this study.
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Developments of a Novel Nomogram
The “rms” package in R was used to create a nomogram that
included age, gender, pathological stage, and a predictive risk
score model based on the TCGA cohort. The nomogram’s
accuracy was predicted. To test whether the model could be
utilized as an independent indicator for predicting LUAD in
LUAD, multivariate Cox regression was performed. Following
the online ROC curves, the nomogram’s AUC was determined to
indicate the nomogram’s prognostic value.

Tumor-Infiltrating Immune Cells
(TICs) Profile
On 535 tumor and non-tumor samples, the CIBERSORT
method was used to compute the relative amounts of 22 TICs
in each LUAD sample; samples with P 0.05 were used for further
investigation (19).

Evaluation of Drug Sensitivity
The 50% inhibitory concentration was known as the IC50. An R
program called “pRRophetic” was used to determine the IC50 of
138 medications by using its dependencies such as “car,” “ridge
preprocessCore,” “genefilter, and sva.” (20). The “ggplot2” R
package was used to generate the boxplot.

Functional Enrichment Analysis
ClusterProfiler, a R program, was used to perform pathway
enrichment analyses for patients in the high- and low-risk
groups using Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (21). In terms of statistical
significance, GO keywords and KEGG pathways with P values
less than 0.05 were found.

Statistical Analysis
R (version 3.6.1; R Foundation for Statistical Computing,
Vienna, Austria) software was used to conduct statistical
analysis. For the data matrix and all of the data processing,
Perl was utilized. The “limma” R package was used to identify
m6A-related genes that differed in expression. R packages
“survival” and “survminer” were used to perform Cox
regression and survival analysis. Using Kaplan-Meier analysis,
we looked at the variations in survival rates between the two risk
categories. LUAD’s OS was predicted using an independent set of
indicators found through a Cox regression study. The prognostic
risk score mode and nomogram were tested for their predictive
power using ROC curves. P 0.05 with a two-tailed test was
deemed significant.
RESULTS

Identification of the m6A-Related DEGs
in LUAD
Firstly, we downloaded the names of m6A-related genes, and
then performed limma using TCGA datasets. The results showed
that six m6A-related DEGs were identified between LUAD
July 2022 | Volume 13 | Article 923533
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specimens and non-tumor specimens (Figures 1A, B). In
addition, all seven genes were distinctly increased in LUAD
specimens compared with non-tumor specimens, including
IGFBP2, IGFBP3, IGF2BP1, YTHDF1, HNRNPC and LRPPRC
(Figure 1C). Our findings suggested that the seven genes may be
functional regulator in progression of LUAD.

Construction and Evaluation of an m6A-
Related Genes Prognostic Signature
In TCGA datasets, we performed univariate assays using the six
m6A-related DEGs to develop a prognostic signature for LUAD
patients. DEG expression was found to be substantially linked
with LUAD patient outcome (Figure 2). An overview of three
m6A-related DEGs associated with poor prognosis was provided.
The somatic mutation profile m6A-related gene alterations were
found in 21 out of 561 LUAD samples, or a frequency of 3.74
percent, as shown in Figure 3A. For the sake of avoiding
overfitting, LASSO assays were applied to exclude these
strongly linked predictive DEGs, and three m6A-related genes
were discovered. (Figures 3B, C). The risk score of each sample
Frontiers in Immunology | www.frontiersin.org 412
was calculated by the use of the following: risk score =
(0.0310199095911482) ×HNRNPC+(0.00708641474163214)
×IGFBP3 +(0.102677930685888) ×IGF2BP1. In order to
separate LUAD samples completely, the risk score model was
employed (low or high risk) (Figures 3D, E).

The Prognostic Value of Novel Risk Model
in LUAD Patients
Prognostic risk-related signatures forLUADpatientswere classified
to low- and high-risk groups based on themedian value of their risk
scores in TCGA datasets (Figures 4A, B). Patients in the high-risk
group had a considerably lower overall survival rate than those in
the low-risk group, according to survival tests (Figure 4C). The risk
score and stage of LUAD patients were found to be strongly linked
with their OS in a univariate study (Figure 4D).More interestingly,
both risk score and clinical stagewere independent predictors ofOS
inmultivariate assays, whereas risk score and stagewere only linked
with OS in the univariate study (Figure 4E). The overall predictive
power of the risk model for overall survival in TCGA datasets was
tested using a time-dependent ROC. AUC findings verified the
A
B

C

FIGURE 1 | The identification of m6A-related DEGs in LUAD. (A, B) Heat Map and Volcanic map of m6A-related DEGs between LUAD and control samples with
log2 FC>1.5 and p<0.05. (C) All 6 m6A-related DEGs were distinctly increased in LUAD specimens compared with non-tumor specimens.
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diagnostic usefulness of the tests and we observed that ROC assays
may predict a highest accuracy at 1 year (Figures 4F, G). In
addition, we explored the association between risk score and
clinical factors in LUAD patients. We did not observe a distinct
difference between risk score and gender and age (Figures 5A, B).
However, we found that LUAD patients with advanced stages
showed a higher value of risk score (Figure 5C). Our results
Frontiers in Immunology | www.frontiersin.org 513
revealed that the risk model could be used as a novel prognostic
biomarker for LUAD patients.

A Nomogram Predicting Survivals
We developed a nomogram for predicting OS in LUAD samples
using a predictive risk score model that took into account
factors such as gender, age, and clinical stage (Figure 6A). The
FIGURE 2 | Forrest plot of 3 m6A-related DEGs related with prognosis by univariate Cox proportional hazards regression analysis.
A B

D EC

FIGURE 3 | Developments of prognostic model. (A) The mutation frequency of 3 m6A-related DEGs in LUAD patients from TCGA datasets. (B) LASSO coefficients
of the 3 m6A-related DEGs. (C) Identifying genes for the creation of a model for predicting prognosis. (D) Principal component assays using m6A-related DEGs in
LUAD. (E) Tumors and normal samples in the TCGA cohort can be distinguished using principal component analysis.
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nomogram’s ability to reliably predict the OS of LUAD patients
was demonstrated by the calibration curves at one year, three
years, and five years, as shown in Figure 6B. Multiple Cox
regression analyses showed that the prognostic risk score model
Frontiers in Immunology | www.frontiersin.org 614
and the ages as well as the clinical-pathological stages were
independent predictors of outcome (Figures 6C, D). The
nomogram (AUC = 0.727) showed a superior predictive value
than a single indicator (Figure 6E).
A B

D E

F G

C

FIGURE 4 | ROC analysis, risk score analysis, and survival analysis for LUAD’s three-gene signature are discussed. (A) Patients’ long-term survival rates in low- and
high-risk groups (B) Distributions of risk scores. (C) Based on the entire TCGA cohort, the Kaplan-Meier curves of OS between low-risk and high-risk groups (D, E)
Univariate and multivariate assays for the signature established by TCGA datasets. (F) ROC assays for different clinical factors and risk score. (G) Test results showed that
the signature performed as expected in TCGA datasets.
A B C

FIGURE 5 | The relationships of risk score and clinical factors, including (A) gender, (B) age, and (C) Stage.
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Assays of the Immune Microenvironment
Tumor immune cell infiltration is the movement of immune cells
into tumor tissue from the circulation (22). Clinical outcomes are
strongly linked to the presence of immune cells in tumors, which
makes them ideal targets for new cancer treatments (23, 24).
Further evidence that the immune microenvironment correlates
with risk score was obtained by examining the percentage of
tumor-infiltrating immune subsets using the CIBERSORT
algorithm and constructing 21 different immune cell profiles in
LUAD samples (Figures 7A, B). Heat map and Histogram
showed the expressing pattern of tumor-infiltrating immune
cells in LUAD samples and normal lung samples (Figures 7C,
D). Patients in the high-risk group had higher ratios of T cells
CD8, T cells CD4 memory resting, Monocytes, Macrophages
M0 and Macrophages M1 and than those in the low-risk
group. However, patients in the low-risk group had higher
ratios of T cells CD4 memory activated, Macrophages M2,
Dendritic cells resting, Dendritic cells activated and Mast cells
resting (Figure 8A). Moreover, HLA, Type_II_IFN_Reponse
and MHC_class_I were also activated in the low-risk
group (Figure 8B).

Response to Chemotherapy Response
The correlation between chemoresistance and risk score was
investigated since risk score was related to a bad outcome. As
shown in Figure 9 and Supplementary Table 1, we discovered
that certain chemotherapy medicines had a greater sensitivity to
high-risk score samples.
Frontiers in Immunology | www.frontiersin.org 715
Gene Set Variation Analysis (GSVA)
It was done by using “c2.cp.kegg.v7.2” gene sets downloaded from
theMolecular Signatures Database (MSigDB) to study the biological
behavior of two groups. The high-risk score was found to have a
higher concentration of tumor-related pathways (Figure 10).

Functional Correlation Analysis
We then compared the expressing patterns of the low and high-
risk groups. To understand the function of dysregulated genes, DO
pathway enrichment studies were performed. The results indicated
that diseases enriched by the dysregulated genes were mainly
associated with lung disease, non-small cell lung carcinoma, cell
type benign neoplasm, urinary system cancer and obstructive lung
disease (Figure 11A and Supplementary Table 3). GO assays
revealed that the dysregulated genes were mainly enriched in
humoral immune response, defense response to bacterium,
hormone metabolic process, apical part of cell, apical plasma
membrane, secretory granule lumen, receptor ligand activity and
enzyme inhibitor activity (Figure 11B and Supplementary Table
4). KEGG assays indicated that the dysregulated genes were
mainly enriched in Alcoholism (Figure 11C).

The Oncogenic Roles of IGF2BP1 in
LUAD Growth
To study the function of IGF2BP1 in LUAD, we firstly
performed RT-PCR to examine its expression in LUAD cell
lines. As shown in Figure 12A, we found that IGF2BP1
expression was distinctly increased in LUAD cells, including
A B

D EC

FIGURE 6 | The ability of a risk score and clinical pathological factors to predict the outcome of individuals with LUAD. (A) A nomogram that predicts the survival
rate of patients with LUAD. (B) The calibration plots of the nomogram. (C) Univariate Cox regression analysis of the nomogram. (D) Multivariate assays of the
nomogram. (E) ROC curves for clinical pathological features and risk score measurements.
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NCI-H1299, NCI-H1703, NCI-H2126, NCI-H460, SPC-A1 and
A549, compared with 16-HBE. Moreover, we decreased
IGF2BP1 expression in NCI-H460 and NCI-H1299 cells
using siRNA, and RT-PCR confirmed the transfection
efficiency (Figure 12B). In addition, CCK-8 assays confirmed
Frontiers in Immunology | www.frontiersin.org 816
that silence of IGF2BP1 distinctly inhibited the proliferation of
NCI-H460 and NCI-H1299 cells (Figures 12C, D). Finally, we
also observed that knockdown of IGF2BP1 distinctly
inhibited the migration of NCI-H460 and NCI-H1299
cells (Figure 12E).
A

B

DC

FIGURE 7 | Tumor TICs profiles and association studies. (A) The percentage of 22 different types of TICs in LUAD specimens was depicted in a bar graph.
(B) Barplot showing the proportion of 22 kinds of TICs in LUAD specimens. (C) The levels of 22 kinds of TICs in LUAD samples and normal samples. (D) Several
types of TICs were observed to be increased in LUAD specimens.
A B

FIGURE 8 | Risk score and fraction of TICs are correlated. (A) The variation in immune infiltration between high- and low-risk scores. (B) Patients with a high-risk
score have a known function in immune regulation that differs from those with a low-risk score. *p<0.05, **p<0.01, ***p<0.001.
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DISCUSSION

Prognostic markers and therapeutic targets have been regularly
discovered thanks to advances in high-throughput sequencing
technologies over the past few decades (25, 26). As a result, we
now know more about cancer. Reliable tumor immunotherapy
response and prognostic biomarkers based on the intrinsic
milieu of tumorgenesis are still extremely rare in LUAD (27,
28). Research into the mechanisms of action of these compounds
is essential for their potential medicinal application. In
eukaryotic cells, m6A is by far the most common RNA
modification found within the RNA itself (10). RNA
methylation in the m6A region appears to have an important
role in cancer development, according to newly discovered data
(29, 30).
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Many M6A-related genes have recently been linked to the
progression of various cancers. For instance, colorectal cancer
metastatic tissues with increased METTL3 expression were
related with a worse prognosis. Through a m6A-IGF2BP2-
dependent pathway in colorectal cancer cells, METTL3
knockdown significantly decreased in vitro cell self-renewal,
frequency of the stem cell population, and migration, as well as
colorectal carcinoma tumorigenesis and metastasis (31). Chen
et al. reported that hepatocellular carcinoma patients with high
WTAP expression displayed a worse outcome, and WTAP
expression could be an independent predictor of survival.
WTAP increased hepatocellular carcinoma cell proliferation
and tumor growth in vitro and in vivo via the m6A-HuR-
dependent epigenetic silencing of ETS1 in vitro and in vivo
(32). Importantly, Wang and his group reported that increasing
FIGURE 9 | The association between risk score and chemosensitivity.
FIGURE 10 | Map of GSVA enrichment between low- and high-risk score categories.
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the cisplatin response by overexpressing IGFBP3 promoted
apoptosis and confirmed that suppression is caused in part by
inhibiting IGF1 signaling in vitro (33). These findings indicated
the critical roles of M6A-related genes in the progression of
various cancers. In this study, we analyzed TCGA datasets and
identified six dysregulated M6A-related genes in LUAD. The
results of Univariate indicated that only three M6A-related genes
were survival-related genes, including HNRNPC, IGFBP3 and
IGF2BP1. HNRNPC, IGFBP3, and IGF2BP1 were created as a
three-gene prognostic signature that performed well in
predicting the survivals of patients. With the addition of a few
selected clinical and pathological parameters, the predictive
power of this prognostic risk score model was significantly
enhanced. Then, we chose IGF2BP1 to study its potential
function. The results indicated that diseases enriched by the
genes involved in the expression of GF2BP1 were mainly
associated with lung disease, non-small cell lung carcinoma,
cell type benign neoplasm, urinary system cancer and
obstructive lung disease, suggesting that GF2BP1 may play an
important role in the progression of LUAD. Then, functional
assays revealed that IGF2BP1 knockdown suppressed the
proliferation and invasion of LUAD cells, which may explain
the reason that IGF2BP1 was associated with poor prognosis of
LUAD patients.
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To better understand carcinogenesis and cancer progression,
researchers are increasingly focused on the tumor environment
(TME), which has risen to prominence as a research hotspot in
recent years (34, 35). In addition, emerging data suggests that
tumor-infiltrating immune cells (TICs) and stromal components
are strongly linked to the development of LUAD (36, 37).
Carcinogenesis and development of cancer were greatly
influenced by the tumor microenvironment, particularly the
immunological component. It has been found that shifting the
TME from a tumor-friendly to a tumor-suppressive state can
benefit cancer treatment (38, 39). As a result, identifying the
prospective therapeutic targets that contribute to the
aforementioned process is an absolute necessity. In this study,
we observed that high-risk score patients were enriched with
inhibitory immunity cells. HLA and MHC class I activation, as
well as inflammatory-promoting activity, were seen in patients
with a high-risk score, indicating that individuals with a high-
risk score can benefit from immunotherapy. On the other hand,
to better understand the relevance of the predictive risk score
model in LUAD, the variations in patients’ responses to
pharmacological therapy between low- and high-risk groups
were studied. According to the preceding definitions, patients
with high-risk scores showed a considerable stroma activation
status, indicating chemoresistance.
A B

C

FIGURE 11 | Biological processes were identified by functional enrichment analysis. (A) Disease ontology enrichment analysis, (B) GO assays and (C) KEGG assays
of DEGs between high-risk group and low-risk group.
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Several issues remained in the current study. First, the
number of patients was quite small. Second, the prognostic
model has to be tested on a large number of different datasets
in order to ensure its robustness. Third, some possible risk
variables, including radiation and pathological characteristics,
were not included in our nomogram. Finally, these prognostic
M6A-related genes in LUAD need additional investigation to
understand their function and processes.
CONCLUSION

A predictive signature based on three M6A-related genes was
created to predict the overall survival of LUAD patients. Our
Frontiers in Immunology | www.frontiersin.org 1119
developed signature of three M6A-related genes gives higher
clinical utility for predicting the prognosis of LUAD patients
compared to the usual TNM staging approach. Our findings will
lead to the developments of individualized cancer chemotherapy
and immunotherapy in the future.
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Angiopoietin-2 (Ang2), a member of the angiopoietin family, is widely involved in the
process of vascular physiology, bone physiology, adipose tissue physiology and the
occurrence and development of inflammation, cardiac hypertrophy, rheumatoid, tumor
and other diseases under pathological conditions. Proliferation and metastasis of cancer
largely depend on angiogenesis. Therefore, anti-angiogenesis has become the target of
tumor therapy. Due to the Ang2 plays a key role in promoting angiogenesis and stability in
vascular physiology, the imbalance of its expression is an important condition for the
occurrence and development of cancer. It has been proved that blocking Ang2 can inhibit
the growth, invasion and metastasis of cancer cells. In recent years, research has been
constantly supplemented. We focus on the mechanisms that regulate the expression of
Ang2 mRNA and protein levels in different cancers, contributing to a better understanding
of how Ang2 exerts different effects in different cancers and stages, as well as facilitating
more specific targeting of relevant molecules in cancer therapy. At the same time, the
importance of Ang2 in cancer growth, metastasis, prognosis and combination therapy is
pointed out. And finally, we will discuss the current investigations and future challenges of
combining Ang2 inhibition with chemotherapy, immunotherapy, and radiotherapy to
increase its efficacy in cancer patients. This review provides a theoretical reference for
the development of new targets and effective combination therapy strategies for cancer
treatment in the future.

Keywords: Ang2, Targeting therapy, Antiangiogenic therapy, Combination therapy, Cancer development
Abbreviations: Ang2, Angiopoietin-2; miRNA, microRNA; miRs, MicroRNAs; ceRNA, Competing endogenous RNA; EMT,
Epithelial-mesenchymal transition; DARPP-32, Dopamine and cAMP-regulated phosphoprotein Mr 32000; STAT3, Signal
transducer and activator of transcription 3; MDSC, Myeloid-derived suppressor cells; ADAM9, A disintegrin and
metalloproteinase 9; VEGFA, Vascular endothelial growth factor A; PLAT, Plasminogen activator; BMAL1, Brain and
muscle Arnt like 1; ISL2, Insulin Gene Enhancer Protein; CXCR4, C-x-c motif chemokine receptor 4; G-CSF, Granulocyte
colony-stimulating factor; ER, Estrogen; ER+, Estrogen receptor-positive; CCM, Cerebral cavernous malformation; Ecs,
Endothelial cells; KS, Kaposi’s sarcoma; KSHV, Kaposi sarcoma-associated herpesvirus; CTGF, Connective tissue growth
factor; TS, a-Tocopheryl succinate; MM, Multiple myeloma; VEGF, Vascular endothelial growth factor; LDIR, Low-dose
ionizing radiation; HNSCC, Head and neck squamous cell carcinomas; CTLA-4, cytotoxic T-lymphocyte-associated protein -4.
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INTRODUCTION

Tumor cells have the characteristics of infinite proliferation,
which will cause most tumor cells to be in hypoxia and
nutrient-deficient microenvironment. At this time, the tumor
will produce a large number of new blood vessels to provide
nutrients and oxygen through the use of blood flow (Figure 1)
(1–4). It can be seen that the process of new blood vessel
formation is necessary for continued tumor growth and
progression. antiangiogenic drugs such as bevacizumab and
sorafenib are widely used in clinical practice (5, 6). By
inhibiting the formation of cancer blood vessels, the blood
supply of cancer cells is insufficient, which cannot meet the
needs of growth and metastasis, thereby inhibiting the
progression of cancer (5, 6). However, the efficacy of these
drugs is limited, and their side effects include bleeding,
thrombosis, etc. and drug resistance frequently occurs,
therefore the discovery of new antiangiogenic targets has
become an urgent problem to be solved (7–10). Angiogenesis
is coordinated by pro-angiogenic and anti-angiogenic factors,
and dysregulation can lead to pathological angiogenesis (8).
Ang2 is the ligand of tyrosine-protein kinase receptor Tie-2,
which is highly expressed in lung cancer, gastric cancer,
colorectal cancer, glioma and other cancers, and also leads to
the occurrence and development of cancer by promoting the
abnormalization of blood vessels (Figure 1) (11–15). Studies
have shown that Ang2 is not only a necessary condition for the
angiogenesis of cancer cells, but also an indicator of its
metastasis, invasion and poor prognosis (12, 15–18). In recent
Frontiers in Immunology | www.frontiersin.org 223
years, Ang2-related inhibitors have been continuously developed
(Table 1), with the potential for anti-angiogenic and anti-tumor
activities (25–29). At present, the combination of anti-
angiogenesis therapy with chemotherapy, targeted therapy or
immunotherapy has been approved for clinical application and
has greatly improved the survival rates of cancer patients
(5, 30, 31). Therefore, the prospect of Ang2-targeted
combination therapy for cancer treatment is bright. This
review mainly discusses the role of Ang2 in various cancers
and points out possible potential combination treatment options.
DYSREGULATED ANG2 AND ITS ROLE
IN CANCERS

Gastric Cancer
The symptoms of gastric cancer in the early stage are not
obvious, and most patients are already in the middle and late
stages when they first visit the doctor, with a very poor prognosis
and high mortality (32–34). Further study on the molecular
mechanism of growth, invasion and metastasis of gastric cancer
provides a theoretical basis for effective treatment in the future.
In recent years, antiangiogenic therapy for gastric cancer has
been continuously developed, and many targeted angiogenesis
inhibitors are in clinical trials (32, 34, 35).

The occurrence and development of gastric cancer are closely
related to the regulation of angiogenesis by microRNA (miRNA)
(36, 37). MicroRNAs (miRNAs) are important cancer regulators
that function as oncogenes or tumor suppressor genes (37).
Studies have shown that miRNAs are involved in the
regulation of angiogenesis by regulating the expression of
Ang2, and are targets of many cancer treatments (38).

In human umbilical vein endothelial cells and mouse lymph
node endothelial cells, miRNA-542-3p inhibits the translation of
Ang2 mRNA (37). Researchers added miR-542-3p to a tumor-
bearing mice to reduce angiogenesis, tumor growth and
metastasis, suggesting that miR-542-3p inhibits tumor
progression by weakening the angiogenic activity of Ang2 (37).
MiR-218, as a tumor suppressor, inhibits the proliferation and
invasion of gastric cancer cells by reducing Ang2 in gastric
cancer (39). It is reported that miR-145-5p is low expressed in
gastric cancer cells, but Ang2 is highly expressed (40). Further
studies have proved that Ang2 is the target of miR-145-5p (40).
When miR-145-5p was overexpressed in gastric cancer cells, the
expression of Ang2 was significantly down-regulated and
inhibiting NOD-LIKE-RECEPTOR signaling pathway which
therefore inhibits the proliferation, invasion and metastasis of
cancer cells (40). In addition, studies have shown that
LINC00184 (the competing endogenous RNA (ceRNA))
directly binds to miR-145 and inhibits its expression, to
promote the expression of Ang2 and induce the epithelial-
mesenchymal transition (EMT) characteristics of gastric cancer
cells, and improve the carcinogenesis mediated by Ang2 (41).
Dopamine and cAMP-regulated phosphoprotein Mr-32000
(DARPP-32) can induce the expression of Ang2 in gastric
cancer cells by regulating signal transducer and activator of
FIGURE 1 | Schematic diagram of the effect of Ang2 dysregulation on
cancer cells: The increase of Ang2 in cancer leads to vascular instability,
increases leakiness of the vessels, limits immune cell trafficking, and finally
promotes the proliferation, invasion and metastasis of cancer.
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transcription 3 (STAT3), promoting angiogenesis and mediating
the occurrence and development of gastric cancer (42).
Therefore, DARPP-32-STAT3 blocking may prevent the
occurrence and development of gastric cancer (42).

From the above discussion, it can be seen that the expression
of Ang2 in gastric cancer is regulated not only by miRNA, but
also by ceRNA and DARPP-32. In general, all of these have the
potential to mediate the proliferation, metastasis and invasion of
gastric cancer cells by affecting their blood supply, indicating the
feasibility of targeting Ang2 in the treatment of gastric cancer.

Lung Cancer
Lung cancer, as a disease with a high incidence in the world, has a
very complex pathogenesis and mechanism and lacks clear
diagnostic indicators and means at the early stage (43–45).
Most patients are already at stage III or IV when diagnosed,
and the survival rate is very low (46). Therefore, new biomarkers
can help to screen lung cancer for early diagnosis and treatment.
Ang2 not only participates in tumor angiogenesis but also plays a
role in the immune environment of some tumors. Studies have
shown that Ang2, Tie2 and Myeloid-derived suppressor cells
(MDSC) are involved in the immune escape of non-small cell
carcinoma, the collection of clinical data shows that the high
expression of ANGPT2/TIE2 + monocytic-MDSC in non-small
cell carcinoma is closely related to its poor prognosis (47). Recent
meta-data analysis showed that serum Ang2 expression in
patients with lung cancer was significantly correlated with the
progression and prognosis of lung cancer, and patients with high
serum Ang2 expression had a poor prognosis (48). In addition,
the abnormal expression of Ang2 is not only related to the stage
of lung cancer but also closely related to its invasion, migration
and prognosis. After Ang2 interference, the biological
characteristics and EMT of lung cancer cells are inhibited,
suggesting that Ang2 may be a novel molecular targeted
therapy for lung cancer (49, 50). This may solve the current
problem of metastatic treatment of lung cancer. After the
operation of non-small cell carcinoma, the expression level of
Ang2 in the serum of patients was detected to be increased,
indicating that the angiogenesis capacity was also increased,
which could not only increase the pre-repair of postoperative
wound but also promote the distant metastasis and recurrence of
cancer (51). This may also be one of the reasons for postoperative
Frontiers in Immunology | www.frontiersin.org 324
recurrence of non-small cell carcinoma. Interestingly, the
expression of Ang2 mRNA and protein levels was significantly
correlated with the progression and clinical outcome of lung
adenocarcinoma. However, this phenomenon was not observed
in squamous cell carcinoma (52). It further illustrates the
complexity of the regulatory mechanism of Ang2 in cancer.

Lung cancer patients have a high probability of brain
metastasis and poor prognosis (53). Exploring the regulatory
mechanism of brain metastasis is helpful to identify new
therapeutic targets. Studies have shown that the overexpression
of a disintegrin and metalloproteinase 9 (ADAM9) can promote
the brain metastasis of lung cancer cells, further studies have
shown that ADAM9 can promote the vascular remodeling of
lung cancer cells and brain metastasis by increasing the
expression of vascular endothelial growth factor A (VEGFA),
Ang2 and tissue plasminogen activator (PLAT) (54). These
findings suggest that targeted inhibition of ADAM9, VEGFA,
and Ang2 may be a new effective therapeutic strategy for lung
cancer brain metastasis. ADAM9 regulates the expression of
angiogenic factor Ang2, thereby controlling vascular remodeling
and angiogenesis to regulate lung cancer brain metastasis (54).

VEGFA and ANGPT2 are the targets of anti-angiogenesis
therapy, and whether the combined inhibition of ADAM9 with
bispecific antibody (A2V CrossMab) against both Ang-2 and
VEGF can reduce the morbidity and mortality of lung cancer
brain metastasis has not been studied. We look forward to more
research on multi-target therapy.

Glioma
Glioma, as an angiogenesis-dependent tumor, is the most
common malignant tumor of the central nervous system. It
has strong invasiveness, poor prognosis and easy recurrence
after operation (55–57). There is great room for progress in
the treatment strategy of glioma. At present, radiotherapy,
chemotherapy, surgical treatment and immunotherapy have
not solve the key event of high mortality of glioma patients
(58). It is necessary to further explore new targets and
treatment strategies.

Ang-2 is highly expressed in glioblastoma and is involved in a
series of processes such as glioma development, invasion,
prognosis and treatment resistance (56, 59–61). Rhythm gene
BMAL1 (brain and muscle Arnt like 1) is considered to be a
TABLE 1 | Targeted inhibition of ang2 in cancer therapy.

Treatment method/drugs The main function Cancer type Stage References

Nesvacumab (REGN910) Human anti-ang2monoclonal antibody Advanced solid
tumors

Phase I first in
human study

(19)

AMG 780 Angiopoietin 1 and -2 inhibitor Advanced solid
tumors

Phase I first in
human study

(20)

AMG 386 Selective angiogenin inhibitors Advanced solid
tumors

Phase I first in
human study

(21)

TAvi6 Target VEGF-A and Angiopoietin-2 Preclinical trial (22)
CVX-241 Target VEGF-A and Angiopoietin-2 Breast cancer Preclinical trial (23)
Ang-2-VEGF-A CrossMab (RG7221,
vanucizumab)

Target VEGF-A and Angiopoietin-2 Advanced solid
tumors

Phase 2 (24)

MEDI3617 A human immunoglobulin G1 (IgG1) kappa monoclonal antibody directed
against human angiopoietin-2

Advanced
melanoma

Phase I (25)
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tumor-promoting factor in glioma and plays a key role in the
proliferation and migration of glioma cells (59). Studies have
shown that BMAL1 is highly expressed in gliomas, and regulates
the expression of Ang2 and VEGF by regulating HIF-1a under
hypoxia, to participate in the formation of tumor microvessels
and peritumoral edema (55). Strangely, when BMAL1 was
knocked out, the expression of Ang2 did not change (55). This
further indicates the complexity of Ang2 expression regulation.
As previous studies have shown, it may be environment-
dependent (62). Some studies have shown that the edema of
glioblastoma can be alleviated by dexamethasone, and it is
suggested that dexamethasone may alleviate brain edema and
slow down the growth of gliomas by inhibiting the expression of
Ang2 (63). In oligodendroglioma, it was found that under
hypoxia, Insulin Gene Enhancer Protein (ISL2) induces
angiogenesis by enhancing the expression of Ang2 to promote
the growth, malignant transformation and invasion of
oligodendroglioma (13, 56). These studies suggest that
blocking Ang2-induced angiogenesis through targeted
inhibition of ISL2 may be one of the effective strategies for the
treatment of oligodendroglioma in the future (13). As an
antiangiogenic therapy for glioblastoma, bevacizumab is
commonly used, but its drug resistance often occurs. Ang2
is highly expressed in these drug-resistant gliomas (64). It is
proposed that the combination of VEGF blocking and Ang-2
inhibition may overcome the resistance of bevacizumab to
glioma treatment, suggesting that Ang2 may be a therapeutic
target for bevacizumab resistant gliomas (64).

In short, the study on the regulation and expression
mechanism of Ang2 in glioma will be beneficial to the future
targeted treatment of glioma patients to improve their survival
rate and prognosis.

Colorectal Cancer
Colorectal cancer is considered to be the second most common
cancer in the world and the third most common cause of cancer-
related death. It has a high risk of recurrence and poor prognosis
(65). Although the treatment of colorectal cancer has made
progress with the continuous development of immunotherapy
and gene-targeted therapy in recent years, the problems
of metastatic diseases and drug resistance have not been
solved (66). This highlights the necessity to develop new
treatment strategies.

Recent studies have reported that RAS-ERK1/2 signaling
induces the upregulation of Ang2 and c-x-c motif chemokine
receptor 4 (CXCR4) in KRAS-mutated colorectal cancer
cells, resulting in liver metastasis (67). The use of ERK inhibitors
can downregulate Ang2 and CXCR4 to control the liver metastasis
in colon cancer (67). It can be seen that Ang2 plays a key role in
liver metastasis of colorectal cancer. Targeted inhibition of Ang2
or RAS-ERK1/2 axis can prevent and treat patients with liver
metastasis of colorectal cancer (67). Interestingly, there is also
evidence that Ang2 gene deletionmay aggravate the progression of
liver metastasis inmice (68). On the one hand, Ang2 deletion leads
to enhanced bone marrow cell recruitment of granulocyte colony-
stimulating factor (G-CSF), which is conducive to more aggressive
tumor growth and neoangiogenesis during liver colonization. On
Frontiers in Immunology | www.frontiersin.org 425
the other hand, it is the increase of compensatory VEGF caused by
Ang2 deletion, which induces angiogenesis and promotes liver
metastases (68). The reasons for the different results of these two
studies may be the types of colorectal cancers studied are different,
one is KRAS mutated, and the other is common undetected
mutations. But both studies suggest that the role of Ang2
depends on the blood vessels of specific organs, as these changes
in Ang2 expression were not observed in colorectal cancer lung
metastases (67, 68). In addition, according to clinical studies,
serum Ang2 levels in patients with colorectal cancer are
associated with disease progression. Ang2 was significantly
higher in colorectal cancer with peritoneal carcinomatosis than
without peritoneal carcinomatosis and was negatively correlated
with the survival rate of those patients (16). Additionally, Ang2 is
an important predictor of mortality in patients with incurable
stage IV colorectal cancer (12). Therefore, it may be a useful
prognostic biomarker for colorectal cancer patients (12, 17).

In general, Ang2 is closely related to the occurrence,
metastasis, and prognosis of colorectal cancer. Targeting Ang2
or regulating the signaling pathway or factors

of Ang2 in colorectal cancer may effectively inhibit the
development of colorectal cancer.

Breast Cancer
Breast cancer is not only one of the most common malignant
tumors in women but also one of the most common causes of
death in women (69, 70). At present, there is no effective solution
to the distant metastasis, recurrence and treatment resistance of
breast cancer.

Clinical studies have shown that Ang2 can not only be used as
a diagnostic indicator for the detection of early breast cancer, but
also as an evaluation factor for the prognosis of breast cancer
(71). In estrogen-deficient conditions, Ang2 promotes survival of
estrogen receptor-positive (ER+)breast cancer through integrin
1 (72). More importantly, 2 is highly expressed in the recurrence
and metastasis of (ER+) breast cancer patients treated with
estrogen antagonists (72). In addition, in estrogen-deficient bone
marrow endothelial niche, knockout Ang2 can attenuate tumor
cell proliferation. Further research shows that estrogen regulates
the proliferation of ER(+) breast cancers by regulating the
expression of Ang2 in the bone marrow endothelial niche (72).
These experimental results suggest that Ang2 may be a key target
for preventing metastatic recurrence of breast cancer in
endocrine therapy. At the same time, whether the combined
use of estrogen antagonists and Ang2 antagonists can improve
the survival rate of patients and reduce metastasis and recurrence
requires a lot of research in the future.

Pancreatic Cancer
Pancreatic cancer is one of the most difficult cancers to treat and
the worst prognosis in the world (73). We look forward to more
research to explore the pathogenesis of pancreatic cancer and
effective treatment options. In recent years, some scholars have
proposed that miR-145, as a tumor suppressor of pancreatic
cancer, inhibits the angiogenesis, growth and invasion of cancer
cells by directly inhibiting the expression of Ang2 (74). It
suggests that the inhibition of Ang2 expression by miR-145
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indirect targeting may be an effective treatment for pancreatic
cancer (74).

Ang2 in both pancreatic cancer and gastric cancer is regulated
by miRNA, which mediates the occurrence and development of
cancer, further indicating the importance of miRNA in
Ang2 regulation.

Other Cancers
In cerebral cavernous malformation (CCM), CCM3 (also known
as PDCD10) gene mutation promotes the progression of CCM
(75). The study further showed that CCM3 reduced the secretion
of Ang2 and prevented the development of CCM by inhibiting
the UNC13B/VAMP3-dependent exocytosis of Ang2 in brain
endothelial cells (ECs) (75). On the contrary, when CCM3 is
mutated, Ang2 secreted by brain endothelial cells increases, thus
accelerating the progress of CCM (75). In conclusion, the Ang2
secretion regulated by CCM3 in endothelial cells may be a new
therapeutic target for cavernous malformation.

Kaposi’s sarcoma (KS) is a vascular malignancy associated
with Kaposi sarcoma-associated herpesvirus (KSHV) (76).
Studies have shown that KSHV contributes to tumor growth
by inducing ECs to release Ang2 to promote angiogenesis and
inflammatory cell infiltration (77). Ang2 was detected to be
highly expressed in KS, and studies further demonstrated that
knockdown of Ang2 or use of Ang2 inhibitors AMG-386 and L1-
10 blocked angiogenesis and tumor growth in the KS tumor
model (77, 78). These findings provide a theoretical basis for the
effective combination therapy of KS in the future.

Connective tissue growth factor (CTGF) is a cysteine-rich
protein. In osteosarcoma cells, it has been found that
overexpression of CTGF can promote the expression of Ang2
and induce angiogenesis of osteosarcoma, providing sufficient
blood supply to cancer cells and promoting their metastasis (79).

a-Tocopheryl succinate (TS), an anticancer substance,
inhibits tumor angiogenesis by reducing the expression of
Ang2 and promoting vascular stabilization in mouse
melanoma cells (80). In addition, the detection of Ang2 in
melanoma patients showed that the expression of Ang2 in
metastatic patients was higher than that in primary tumors (81).

Serum Ang2 is increased in multiple myeloma (MM) patients,
especially in advanced patients, and is associated with disease
progression (82, 83). It is suggested that Ang2 may be used as a
prognostic indicator and a potential therapeutic target for
multiple myeloma.

Of course, in addition to the malignant tumors discussed
above, whether Ang2 still plays a different role in other tumors
needs further exploration and research.
TARGETING ANG2 FOR
CANCER TREATMENT

The expression of Ang2 is regulated by miRNA, ceRNA and
DARPP-32 in gastric cancer, which affects the occurrence and
development of gastric cancer. Of course, in addition to the
above, whether there will be other factors regulating Ang2 needs
Frontiers in Immunology | www.frontiersin.org 526
further research in the future. In general, targeting miR-542-3p,
miR-145-5p, miR-218 LINC00184 and DARPP-32 to inhibit the
expression of Ang2 in gastric cancer may be a new strategy for
the treatment of gastric cancer, which requires a lot of research in
the future. In brain metastasis of lung cancer, Ang2 regulated by
ADAM9 plays an important role. Indirect inhibition of Ang2
expression by targeted inhibition of ADAM9 may prevent brain
metastasis of lung cancer. In glioma, targeting BMAL1 or ISL2 to
regulate the expression of Ang2 may be an effective treatment for
glioma in the future. Similarly, the RAS-ERK1/2 signaling
pathway in colorectal cancer, estrogen in breast cancer, miR-
145 in pancreatic cancer and CCM3, KSHV, CGSF, and TS in
other tumors may all be therapeutic targets.

According to the above discussion, there is no doubt that the
expression of Ang2 in cancer is regulated by various factors
(Table 2). We fully introduced the regulatory mechanism of
Ang2 expression in different cancers and proposed potential
targets to inhibit the occurrence and development of cancers by
controlling Ang2 expression (Figure 2).
PROGRESS OF TARGETED INHIBITION
ANG2 COMBINED WITH OTHER
THERAPIES IN CANCER TREATMENT

Chemotherapy
Chemotherapy combined with anti-angiogenic therapy is
constantly being developed and has been applied to colon
cancer, gastric cancer and other cancers (5, 34). It is reported
that the treatment effect of patients can be improved by adding
bevacizumab to the chemotherapy regimen of metastatic
colorectal cancer (such as 5-FU and irinotecan) to inhibit
vascular endothelial growth factor (VEGF) (84).

However, after receiving bevacizumab anti-angiogenesis
treatment, patients will develop drug resistance, and the increased
expression of Ang2 is closely related to patients’ anti-bevacizumab
resistance (84). Further studies have shown that high Ang-2 levels
are associated with adverse clinical outcomes in patients with
colorectal cancer treated with bevacizumab. Inhibition of Ang2
will increase resistance to VEGF signal-targeted therapy (84).
Therefore, a bispecific antibody (CrossMab), that is, the
combined inhibition of VEGF and Ang2, was proposed, which is
currently considered to improve anti-angiogenic therapy (22). In
addition, a bispecific antibody targeting VEGF and Ang-2
(CrossMab) in combination with chemotherapy was also
evaluated in a model of drug-resistant colorectal cancer. The
results showed that the bispecific antibody (CrossMab) combined
with chemotherapy including 5-FU and irinotecan exhibited better
therapeutic effect and addressed the limitations of single
antiangiogenic therapy and chemotherapy (84). More
surprisingly, studies have shown that bispecific antibody (A2V)
combined with Ang2 and VEGFA blockade is more effective than
monotherapy in renal cell carcinoma, metastatic breast cancer, and
pancreatic neuroendocrine tumors (84–86).

MEDI3617, a selective Ang2 inhibitor, neutralizes Ang2 by
blocking the interaction between Ang2 and Tie2 receptors and
July 2022 | Volume 13 | Article 949553

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Targeting ANG2 for Cancer Therapy
inhibits angiogenesis and tumor growth (26). Treating mice with
MEDI3617 can inhibit angiogenesis in mouse tumor models. The
combination of MEDI3617 with chemotherapy or bevacizumab
leads to delayed tumor growth (26). In human tumor xenograft
models, the application of Ang2 inhibitor combined with paclitaxel
or carboplatin in advanced solid tumors is currently in phase I
clinical trial (27). Overall, these clinical findings suggest that Ang2 as
an anti-angiogenesis therapeutic target, combined with
chemotherapy plays a synergistic role in the treatment of cancer.

Immunotherapy
Ang2 reduces the ability of the immune system (mainly T cells) to
recognize and attack tumors by acting on immune cells (9, 87, 88). In
addition, Ang2 can prevent immune cells from infiltrating into the
tumor by destroying the stability of tumor blood vessels, leading to
Frontiers in Immunology | www.frontiersin.org 627
vascular abnormalities and destroying blood flow (Figure 1)
(9, 87, 88). Since Ang2 has immunomodulatory effect, its
importance in immunotherapy can’t be ignored. Immunotherapy,
as a treatment for cancer, has emerged in recent years, but it will also
be ineffective in some tumors. Research is also constantly adding how
to better improve immunotherapy. Studies have shown that anti-
angiogenesis therapy can improve the effect of immunotherapy
(7, 89–93). Targeted inhibition of VEGF and Ang2 reduces
angiogenesis and normalizes abnormal vasculature (92). More
importantly, it can improve tumor immune response and patient
prognosis (92). In themousemodel of glioblastoma, the combination
of dual anti-angiogenesis and PD-1 checkpoint therapy significantly
prolonged the survival time and normalized the vascular system of
glioblastoma mice compared with anti-angiogenesis therapy alone
(61). At the same time, the increase of T cells not only reduced
FIGURE 2 | Overview of factors or signal pathways that regulate Ang2 expression in various cancers: These factors or signaling pathways regulate Ang2 expression
to mediate the occurrence and development of cancers, which may be potential targets for cancer treatment. Green arrows indicate positive effects. Red
perpendicular bars indicate negative effects.
TABLE 2 | Dysregulated Ang2 in cancer.

Cancer type Regulatory factors Effects on the expression of
Ang2

Cancer Development References

Gastric cancer miRNA-542-3p ↓ Inhibit cancer cell proliferation, migration (37)
miR-218 ↓ Inhibit cancer cell proliferation and invasion (39)
miR-145-5p ↓ Inhibit cancer cell proliferation, migration and

invasion
(40)

LINC00184 ↑ Induced EMT characteristics of gastric cancer
cells

(41)

DARPP-32 ↑ Promotes cancer cell proliferation, invasion
and migration

(42)

Lung cancer ADAM9 ↑ Promotes cancer cell migration (54)
Glioma BMAL1 ↑ Promotes cancer cell proliferation, invasion

and migration
(55)

ISL2 ↑ Promotes cancer cell proliferation, invasion
and migration

(13)

Colorectal cancer RAS-ERK1/2 ↑ Promotes cancer cell migration (67)
Breast cancer Estrogen ↓ Inhibit cancer cell proliferation (72)
Pancreatic cancer miR-145 ↓ Inhibit cancer cell proliferation and invasion (74)
Cerebral cavernous
malformation (CCM)

CCM3 ↓ Inhibit cancer cell proliferation, migration and
invasion

(75)

Kaposi’s sarcoma Kaposi sarcoma-associated
herpesvirus (KSHV)

↑ Promotes cancer cell proliferation, invasion
and migration

(77)

Osteosarcoma Connective tissue growth factor
(CTGF)

↑ Promotes cancer cell migration (79)

Melanoma TS ↓ Inhibit tumor angiogenesis (80)
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immunosuppression but also induced stronger antitumor immune
response and reduced glioma edema (61). Combined therapy not
only eliminates the side effects of single antiangiogenic therapy but
also enhances antitumor immunity through the synergistic effect of
VEGF/Ang2 and PD-1 blockers (61, 86, 94). In addition, recent
clinical trials have proved that MEDI3617 combined with
tremelimumab (an IgG2 monoclonal antibody blocking cytotoxic
T-lymphocyte-associatedprotein - (CTLA-4)) is safe in the treatment
of patients with advanced melanoma, which significantly reducing
the toxicity and side effects of single treatment (25). These studies
provide strong support for co-targeting of angiogenesis and immune
checkpoints in cancer therapy.

Radiotherapy
The effects of ionizing radiation on angiogenesis are complex,mainly
depending on the dose of radiation (95). After locally advanced rectal
cancer patients underwent low-dose ionizing radiation therapy at a
dose below 0.8 Gy (called LDIR), the endothelial cell ECs around the
tumorwere activated, thereby up-regulating the expression of several
pro-angiogenic genes suchasAng2,VEGFR1,VEGFR2, Inductionof
peritumoral angiogenesis (96, 97). In the early days, some scholars
proposed the combined use of radiation and anti-angiogenic agents
to treat cancer (98, 99). Studies have confirmed that the combination
of antiangiogenic therapy and radiotherapy in head and neck
squamous cell carcinomas (HNSCC) and nasopharyngeal
carcinoma can not only overcome the side effects of separate
treatment but also improve the curative effect (14, 100, 101).
Interestingly, recent studies have shown that overexpression of
Ang2 in mouse glioma models combined with radiochemotherapy
canprevent the recurrenceof glioblastoma (60).Therefore, the role of
Ang2 in cancer treatment needs to be further explored to play amore
accurate targeted therapy.

Ingeneral, targetingAng2inhibitstheformationofbloodvessels in
cancercells,resultingininsufficientbloodsupplytocancercells,unableto
meet the needs of growth and metastasis, thereby inhibiting cancer
progression, while also increasing the sensitivity of radiotherapy and
improving efficacy (14). However, there are many problems in the
combineduseofanti-angiogenictherapyandradiotherapy,suchasthe
order of use of the two, the dose and time of radiation, the amount of
vascular inhibitor, the route of administration, etc. These problems
requirealotofclinicaltrialstostudy.
CONCLUSION

Antiangiogenic therapy is one of the important means of tumor
treatment at present (102) It does not only block the nutrition and
oxygen required by tumor cells but also normalize abnormal blood
vessels and increase the sensitivity of radiotherapyandchemotherapy
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(9, 92). Bevacizumab, erlotinib, apatinib and other drugs are widely
used in clinic, especially in combination with chemotherapy drugs,
which significantly improves the curative effect in the treatment of
colorectal cancer, small cell lung cancer and other cancers, but its side
effects and drug resistance have not been solved (103–105). In recent
years, Ang2 has become a new target of anti-angiogenesis therapy. In
addition, Ang2 inhibition combined with chemotherapy,
radiotherapy and immunotherapy has been proved to improve the
effect of tumor treatment and overcome the limitations of single
treatment. But there are still a lot of problems to be solved. For
example, the sequence, duration, route of administration and dosage
of the combination therapy. The expression of Ang2 is regulated by
different mechanisms in different tumors, and even in different types
of the same tumor. A better understanding of themechanism of high
Ang2 expression in cancer and the vascular changes mediated by it
will help to address problems with current anti-angiogenesis in
cancer therapy. Here, we mainly introduced that the expression of
Ang2 in lung cancer, gastric cancer, glioma, colorectal cancer, breast
cancer and other cancers is regulated by relevant signal pathways or
factors, and proposed the possibility of targeting the inhibition of
Ang2with the signal pathways or factors that regulate the expression
ofAng2.Therefore, in the future,we should further explore the role of
Ang2 in cancer to maximize the efficacy for cancer patients. In
addition, the optimal combinationof targeting the inhibitionofAng2
with chemotherapy, radiotherapy, and immunotherapy would
require a concerted effort.

Ang2 is not only involved in the pathology of many diseases, but
also related to anti- angiogenesis and drug resistance, making it an
ideal target. However, the mechanism of Ang2 in different cancers,
even in different stages of the same cancer, needs further study.
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43. Romaszko A, Doboszyńska A. Multiple Primary Lung Cancer: A Literature
Review. Adv Clin Exp Med (2018) 27:725–30. doi: 10.17219/acem/68631

44. Bade B, Dela Cruz C. Lung Cancer 2020: Epidemiology, Etiology, and
Prevention. Clinics Chest Med (2020) 41:1–24. doi: 10.1016/
j.ccm.2019.10.001

45. Wu F, Wang L, Zhou C. Lung Cancer in China: Current and Prospect. Curr
Opin Oncol (2021) 33:40–6. doi: 10.1097/CCO.0000000000000703

46. Nooreldeen R, Bach H. Current and Future Development in Lung Cancer
Diagnosis. Int J Mol Sci (2021) 22(16):8661. doi: 10.3390/ijms22168661

47. Lauret Marie Joseph E, Laheurte C, Jary M, Boullerot L, Asgarov K, Gravelin
E, et al. Immunoregulation and Clinical Implications of ANGPT2/TIE2 M-
MDSC Signature in Non-Small Cell Lung Cancer. Cancer Immunol Res
(2020) 8:268–79. doi: 10.1158/2326-6066.CIR-19-0326

48. Xu Y, Zhang Y, Wang Z, Chen N, Zhou J, Liu L. The Role of Serum
Angiopoietin-2 Levels in Progression and Prognosis of Lung Cancer: A Meta-
Analysis. Medicine (2017) 96:e8063. doi: 10.1097/MD.0000000000008063

49. Oztutgan T, Demirer E, Tas D, Uysal A, Caliskan T, Kucukodaci Z, et al. A
Comparative Analysis of Angiopoietin 2 Immunohistochemical Staining in
Various Stages of Lung Cancer. Nigerian J Clin Pract (2016) 19:725–9. doi:
10.4103/1119-3077.193406

50. Dong Z, Chen J, Yang X, Zheng W, Wang L, Fang M, et al. Ang-2 Promotes
Lung Cancer Metastasis by Increasing Epithelial-Mesenchymal Transition.
Oncotarget (2018) 9:12705–17. doi: 10.18632/oncotarget.24061

51. Zhou L, Lan H, Zhou Q, Yue J, Liu B. Plasma Angiopoietin-2 Is Persistently
Elevated After Non-Small Cell Lung Cancer Surgery and Stimulates
Angiogenesis In Vitro. Medicine (2016) 95:e4493. doi: 10.1097/MD.0000
000000004493

52. Qin S, Yi M, Jiao D, Li A, Wu K. Distinct Roles of VEGFA and ANGPT2 in
Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer (2020)
11:153–67. doi: 10.7150/jca.34693

53. Yousefi M, Bahrami T, Salmaninejad A, Nosrati R, Ghaffari P, Ghaffari S.
Lung Cancer-Associated Brain Metastasis: Molecular Mechanisms and
Therapeutic Options. Cell Oncol (Dordrecht) (2017) 40:419–41. doi:
10.1007/s13402-017-0345-5

54. Lin C, Cho C, Bai S, Liu J, Kuo T, Wang L, et al. ADAM9 Promotes Lung
Cancer Progression Through Vascular Remodeling by VEGFA, ANGPT2,
and PLAT. Sci Rep (2017) 7:15108. doi: 10.1038/s41598-017-15159-1

55. Wang F, Li C, Han F, Chen L, Zhu L. BMAL1 may be Involved in
Angiogenesis and Peritumoral Cerebral Edema of Human Glioma by
Regulating VEGF and ANG2. Aging (2021) 13:24675–85. doi: 10.18632/
aging.203708

56. Kawashima T, Yashiro M, Kasashima H, Terakawa Y, Uda T, Nakajo K, et al.
Viaoligodendrocytes Up-Regulate the Invasive Activity of Glioblastoma
Cells the Angiopoietin-2 Signaling Pathway. Anticancer Res (2019)
39:577–84. doi: 10.21873/anticanres.13150

57. Gusyatiner O, Hegi M. Glioma Epigenetics: From Subclassification to Novel
Treatment Options. Semin Cancer Biol (2018) 51:50–8. doi: 10.1016/
j.semcancer.2017.11.010

58. Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for Glioma: Current
Management and Future Application. Cancer Lett (2020) 476:1–12. doi:
10.1016/j.canlet.2020.02.002

59. Sie M, Wagemakers M, Molema G, Mooij J, de Bont E, den Dunnen W. The
Angiopoietin 1/Angiopoietin 2 Balance as a Prognostic Marker in Primary
Glioblastoma Multiforme. J Neurosurg (2009) 110:147–55. doi: 10.3171/
2008.6.17612
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Cancer-associated fibroblasts (CAFs) are a major contributor to tumor stromal crosstalk in
the tumor microenvironment (TME) and boost tumor progression by promoting
angiogenesis and lymphangiogenesis. This study aimed to identify prognostic genes
associated with CAFs that lead to high morbidity and mortality in ovarian cancer (OC)
patients. We performed bioinformatics analysis in 16 multicenter studies (2,742 patients)
and identified CAF-associated hub genes using the weighted gene co-expression
network analysis (WGCNA). A machine learning methodology was used to identify
COL16A1, COL5A2, GREM1, LUM, SRPX, and TIMP3 and construct a prognostic
signature. Subsequently, a series of bioinformatics algorithms indicated risk
stratification based on the above signature, suggesting that high-risk patients have a
worse prognosis, weaker immune response, and lower tumor mutational burden (TMB)
status but may be more sensitive to routine chemotherapeutic agents. Finally, we
characterized prognostic markers using cell lines, immunohistochemistry, and single-
cell sequencing. In conclusion, these results suggest that the CAF-related signature may
be a novel pretreatment guide for anti-CAFs, and prognostic markers in CAFs may be
potential therapeutic targets to inhibit OC progression.

Keywords: cancer-associated fibroblasts, WGCNA, ovarian cancer, prognosis, tumor microenvironment
INTRODUCTION

Cancer-associated fibroblasts (CAFs) play a key role in the tumor microenvironment (TME) and
influence tumor progression and metastasis through multiple pathways, including remodeling of
the extracellular matrix (ECM), producing growth factors, and promoting angiogenesis (1).
Meanwhile, ovarian cancer (OC) is a heterogeneous disease characterized by a propensity for
peritoneal spread. Due to the complex interconnected signaling network and the unique peritoneal
TME, cancer cells can interact with CAFs, adipocytes, immune cells, and chemokines (2). As a
result, tumor migration and immune evasion frequently occur in OC patients, and immunotherapy
has little effect (3).
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The ECM is composed and reconstituted by CAFs, a barrier that
supports tumor cell invasion and inhibits infiltration of antitumor
immune cells, thus leading to immune evasion and chemoresistance
(4, 5). Several researchers have explored different CAF subgroups
with varying CAF marker expressions, such as alpha-smooth
muscle actin (a-SMA), fibronectin attachment protein (FAP), and
pelleted growth factor receptor (PDGFR) (6, 7). For example, in oral
cancer, WNT2+ CAFs were negatively correlated with CD8+ T-cell
activity (8). In pancreatic cancer, knocking down a-SMA+ CAFs
unexpectedly enhanced tumor infiltration and increased Regulatory
T cells (Tregs) abundance, leading to enhanced disease progression
and reduced survival rates in mice (9). In breast and colon cancer,
DNA-based vaccines targeting FAP induced the killing of CAFs by
CD8+ T cells (10). Therefore, targeting the CAF-mediated
immunosuppressive stromal microenvironment in combination
with immunotherapy is expected to improve immune checkpoint
inhibitor (ICI) response (11).

Weighted gene co-expression network analysis (WGCNA) is a
systematic bioinformatics algorithm that enables the integration of
highly correlated genes into several modules (12). This is a novel
method to explore the relationship between numerous genes and
clinical phenotypes. WGCNA has been applied to identify CAF
markers, such as in gastric cancer (13), bladder cancer (14), and
renal cell carcinoma (15). However, to date, CAFs have not been
analyzed by WGCNA in large-sample multicenter OC cohorts. In
this study, we integrated 16 multicenter studies that included 2,742
patients with complete follow-up information for bioinformatics
analysis. We explored the hub modules most relevant for CAF
infiltration and identified COL16A1, COL5A2, GREM1, LUM,
SRPX, and TIMP3 as prognostic CAF markers. Subsequently,
CAF signatures capable of predicting prognosis and treatment
response were constructed, and the predictive ability was
validated in multiple cohorts. In addition, we characterized
markers using cell lines, immunohistochemistry, and single-cell
sequencing. In conclusion, our results imply that the CAF
signature may be a novel anti-CAF therapeutic approach in OC.
METHODS

Datasets and Data Preprocessing
The fragments per kilobase of transcript per million mapped reads
(FPKM) format RNA sequencing (RNA-seq) data with complete
follow-up information of 372 samples were downloaded from The
Cancer Genome Atlas (TCGA) database (16). Except for the
samples without survival follow-up information, we still retained
the samples with other clinical information missing. The somatic
mutation data were also acquired from TCGA database. The tumor
mutational burden (TMB) value of each sample was calculated via
the tmb algorithm in the “maftools” package (17). We performed
log2 [transcripts per million (TPM) + 1] transformation on the
above raw data (18). In the Gene Expression Omnibus (GEO)
database (19), we integrated the multiple datasets (RNA-seq or
microarray) based on the GPL570 platform (GSE19829, GSE18520,
GSE9891, GSE26193, GSE30161, and GSE63885; n = 597), GPL96
platform (GSE3149, GSE23554, GSE26712, and GSE14764; n =
409), GPL7759 platform (GSE13876, n = 415), GPL2986
Frontiers in Immunology | www.frontiersin.org 233
platform (GSE49997, n = 194), and GPL14951 platform
(GSE140082, n = 380). In addition, we downloaded anti-
programmed death-1 (PD-1) dataset (IMvigor, n = 348) and anti-
PD-L1 dataset (GSE78220, n = 27) based on immunotherapy. Cell
line RNA-seq data from 47 fibroblast origins and 37 OC origins
were acquired from the Cancer Cell Line Encyclopedia (CCLE)
database (20). Immunohistochemical (IHC) staining images in OC
tissues were downloaded from the Human Protein Atlas (HPA)
database (21). Batch effects from meta-cohorts (GPL570 or GPL96)
were corrected using the ComBat algorithm in the “sva” package
(22). CAF markers were collected from previous references (23).

In conclusion, we integrated 16 multicenter studies and included
2,742 patients with complete follow-up information for our
bioinformatics analysis.

Cancer-Associated Fibroblasts and
Stromal Analysis
CAF abundances and stromal scores were computed using four
methods: Estimate the Proportion of Immune and Cancer cells
(EPIC) algorithm (24), xCell algorithm (25), microenvironment cell
populations-counter (MCP-counter) algorithm (26), and
Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression data (ESTIMATE) algorithm (27). We
used “IOBR” package to invoke the above algorithm (28). The CAF
abundances calculated by EPIC and MCP-counter were defined as
phenotypic data for subsequent WGCNA. The data calculated by
other algorithms were used for validation.

Weighted Gene Co-Expression
Network Analysis
The “WGCNA” package (12) screened hub genes that were
significantly associated with CAF scores. The expression profiles
of the top 25% of the variance in the GPL570 meta-cohort and
TCGA-OV cohort first were as the input. Then, according to our
previous study (29), a soft threshold was determined, an adjacency
matrix was clustered, and a hub module was determined. The
strongest positive correlation was selected for further analysis by
calculating the Pearson correlation coefficient between the modules
and CAF scores. Then, we measured gene significance (GS) for each
gene’s traits and module membership (MM) in the hub module.
Finally, genes in the module were screened as potential CAF-related
genes using MM >0.6 and GS >0.6 as thresholds.

Enrichment Analysis
The h.all.v7.4.symbols gene set was downloaded from the MSigDB
database (30) for enrichment analysis in “GSVA” package (31). The
adj.P value <0.05 was considered statistically significant. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were conducted using “clusterProfiler” package
(32). The adj.P-value <0.05 and adj.q-value <0.05 were considered
statistically significant.

Construction and Validation of the Cancer-
Associated Fibroblast Signature
The GPL570 meta-cohort with a larger sample size was used as the
training cohort, and other cohorts were used as the validation
cohort. Univariate Cox regression analysis was performed on
July 2022 | Volume 13 | Article 951582
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common hub genes in 16 multicenter studies (P-value <0.05). In the
least absolute shrinkage and selection operator (LASSO) regression
analysis (33), 1,000 iterations were performed to reduce the genes,
and subsequently, the above genes were subjected to multivariate
Cox regression analysis to obtain the coefficients. CAF risk score was
derived using the same formula as in our previous study (34, 35).
The OC patients in each cohort were divided into high-risk and low-
risk groups, and the cutoff value for each cohort was used as
the threshold.

Chemotherapy Response Predictions
The “pRRophetic” package (36) was used to calculate IC50 value
(bleomycin, cisplatin, docetaxel, gemcitabine, doxorubicin, and
etoposide) of different samples based on gene expression.

Single-Cell Sequencing Analysis
We analyzed single-cell RNA-sequencing (scRNA-seq) data
(GSE118828) from OC tissues based on the Tumor Immune
Single Cell Hub (TISCH) database (37), and the whole cells were
annotated into six clusters: fibroblasts, myofibroblasts, endothelial,
malignant, monocyte or macrophage (Mono/Macro), and
conventional CD4 T cell (CD4Tconv).

Immunofluorescence Staining
In total, two formalin-fixed paraffin-embedded (FFPE) tissue
(primary tumors and recurrent tumors) blocks were selected from
the Zhongda Hospital Southeast University. Immunofluorescence
staining was also done by a commercial entity (Servicebio, Wuhan,
Hubei, China). According to the company, detailed methods are
available in a previous publication (38). Antibody staining order
always remains the same, all slices with 4,6-diamidino-2-
phenylindole (DAPI) (Servicebio, G1012) finally after dyeing.
Monoclonal antibodies in immunofluorescence panels were CD8
(Servicebio, GB13068-2, 1:500), Foxp3 (Servicebio, GB112325,
1:3,000), and a-SMA (Servicebio, GB13044, 1:1,000). Slices were
placed under a scanner to collect images, and image data were
obtained using CaseViewer software.

Statistical Analysis
All statistical analyses were performed using the R software (v.4.0.1).
The Wilcoxon test was applied for pairwise comparisons. The
Kaplan–Meier analysis with the log-rank test was adopted for
overall survival comparisons. More detailed statistical methods for
transcriptome data processing are covered in the above section. P <
0.05 was considered statistically significant.

RESULTS

Cancer-Associated Fibroblasts and
Stromal Score Could Be Considered
Prognostic Markers for Ovarian Cancer
We integrated the multidatasets based on the GPL570 platform
(GSE19829, GSE18520, GSE9891, GSE26193, GSE30161, and
GSE63885), and the Uniform Manifold Approximation and
Projection (UMAP) analysis showed the distribution of each
dataset before and after removal of batch effect (Figures 1A, B).
The expression density plot also revealed that the batch effect of the
Frontiers in Immunology | www.frontiersin.org 334
GPL570meta-cohort was well removed (Figures 1C, D). Finally, we
normalized the expression profiles of 597 samples with complete
follow-up information (Figure 1E). Previous references have
reported the ability of CAFs to recruit immunosuppressive cells,
so we performed immunofluorescence staining using
immunofluorescence in patients with primary tumors and in
patients with recurrent tumors (39). Interestingly, there was a
recruitment of Treg cells (green) around the CAF cells (pink) in
patients with primary tumors (Figure 2A), especially in the
recurrent samples, where a larger number of Treg cells clustered
to the prominent part of the CAF cells (Figure 2B). CD8+ cells (red)
were rarely seen around CAF cells in both samples. Subsequently,
the CAF infiltration score was predicted by EPIC, xCell, and MCP-
counter algorithms based on the GPL570 meta-cohort (n = 597)
and TCGA-OV cohort (n = 372), and the stromal score was
calculated by ESTIMATE algorithm. We divided all samples into
a high CAF/stromal score group and a low CAF/stromal group
according to the cutoff values of the scores calculated by the four
bioinformatics algorithms. In the GPL570 meta-cohort, the results
showed that higher CAF infiltration and stromal score were
significantly associated with poorer overall survival (OS) in OC
patients (Figure 2C). Similarly, it could also be used as a predictive
biomarker in TCGA-OV cohort (Figure 2D). Our study defined the
CAF abundances calculated by EPIC and MCP-counter as
phenotypic data for subsequent WGCNA. The data calculated by
other algorithms were used for validation.

Co-Expression Network of Cancer-
Associated Fibroblast Scores
WGCNA was performed using the expression profiles of the top
25% of variance in the GPL570meta-cohort and TCGA-OV cohort.
The soft threshold power in the GPL570 meta-cohort was 3
(Figure 3A); similarly, the threshold for TCGA-OV cohort was
also 3 (Figure 3B). Subsequently, dynamic module identification
was performed in the different cohorts, with the number of genes
per module not less than 50 (Figures 3C, D). For the GPL570 meta-
cohort, 9 co-expression modules were clustered, with the brown
module having the strongest positive correlation with CAFs_EPIC
score (Cor = 0.88, P = 3e-208) and Fibroblasts_MCPcounter score
(Cor = 0.9, P = 5e-234) (Figure 3E). For TCGA-OV cohort, the 9
co-expression modules were clustered, with the blue module having
the strongest positive correlation with CAFs_EPIC score (Cor =
0.76, P = 2e-71) and Fibroblasts_MCPcounter score (Cor = 0.92,
P = 3e-157) (Figure 3F). In the brown module, positive correlations
b e t w e e n CAF s _ E P I C s c o r e ( C o r = 0 . 9 6 ) a n d
Fibroblasts_MCPcounter score (Cor = 0.97) were observed
between MM and GS (Figure 3G); in the black module, positive
correlations between CAFs_EPIC score (Cor = 0.87) and
Fibroblasts_MCPcounter score (Cor = 0.97) were also observed
between MM and GS (Figure 3H). Finally, 120 genes in the brown
module and 160 genes in the bluemodule were screened as potential
CAF-related genes using MM > 0.6 and GS > 0.6 as thresholds.

Functional Analyses of Cancer-Associated
Fibroblast-Related Genes
The above CAF-related genes were overlapped and screened to 95
hub genes (Figure 4A). Regulation of small GTPase-mediated
July 2022 | Volume 13 | Article 951582
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signal transduction, extracellular matrix, collagen-containing
extracellular matrix, and metallopeptidase activity were the main
enriched GO terms (Figure 4B). Fatty acid degradation, glycolysis/
gluconeogenesis, regulation of lipolysis in adipocytes, peroxisome
proliferator activated receptor (PPAR) signaling pathway, vascular
smooth muscle contraction, and cyclic guanosine monophosphate
(cGMP)/protein kinase G (PKG) signaling pathway were the
mainly enriched KEGG pathways (Figure 4C).

Construction of the Cancer-Associated
Fibroblast-Based Signature
The GPL570 meta-cohort with a larger sample size was used as the
training cohort, and TCGA-OV cohort was used as the validation
group. Univariate Cox regression analysis was performed on
common hub genes in the training cohort (Figure S1), with OS
and survival time as dependent variables, and 63 prognostic genes
(P < 0.05) were screened, and only some with P < 0.001 were shown
in Figure 4D. The 63 prognostic genes were subjected to LASSO
regression analysis to determine the minimum l value (Figure 4E).
Finally, 6 genes were identified for the CAF-based signature: CAF
risk score = COL16A1 expression * 0.0924 + COL5A2 expression *
-0.0031 + GREM1 expression * 0.0847 + LUM expression * 0.0069
+ SRPX expression * 0.0649 + TIMP3 expression * 0.0425. The OC
patients in each cohort were divided into high-risk and low-risk
groups, and the cutoff for each cohort was used as the threshold
Frontiers in Immunology | www.frontiersin.org 435
value (GPL570 meta-cohort = 1.257016302; TCGA-OV cohort =
0.415034301). Kaplan–Meier curves showed that patients in the
high-risk group had worse OS than that of those in the low-risk
group (Figure 4F). These results suggested that the CAF signature
was the hub prognostic marker for OC patients.

Cancer-Associated Fibroblast-Based
Signature Genes Were Correlated With
Cancer-Associated Fibroblast Markers
Spearman correlation analyses were performed between the CAF
risk score and the CAF score predicted by the other methods
(xCell, EPIC, ESTIMATE, and MCP-counter). Subsequently, we
observed a strong and positive correlation between risk scores and
CAF infiltration and stromal score in both GPL570 meta-cohort
(Figure 5A) and TCGA-OV cohort (Figure 5B). Moreover, CAF
marker genes from previous references had a higher expression in
the high-risk group (Figures 5C, D). In addition, the expression
levels of 6 genes in the signature also were highly and positively
correlated with CAF marker expression (Figures 5E, F).

Multidimensional Validation in
Multicenter Studies
To further validate the prognostic value of the CAF-based signature,
we integrated the GPL96 meta-cohort (GSE3149, GSE23554,
GSE26712, and GSE14764) according to the method described
B

C D

E

A

FIGURE 1 | Normalization process based on the GPL570 platform dataset. (A) UMAP plot of the six datasets before normalization. (B) UMAP plot of the six datasets
after normalization. (C) Expression density plot of the six datasets before normalization. (D) Expression density plot of the six datasets after normalization. (E) Expression
distribution plots for the six datasets after normalization. UMAP, Uniform Manifold Approximation and Projection.
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above, which included a total of 409 patients (Figure S2).
Meanwhile, the datasets based on GPL7759 (GSE13876, n = 415),
GPL2986 (GSE49997, n = 194), and GPL14951 (GSE140082, n =
380) platforms were downloaded for external validation. The risk
scores of each cohort were calculated with the same formula and
stratified by their respective cutoff values (GPL96 meta-cohort =
0.976888643; GPL7759 cohort = 3.088372669; GPL2986 cohort =
0.147731773; GPL14951 cohort = 2.479072527). Unsurprisingly,
risk score stratified patients by survival risk in multicenter studies,
and OS was shorter in the high-risk group, such as in the GPL96
meta-cohort (Figure 6A, P = 0.004), GPL7759 cohort (Figure 6B,
P = 0.006), GPL2986 cohort (Figure 6C, P < 0.001), and GPL14951
cohort (Figure 6C, P = 0.002).

Cancer-Associated Fibroblast-Based
Signature in the Role of Immunotherapy
Immunotherapy represented by PD-L1 and PD-1 blockade has
undoubtedly become a breakthrough in cancer treatment, so we
investigated whether the CAF-based signature could predict
response to anti-PD-1 and anti-PD-L1 based on two
immunotherapy cohorts . In the anti-PD-L1 cohort
(IMvigor210), the high-risk group had a higher percentage of
stable disease (SD)/progressive disease (PD). In contrast, more
patients in the low-risk group were in complete response (CR)/
partial response (PR) (Figure 6E). Moreover, patients with a low
Frontiers in Immunology | www.frontiersin.org 536
risk score exhibited a markedly prolonged survival (Figure 6F).
In the anti-PD-1 cohort (GSE78220), the significant therapeutic
advantages and clinical response in patients with a low score also
were confirmed (Figures 6H, I). However, due to the small
sample size of the anti-PD-1 cohort, there was no significant
difference in survival time between different groups (Figure 6J).

Correlation Between the Cancer-
Associated Fibroblast-Based Signature
and Somatic Variation
Preclinical research has shown that patients with higher TMB are
associated with enhanced immunotherapy response and lasting
clinical benefits when treated with immune checkpoint blockade.
Therefore, we investigated the discriminatory ability of the CAF-
based signature in the somatic mutation data of TCGA-OV
cohort. Firstly, we screened the most differentially mutated genes
in different risk groups, including KMT2C, WDFY3, CACNA1S,
etc. (Figure 7A(i)). We found no significant differences between
the two groups in CAF marker mutations, but TNC (15.0%) and
COL3A1 (11.7%) exhibited a higher frequency of mutations in
the whole TCGA-OC cohort (Figure 7A(ii)). Subsequently, we
observed that TMB values were higher in the low-risk group than
those in the high-risk group (Figure 7B). However, Spearman
analysis showed no statistically significant correlation between
CAF risk score and TMB values (Figure 7C). However, TMB
B

C

A

D

FIGURE 2 | CAFs spatially associate with Treg cells and survival analysis-based CAFs and stromal score. (A) Immunofluorescence staining of the original ovarian
tissue samples. (B) Immunofluorescence staining results of recurrent ovarian tissue samples. (C) The Kaplan–Meier analysis of GPL570 meta-cohort, including
CAF_EPIC (i), Fibroblasts_MCPcounter (ii), Fibroblasts_xCell (iii), and StromalScore_estimate (iv). (D) The Kaplan–Meier analysis of TCGA-OV cohort, including
CAF_EPIC (i), Fibroblasts_MCPcounter (ii), Fibroblasts_xCell (iii), and StromalScore_estimate (iv). CAFs, Cancer-Associated Fibroblasts; Tregs, Regulatory T cells.
July 2022 | Volume 13 | Article 951582

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Feng et al. Cancer-Associated Fibroblast Signature in OC
values were negatively correlated with stromal score and CAF-
activating factors transforming growth factor beta (TGF-b),
suggesting that higher TMB might have intense tumor-killing
effects via modulating a fibroblast-weak TME (40) (Figure 7D).

GSEA of the Cancer-Associated
Fibroblast-Based Signature
Gene Set Enrichment Analysis (GSEA) was performed in two
datasets (GPL570 meta-cohort and TCGA-OV cohort) to explore
the pathways involved in different risk groups. Allograft rejection,
apical junction, and epithelial–mesenchymal transition were
significantly enriched (Figures 8A, B). The ssGSEA score also
showed that the CAF risk score was positively correlated with
TNFA signaling via nuclear factor-kappaB (NF-kappaB), hypoxia,
and Wnt beta catenin signaling pathway (Figures 8C, D).
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Sensitivity of Chemotherapy Between
Different Risk Groups
Maintenance therapy and chemotherapy after debulking surgery
for OC patients are crucial, and the mutation of the Breast
Cancer Susceptibility Genes (BRCA) is relevant to the efficacy of
olaparib. Therefore, we explored the distribution of mutations in
the BRCA under different risk groups. BRCA1 may be more
distributed in the high-risk group, but there was no significant
difference in BRCA2. Interestingly, the combined BRCA
mutation status and risk score allowed for better survival
prediction (Figures 9A, B). In addition, Wilcoxon analysis
revealed significant differences in IC50 values between different
risk groups. Among them, high-risk patients may be more
sensitive to bleomycin (Figure 9C), cisplatin (Figure 9D),
docetaxel (Figure 9E), and gemcitabine (Figure 9H). Still, the
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FIGURE 3 | WGCNA in the GPL570 meta-cohort and TCGA-OV cohort. (A) Scale independence and mean connectivity in the GPL570 meta-cohort. (B) Scale
independence and mean connectivity in TCGA-OV cohort. (C) Gene dendrogram and modules before merging in the GPL570 meta-cohort. (D) Gene dendrogram and
modules before merging in TCGA-OV cohort. (E) Pearson correlation analysis of merged modules and CAF score in the GPL570 meta-cohort. (F) Pearson correlation
analysis of merged modules and CAF score in TCGA-OV cohort. (G) Scatterplot of MM and GS from the brown module in the GPL570 meta-cohort, including CAFs_EPIC
(i) and Fibroblasts_MCPcounter (ii). (H) Scatterplot of MM and GS from the blue module in TCGA-OV cohort, including CAFs_EPIC (i) and Fibroblasts_MCPcounter (ii).
WGCNA, Weighted Gene Co-expression Network Analysis; CAFs, Cancer-Associated Fibroblasts; GS, Gene Significance; MM, Module Membership.
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IC50 values of doxorubicin (Figure 9F) and etoposide
(Figure 9G) were not significantly different between groups.

Validation in Cell Lines, scRNA-Seq,
and Immunohistochemistry
To validate that the CAF-related genes involved in the signature
were the primary origins in CAFs, we performed a
multidimensional validation, including cell lines, single-cell
sequencing, and immunohistochemistry. We collected cell line
RNA-seq data from 47 fibroblast origins and 37 OC origins. We
found that all six genes (COL16A1, COL5A2, GREM1, LUM,
SRPX, and TIMP3) were overexpressed in fibroblasts by the
“limma” package (Figure 10A) and Wilcoxon test (Figure 10B).
Meanwhile, we annotated the scRNA-seq into 6 clusters:
fibroblasts, myofibroblasts, endothelial, malignant, Mono/Macro,
and CD4Tconv (Figure 10C). The differential analysis results
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showed that most CAF-related genes were highly expressed in
fibroblasts or myofibroblasts, while lower expression was observed
in malignant (Figure 10D). Moreover, the single-cell GSEA was
consistent with the bulk-RNA GSEA, showing significant
enrichment of upregulated genes of fibroblasts in the EMT
pathway (Figure 10E). We analyzed IHC images from the HPA
database, and the section showed that GREM1 and LUM proteins
were deeply stained in the stroma (Figure 10F). Unfortunately, the
other four genes did not have corresponding IHC images in the
HPA database. These verifications implied that these six genes
might be CAF-specific markers.

DISCUSSION

The CAF is regarded as an essential factor in promoting tumor
progression by interacting with cancer cells in the TME (1).
B
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FIGURE 4 | Functional analyses and construction of the CAF-based signature. (A) The hub CAF-related genes were overlapped in the brown module and the blue
module. (B) GO enrichment analysis. (C) KEGG enrichment analysis. (D) Univariate Cox regression analysis of common hub genes (P < 0.001). (E) LASSO regression
analysis. (F) Kaplan–Meier analysis of different cohorts. On the left is GPL570 meta-cohort; on the right is TCGA-OV cohort. CAFs, Cancer-Associated Fibroblasts; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, Least Absolute Shrinkage and Selection Operator.
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Meanwhile, for a specific mesenchymal subtype of OC, it is
characterized by frequent generation of desmoplastic stroma
(41). The generation of desmoplastic stroma is associated with
a lower OS and resistance to platinum (42). Consistently, we
observed that higher CAF and stromal scores were associated
with poorer OS in OC patients and represented a poorer
immunotherapy response. This is the first study with a large
sample and using WGCNA as a starting point for exploring
markers associated with CAFs. A 6-gene prognostic (COL16A1,
COL5A2, GREM1, LUM, SRPX, and TIMP3) signature was
constructed and validated using Cox and LASSO regression
algorithms. With the cutoff value as a threshold, we observed
that patients with a high CAF risk score were more sensitive to
numerous chemotherapeutic agents. Furthermore, we revealed
that lower risk scores were associated with improved
immunotherapy outcomes and higher TMB value. Based on
our results, we propose an alternative mechanism by which
higher TMB may also enhance tumor killing by modulating
Frontiers in Immunology | www.frontiersin.org 839
the microenvironment of stromal fibroblasts, similar to previous
findings. It reported that cancer cells with high levels of somatic
mutation are more easily recognized by the immune system (43).
However, we need more in vitro and in vivo experiments to
elucidate the above crosstalk in the future.

Compared to the traditional differential gene expression (DEG)
approach for screening hub CAF markers (44), we used different
bioinformatics algorithms to assess the abundance of CAFs and
biomarkers in each OC sample to ensure the robustness (EPIC
and MCP-counter for WGCNA network construction; xCell and
ESTIMATE for correlation validation). Similarly, to ensure the
robustness of the prognostic signature, different cohorts were used
for construction and validation (GPL570 meta-cohort for
construction; TCGA-OV cohort, GPL96 meta-cohort, GPL7759
cohort, GPL2986 cohort, GPL14951 cohort, IMvigor210 cohort,
and GSE78220 cohort for validation). With the above approach, we
confirmed that our model closely correlated with CAF infiltration
and CAF markers from references. Meanwhile, to differentiate
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FIGURE 5 | Genes involved in the signature were correlated with CAF markers. (A) Correlation analysis of CAF score, stromal score, and risk score in the GPL570
meta-cohort. (B) Correlation analysis of CAF score, stromal score, and risk score in TCGA-OV cohort. (C) Heatmaps of expression of CAF markers in different risk
groups (GPL570 meta-cohort). (D) Heatmaps of expression of CAF markers in different risk groups (TCGA-OV cohort). (E) Correlation analysis of genes involved in
signature and CAF markers (GPL570 meta-cohort). (F) Correlation analysis of genes involved in signature and CAF markers (TCGA-OV cohort). CAFs, Cancer-
Associated Fibroblasts.
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identified genes from tumor cells to highlight gene heterogeneity in
CAFs, we confirmed significantly higher expression in fibroblast cell
lines, higher staining of proteins in the stroma, and higher mRNA
expression of the CAFs at the single-cell level.

For the six genes involved in the risk signature, the relevant
references have reported on the role in tumor cells and TME.
COL16A1 was indicated in the study of Pan and Ma (45) to be
involved in a risk model and could be considered a prognostic
marker in OC patients. Renner et al. (46) sought to determine the
ECM composition of benign fallopian tubes and the changes
associated with tubal intraepithelial carcinomas and identified
seven proteins that had not been identified in previous studies
(COL2A1, COL4A5, COL16A1, elastin, LAMA5, annexin A2,
and PAI1). Interestingly, they suggested that the seven proteins
mentioned above accompany tubal intraepithelial carcinoma
formation and cause ECM changes. Head and neck squamous
Frontiers in Immunology | www.frontiersin.org 940
cell carcinoma (HNSCC) cell lines were cocultured with their
patient-matched CAFs in 2D and 3D in vitro models, and
GREM1 was upregulated (47). In addition, related studies have
also found that GREM1 binds to miR-205-5p (48) or miR-206
(49) to regulate metastasis of cervical cancer and non-small cell
carcinoma. As part of the ECM, collagen family proteins,
together with elastins, fibronectins, and laminins, play a key
role in tissue organization, tissue resistance, and its primary
shape. The collagen family, including COL5A2, is overexpressed
in various types of epithelial cancers and is associated with
poorer OS. Furthermore, inhibition of gene expression
decreases cell proliferation and invasion (50, 51). SRPX, also
known as SRPX1 (52), ETX1 (53), and DRS (54), is a suppressor
that has been found to be downregulated in a range of human
tumor cells and tissues. Unlike other soluble members of the
Tissue Inhibition of Matrix Metalloproteinase (TIMP) family,
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FIGURE 6 | Multidimensional validation for risk score. (A) Kaplan–Meier analysis in the GPL96 meta-cohort. (B) Kaplan–Meier analysis in the GPL7759 cohort. (C)
Kaplan–Meier analysis in the GPL2986 cohort. (D) Kaplan–Meier analysis in the GPL14951 cohort. (E) Histogram of anti-PD-L1 response distribution in different risk
groups. (F) Box plot of risk score in different anti-PD-L1 response groups. (G) Kaplan–Meier analysis in the anti-PD-L1 cohort. (H) Histogram of anti-PD-1 response
distribution in different risk groups. (I) Box plot of risk score in different anti-PD-1 response groups. (J) Kaplan–Meier analysis in the anti-PD-1 cohort. PD-1,
Programmed Death-1; PD-L1, Programmed Cell Death 1 Ligand.
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FIGURE 7 | Functional analyses and construction of the CAF-based signature. (A) (i) Differentially mutated genes in different risk groups. (ii) CAF marker mutations in
different risk groups. (B) TMB values in different risk groups. (C) Spearman analysis between CAF risk score and TMB values. (D) Correlation analysis between TMB
values, stromal/CAF scores, and CAF-activating factors. CAFs, Cancer-Associated Fibroblasts; TMB, Tumor Mutational Burden.
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FIGURE 8 | GSEA in cancer hallmark gene set. (A) GSEA plot in the GPL570 meta-cohort. (B) GSEA plot in TCGA-OV cohort. (C) Correlation analysis between risk
score and TNF signaling (i), hypoxia (ii), EMT (iii) in the GPL570 meta-cohort. (D) Correlation analysis between risk score and TNF signaling (i), hypoxia (ii), and EMT
(iii) in TCGA-OV cohort. GSEA, Gene Set Enrichment Analysis; TNF, Tumor Necrosis Factor; EMT, Epithelial to Mesenchymal Transition.
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FIGURE 9 | Sensitivity of chemotherapy between different risk groups. (A) Histogram of BRCA1 state distribution and Kaplan–Meier analysis of integrated
groupings. (B) Histogram of BRCA2 state distribution and Kaplan–Meier analysis of integrated groupings. IC50 values between different risk groups, including
bleomycin (C), cisplatin (D), docetaxel (E), doxorubicin (F), etoposide (G), and gemcitabine (H).
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FIGURE 10 | Multidimensional expression validation. (A) Heatmap of gene expression in different cell lines based on “limma” package. (B) Wilcoxon test of gene
expression in different cell lines. (C) Major cell type in single-cell seq. (D) Differential distribution of gene expression at the single-cell level. (E) GSEA of upregulated
genes in different cell types. (F) IHC images of OC tissues from the HPA database. GSEA, Gene Set Enrichment Analysis; OC, Ovarian cancer; IHC,
Immunohistochemistry; HPA, Human Protein Atlas.
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TIMP3 is tightly sequestered in the ECM. TIMP-3 is also the only
TIMP capable of inhibiting tumor necrosis factor alpha (TNF-
a), ADAMTS4, and ADAMTS5, as well as syndecan sheddase
(55). Nevertheless, functional validation about the six genes
involved in the risk signature in the CAFs of OC is not much,
which requires us to conduct further experiments on the six CAF
markers in the future.

In conclusion, the CAF risk score can be used in clinical
practice to comprehensively evaluate the corresponding cellular
infiltration of CAFs in patients to further define the
immunophenotype. We have also demonstrated that risk score
can be used to assess the clinicopathological characteristics of
patients. Similarly, risk score also can be used as a biomarker to
predict survival and the efficacy of adjuvant chemotherapy and
the response to anti-PD-1/PD-L1 immunotherapy. More
importantly, this study may help to leverage the future
development of new drug combination strategies or new
immunotherapeutic agents. Our findings provide new ideas to
facilitate future individualized cancer immunotherapy.
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Rheumatoid arthritis (RA) is a chronic, heterogeneous autoimmune disease. Its high
disability rate has a serious impact on society and individuals, but there is still a lack of
effective and reliable diagnostic markers and therapeutic targets for RA. In this study, we
integrated RA patient information from three GEO databases for differential gene
expression analysis. Additionally, we also obtained pan-cancer-related genes from the
TCGA and GTEx databases. For RA-related differential genes, we performed functional
enrichment analysis and constructed a weighted gene co-expression network (WGCNA).
Then, we obtained 490 key genes by intersecting the significant module genes selected
by WGCNA and the differential genes. After using the RanddomForest, SVM-REF, and
LASSO three algorithms to analyze these key genes and take the intersection, based on
the four core genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) that we found, we
constructed an RA diagnosis. The nomogram model showed good reliability and
validity after evaluation, and the ROC curves of the four genes showed that these four
genes played an important role in the pathogenesis of RA. After further gene correlation
analysis, immune infiltration analysis, and mouse gene expression validation, we finally
selected CYFIP2 as the cut-in gene for pan-cancer analysis. The results of the pan-cancer
analysis showed that CYFIP2 was closely related to the prognosis of patients with various
tumors, the degree of immune cell infiltration, as well as TMB, MSI, and other indicators,
suggesting that this gene may be a potential intervention target for human diseases
including RA and tumors.
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INTRODUCTION

RA is a chronic, symmetrical, autoimmune disease that is
aggressive and involves multiple joints in the body. The
worldwide prevalence is approximately 5 per 1,000 and the
incidence in women is usually 2 to 3 times higher than in men
(1). RA is characterized by painful, morning stiffness, which leads
to joint erosion and destruction, producing limb deformities.
Some patients with RA may or subsequently develop
manifestations involving organs other than joints, such as
rheumatoid nodules in the skin, pericarditis, and interstitial
lung lesions (2), making RA a multisystem disease. The
diagnosis of RA is mainly based on clinical symptoms, signs,
and laboratory and imaging tests. Therefore, it is easy to miss the
diagnosis of early, atypical, or inactive RA. Recently, large-scale
genome-wide association studies (GWAS) and meta-analyses
have revealed common disease-associated variants in the
population, and there is an increasing number of studies on
genes and susceptibility to RA, increasing the possibilities for
early diagnosis and clinical treatment of RA (3).

The etiology and pathogenesis of RA are complex, and the
immune response occurs under the combined effect of multiple
factors influenced by genetics, infection, and environment,
causing synovitis. Studies have shown that the abnormal
morphology and gene expression patterns of RA synovial
fibroblasts (RASF) and macrophages (RASM) are key factors in
the development of RA (4, 5). B cells secrete proteins such as
rheumatoid factor (RF), anti-citrullinated protein antibodies
(ACPA), and pro-inflammatory cytokines to form immune
complexes with self-antigens to support RA (6).T cells
differentiate into TH1, TH17, or Tfh and release lymphokines.
In RA, the main function of T cells is to activate macrophages
and fibroblasts, which differentiate into tissue-damaging cells (7).
However, the mechanisms of gene and protein expression in the
synovium associated with the pathogenesis of RA have not
been elucidated.

The main treatments for RA are anti-inflammatory drugs,
analgesic drugs, and DMARDs.The first two can only relieve the
symptoms of RA but do not stop the further development of RA.
Since the immune response is the main pathogenesis of RA,
disease-modifying antirheumatic drugs (DMARDs) have
become the primary choice for RA. Although DMARDs have
shown good efficacy in reducing RA, there is still a possibility of
treatment failure with DMARDs for some patients (8). In the last
decade, biologics have continued to enter clinical trials, and these
drugs specifically target immune cells for immunomodulation
and are used in conjunction with DMARDs for the treatment of
RA (9). Whether DMARDs are used alone or in combination
with new biologic agents, the optimal therapeutic options for RA
are still under further investigation. Therefore, there is an urgent
need to explore the signature genes that are closely related to the
development of RA in order to provide better options for early
diagnosis and treatment of RA.

In this article, we used the R tool and the limma package to
statistically analyze the four data sets and analyze the differential
expression of mRNAs. The WGCNA R package was then used to
calculate the association of gene significance (GS) and module
Frontiers in Immunology | www.frontiersin.org 247
membership (MM), analyze the correlation between modules to
construct a weighted gene co-expression network, and merge
DEGs with key module genes for functional analysis. The feature
genes were also identified by the algorithm, and LASSO
regression analysis was performed to narrow down the range
of feature genes. To further validate the selected signature genes,
we used GSEA analysis, interaction analysis, ROC analysis,
and studied the level of immune cell infiltration in the RA
group, and finally calculated the relationship between signature
genes and immunity. For further selection, by integrating
multiple datasets, we aimed to screen the signature genes that
play a key role in the development of RA and various cancers.
Combining with the immune infiltration analysis and in vivo
experiment, CYFIP2 was filtered out and verified via pan-
cancer analysis, which illustrated a strong correlation with
various tumors.
MATERIAL AND METHODS

Data Processing and Download of the
RA Dataset
GSE1919 (10), GSE55457 (11), GSE48780 (12), and GSE55235
(11) were downloaded from the Gene expression omnibus (Geo,
https://www.ncbi.nlm.nih.gov/geo/) database, and information
on these datasets is supplied in Table 1. “Limma” software was
used to investigate mRNA expression differences (13). To
account for false-positive results, adjusted P-values were
examined in GEO. The R package ggord was used to depict the
threshold mRNA differential expression screen, which was
specified as “Adjusted P <0.05 and log2 (fold change) >0.5 or
log2 (fold change)<−0.5.” The R package pheatmap was used to
create the expression heat maps. From the InnateDB database, a
total of 2,308 immune genes involved in the innate immune
response were obtained. The Cancer Genome Atlas provided
RNA sequencing and clinical data for 33 different cancer types
(TCGA). The GTEx database was used to collect normal tissue
expression data, while the CCLE database was used to obtain the
gene expression for several cancer cell lines.

Enhancement of Functionality
The data were evaluated using functional enrichment to confirm
the possible functionalities of prospective targets. Gene ontology
(GO) is a popular technique for assigning functions to genes,
particularly molecular functions (MF), biological pathways (BP),
and cellular components (CC). KEGG enrichment analysis can
TABLE 1 | Information on microarray datasets obtained from Gene Expression
Omnibus.

GEO Data set Platform RA Control

GSE1919 GPL91 5 5
GSE55457 GPL96 13 10
GSE48780 GPL570 83 0
GSE55235 GPL96 10 10
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be used to analyze gene functions as well as related high-level
genomic functional information. The “GOplot” package and the
“cluster profiler” in R were used to examine the GO function of
prospective mRNAs and to enhance KEGG pathways to better
understand the carcinogenic role of target genes (14).

Co-Expression Networks are Built
The WGCNA method aids in the investigation of gene set
expression. Through the following main phases, the WGCNA
R package was used at various stages for the development and
modularization of various gene networks. To determine if there
were any significant outliers, the samples were placed in clusters.
Following that, automated networks were used to create co-
expression networks. The modules used hierarchical clustering
and dynamic tree cutting function detection. Module
membership (MM) and gene significance (GS) were estimated
to connect modules with clinical characteristics. Hub modules
were designated as those with the highest Pearson module
membership correlation (MM) and a p absolute value of 0.05.
High module connection and clinical importance were denoted
by MM >0.8 and GS >0.2, respectively. The gene information for
the corresponding module was advanced for further
investigation (15).

Identification of Distinct Genes
The above genes were used to isolate the feature genes that were
used to diagnose RA. SVM is a regression or classification-
supervised machine learning technique that requires a training
set with labels (16). SVM-RFE is a machine learning technique
that trains a subset of features from different categories to shrink
the feature set and find the most predictive features. To compute
and choose linear models and keep the valuable variables, the
“glmnet” package in R was used to perform minimum absolute
shrinkage and selection operator (LASSO) regression. The
binomial distribution variables were then used in the LASSO
classification, coupled with one standard error lambda value for
the minimum criterion (1−SE criterion) used to build the model,
which has good performance but only 10 cross-validation
variables. RandomForest was used to rank the genes, and their
relative value above 0.25 was recognized as a typical chance cause
(17). The intersection was then used to pick the most significant
feature genes in this study using LASSO logistic regression,
SVM-RFE, and RandomForest.

PPI (Protein–Protein Interaction)
Network Construction
GeneMANIA (http://www.genemania.org) is a website for
building protein–protein interaction (PPI) networks, which can
be used to generate gene function predictions and locate genes
with comparable effects. Physical interaction, co-expression, co-
localization, gene enrichment analysis, genetic interaction, and
site prediction are some of the bioinformatics methods used by
the network integration algorithm. GeneMANIA was used to
analyze PPI networks of signature genes in this study.
Frontiers in Immunology | www.frontiersin.org 348
Diagnostic Column Line Graph
Construction and Validation
We created a column line graph model to predict the recurrence
of RA using the “rms” program. The “score” is the score of the
relevant item below, and the “total score” is the sum of all the
elements above. The predictive power of the line graph model
was then assessed using calibration curves. Finally, decision
curve analysis and clinical impact curves were used to assess
the clinical utility of the model.

Curve Analysis of Receiver Operating
Characteristics (ROC)
We used the P ROC function in the R package to create Receiver
Operating Characteristic (ROC) curves to determine the area
under the curve (AUC) for screening signature genes and
evaluating their diagnostic value (18).

Immune Infiltration Analysis by ssGSEA
To investigate the various levels of infiltration of immune cell
types between RA tissue and normal tissue. To analyze the
association between immune cells and distinctive genes, the
“corrplot” package was used to obtain the Spearman rank
correlation coefficient.

Analysis of Prognosis
Using deep forest plots, the “foresrplot” R program was used to
perform univariate cox regression analysis and display p-values,
HRs, and 95% CIs.

Analysis of Immune Infiltration
We used TIMER, XCELL, QUANTISEQ, MCPCOUNTER, and
EPIC algorithms to explore the relationship between AXIN1
expression and immune invasion in all TCGA tumors.

For Systematic Collagen-Induced Arthritis
(CIA) Mouse Setup, HE Staining, and IHC
The Animal Care & Ethics Committee of Jinan University’s First
Hospital approved all animal care and experimental operations.
We also followed the Guide for the Care and Use of Laboratory
Animals that was established by the National Institutes of
Health. The ARRIVE criteria were followed for reporting
animal experiments (19, 20). Mice (n = 22) were given 200 g
of bovine type II collagen (Sigma, St. Louis, MO, USA), diluted in
acetic acid, and emulsified at a 1:1 ratio (vol/vol) in Forster’s
complete adjuvant intradermally at the tail vein. Mice were
booster-immunized three weeks after the initial immunization
with a 1:1 ratio (vol/vol) intraperitoneal injection of bovine type
II collagen emulsified in incomplete Freund’s adjuvant. From
days 32 to 41 after the initial immunization, episodes of illness
characterized by erythema and/or paw edema were seen. As
previously described (21), mice were checked daily for
indications of arthritis, and the severity of arthritis was graded
on a scale of 0 to 3. The arthritis scores of the mice were
determined for all four paws. The dimensions of the ankle
July 2022 | Volume 13 | Article 954848
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joints were measured with 0.01 mm accuracy with vernier
calipers. All mice were given 110 mg/kg ketamine and 4.8 mg/
kg xylazine before having their hind limbs amputated and fixed
in 10% neutral buffered formalin. Tissues were decalcified in 8%
formic acid and paraffin-embedded. Hematoxylin and eosin
were used to stain 3 mm sections (H&E). A previously
established scoring system was used to calculate inflammation
rates (21).

Immunohistochemistry
For immunohistochemistry, synovial tissue sections were
stripped and then incubated with 5% serum in PBS for 2 h to
block nonspecific binding and with 3% H2O2 for 10 min to block
endogenous peroxidase activity. The expression of CYFIP2 and
ST8SIA1 was determined by staining with polyclonal rabbit anti‐
mouse CYFIP2 and ST8SIA1 antibodies overnight at 4°C. As
controls, irrelevant isotype-matched antibodies were used. A
polyclonal goat anti-rabbit antibody was detected with
diaminobenzidine using goat anti-rabbit antibodies labeled
with HRP.

Data and Statistical Analysis
Data collection and analysis complied with pharmacology’s
recommendations for experimental design and analysis (22).
The in vitro experiments were conducted with a minimum of
five independent experiments. Therefore, the results were
expressed as mean + SEM. Blinding was used in the
experimental procedures or treatment and data analysis. We
normalized immunoblots, glucose uptake, and mRNA
expression for quantitative analysis to reduce baseline
variations between independent experiments. Comparing the
two groups was done using Student’s t-test. The one-way
ANOVA was applied to three or more different groups. If F
exceeded 0.05 and the variance in homogeneity was not
significant, all results were discarded. Two post hoc tests were
applied: Dunnett’s post hoc test on each group compared with the
control group or Sidak’s post hoc test on multiple groups
compared together. To analyze the data normalization, a non-
parametric statistical analysis was performed. Data with non-
parametric characteristics were analyzed with the Kruskal-Wallis
test or Wilcoxon test two-sample. The statistical analyses of the
data were conducted using SPSS 13.0 software. A P-value of less
than 0.05 was considered significant.
RESULTS

DEG Screening and Data Preprocessing
The data are standardized in a box plot, where different colors
represent different data sets, rows represent samples, and
columns represent gene expression values in samples
(Figure 1A). Figure 1B depicts the PCA results of multiple
data sets before batch removal are displayed, where different
colors represent different data sets. As shown in the diagram,
three data sets are separated separately without any intersection.
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Figure 1C shows the PCA result diagram after batch removal. As
shown in the diagram, the intersection of three data sets can be
used as a batch of data for subsequent analysis. Under the criteria
of P-adjustment <0.05 and log2 fold-change (FC) | >0.5, 891
genes were identified as DEGs, with 427 genes up-regulated and
464 genes down-regulated. Figure 1D shows volcano plots of
DEGs as well as a heat map of the top 50 genes (Figure 1E).

DEGs Functional Enrichment Analysis
All DEGs were functionally enriched, and 15 GO keywords were
exhibited in the GOCircle plot according to p <0.05
(Supplementary Figure 1A, Supplementary Table1). The
findings revealed that the biological process (BP) enrichment
was primarily connected to the positive cell–cell adhesion
regulation, T-cell activation, lymphocyte differentiation, and
cell–cell adhesion regulation. Enriched molecular function
(MF) is related to cytokine receptor binding, cytokine binding,
and cytokine receptor activity. Cellular component (CC)
enrichment is related to the external side of the plasma
membrane, membrane raft, and membrane microdomain.
Hematopoietic cell lineage, Human T-cell leukemia virus 1
infection, Th1 and Th2 cell differentiation, and the
chemokine signaling pathway were linked in KEGG analysis
(Supplementary Figure 1B, Supplementary Table 2).

Weighted Gene Co-Expression Network
Construction
The GSE1919 and GSE55457 datasets were retrieved from the
GEO data, and 15 normal samples and 18 RA samples were
preferred to cluster the samples and exclude the obviously
aberrant samples by setting a threshold, as shown in
Figure 2A. Then, as shown in Figure 2B, we set the soft
threshold to 7 when R2 >0.9 and the average connectivity is
high. After merging the strongly associated modules using a 0.25
clustering height limit (Figure 2C), 24 modules were identified
for further study. The primed and merged modules were
eventually displayed under the clustering tree (Figure 2D). The
correlation between modules was examined next, and the results
revealed that there was no significant association between them
(Figure 2E). The reliability of module delineation was
demonstrated by transcription correlation analysis within
modules, which revealed no substantial linkage between
modules (Figure 2F). The frontal correlations between ME
values and clinical features were used to investigate the link
between modules and clinical symptoms. The blue module was
positively correlated with normal (r = 0.79, p = 5e−08) and
negatively linked with RA (r = −0.79, p = 5e−0.8), while the
turquoise module was negatively connected with normal (r = 0.8,
p = 3e−08) and positively correlated with RA (r = −0.8, p = 3e
−08) (Figure 2G). Clinically meaningful modules were
identified. The results showed that blue and turquoise modules
were highly linked with RA in the control MM versus GS scatter
plot (Figure 2H) and the RA MM versus GS scatterplot
(Figure 2I). All the genes in the two modules were
examined further.
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DEGs and Functional Analysis of Critical
Module Genes
After overlapping critical module genes and DEG genes using a
Venn diagram, we discovered 490 overlapping genes (Figure 3A).
We performed functional analysis to learnmore about the biological
functions of the DEG genes in the modules. The results of DO
analysis revealed that these DEGs were linked to lymphoblastic
leukemia, hepatitis, germ cell cancer, and hematopoietic system
disease (Figure 3B). GO enrichment analysis showed that module
DEG genes have T-cell activation, regulation of cell-cell adhesion,
positive regulation of cell activation, the external side of the plasma
membrane, membrane raft, membrane microdomain, cytokine
receptor binding, antigen binding, and immune receptor activity
(Figure 3C). KEGG analysis was associated with cytokine–cytokine
receptor interaction, chemokine signaling pathway, and human
immunodeficiency virus type 1 infection (Figure 3D).

Selection of Feature Genes
We used three machine algorithms to identify feature genes:
SVM-RFE (Supplementary Table 3) (Figures 4A, B); LASSO
regression analysis to select 19 predicted genes from statistically
significant univariate variables (Figure 4C) (Supplementary
Table 4); and RandomForest combined with feature selection
to determine the relationship between error rate, number of
classification trees (Figures 4D, E) (Supplementary Table 5)
and 31 genes with relative importance. We used a Venn diagram
to find four genes that overlapped using the intersection of the
three methods discussed above (Figure 4F).
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Validation of Specific Gene Expression
We confirmed the expression of these four genes in RA using
GSE1919 and GSE55447 data and found that BTN3A2, CYFIP2,
ST8SIA1, and TYMS were all substantially elevated in RA
(Supplementary Figure 2A). Additionally, validation datasets
(GSE48780 and GSE55235) indicated that BTN3A2, CYFIP2,
ST8SIA1, and TYMS were substantially expressed in RA
(Supplementary Figure 2B). Gene correlations were also
examined, as shown in Figure 5, BTN3A2, ST8SIA1, TYMS,
and CYFIP2 were positively correlated, indicating that the four
genes had a significant functional similarity.

Analysis of the Feature Genes Using GSEA
To better understand the role of signature genes in RA, we used
GSEA to classify RA tissues into two categories based on the median
expression of signature genes. Nucleotide metabolism, primary
immunodeficiency, pyrimidine metabolism, and retinol
metabolism were significantly enriched in the high BTN3A2
subgroup, whereas aldosterone-regulated sodium reabsorption,
and HIF-1 signaling pathway, nitrogen metabolism, and renal cell
carcinoma were significantly enriched in the low BTN3A2 subgroup
(Supplementary Figure 3A). Cocaine addiction, glycerolipid
hematopoietic cell lineage,i immune network for production,
and primary immunodeficiency were significantly enriched in the
high CYFIP2 subgroup, whereas allograft rejection, the intestinal
immune network for IgA production, nicotinate and nicotinamide
metabolism, and primary immunodeficiency were significantly
enriched in the low CYFIP2 subgroup (Supplementary
A
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C

FIGURE 1 | Data preprocessing for DEG. (A) Box plots of raw data normalized between samples. (B, C) PCA of RA and control samples. (D) Volcano plot of DEG.
(E) Heat map of DEG.
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FIGURE 3 | Functional analysis of key module genes merged with DEGs. (A) Venn diagram of key module genes versus DEGs. (B) DO analysis. (C) GO analysis.
(D) KEGG analysis.
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FIGURE 2 | Construction of WGCNA co–expression network. (A) Sample clustering dendrogram with tree leaves corresponding to individual samples. (B) Soft
threshold b = 7 and scale–free topological fit index (R2). (C) Clustered dendrograms were cut at a height of 0.25 to detect and combine similar modules. (D) Shows
the original and combined modules under the clustering tree. (E) Collinear heat map of module feature genes. Red color indicates a high correlation, blue color
indicates opposite results. (F) Clustering dendrogram of module feature genes. (G) Heat map of module–trait correlations. Red represents positive correlations and
blue represent negative correlations. (H) MM vs. GS scatter plot of control. (I) MM vs. GS scatter plot of RA.
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Figure 3B). Ferroptosis, linoleic acid metabolism, nitrogen
hematopoietic cell lineage, intestinal immune network for IgA
production, primary immunodeficiency, Th1 and Th2 cell
differentiation were significantly enriched in the high ST8SIA1
subgroup, while ferroptosis, linoleic acid metabolism, nitrogen
hematopoietic cell lineage, intestinal immune network for IgA
produc t ion , pr imary immunodefic i ency , Th1 and
(Supplementary Figure 3C). The high TYMS subgroup was
highly enriched in immunodeficiency, Th1 and Th2 cell
differentiation, whereas the low TYMS subgroup was significantly
enriched in ABC transporters, circadian rhythm, glycolysis/
gluconeogenesis, and proximal tubule bicarbonate reclamation
(Supplementry Figure 3D).

Trait Gene Interaction Analysis
We used the GeneMANIA database to create a PPI network for
the signature genes (Figure 6A). To further investigate the
function of the signature genes, GO/KEGG analysis was
per formed on 20 genes . Act in polymer iza t ion or
depolymerization, Rac protein signal transduction, and control
of Arp2/3 complex-mediated actin nucleation were the most
abundant biological processes in this dataset. The cell leading
edge, lamellipodium, and filopodium were the most abundant
cellular components (CC). Furthermore, Rho GTPase binding,
Ras GTPase binding, small GTPase binding, and Rac GTPase
binding were connected to the enriched molecular functions (MF)
(Figure 6B). The main enriched pathways, according to KEGG
Frontiers in Immunology | www.frontiersin.org 752
analysis, were the regulation of the actin cytoskeleton, pathogenic
Escherichia coli infection, and Salmonella infection (Figure 6C).

Modeling and Testing of a RA Diagnostic
Column Line Graph
We built RA diagnostic column line graph models for the
signature genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) using
the Rms package (Figure 7A) and evaluated their predictive power
using calibration curves. The calibration curves revealed that the
difference between the real and predicted RA risks was very
minimal, indicating that the column line graph model RA is
quite accurate (Figure 7B). The correctness of the model may
also be confirmed using the ROC curve analysis (Figure 7C). The
“column line graph” curve is higher than the gray line in decision
curve analysis (DCA), and the “BTN3A2, CYFIP2, ST8SIA1, and
TYMS” curve implies that patients can benefit from the column
line graph model at a high-risk threshold of 0 to 1. The column
line graph model provided a greater clinical benefit than the
“BTN3A2, CYFIP2, ST8SIA1, and TYMS” curve (Figure 7D).
Validation in the validation set (GSE48780 and GSE55235) also
confirmed these findings (Figures 7E, F). To further validate the
diagnostic value of BTN3A2, CYFIP2, ST8SIA1, and TYMS, we
used receiver operating characteristic (ROC) analysis. BTN3A2
(AUC: 0.841), CYFIP2 (AUC: 0.928), ST8SIA1 (AUC: 0.889), and
TYMS (AUC: 0.844) were found to have similar AUC values
(Figure 7G). The validation datasets (GSE48780 and GSE55235)
also corroborated the following findings: TYMS (AUC: 741),
A B
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FIGURE 4 | Feature gene selection. (A,B) Biomarker signature gene expression validation by support vector machine recursive feature elimination (SVM–RFE)
algorithm selection. (C) Adjustment of feature selection in the minimum absolute shrinkage and selection operator model (lasso). (D) randomForest error rate versus
the number of classification trees. (E) The top 20 relatively important genes. (F) Three algorithmic Venn diagram screening genes.
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BTN3A2 (AUC: 0.858), CYFIP2 (AUC: 0.867), ST8SIA1 (AUC:
0.744) (Figure 7H). These findings imply that all major genes are
involved in RA.

Immunological Infiltration in the RA Group
and Healthy Controls Using ssGSEA
Analysis of Immune Correlation
The immune infiltration association between RA patients and
healthy controls was investigated further using ssGSEA. The
results showed that immune cell infiltration in mast cells and RA
was lower than in the control group after excluding the non-
statistical significant ones, and that immune cell infiltration and
immune-related pathways in the rest of the RA group were
higher than those in the control group (Figure 8A). We know
that CYFIP2 was associated with aDCs, CCR, CD8+ T cells,
check point, cytolytic activity, DCs, inflammation promoting,
MHC class I, neutrophils, T-cell co-inhibition, T-cell co-
stimulation, Tfh, Th1 cells, Th2 cells, TIL, and Type I IFN
response and significantly positively correlated using the
“corrplot” package to calculate the correlation between
signature genes. BTN3A2 was negatively correlated with APC
co-stimulation. CD8+ T cells, cytolytic activity, iDCs,
inflammation promoting, Tfh, TIL, and Type I IFN response
all had strong positive correlations with ST8SIA1 (Figure 8B).
These characteristic genes may modulate the immune processes
during the progression of RA.
Frontiers in Immunology | www.frontiersin.org 853
Increased Expression of CYFIP2 and
ST8SIA1 in Synovial Tissues of CIA Mice
To verify the expression of CYFIP2 and ST8SIA1 in RA
synovium, we treated mouse synovium with IHC and found
that CYFIP2 and ST8SIA1CIA mice were highly expressed in the
synovium (Figure 9).

Pan-Cancer CYFIP2 Expression
Immunity genes were retrieved from the InnateDB database, and
four signature genes were crossed to produce two overlapping
genes (CYFIP2, ST8SIA1). We took the CYFIP2 gene to the next
level of analysis after combining the ssGSEA results. Since the
immune response is crucial not only in RA but also in cancer, we
used overlapping immune genes to see if there is any link
between the two diseases. CYFIP2 was identified to be highly
expressed in BRCA, CHOL, HNSC, PRAD, THCA, and low
expressed in BLCA, BRCA, COAD, ESCA, GBM, KICH, KIRC,
KIRP, LUAD, LUSC, and PAAD in the TCGA data
(Figure 10A). We also downloaded normal tissue data from
the GTEx database and discovered that CYFIP2 was strongly
expressed in BRCA, CHOL, COAD, DLBC, ESCA, HNSC, OV,
PAAD, PCPG, PRAD, READ, SKCM, TGCT, THCA, and
THYM, whereas it was weakly expressed in BLCA, CESC,
GBM, KICH, KIRC, KIRP, LGG, LIHC, and LUAD
(Figure 10B). As demonstrated in the data, CYFIP2 was
expressed in the cell lines (Figure 10C).
FIGURE 5 | Correlation between trait genes.
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CYFIP2’s Prognostic Value in Pan-Cancer
We looked into the relationship between CYFIP2 expression and
pan-cancer patient prognosis, including overall survival (OS),
disease-specific survival (DSS), and progression-free survival
(PFS). In the OS analysis, cox regression of 33 tumors revealed
that CYFIP2 expression was substantially linked with OS in six
cancers: KIRC, LGG, PAAD, SKCM, and THYM as protective
factors, and UCEC as a risk factor (Figure 11A). In the PFS study,
cox regression of 33 tumors revealed that CYFIP2 expression was
substantially linked with PFS in 6 malignancies, with protective
factors in BRCA, HNSC, KIRC, LGG, and PAAD and risk factors
in UCEC (Figure 11B). In the DSS analysis, Cox regression of 33
tumors revealed that CYFIP2 expression was substantially linked
with DSS in 5 cancers: BLCA, KIRC, LGG, and PAAD were
protective factors, whereas UCEC was a risk factor (Figure 11C).
Frontiers in Immunology | www.frontiersin.org 954
Analysis of Immune Infiltration
To learn more about the role of CYFIP2 in tumor immune
response, the connection between CYFIP2 expression and
different levels of immune cell infiltration was calculated using
the TIMER database. According to the findings, T-cell CD8+ in
18 tumors, T-cell CD4+ in 20 tumors, neutrophils in 23 tumors,
myeloid dendritic cells in 19 tumors, myeloid dendritic cells in 12
tumors, and B cells in 23 malignancies were shown to be strongly
connected. HNSC, LUSC, PAAD, SKCM, STAD, THCA, and
THYM showed substantial positive correlations, while KICH and
LGG showed significant negative correlations (Figure 12A). The
connection between CYFIP2 levels and invading immune cells
was also demonstrated using the xCELL algorithm (Figure 12B),
the QUANTISEQ algorithm (Figure 12C), the MCPCOUNTER
algorithm (Figure 12D), and the EPIC algorithm (Figure 12E).
A
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FIGURE 6 | Interaction analysis of feature genes. (A) Characterized gene co–expression network. (B) GO analysis of co–expressed genes. (C) Co–expressed gene
KEGG analysis.
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The estimated scores of the stromal score and immune score
were calculated using the ESTIMATE algorithm, and the
findings revealed that the immune score was related to 13
cancers, while the stromal score was related to 16 tumors. The
immunological scores were most closely linked to HNSC (R =
0.64), LGG (R = −0.59), and STAD (R = 0.5) among them. HNSC
(R = 0.42), LGG (R = −0.45), and UVM (R = 0.48) had the
strongest correlations with the stromal score. CYFIP2 levels and
immunological checkpoints were shown to be highly associated
in a range of cancers, with mostly positive correlations in UVM
and mostly negative correlations in BLCA, BRCA, COAD,
HNSC, and PRAD, which were mostly negatively connected
in UVM.
Frontiers in Immunology | www.frontiersin.org 1055
MSI and TMB Analyses
In the TMB study, CYFIP2 was found to be negatively linked
with BRCA, COAD, KIRC, LGG, LIHC, LUAD, PAAD, SARC,
STAD, THYM, UCEC, and UVM. CYFIP2 was positively and
adversely linked with COAD, DLBC, KICH, SARC, and STAD in
the MSI analysis (Supplementary Figure 3).
DISCUSSION

Rheumatoid arthritis (RA), a common systematic autoimmune
disease, has gained increasing attention around the world
recently. The main symptoms of RA include musculoskeletal
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FIGURE 7 | Construction and validation of the RA diagnostic column line graph model. (A) Column line graphs are used to predict the occurrence of RA. (B) ROC
curves to assess the clinical value of the column line graph model. (C) Calibration curves to assess the predictive power of the column line graph model. (D) DCA
curves to assess the clinical value of the column line graph model. (E, F) Validation set to verify ROC and DCA curves. (G) ROC curves of the feature genes in the
training set. (H) ROC curves of the feature genes in the validation set.
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pain, swollen joints, and stiffness, which can severely impair
motor function and quality of life (2). Usually, RA is
characterized by inflammation of the tendon, resulting in the
destruction of cartilage and bone (23). Clinical data have
demonstrated that women, smokers, and patients with a family
history are susceptible populations (23), which could not help
raise the hypothesis that genes may play a critical role in the
pathogenesis. Growing evidence has pointed out that RA is a
multi-gene disorder with a substantial genetic component and
approximately 60% heritability (3). However, the current
common RA symptomatic therapy strategy is conventional
disease-modifying antirheumatic drugs (DMARDs), mainly
including methotrexate (MTX) and leflunomide (LEF), which
are used to reduce inflammation and prevent disease progression
(24). The extensive use of DMARDs in worldwide clinical
treatment has also made drug-resistance become an issue
recently, and new therapy approaches are urgently needed.
Therefore, exploring novel genetic targets would provide us
with a new insight into RA therapy and treatment strategies.

Recent decades have witnessed the rapid development of
molecular research and bioinformatics techniques. By
enrichment analysis through molecular function, biological
processes, and cellular components, molecular biology could
provide us with a comprehensive and further investigation of
how gene variation and co-expression influence protein function
and disease progression. Meanwhile, the emerging weighted gene
co-expression network analysis (WGCNA) has gradually been
used in the association between diseases along with related
phenotypes and clusters (modules) of highly corrected genes
Frontiers in Immunology | www.frontiersin.org 1156
(15). Several studies have illustrated the effects of the hub gene
and underlying molecular mechanisms in RA patients through
WGCNA analysis (25, 26). While comprehensive immune
infiltration and related pathways are still deficient.

Given these, we developed a comprehensive and in-depth
evaluation system to analyze and verify hub genes and molecular
pathways involved in RA patients through bioinformatics, especially
WGCNA and protein–protein interaction (PPI) techniques, aiming
to broaden the horizons into physiopathology and molecular
mechanisms of RA and provide novel therapeutic targets for
clinical treatment.

In this study, we screened 891 differentially expressed genes
(DEGs) and found 427 genes were upregulated and 464 were
downregulated. Subsequent GO enrichment analysis showed all
DEGs mainly associated with cell–cell adhesion, components of the
plasma membrane, and cytokine receptor activity, while KEGG
enrichment analysis showed some correlation with hematopoietic
and T cells, along with chemokine signaling pathways. WGCNA
analysis showed 33 cluster samples and 24 modules. No significant
correlation verified the reliability of dividing parts. Critical machine
algorithms and LAASO regression analysis found 4 hub genes, then
validation datasets confirmed that BTN3A2, CYFIP2, ST8SIA1, and
TYMS were highly expressed in RA, and the first three genes were
highly similar in biological function.

Several research reported a certain association between the 4
hub genes and the process of RA to a certain extent. An article by
Horsburgh et al. illustrated that CpG-specific methylation at RA
might become a marker of treatment response. Most notably,
one of the CpG sites in the BTN3A2 genes was strongly
A B

FIGURE 8 | Correlation between RA and immunity. (A) Comparison of ssGSEA scores of immune cells and immune pathways between RA group and healthy
controls. (B) Correlation between characteristic genes and immunity. *p < 0.05, **p < 0.01, ***p < 0.001. NS, no significance.
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associated with treatment response (27). Actually, as a crucial
mediator in immune activation, butyrophilin subfamily 3
member A2 (BTN3A2) was widely investigated in cancer
initiation and development, revealing a tight link between
Frontiers in Immunology | www.frontiersin.org 1257
immune infiltration and cancer development, especially in
breast cancer (BRCA) and ovarian cancer (OV) (28). From a
molecular aspect, there was also evidence demonstrated that
epithelial BTN3A2 expression was significantly associated with a
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FIGURE 9 | Expression of CYFIP2 and ST8SIA1 in the synovial membrane of CIA mice. (A, B) Immunohistochemical analysis of CYFIP2 expression in normal
mouse synovium, ((A) original magnification ×40, (B) original magnification ×100). (C, D) Immunohistochemical analysis of CYFIP2 expression in the synovial
membrane of CIA mice, ((C) original magnification ×40, (D) original magnification ×100). (E, F) Immunohistochemical analysis of ST8SIA1 expression in normal mouse
synovium, ((E) original magnification ×40, (F) original magnification ×100). (G, H) Immunohistochemical analysis of ST8SIA1 expression in the synovial membrane of
CIA mice, (G) original magnification ×40, (H) original magnification ×100).
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higher density of infiltration T cells, particularly CD4+ cells (29),
which was similar to our enriched outcome at some level.
However, the exact prognostic value of BTN3A2 in RA
patients still warrants further investigation. Meanwhile, as for
the gene CYFIP2, there is also a lack of research about it in the
field of RA. A meta-analysis unearthed that CYFIP2 was
upregulated and validated in peripheral blood mononuclear
cell samples of RA patients, creating a novel gene signature in
RA diagnostic and therapeutic interventions (30). An
investigation focused on the downregulation of CYFIP2 in
clear cell renal cell carcinoma (ccRCC) revealed that several
immune markers were critically correlated with CYFIP2
expression, especially with CD4+ cells and CD8+ cells, which
could act as a tumor suppressor gene in ccRCC and create a novel
strategy in clinical treatment (31). Except for RCC, current
research about CYFIP2 was mainly concentrated on neurons
and encephalopathy (32, 33), and more attention should be paid
to RA. Similar to CYFIP2, most research about ST8SIA1 mainly
focused on cancer, revealing that ST8SIA1 regulated tumor
Frontiers in Immunology | www.frontiersin.org 1358
growth and metastasis by activating the FAK/AKT/mTOR
signaling pathway in breast cancer (34, 35), or inhibited the
progression and invasion of bladder cancer cells by suppressing
the JAK/STAT signaling pathway (36). However, no evidence
was found in the RA research.

Unlike the above three genes, there is already adequate
literature about TYMS in RA research. Thymidylate synthase
(TYMS) is an important enzyme in the de novo pyrimidine
pathway responsible for DNA replication (37). To predict the
response or toxicity of MTX in patients with RA, a study by Bae
et al. conducted a meta-analysis that demonstrated no association
between the TYMS polymorphism and non-responsiveness to or
toxicity of MTX therapy (38). Another investigation pointed out
that polymorphic variations in the TYMS genes indicated a better
clinical response to combined DMARD regimens containingMTX
(39), and Lima et al. revealed similar results (40). This contrary
research means further, more comprehensive and in-depth
investigation is warranted to make certain the association
between TYMS and MTX.
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FIGURE 10 | CYFIP2 expression. (A) Venn diagram between immunogene and hub genes. (B) Pan–cancer expression levels of CYFIP2 in the TCGA dataset.
(C) Pan–cancer expression levels of CYFIP2 in the TCGA and GTEx datasets. (D) Expression of CYFIP2 in various cell lines. *p <0.05, **p <0.01, ***p <0.001.
NS, no significance.
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To illustrate the action of hub genes in RA one step further,
we conducted a GSEA analysis, and the results showed that
the primary immunodeficiency was significantly enriched in
the high-expression subgroup of all 4 hub genes, and the
intestinal immune network for IgA was enriched in CYFIP2
high-expression and ST8SIA1 high-expression subgroups,
while hematopoietic cell l ineage, Th1 and Th2 cell
differentiation were enriched in ST8SIA1 high-expression and
TYMS high-expression subgroups at the same time.
Subsequent ROC analysis showed that all hub genes played a
critical role in RA, indicating a potential diagnostic value in
clinical treatment.

Finally, further immune infiltration analysis showed the mast
cells in the RA group were higher than those in the control
group. Mast cells could stimulate osteoclast differentiation in
monocytes and then stimulate osteoclastogenesis, which is a
mechanism of inflammatory and tissue destruction effects in
RA patients (41). The association between hub genes and
immune cells was mainly concentrated on CD8+ T cells,
inflammation promoting, Tfh, TIL, and type 1 IFN response,
which agreed with previous studies (42, 43).

To further explore the core genes among the four key genes,
we chose to download immune genes from the InnateDB
database and found two overlapping genes (CYFIP2 and
ST8SIA1) at the intersection of the four characteristic genes.
After in vitro validation using RA mice, it was found that the
expression levels of both genes were increased, which further
confirmed our previous research inferences. Combined with
ssGSEA analysis, CYFIP2 was highly correlated with more
immune cells and immune response processes compared with
ST8SIA1. Therefore, we used CYFIP2 as the target gene for
further analysis.
Frontiers in Immunology | www.frontiersin.org 1459
Interestingly, some existing studies point to a relationship
between RA and a variety of cancers. On the one hand, RA has
been pointed out to have a relationship with the risk of cancer,
including lung cancer (44), lymphoma (45), and breast cancer
(46, 47), on the other hand, immunosuppressive agents used in
RA treatment have also been shown to increase cardiovascular
disease and important factors in cancer risk (48, 49). Therefore,
we further explored the role of the hub gene found in RA,
CYFIP2, in pan–cancer.

In our study, CYFIP2 was a prognostic protective factor for
KIRC, LGG, and PAAD, and a risk factor for UCEC, but there is
still a lack of relevant studies to prove it. From the overall
situation of the current research, CYFIP2 has been studied
more in digestive system cancers. For example, the study by
Mongroo et al. (50). showed that CYFIP2 is highly expressed in
IMP–1 knockdown colon cancer cell lines. This high expression
is very important. It may be an important part of preventing
CRC tumor cell death, similarly, Vandamme T et al. also found
the up–regulation of CYFIP2 in pancreatic cancer (51). In
addition, CYFIP2 has also been found to affect lymphoma
progression after undergoing epigenetic modifications (52).
These studies have fully demonstrated that CYFIP2 plays an
important role in human diseases. In addition, pan–cancer–
based immune cell infiltration analysis also revealed that
CYFIP2 is closely related to T–cell CD8+, T–cell CD4+ and
neutrophils. These high infiltrating fractions of cells are
consistent with the results we obtained in RA.

Even though this is a comprehensive and novel evaluation
system to explore hub genes and related signaling pathways in
RA patients, even in pan–cancer, there were also several
limitations in our study. Firstly, although we performed
validation of gene expression in mice, due to the innate
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FIGURE 11 | Correlation of CYFIP2 with prognosis in pan–cancer. (A) Cox regression model analysis of the correlation between CYFIP2 expression and OS in
various tumors. (B) Cox regression model analysis of the correlation between CYFIP2 expression and PFS in various tumors. (C) Correlation analysis of CYFIP2
expression with DSS in various tumors by Cox regression model.
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restrictions of bioinformatics techniques, more experiments in
vivo or in vitro via human samples are warranted to confirm
our results. Secondly, because our data are from a database,
some aspects like sex, age, and complications are not
considered in our research, and further clinical investigation
is needed.

Conclusion
To explore specific hub genes for the association between
immune infiltration and RA as well as pan–cancer, we
conducted a comprehensive and in–depth analysis to analyze
related genes and pathways. The 2 hub genes (CYFIP2 and
ST8SIA1) we discovered would broaden our insights into
molecular mechanisms and bring more potential therapeutic
targets for clinical treatment, which also needs more research to
verify and develop. For further pan–cancer analysis, CYFIP2 was
considered the most potential target both in RA and 33 kinds of
tumors, which may shed the hoping light on the therapy of
human immune–related diseases and even cancer.
Frontiers in Immunology | www.frontiersin.org 1560
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal study was reviewed and approved by the
Experimental Animal Ethics Committee of Jinan University.
AUTHOR CONTRIBUTIONS

ZYZ, SJH, and XCY planned the research concept and designed
it, made provisions for study material, collected data and
analyzed them, wrote and approved the manuscript. XFL and
ST searched for data and wrote programming code. MHW,
A

B

D

E

C

FIGURE 12 | CYFIP2’s role in tumor immune response. (A) EPIC_Immu_score. (B) XCELL_Immu_score. (C) QUANTISEQ_Immu_score. (D) MCPCOUNTER_Immu_score.
(E) TIMER_Immu_score. *p < 0.05, **p < 0.01, ***p < 0.001.
July 2022 | Volume 13 | Article 954848

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. CYFIP2 in RA and Pan-Cancer
MMA, and XQH collected pictures and graphs as well as edited
them. SZ and DSZ collected data and analyzed them, wrote and
approved, and helped correct the manuscript. All authors listed
have made a substantial, direct, and intellectual contribution to
the work and approved it for publication.
FUNDING

This research is funded by the Shenzhen Key Laboratory of
Musculoskeletal Tissue Reconstruction and Function
Restoration and Shenzhen People’s Hospital (Project number:
ZDSYS20200811143752005), the Guangzhou Science and
Technology Project (Grant No. 201904010060, Effect and
Frontiers in Immunology | www.frontiersin.org 1661
mechanism of S100A4 on collagen–induced arthritis (CIA)
model in mice, the National Natural Science Foundation of
China (Project number:81401766), the Fundamental Research
Funds for the Central Universities (Project number: 21619348),
the National Natural Science Foundation of China (Project
number: 81901650), and the Science and Technology Projects
in Guangzhou (Project number: 2021020200460).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954848/
full#supplementary-material
REFERENCES
1. Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis:

A Review. Jama (2018) 320(13):1360–72. doi: 10.1001/jama.2018.13103
2. Sparks JA. Rheumatoid Arthritis. Ann Internal Med (2019) 170(1):Itc1–itc16.

doi: 10.7326/aitc201901010
3. Dedmon LE. The Genetics of Rheumatoid Arthritis. Rheumatol (Oxford

England) (2020) 59(10):2661–70. doi: 10.1093/rheumatology/keaa232
4. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S.

The Pathogenic Role of Angiogenesis in Rheumatoid Arthritis. Angiogenesis
(2015) 18(4):433–48. doi: 10.1007/s10456–015–9477–2

5. Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, et al.
Transformation of Fibroblast–Like Synoviocytes in Rheumatoid Arthritis,
From a Friend to Foe. Auto– Immun highlights (2021) 12(1):3. doi: 10.1186/
s13317–020–00145–x

6. Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic Role of
Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment
and Biomarker Development. Cells (2018) 7(10):1–23. doi: 10.3390/
cells7100161

7. Choy E. Understanding the Dynamics: Pathways Involved in the Pathogenesis
of Rheumatoid Arthritis. Rheumatol (Oxford England) (2012) 51 Suppl 5:v3–
11. doi: 10.1093/rheumatology/kes113

8. Mittal N, Mittal R, Sharma A, Jose V, Wanchu A, Singh S. Treatment Failure
With Disease–Modifying Antirheumatic Drugs in Rheumatoid Arthritis
Patients. Singapore Med J (2012) 53(8):532–6.

9. Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH,
Mohammadi H, et al. Strategies Toward Rheumatoid Arthritis Therapy, the
Old and the New. J Cell Physiol (2019) 234(7):10018–31. doi: 10.1002/
jcp.27860

10. Ungethuem U, Haeupl T, Witt H, Koczan D, Krenn V, Huber H, et al.
Molecular Signatures and New Candidates to Target the Pathogenesis of
Rheumatoid Arthritis. Physiol Genomics (2010) 42a(4):267–82. doi: 10.1152/
physiolgenomics.00004.2010

11. Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, et al.
Identification of Rheumatoid Arthritis and Osteoarthritis Patients by
Transcriptome–Based Rule Set Generation. Arthritis Res Ther (2014) 16(2):
R84. doi: 10.1186/ar4526

12. Sun Y, Caplazi P, Zhang J, Mazloom A, Kummerfeld S, Quinones G, et al.
Pilra Negatively Regulates Mouse Inflammatory Arthritis. J Immunol
(Baltimore Md 1950) (2014) 193(2):860–70. doi: 10.4049/jimmunol.1400045

13. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma Powers
Differential Expression Analyses for Rna–Sequencing and Microarray Studies.
Nucleic Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

14. Walter W, Sánchez–Cabo F, Ricote M. Goplot: An R Package for Visually
Combining Expression Data With Functional Analysis. Bioinf (Oxford
England) (2015) 31(17):2912–4. doi: 10.1093/bioinformatics/btv300

15. Langfelder P, Horvath S. Wgcna: An R Package for Weighted Correlation
Network Analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471–2105–9–559
16. Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. Svm–Rfe Based Feature
Selection and Taguchi Parameters Optimization for Multiclass Svm Classifier.
TheScientificWorldJournal (2014) 2014:795624. doi: 10.1155/2014/795624

17. Ishwaran H, Kogalur UB. Consistency of Random Survival Forests. Stat
probability Lett (2010) 80(>13–14<):1056–64. doi: 10.1016/j.spl.2010.02.020

18. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. Proc: An
Open–Source Package for R and S+ to Analyze and Compare Roc Curves.
BMC Bioinf (2011) 12:77. doi: 10.1186/1471–2105–12–77

19. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal
Research: Reporting in Vivo Experiments: The Arrive Guidelines. Br J
Pharmacol (2010) 160(7):1577–9. doi: 10.1111/j.1476–5381.2010.00872.x

20. McGrath JC, Lilley E. Implementing Guidelines on Reporting Research Using
Animals (Arrive Etc.): New Requirements for Publication in Bjp. Br J
Pharmacol (2015) 172(13):3189–93. doi: 10.1111/bph.12955

21. Leung BP, Sattar N, Crilly A, Prach M, McCarey DW, Payne H, et al. A Novel
Anti–Inflammatory Role for Simvastatin in Inflammatory Arthritis. J Immunol
(Baltimore Md 1950) (2003) 170(3):1524–30. doi: 10.4049/jimmunol.170.3.1524

22. Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA,
et al. Experimental Design and Analysis and Their Reporting: New Guidance
for Publication in Bjp. Br J Pharmacol (2015) 172(14):3461–71. doi: 10.1111/
bph.12856

23. Lin YJ, Anzaghe M, Schülke S. Update on the Pathomechanism, Diagnosis,
and Treatment Options for Rheumatoid Arthritis. Cells (2020) 9(4):1–25.
doi: 10.3390/cells9040880

24. Zhang KX, Ip CK, Chung SK, Lei KK, Zhang YQ, Liu L, et al. Drug–Resistance
in Rheumatoid Arthritis: The Role of P53 Gene Mutations, Abc Family
Transporters and Personal Factors. Curr Opin Pharmacol (2020) 54:59–71.
doi: 10.1016/j.coph.2020.08.002

25. Li Z, Qi F, Li F. Identification of Drug Targets and Potential Molecular
Mechanisms for Wantong Jingu Tablet Extract in Treatment of Rheumatoid
Arthritis: Bioinformatics Analysis of Fibroblast–Like Synoviocytes. Chin Med
(2020) 15:59. doi: 10.1186/s13020–020–00339–5

26. Jing Y, Han D, Xi C, Yan J, Zhuang J. Identification of Cross–Talk and
Pyroptosis–Related Genes Linking Periodontitis and Rheumatoid Arthritis
Revealed by Transcriptomic Analysis. Dis Markers (2021) 2021:5074305.
doi: 10.1155/2021/5074305

27. Horsburgh S, Ciechomska M, O'Reilly S. Cpg–Specific Methylation at
Rheumatoid Arthritis Diagnosis as a Marker of Treatment Response.
Epigenomics (2017) 9(5):595–7. doi: 10.2217/epi–2017–0011

28. Cai P, Lu Z, Wu J, Qin X, Wang Z, Zhang Z, et al. Btn3a2 Serves as a
Prognostic Marker and Favors Immune Infiltration in Triple–Negative Breast
Cancer. J Cell Biochem (2020) 121(3):2643–54. doi: 10.1002/jcb.29485

29. Le Page C, Marineau A, Bonza PK, Rahimi K, Cyr L, Labouba I, et al. Btn3a2
Expression in Epithelial Ovarian Cancer Is Associated With Higher Tumor
Infiltrating T Cells and a Better Prognosis. PloS One (2012) 7(6):e38541.
doi: 10.1371/journal.pone.0038541

30. Afroz S, Giddaluru J, Vishwakarma S, Naz S, Khan AA, Khan N. A
Comprehensive Gene Expression Meta–Analysis Identifies Novel Immune
July 2022 | Volume 13 | Article 954848

https://www.frontiersin.org/articles/10.3389/fimmu.2022.954848/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954848/full#supplementary-material
https://doi.org/10.1001/jama.2018.13103
https://doi.org/10.7326/aitc201901010
https://doi.org/10.1093/rheumatology/keaa232
https://doi.org/10.1007/s10456&ndash;015&ndash;9477&ndash;2
https://doi.org/10.1186/s13317&ndash;020&ndash;00145&ndash;x
https://doi.org/10.1186/s13317&ndash;020&ndash;00145&ndash;x
https://doi.org/10.3390/cells7100161
https://doi.org/10.3390/cells7100161
https://doi.org/10.1093/rheumatology/kes113
https://doi.org/10.1002/jcp.27860
https://doi.org/10.1002/jcp.27860
https://doi.org/10.1152/physiolgenomics.00004.2010
https://doi.org/10.1152/physiolgenomics.00004.2010
https://doi.org/10.1186/ar4526
https://doi.org/10.4049/jimmunol.1400045
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btv300
https://doi.org/10.1186/1471&ndash;2105&ndash;9&ndash;559
https://doi.org/10.1155/2014/795624
https://doi.org/10.1016/j.spl.2010.02.020
https://doi.org/10.1186/1471&ndash;2105&ndash;12&ndash;77
https://doi.org/10.1111/j.1476&ndash;5381.2010.00872.x
https://doi.org/10.1111/bph.12955
https://doi.org/10.4049/jimmunol.170.3.1524
https://doi.org/10.1111/bph.12856
https://doi.org/10.1111/bph.12856
https://doi.org/10.3390/cells9040880
https://doi.org/10.1016/j.coph.2020.08.002
https://doi.org/10.1186/s13020&ndash;020&ndash;00339&ndash;5
https://doi.org/10.1155/2021/5074305
https://doi.org/10.2217/epi&ndash;2017&ndash;0011
https://doi.org/10.1002/jcb.29485
https://doi.org/10.1371/journal.pone.0038541
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. CYFIP2 in RA and Pan-Cancer
Signatures in Rheumatoid Arthritis Patients. Front Immunol (2017) 8:74.
doi: 10.3389/fimmu.2017.00074

31. Tong J, Meng X, Lv Q, Yuan H, Li W, Xiao W, et al. The Downregulation of
Prognosis– and Immune Infiltration–Related Gene Cyfip2 Serves as a Novel
Target in Ccrcc. Int J Gen Med (2021) 14:6587–99. doi: 10.2147/ijgm.S335713

32. Zhang Y, Kang HR, Han K. Differential Cell–Type–Expression of Cyfip1 and
Cyfip2 in the Adult Mouse Hippocampus. Anim Cells Syst (2019) 23(6):380–3.
doi: 10.1080/19768354.2019.1696406

33. Nakashima M, Kato M, Aoto K, Shiina M, Belal H, Mukaida S, et al. De Novo
Hotspot Variants in Cyfip2 Cause Early–Onset Epileptic Encephalopathy.
Ann Neurol (2018) 83(4):794–806. doi: 10.1002/ana.25208

34. Wan H, Li Z, Wang H, Cai F, Wang L. St8sia1 Inhibition Sensitizes Triple
Negative Breast Cancer to Chemotherapy Via Suppressing Wnt/B–Catenin
and Fak/Akt/Mtor. Clin Trans Oncol (2021) 23(4):902–10. doi: 10.1007/
s12094–020–02484–7

35. Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun J, Mu H, et al. St8sia1 Regulates
Tumor Growth and Metastasis in Tnbc by Activating the Fak–Akt–Mtor
Signaling Pathway. Mol Cancer Ther (2018) 17(12):2689–701. doi: 10.1158/
1535–7163.Mct–18–0399

36. Yu S, Wang S, Sun X, Wu Y, Zhao J, Liu J, et al. St8sia1 Inhibits the
Proliferation, Migration and Invasion of Bladder Cancer Cells by Blocking the
Jak/Stat Signaling Pathway. Oncol Lett (2021) 22(4):736. doi: 10.3892/
ol.2021.12997

37. Muralidharan N, Misra DP, Jain VK, Negi VS. Effect of Thymidylate Synthase
(Tyms) Gene Polymorphisms With Methotrexate Treatment Outcome in
South Indian Tamil Patients With Rheumatoid Arthritis. Clin Rheumatol
(2017) 36(6):1253–9. doi: 10.1007/s10067–017–3608–7

38. Bae SC, Lee YH. Tyms Polymorphisms and Responsiveness to or Toxicity of
Methotrexate in Rheumatoid Arthritis. Z fur Rheumatol (2018) 77(9):824–32.
doi: 10.1007/s00393–018–0419–4

39. James HM, Gillis D, Hissaria P, Lester S, Somogyi AA, Cleland LG, et al.
Common Polymorphisms in the Folate Pathway Predict Efficacy of
Combination Regimens Containing Methotrexate and Sulfasalazine in Early
Rheumatoid Arthritis. J Rheumatol (2008) 35(4):562–71.

40. Lima A, Seabra V, Bernardes M, Azevedo R, Sousa H, Medeiros R. Role of Key
Tyms Polymorphisms on Methotrexate Therapeutic Outcome in Portuguese
Rheumatoid Arthritis Patients. PloS One (2014) 9(10):e108165. doi: 10.1371/
journal.pone.0108165

41. Kim KW, Kim BM, Won JY, Min HK, Lee KA, Lee SH, et al. Regulation of
Osteoclastogenesis by Mast Cell in Rheumatoid Arthritis. Arthritis Res Ther
(2021) 23(1):124. doi: 10.1186/s13075–021–02491–1

42. Zhou S, Lu H, Xiong M. Identifying Immune Cell Infiltration and Effective
Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis.
Front Immunol (2021) 12:726747. doi: 10.3389/fimmu.2021.726747

43. Rana AK, Li Y, Dang Q, Yang F. Monocytes in Rheumatoid Arthritis:
Circulating Precursors of Macrophages and Osteoclasts and, Their
Hete rogene i ty and Plas t i c i ty Ro l e in Ra Pathogenes i s . In t
Immunopharmacol (2018) 65:348–59. doi: 10.1016/j.intimp.2018.10.016

44. Kallberg H. Rheumatoid Arthritis and Lung Cancer: You Probably Heard It
Before. J Rheumatol (2008) 35(9):1695–6.
Frontiers in Immunology | www.frontiersin.org 1762
45. Macfarlane GJ, Black RJ. Rheumatoid Arthritis and Lymphatic Cancer. Eur J
Cancer (Oxford Engl 1990) (1996) 32a(10):1630–2. doi: 10.1016/0959–8049
(96)00242–0

46. Vandamme T, Beyens M, Boons G, Schepers A, Kamp K, Biermann K, et al.
Hotspot Daxx, Ptch2 and Cyfip2 Mutations in Pancreatic Neuroendocrine
Neoplasms. Endocrine–related Cancer (2019) 26(1):1–12. doi: 10.1530/erc–18–0120
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Jiaxin Zhou1,2†, Guowei Huang3†, Wan-Ching Wong4†,
Da-hai Hu2†, Jie-wen Zhu5, Ruiman Li1* and Hong Zhou1*

1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University,
Guangzhou, China, 2International School, Jinan University, Guangzhou, China, 3Shunde Hospital
Affiliated to Jinan University, Guangzhou, China, 4Department of General Surgery, The First
Affiliated Hospital of Jinan University, Guangzhou, China, 5College of Science and Engineering,
Jinan University, Guangzhou, China
Background: Nowadays, immune checkpoint inhibitors (ICIs) have become

one of the essential immunotherapies for cancer patients. However, the impact

of antibiotic (ATB) use on cancer patients treated with ICIs remains

controversial.

Methods: Our research included retrospective studies and a randomized

clinical trial (RCT) with cancer patients treated with ICIs and ATB, from the

public database of PubMed, Web of Science, Embase, Cochrane, clinical trials,

and JAMA. The survival outcomes included progression-free survival (PFS) and

overall survival (OS). Meanwhile, hazard ratios (HRs) and 95% confidence

intervals (CIs) were calculated, and subgroup analyses were performed to

determine the concrete association between ATB use and the prognosis of

cancer patients treated in ICIs.

Results: Our results revealed that ATB use was associated with poor survival

outcomes, including OS (HR: 1.94, 95% CI: 1.68–2.25, p <0.001) and PFS (HR:

1.83, 95% CI: 1.53–2.19, p <0.001). The subgroup analysis learned about the

association between ATB use and the prognosis of cancer patients with ICI

treatment, including 5 cancer types, 3 kinds of ICI, 5 different ATP windows,

broad-spectrum ATB class, and ECOG score. ATB treatment was associated

with poor OS of non-small-cell lung cancer (NSCLC), renal cell carcinoma

(RCC), esophageal cancer (EC), and melanoma (MEL) in patients treated in ICIs,

while non-small-cell lung cancer (NSCLC) and renal cell carcinoma (RCC) were

associated with poor PFS. Meanwhile, it was strongly related to the ICI type and

ATB window. Furthermore, it is firstly mentioned that the use of broad-

spectrum ATB class was strongly associated with poor PFS.
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Conclusion: In conclusion, our meta-analysis indicated that ATB use was

significantly associated with poor OS and PFS of cancer patients treated with

ICI immunotherapy, especially for patients with ATB use in the period of (−60

days; +30 days) near the initiation of ICI treatment. Also, different cancer types

and the ICI type can also impact the survival outcome. This first reveals the

strong relationship between the broad-spectrum ATB class and poor PFS. Still,

more studies are needed for further study.
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Introduction

Working via the anti-tumor immune response, immune

checkpoint inhibitors (ICIs) have proved a promising

therapeutic treatment in the clinic, which was designed to

interfere with inhibitory pathways that naturally constrain T

cell reactivity (1). ICIs reinvigorate anti-tumor immune

responses by disrupting co-inhibitory T-cell signaling (2). In

the last decade, ICIs have caused a major paradigm shift in

cancer therapy. It has been approved for various cancers and has

improved the survival outcome for many patients (3). However,

although ICIs did improve the survival outcome of cancer

treatment, the efficacy of the ICI drugs is still limited due to

refractiveness, and there are still some uncertain points

regarding ICI therapy (4). Additionally, the use of ICIs can

induce unique side effects called immune-related adverse events,

which can vary a lot in different individuals (5). Some patients

exhibit an atypical treatment response pattern with new or

enlarging lesions, which needs further observation to

determine the process (6). The side effects of ICI therapy

involve various organs and systems, including the thyroid and

pituitary glands, skin, and digestive system and respiratory

system, which can markedly affect the physiological function

of organs and the quality of life of patients, even causing fatal

consequences in some extreme cases (7). Thus, it is urgent and

necessary to find the novel biomarkers to select the patients who

can most benefit from the drugs that are in need of

being identified.

Antibiotic (ATB) therapy has produced indispensable

advances for patients with cancer, populations who are

more easily get infected by bacterial because of treatment-

related immune suppression. The derangement of the gut

microbiota environment has been increasingly well-

characterized because of the existence of tumor-specific

immune tolerogenesis (8). However, the association between

ATB use and the prognosis of cancer patients in ICI treatment

remains controversial. Some studies have reported that
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antibiotic use can result in reduced efficacy of immune

checkpoint inhibitors, which can be the consequence of

dysbiosis of the intestinal microbiome, a main determinant of

the cancer-immune set point of patients (9). Meanwhile, the

perturbation of the gut microbiota has been indicated as a

possible mechanism to explain the adverse effects attributed to

antibiotic exposure in the context of ICI therapy (10). Some

studies have found that exposure to antibiotic therapy can

influence the probability of response to ICI and predict worse

patient survival across malignancies (11). However, ATB use can

eliminate the infection and improve the quality of infected

patients. Therefore, it is necessary to determine whether ATB

use affects the efficacy of ICI treatment and the prognosis of

cancer patients.

To learn about the specific association between ATB use and

ICI treatment of cancer patients and provide potential reference

to clinic performance, the current meta-analysis was performed

to clarify if ATB use will impact the survival outcome of cancer

patients treated in ICIs, and whether any clinical factors could be

used to predict the response of patients to ICIs.
Materials and methods

Literature searching strategy

Our meta-analysis protocol was submitted to the

International Prospective Register of Systematic Reviews

(PROSPERO CRD 42022330156), and this research followed

the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses guidelines. Electronic databases including PubMed,

Web of Science, Embase, Cochrane Library, and Clinical

Trials were searched using MeSH words obtained from the

National Center for Biotechnology Information (NCBI).

Furthermore, the reference lists of eligible reports

were also searched to identi fy potential ly relevant

studies (“Antibiotics, Antitubercular” AND “Antibiotics,
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Antineoplastic” AND “Anti-Bacterial Agents”) AND (“Immune

Checkpoint Inhibitors” OR “Immune Checkpoint Inhibitors”

(Pharmacological Action) OR “Immune Checkpoint Proteins”)

were used as the search query.
Inclusion and exclusion criteria

These criteria were developed by all the authors. Inclusion

criteria: (I) publications studied the ATB use in cancer patients

with ICI treatment; (II) patients were divided into different

groups, according to whether they were treated with ATB; (III)

the studies should include standard and sufficient data; (IV)

research data must be obtained independently by relative

organizations; and (V) the publication language was English.

Exclusion criteria: (I) duplicate publications and data; (II)

relevant research data in the literature comes from public

databases; (III) literature types are reviews, case reports,

meeting abstracts, and basic experimental research literature;

and (IV) literature language is not English.
Data extracting and quality assessment

From each of the included literature, the following data were

collected: the name of author, publication year, country or area,

the number of patients, study design, cancer type, ICI treatment,

antibiotic treatment information (ATB window and drug type),

median OS, median PFS, survival outcome (OS and PFS).

Meanwhile, to learn about the concrete relationships between

ATB treatment and clinical features of ICI-treated cancer

patients, the baseline characteristics of patients, including

gender, ICI line, cancer stage grade, and lung cancer, were also

recorded. These data were reported in a standardized data

extraction spreadsheet for further analysis. The quality

assessment of eligible studies was done independently using

the Newcastle–Ottawa scale.
Statistical analysis

The meta-analysis was conducted to calculate the pooled

HRs with corresponding 95% Confidential Intervals (CIs) by

using Review Manager 5.4 software for Mac. To avoid the

potential heterogeneity affection, a random-effects model was

chosen to analyze the survival outcome. Moreover, the

dichotomous and generic inverse variance method models

were adopted to analyze the extracted data. Statistical

heterogeneity was assessed using the c2 test and the I2 test,

and publication bias was assessed by funnel plots. Statistical

significance was considered in this study when p <0.05.
Frontiers in Immunology 03
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Results

Study selection

The initial literature search identified 772 reports, including

409 reports from PubMed, 188 reports from the Web of Science,

103 reports from the Embase database, 24 from the Cochrane

database, 30 from clinical trials, and 18 from the JAMA

database. After removing duplicate reports, 678 pieces of

literature were considered potentially eligible. Finally,

according to the above including and excluding criteria, 45

articles were selected, including 12,493 patients. The survival

outcomes were composed of progress-free survival outcomes

(PFS) and overall survival (OS). The study selection flowchart

isshown in Figure 1.
Baseline characteristics of included
studies

The eligible studies included 12,493 patients and

13 kinds of cancer types: lung cancer, head and neck

cancers, renal cell carcinoma, acute myelocytic leukemia,

melanoma, urothelial carcinoma, esophageal squamous

cell carcinoma, liver cancer, porocarcinoma, digestive

tract carcinoma, Hodgkin’s lymphoma, cervical cancer,

and cholangiocarcinoma. The publication year ranged from

2017 to 2022, and the studies were performed in 17 different

areas. Among all the studies, five of them used randomized

controlled trial (RCT) designs, while other studies were

retrospective. Seventeen of the studies used only one kind of

ICI, including PD-1 (programmed cell death protein 1)

inhibitor, PD-L1 (programmed cell death 1 ligand 1) inhibitor,

and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4)

inhibitor (PD-1 inhibitors: n = 12; PD-L1 inhibitors: n = 4;

CTLA-4 inhibitors: n = 1). While four of them were not definite,

the ICI therapy and the other research used a combination of

different ICI treatments for at least two of them. The detailed

information is shown in Table 1.
Analysis of ATB use and clinic features

In this study, we performed a meta-analysis between ATB

use and clinic features, including ECOG score (≤), PD-L1

expression (<1%), non-small-cell lung cancer (NSCLC)

patients, gender (male) and ICI therapy line (0–1 prior), which

were shown in Supplementary Material. However, we did not

observe a clear significant association of these factors (p >0.05),

except for the ECOG score (≤1). Among all the eligible

studies, 20 studies were chosen to analyze the relationship
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between ATB use in ICI treatment and ECOG scores. The results

showed that the cancer patients with ATB use in the clinic were

associated with a lower ECOG score (≤1) in importance

significance (HR: 0.69, 95% CI: 0.49–0.98, p = 0.04).
The association between ATB use and
survival outcomes (OS + PFS)

Thirty-seven studies were selected to analyze overall survival

(OS). The results revealed that ATB use was strongly associated

with the increased risk of poor OS (HR: 1.94, 95% CI: 1.68–2.25,

p <0.00001), shown in Figure 2A. However, a clear heterogeneity

was observed in this analysis (I2 = 84%). Moreover, 31 studies

were selected to perform progression-free survival (PFS). The

results shown in Figure 2B indicated that ATB use was

significantly associated with worse PFS (HR: 1.83, 95% CI:

1.53–2.19, p <0.00001), but also with an obvious heterogeneity

(I2 = 86%).
Frontiers in Immunology 04
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Sensitivity analysis

For further verification to identify the association between

ATB use and the survival outcomes (OS + PFS) in ICI-treated

cancer patients, we performed the same analysis in randomized

controlled trial studies as the sensitivity analysis. Three RCT

studies were selected. It revealed a similar result as above, that in

cancer patients treated with ICIs, ATB use was significantly

related to poor OS (HR: 3.13, 95% CI: 1.25–7.84, p <0.001, I2 =

90%) and poor PFS (HR: 2.54, 95% CI: 1.38–4.68, p <0.001, I2 =

70%) (Figure 3).
In NSCLC, RCC, HCC, EC, and MEL, how
does the ATB use impact the prognosis
(OS + PFS) in patients treated in ICIs?

For cancer types, we chose NSCLC, RCC, HCC, EC,

and MEL to observe. In the OS sub-group analysis, seventeen
FIGURE 1

Flow diagram of the study search and selection in this meta-analysis.
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TABLE 1 Basic characteristics of the studies included in the meta-analysis (n = 45).

Study Year Patients Area ICI type ATB window Method

A. Iglesias‐Santamariıá (12) 2019 102 Spain CTLA-4, PD-1,PD-L1 (−28,28) Retrospective
cohort study

Akhil Kapoor (13) 2020 155 India nivolumab (−14,14) Retrospective
cohort study,

Aly-Khan A. Lalani (14) 2019 146 NK PD-1, PD-L1 (−56,28) Retrospective
cohort study

Amit A Kulkarni (15) 2020 195 Caucasian, African, American, Others Nivolumab Pembrolizumab Others (−28,42) Retrospective
cohort study

Andrew F. Nyein (16) 2022 256 American PD-1, PD-L1, CTLA-4 (−60,30) Retrospective
cohort study

Angelo Castello (17) 2021 50 Italy PD-1,PL-L1 (−30,30) RCT

Anne Schett (18) 2020 218 Switzerland PD-1,PD-L1 (−60,30) Retrospective
cohort study

Arielle Elkrief (19) 2019 74 NK PD-1, CTLA-4 (0,30) Retrospective
cohort study

Bertrand Routy (20) 2022 100 NK PD-1,PL-L1 NK RCT

C hogue (21) 2019 161 American PD-1 (−90,0) Retrospective
cohort study

Coureche Kaderbhai (22) 2017 74 France PD-1 (−90,0) Retrospective
cohort study

David J. Pinato (23) 2019 196 London PD-L1 (−30,0) RCT

Deniz Can Guve (24) 2021 93 Turkey PD-1 (−90,90) Retrospective
cohort study

F. Barroıń (25) 2019 140 Mexico PD-L1 (0,30) Retrospective
cohort study

Florian Huemer (26) 2019 142 Austria PD-1, PD-L1 (−30,30) Retrospective
cohort study

Florian Huemer (27) 2018 30 Austria PD-1 (−30,30) Retrospective
cohort study

Hyunho Kim (28) 2019 234 Korea CTLA-4,
PD-1,PD-L1

(−60,0) Retrospective
cohort study

Jahan J. Mohiuddin (29) 2020 568 American PD-1,
CTLA-4

(−90,90) Retrospective
cohort study

Jhe-cyuan Guo (30) 2019 49 Taiwan PD-1, PD-L1 (−60,30) Retrospective
cohort study

Jibran Ahmed (31) 2018 60 USA PD-1,PD-L1 (−14,14) Retrospective
cohort study

Julia Ouaknine Krief (32) 2019 72 France PD-1 (−60,30) Retrospective
cohort study

Jwa Hoon Kim (33) 2021 53 Korea PD-1 (−30,0) Retrospective
cohort study

Ka Shing Cheung (34) 2021 412 China PD-1,
CTLA-4

(−30,30) Retrospective
cohort study

Katharina Pomej (35) 2021 206 Vienna NK (−30,0) Retrospective
cohort study

Kazuyuki Hamada (36) 2021 69 Japan PD-1 (−21,21) Retrospective
cohort study

Kosuke Ueda (37) 2019 31 Japan PD-1,
CTLA-4

(−30,0) Retrospective
cohort study

L. Derosa (38) 2018 121 America PD-L1 (−60,0) Retrospective
cohort study

Laura M. Chambers (39) 2021 101 USA PD-L1 (−30,0) Retrospective
cohort study,
RCT

(Continued)
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studies were selected for NSCLC, two studies were

selected for RCC, two studies were selected for HCC,

three studies were selected for EC, and four studies

were selected for MEL. NSCLC (HR: 2.09, 95% CI: 1.69–

2.58), RCC (HR: 1.81, 95% CI: 1.14–2.87), EC (HR:

2.80, 95% CI: 1.08–7.25), and MEL (HR: 1.94, 95% CI: 1.41–

2 .67) were shown to be strongly assoc ia ted with

poor OS. However, no significant relationship was

observed for HCC. Moreover, four different cancer types

were included in the PFS subgroup analysis, including

NSCLC, RCC, HCC, and EC, which indicated that NSCLC

(HR: 1.81, 95% CI: 1.47–2.24) and RCC (HR: 3.14, 95%

CI: 2.16–4.58) cancer types were associated with poor PFS

with a strong effect and HCC, whereas EC was not

significantly related (Figure 4).
Frontiers in Immunology 06
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In cancer patients treated in PD-1 or
PD-L1 ICI type, how does the ATB use
impact the prognosis (OS + PFS)?

PD-1 inhibitor, PD-L1 inhibitor, and the combination of PD-1

inhibitor and PD-L1 inhibitor were selected to do the sub-analysis

for ICI type. The results showed that all the three types showed a

stronger effect on OS (PD-1 inhibitor: HR: 2.20, 95% CI: 1.87–2.60,

p <0.00001, I2 = 25%; PD-L1 inhibitor: HR: 1.47, 95% CI: 1.19–

1.82; combination of PD-1 inhibitor and PD-L1 inhibitor: HR:

2.30, 95% CI: 1.41–3.75). Meanwhile, the same inhibitor types were

observed in the PFS sub-analysis, and only the PD-1 inhibitor (HR:

2.32, 95% CI: 1.83–2.95) and the combination of PD-1 inhibitor

and PD-L1 inhibitor (HR: 1.81, 95% CI: 1.20–2.73) showed a

significant relationship with PFS (Figure 5).
TABLE 1 Continued

Study Year Patients Area ICI type ATB window Method

Louis Gaucher (40) 2021 372 France PD-1, CTLA-4 (0,60) Retrospective
cohort study

M. Chalabi (41) 2020 1,512 Netherlands PD-L1 (−30,30) Retrospective
cohort study,

Megan Greally (42) 2019 161 American PD-1,PD-L1,
CTLA-4

(−60,0) NK

Metges (43) 2018 798 NK PD-1 (−60,30),(−60,150) Retrospective
cohort study

Min Jung Geum (44) 2021 140 NK PD-1 NK Retrospective
cohort study

Nadina Tinsley (45) 2020 347 England NK (−14,42) Retrospective
cohort study

Nobuaki Ochi (46) 2021 531 Japan PD-L1 (−60,60) Retrospective
cohort study

Petros Fessas (47) 2021 450 Europe,
North America,
Asia

PD-1,PD-L1 (−30,0)(0,30)(−30,30) Retrospective
cohort study

Pierre-Yves Cren (48) 2020 1,585 France CTLA-4 (−60,60) Retrospective
cohort study

Po-Hsien Lu MS (49) 2020 340 Taiwan PD-1,
PD-L1,CTLA-4

(−30,0) Retrospective
cohort study

Quentin (50) 2021 212 France PD-1 (−60,0) Retrospective
cohort study

Sha Zhao (51) 2019 109 China PD-1/PD-L1 (−30,30) Retrospective
cohort study

Steven R. Hwang (52) 2020 62 USA PD-1, CTLA-4 (−90,0)(0,90) Retrospective
cohort study

Taiki Hakozaki (53) 2020 70 Japan PD-1/PD-L1 (−30,0) RCT

Uqba Khan (9) 2021 414 American PD-1,PD-L1,
CTLA-4

(−84,84) Retrospective
cohort study

X. Mielgo Rubio (54) NK 121 Spanish PD-1 (−60,60) Retrospective
cohort study

Ying Jing (55) 2022 767 china PD-1, PD-L1 (−90,90) Retrospective
cohort study
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FIGURE 2

The forest plot showing the relationship between ATB use and OS, PFS in cancer patients treated with ICIs. Overall survival (OS), progress-free
survival (PFS); CI, confidential interval; Random, random-effects model; The random-effects model was adopted. (A) Overall survival (OS). (B)
Progress-free survival (PFS). (A) Relationship between ATB use and OS in cancer patients treated with ICIs. (B) Relationship between ATB use
and PFS in cancer patients treated with ICIs.
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What is the relationship between ATB
use and survival outcome (OS + PFS) of
patients according to different ATB
windows?

The selected ATB window included (−60 days, +30 days),

(−60 days, 0 day), (−30 days, 30 days), (−30 days, 0 day),

(0 day, +30 days) for OS subgroup analysis and (−60 days,

+30 days), (−60 days, 0 day), (−30 days, 30 days), (0 day,

+30 days) were selected for PFS subgroup analysis. All of these

groups were shown to be significantly associated with poor

survival outcomes. We also performed the PFS subgroup

analysis for using ATB treatment during ICI treatment, and

no significant relation was observed (Figure 6).
In broad-spectrum ATB class, the
relationship of ATB use and PFS

The analysis between the use of broad-spectrum ATB class

and PFS of ICI treated cancer patients was also performed, as

shown in Figure 7, which was the first mentioned in this

research. The result, with no heterogeneity (I2 = 0), revealed

that this class was strongly related to poor PFS (HR: 1.86, 95%

CI: 1.44–2.41) Figure 8.
Frontiers in Immunology 08
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ECOG score and OS

No significant difference was observed between higher

ECOG score and OS, compared with lower ECOG score (≤1)

(HR: 0.49, 95% CI: 0.09–2.76, p = 0.42).
Assessment of publication bias

The publication bias for this research was evaluated by

funnel plots, which were collected and shown in the

Supplementary Material. There was no obvious publication

bias in this research. Newcastle-Ottawa scale scores from 6 to

9 (Table 2). The heterogeneity value also indicated a low

publication bias (Table 3).
Discussion

This research is the most comprehensive study on the effect

of antibiotic use on the clinical features and survival outcomes of

cancer patients treated with ICIs, compared with previous meta-

analysis until now. In this meta-analysis, from 45 studies with

12,493 patients, the effects of ATB use on OS, PFS, and clinical

features were included to study the impacts of ATB use on
frontiersin.org
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FIGURE 3

The forest plot showing the relationship between ATB use and OS, PFS in cancer patients treated with ICIs, based on randomized controlled trial
(RCT). Overall survival (OS), progress-free survival (PFS); CI, confidential interval; Random, random-effects model. The random-effects model
was adopted. (A) Overall survival (OS). (B) progress-free survival (PFS).
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FIGURE 4

The subgroup analysis between ATB use and cancer prognosis (OS + PFS) of RCC and NSCLC cancer patients treated with ICIs. (A) The
relationship between ATB use and OS of NSCLC patients treated with ICIs. (B) The relationship between ATB use and PFS of RCC patients
treated with ICIs. (C) The relationship between ATB use and OS of esophagus cancer patients treated with ICIs. (D) The relationship between
ATB use and OS of melanoma patients treated with ICIs. (E) The relationship between ATB use and PFS of NSCLC patients treated with ICIs. (F)
The relationship between ATB use and PFS of RCC patients treated with ICIs.
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FIGURE 5

The subgroup analysis between ATB use and different immune checkpoint inhibitors of cancer patients treated with ICIs. (A) The association
between ATB use and OS in cancer patients treated with the combination of PD-1 inhibitor and PD-L1 inhibitor. (B) The association between
ATB use and OS in cancer patients treated with PD-1 inhibitor. (C) The association between ATB use and OS in cancer patients treated with PD-
L1 inhibitor. (D) The association between ATB use and PFS in cancer patients treated with the combination of PD-1 inhibitor and PD-L1 inhibitor.
(E) The association between ATB use and PFS in cancer patients treated with PD-1 inhibitor.
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cancer patients treated with ICI therapy, with RCT analysis as

verification. Based on OS analysis and PFS analysis, we

performed several subgroup analyses from 5 aspects, cancer

type (NSCLC, RCC, HCC, EC, and MEL), ICI therapy type (PD-

1, PD-L1), ATB window (−60 days, +30 days), ATB class (broad-

spectrum ATB class) and ECOG score (2–5 vs 0–1).

Our findings revealed that the ATB use was related with

worse OS and PFS, which was similar with previous study (6).

ATB treatment is commonly performed in clinic for cancer

patients, who are more susceptible to getting infected, but the

ATBs can alter the composition and diversity of the gut
Frontiers in Immunology 11
73
microbiota. Therefore, ATB use can significantly impact the

efficacy of ICIs. In subgroup analysis, for various cancer types,

we analyzed non-small-cell lung cancer (NSCLC), renal cell

carcinoma (RCC), hepatocellular carcinoma (HCC),

esophageal cancer (EC), and melanoma (MEL). All of the

five cancer types were shown to be at a higher risk of poor OS

except HCC, while only NSCLC and RCC were shown to be at a

higher risk of poor PFS. Among all the five types, EC was at

the highest risk (HR = 2.8) in OS analysis, and RCC was at the

highest risk in PFS analysis, even higher than 3 (HR = 3.14).

Interestingly, in PFS analysis, no significant association was
A

B

C

D

E

FIGURE 6

In different ATB windows, the subgroup analysis between ATB use and OS of cancer patients treated with ICIs. (A) ATB window (−30 days, 0
day); (B) ATB window (−30 days, 30 days); (C) ATB window (−60 days, 0 days); (D) ATB window (−60 days, 30 days); and (E) ATB window (0 days,
30 day).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.968729
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.968729
A

B

C

D

FIGURE 7

In different ATB window, the subgroup analysis between ATB use and PFS of cancer patients treated with ICIs. (A) ATB window (-30 days, 30
day); (B) ATB window (-60 days, 0 days); (C) ATB window (-60 days, 30 days); (D) ATB window (0 days, 30 days).
FIGURE 8

In broad- spectrum ATB class, the subgroup analysis between ATB use and PFS of cancer patients treated with ICIs.
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TABLE 2 Basic characteristics of the studies included in the meta-analysis (n = 51).

Study Cancer type Median PFS
(ATB vs non-ATB)

Median OS
(ATB vs non-ATB)

NOS score

A. Iglesias‐Santamariıá (12) locally advanced/metastatic cancer 4.3 months vs. 5.8 months 11.7 months vs. 14.5 months, 7

Akhil Kapoor (13) Lung cancer,
head and neck cancer,
others

3.6 months vs 1.7 months 3.9 months vs 9.2 months 6

Aly-Khan A. Lalani (14) mRCC 7.2 months vs NK 12.0 months vs NK 7

Amit A Kulkarni (15) NSCLC,
RCC,
AML

1.5 months vs 4.0 months 3.0 months vs 12.0 months 7

Andrew F. Nyein (16) NSCLC NK NK 6

Angelo Castello (17) NSCLC 4.1 months vs 12.4 months 11.3 months vs 15.3 months 8

Anne Schett (18) NSCLC 1.9 months vs 3.8 months 7.9 months vs 23.6 months 8

Arielle Elkrief (19) melanoma 2.4 months vs 7.3 months 7.5 months vs 18.3 months 8

Bertrand Routy (20) NSCLC,
RCC,
urothelial carcinoma

3.5 months vs 4.1 months 11.5 months vs 20.6 months 8

C Hogue (21) NSCLC NK NK 6

Coureche Kaderbhai (22) NSCLC NK NK 7

David J. Pinato (23) Primary lung,
Clear cell renal cell carcinoma,
Primary head and neck squamous cell carcinoma
Malignant melanoma,
Transitional cell carcinoma

NK 14.6 months vs NK 7

Deniz Can Guve (24) RCC 23.75 ± 4.41 months 8.44 ± 1.61 months 8

F. Barroıń (25) NSCLC 1.9 months vs 2.7 months 2.04 months vs 12.42 months 9

Florian Huemer (26) NSCLC 3.8 months vs 4.0 months 14.6 months vs 11.2 months 8

Florian Huemer (27) NSCLC 2.9 months vs 3.1 months 7.5 months vs 15.1 months 9

Hyunho Kim (28) Non-small-cell lung carcinoma 2 months vs 4 months 5 months vs 17 months 8

Jahan J. Mohiuddin (29) melanoma NK 27.4 months vs 43.7 months 7

Jhe-cyuan Guo (30) ESCC 1.3 months vs 2.8 months 3.0 months vs 10.4 months 8

Jibran Ahmed (31) Lung cancer, Renal cancer
Hepatocellular cancer
Head and neck cancer
Urothelial cancer
Malignant melanoma

NK 24 weeks vs 89 weels 7

Julia Ouaknine Krief (32) non-small cell lung cancer 1.8 months vs 3 months 5.1 months vs 13.3 months 9

Jwa Hoon Kim (33) Esophageal squamous cell carcinoma 1.9 months vs NK 6.4 months vs NK 8

Ka Shing Cheung (34) hepatocellular carcinoma NK NK 7

Katharina Pomej (35) HCC 3.5 months vs 4.8 months 4.7 months 11.4 months 8

Kazuyuki Hamada (36) NSCLC NK 8.12 months vs 28.7 months 8

Kosuke Ueda (37) RCC 2.8 months vs 18.4 months NK 8

L. Derosa (38) NSCLC,RCC 1.9 months vs 7.4 months 17.3 months vs 30.6 months 9

Laura M. Chambers (39) Endometrial carcinoma
Cervical carcinoma;
Cvarian carcinoma

7.3 months vs NK 11.6 months vs NK 7

Louis Gaucher (40) Lung, Melanoma,
Renal and urothelial,
Head and neck,
Hodgkin’s lymphoma,
Digestive, Cutaneous squamous cell carcinoma,
Adenocarcinoma of unknown primary,
Squamous cell carcinoma of unknown,
Porocarcinoma

43.0 months vs 96.9 months 36.1 months vs 86.3 months 9

M. Chalabi (41) NSCLC NK 8.5 months vs 11.0 months 7

(Continued)
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observed between EC and PFS of cancer patients treated in ICIs

(p = 0.06), with only three eligible studies and high

heterogeneity, which could be a focus of future research. HCC

was shown not to be significantly associated with both OS and

PFS, but with only two studies, which needs more studies for

further verification. Various cancer types have different impacts

on the human body. For the gut environment, a favorable gut

microbiota can enhance antigen presentation and T-cell

function related to the systemic and anti-tumor immune

response, which was demonstrated in a mouse experiment (7).

The diversity of gut microbiota increases from infancy to

adulthood and decreases in the elderly, with metabolic,

defensive, and trophic functions (56). Induction and regulation

of the adaptive immune system is one of the essential aspects of

the gut microbiota trophic function, and intestinal immunity is

the largest and most complex part of the overall immune system

of the human body, with at least 80% of all antibodies produced

in the intestinal mucosa for adults (57). Thus, ATB use may

reduce the efficacy of ICI immunotherapy through altering the

diversity and composition of the gut microbiota, which still

needs more evidence to prove.
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For ICI therapy type, we selected PD-1 inhibitor type, PD-L1

inhibitor type, and the combination of both PD-1 inhibitor and

PD-L1 inhibitor. The results revealed that the PD-1 inhibitor

and the combination were strongly associated with a higher risk

of poorer prognosis, while PD-L1 was shown to be out of

meaningful relationship with PFS. Interestingly, we found that

the HR value of the combination was quite lower than the HR

value of the PD-1 inhibitor alone, which may indicate that the

PD-L1 inhibitor matters a lot in this process. Rounis and his

team analyzed 66 patients who received PD-1 inhibitors or PD-

L1 inhibitors and found that ATB administration did not affect

the survival outcome of ICI patients, but prolonged ATB use was

related to poor survival (58). This contradiction may be

attributed to different varieties, such as the amount of study

population, cancer type, and ATB type. In our research, it was

indicated that different ATB windows had effects on the survival

outcome of ICI patients, when the ATB window was in the

period between 60 days before ICI initiation and 30 days after

ICI initiation. Especially when ATB window was (−30 days,0

day) of ICI initiation, the risk was the highest in OS analysis

(HR = 2.61), with no heterogeneity (I2 = 0). When ATB window
TABLE 2 Continued

Study Cancer type Median PFS
(ATB vs non-ATB)

Median OS
(ATB vs non-ATB)

NOS score

Megan Greally (42) Advanced Esophagogastric Cancer 1.2 months vs 1.8 months 2.0 months vs 6.4 months 8

Metges J (43) malignant melanoma and lung cancer NK NK 6

Min Jung Geum (44) NSCLC NK NK 7

Nadina Tinsley (45) melanoma, non-small cell lung cancer, renal cell carcinoma 3.1 months vs 6.3 months 10.4 months vs 21.7 months 8

Nobuaki Ochi (46) nonesmall-cell lung cancer 3.5 months vs 3.5 months 11.7 months vs 16.1 months 8

Petros Fessas (47) HCC 4.4 months vs 7.2 months 15.4 months vs 16.4 months 7

Pierre-Yves Cren (48) advanced melanoma 7.3 months vs 2.4 months 15.4 months vs 14.5 months 8

Po-Hsien Lu MS (49) NSCLC 8.87 months vs 15.17 months 4.03 days vs 12.3 months 7

Quentin (50) non-small cell lung carcinoma,
melanoma,
upper airway carcinoma,
digestive tract carcinoma
renal cell carcinoma

NK NK 6

Sha Zhao (51) NSCLC 3.7 months vs 9.6 months 6 months vs 21.9 months 8

Steven R. Hwang (52) Hodgkin lymphoma NK NK 6

Taiki Hakozaki (53) NSCLC 5.2 months vs NK 16.2 months vs NK 7

Uqba Khan (9) NK NK NK 6

X. Mielgo Rubio (54) NSCLC NK NK 6

Ying Jing (55) Lung cancer,
Liver cancer,
Esophageal cancer,
Head and neck cancer,
Cholangiocarcinoma,
Cervical cancer,
Lymphoma,
Sarcoma,
Other

NK NK 6
fr
NK, not known.
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TABLE 3 Subgroup analysis of ECOG, cancer type, ICI type, and ATB window based on OS (overall survival) and PFS (progress-free survival).

Subgroup OS PFS

No. of
studies

No. of
patients

p Heterogeneity

Tau2 Chi2 df I2
(%)

p

13

4

2,032

440

<0.001

<0.001

0.1

0.05

44.64

4.78
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37

<0.001

0.19

655 0.55 1.14 23.77 1 96 <0.001
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0.12

9.22

12.02

6

3

35

75

0.16

0.007

9 1,332 0.004 0.35 95.66 8 92 <0.001

6

4

1,096

703

0.04

<0.001

0.38

0

56.13

1.98

5

3

91

0

<0.001

0.58

4

3

3

756

195

397

0.01

0.005

0.85

0.27

0.20

0.32

27.23

7.42

14.58

3

2

2

89

73

86

<0.001

0.02

<0.001

3 255 <0.001 0 0.28 3 0 0.96
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rg
(OR, 95%
CI)

No. of
studies

No of
patients

p Heterogeneity (OR, 95%
CI)

Tau2 Chi2 df I2
(%)

p

ECOG 0.94 (0.33, 2.66) 3 654 0.91 1.12 24.19 2 92 <0.001

Cancer type NSCLC

RCC

2.09 (1.69, 2.58)

1.81 (1.14, 2.87)

17

2

4,155

239

<0.001

0.01

0.13

0.04

71.08

1.63

16

1

77

39

<0.001

0.2

1.81 (1.47, 2.24)

3.14 (2.16, 4.58)

HCC 1.30 (0.70,

2.41)

2 655 0.41 0.18 8.98 1 89 0.003 1.58 (0.35,

7.13)

2

Esophageal

cancer

2.80 (1.08,

7.25)

3 270 0.03 0.63 20.42 2 90 <0.001 2.54 (0.96,

6.69)

3

Melanoma 1.94 (1.41, 2.67) 4 2,441 <0.001 0.05 6.64 3 55 0.08

ICIs type PD-1 inhibitor

PD-L1

inhibitor

2.20 (1.87, 2.60)

1.47 (1.19, 1.82)

10

5

1,312

1,062

<0.001

<0.001

0.02

0.03

12.01

8.03

9

4

25

50

0.21

0.09

2.32 (1.83, 2.95)

1.42 (0.95, 2.13)

PD-(L)1

inhibitor

2.30 (1.41, 3.75) 10 1,678 <0.001 0.53 104.81 9 91 <0.001 1.81 (1.20, 2.73)

ATB window

(−30,0)

(−30,30)

(−60,0)

2.61 (2.11, 3.23)

1.45 (1.11, 1.90)

1.97 (1.65, 2.35)

5

7

5
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2,608

2,447

<0.001

0.007

<0.001

0

0.08

0.01

3.11

22.25

5.64

4

6

4

0

73

29

0.54

0.001

0.23

1.73 (1.02, 2.96)

1.88 (1.61, 2.19)

(−60,30)

(0,30)

during

1.63 (1.16, 2.30)

2.44 (1.38, 4.34)

6

3

1,461

269

0.005

0.002

0.13

0.01

27.95
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5

1
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7

<0.001

0.3

2.03 (1.17, 3.51)

2.38 (1.30, 4.36)

1.07 (0.53, 2.15)

Broad-spectrum ATB 3 1.86 (1.44, 2.41)
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was (0 day, +30 days) of ICI initiation, the risk was the highest in

the PFS analysis (HR = 2.38). Some studies have already revealed

that the short-term decrease in bacterial richness after treatment

in ATB (59). Meanwhile, the status of gut microbiota can recover

to a baseline within 3 months after ATB discontinuation (60).

So, using ATB treatment is essential, which can significantly

influence the survival outcome of cancer patients on ICI therapy.

Also, we also found the relationship of clinic feature, it was

revealed that patients with a lower ECOG score (≤1) were more

pretended to undergo ATB treatment. While the other aspects

(PD-1 inhibitor type, NSCLC, gender type, cancer stage, and ICI

line therapy) were observed to have no significant association.

Until now, the concrete mechanisms of how the use of

antibiotics can impact the ICI therapy efficiency for cancer

patients are still unknown, but some studies have shown that

it may also be associated with the tumor microenvironment (61).

An intact commensal microbiota is necessary for cancer

therapy, which can mediate therapy effects through

modulating the myeloid-derived cell functions in the tumor

microenvironment. For example, in one experiment with

ATB-treated mice, the tumor-infiltrating myeloid-derived cells

responded poorly to the therapy, leading to lower cytokine

production and tumor necrosis after CpG-oligonucleotide

treatment, and it also showed deficient production of reactive

oxygen species (ROS) and cytotoxicity after chemotherapy (62).

Another research has indicated that ATB may change the

equilibrium of commensal bacteria, conducive for ICB efficacy,

which may result in possible resistance to ICIs (63). Meanwhile,

the local microbiota was demonstrated to make up an important

part of the tumor microenvironment in many types of cancer,

which may be affected by ATB use (64). Many researchers have

proved that local bacterial dysbiosis can cause a pro-

inflammatory immune response and thereby promote cancer

growth (65).

Compared with the previous meta-analysis, our research is

the most comprehensive, which included the largest number of

studies, the largest population, and studied the most

comprehensive aspects of subgroup analysis. Yu et al. (66) and

Jiang et al. (67) performed a similar meta-analysis, although

their subgroup was not as comprehensive as ours. Lurienne et al.

(68) and Chen et al. (69) only included NSCLC patients with

great limitations. The research by Elkrief (70) missed relative

statistical analysis. However, there are still several limitations to

our current study. First, the heterogeneity of the included

research cannot be ignored. Different responses to drugs,

different intervals of administration, and different individual

cancer status can result in high heterogeneity. Second, the

included studies did not provide enough details. Although we

recorded the baseline characteristics of the population and

performed the subgroup analysis, some concrete aspects are

still unclear, such as infection type and infection site. The

subgroup analysis for the ICI type lacked CTLA-4 inhibitor,
Frontiers in Immunology 16
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which was inadequate. Thirdly, most of the studies were

retrospective, and only five of the studies contained

randomized controlled trials.
Conclusion

In this research, it was revealed that ATB use was strongly

associated with worse OS and PFS in cancer patients treated with

ICI immunotherapy, especially during the period between 60

days before ICI initiation and 30 days after ICI initiation, which

indicated that ATBs should be used cautiously and strictly to

avoid a worse survival outcome. The immunotherapy inhibitor

type and ATB class can also impact the prognosis. Moreover, it

was found that different cancer types are also essentially

associated with a survival outcome, including NSCLC, RCC,

EC, and MEL. Still, more studies are needed to find the concrete

mechanism between ATB use and ICIs and further improve the

clinical treatment.
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A novel m7G-related lncRNA
risk model for predicting
prognosis and evaluating
the tumor immune
microenvironment in
colon carcinoma
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Dongsheng Zhang1, Yifei Feng1, Xiaowei Wang1*

and Yueming Sun2*
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N7-Methylguanosine (m7G) modifications are a common type of posttranscriptional

RNA modifications. Its function in the tumor microenvironment (TME) has garnered

widespread focus in the past few years. Long non-coding RNAs (lncRNAs) played an

essential part in tumor development and are closely associatedwith the tumor immune

microenvironment. In this study, we employed a comprehensive bioinformatics

approach to develop an m7G-associated lncRNA prognostic model based on the

colon adenocarcinoma (COAD) database from The Cancer Genome Atlas (TCGA)

database. Pearson’s correlationanalysiswasperformed to identifym7G-related lncRNAs.

Differential gene expression analysis was used to screen lncRNAs. Then, we gained 88

differentially expressed m7G-related lncRNAs. Univariate Cox analysis and Lasso

regression analysis were performed to build an eight-m7G-related-lncRNA (ELFN1-

AS1, GABPB1-AS1, SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, MCM3AP-AS1)

risk model. Consensus clustering analysis was applied to identify the m7G-related

lncRNA subtypes. We also verified the risk prediction effect of a gene signature in the

GSE17536 test set (177 patients). A nomogramwas constructed to predict overall survival

rates. Furthermore, we analyzed differentially expressed genes (DEGs) between high-risk

and low-risk groups. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis were conducted with the analyzed

DEGs. At last, single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, MCP-

COUNTER, and Estimation of STromal and Immune cells in MAlignant Tumor tissues

using Expression data (ESTIMATE) algorithms were utilized to discover the relationship

between the risk model and the TME. Consequently, the m7G-related lncRNA risk

model for COAD patients could be a viable prognostic tool and treatment target.

KEYWORDS

colon carcinoma, N7-methylguanosine(m7G), long noncoding RNA(LncRNA), risk
model, tumor immune microenvironment
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Introduction

Colon carcinoma is a frequently diagnosed malignant tumor

worldwide, accounting for10%ofall cancer casesworldwide.Colon

cancer ranks third among all carcinomas in terms ofmortality, and

the incidence ratio ranked third in all carcinomas (1). According to

world epidemiological data, approximately 1.9million new cases of

colorectal cancer were diagnosed, with 935,000 deaths, in the

proportion of around 1/10 of all (2). In China, the incidence rate

and mortality rate of colon cancer have been increasing in recent

decades. In recent years, great improvements have been made in

surgical techniques, chemotherapy, and molecular targeted

therapy, leading to an increased survival rate in patients with

localized colon cancer (3). Surgery remains to be considered the

main treatment modality for those diagnosed with early colon

carcinoma (stage I and II) (4); surgery, neoadjuvant radiotherapy,

and adjuvant chemotherapy are mainly for those with stage III/IV

or stage II which is high risk (5). However, colorectalmortality and

the number of deaths from colon cancer per year are still high (6),

the potential molecular mechanisms of colon cancer has not been

clear (7), and molecular biomarkers for evaluating the survival of

this cancer and riskmodels for evaluatingprognosis are still lacking.

Therefore, it is imperative to develop a novel model for evaluating

the prognosis of patients with colon cancer in order to further

ameliorate their prognosis (8).

N5-Methylcytidine (m5C), N6-methyladenosine (m6A),

and m7G are some of the common RNA modifications (9).

Studies on m5C and m6A research are relatively more than those

on m7G, with detailed research on their mechanisms. In recent

years, a number of studies on m7G have gradually increased,

thus making m7G modifications the next research hotspot of

RNA modification. According to extant literature findings (10),

tRNA guanine N7 methyltransferase, which belongs to the S-

adenosylmethionine (SAM)-dependent RNA methyltransferase

family, catalyzes m7G modification. In addition, m7G is also

involved in many RNA metabolic processes in the human body,

including transcription, mRNA splicing, and translation (11).

As is known to all, long non-encoding RNA (lncRNA)

modulates gene transcription and posttranscriptional

modification, whose expression is important in human

carcinogenesis. According to the recent report, several cancer-

related lncRNAs, such as lncRNA MALAT1 in prostate cancer,

lncRNA HOTAIR and lncRNA ANRI (12)in cervical cancer, and

lncRNA zinc finger protein (ZNF) in gastric cancer, have recently

been discovered and their biological involvement in carcinogenesis

verified (13). At present, m7G-related lncRNA has not been

reported in the literature. Moreover, lncRNA expression is often

maladjusted in various cancers and can predict prognosis (14).

Therefore, we constructed an m7G-related lncRNA model and

investigated its correlation with colon cancer prognosis.

The components of the TME are important for tumor

development and metastasis (15). Adipocytes, fibroblasts,
Frontiers in Oncology 02
83
immunological cells, tumor-associated macrophages (TAMs),

and muscle endothelial cells are primarily found in the TME, all

of which mediate paracrine signals to the surrounding (16). The

TME, which affects tumor growth, includes immune cells (17).

The tumor immune microenvironment (TIME) plays an

essential role in tumor-immune interaction which could

respond to treatment directly (18). Tumor-infiltrating immune

cells are also significant in tumor growth, in immunotherapy

response, and in predicting patient survival (19).

In our study, we built and validated an eight-m7G-related-

lncRNA prognostic risk model. The prognosis of patients was

predicted via the Kaplan–Meier (KM) chart, receiver operating

characteristic (ROC) curve, univariate and multivariate Cox

analysis, and nomogram. Through the enrichment analysis of

high and low risks, the relevant functions and pathways are

obtained. Lastly, we investigated the association with both risk

score and immune infiltration using the results of enrichment

analysis. The flowchart is displayed in Figure 1.
Materials and methods

Data collection and analysis

Information of 459 patients was obtained on TCGA website

(https://portal.gdc.cancer.gov/repository). Then, we used Perl

software to reannotate the Ensemble Genes ID by aligning to

gencode.v22 (www.gencodegenes.org/human/release_22.html).

A total of 19,712 mRNAs and 14,805 lncRNAs were identified

in the COAD dataset. Twenty-seven m7G-related genes were

gained by searching the keyword “7-methylguanosine” on the

official website of GSEA (http://www.gsea-msigdb.org/gsea/

msigdb/search.jsp) and referring to a relevant review (20).

Then, using R language software, the expression matrix of

m7G-related genes was obtained, and the differential

expression analysis was carried out with limma package to

obtain 21 meaningful (P < 0.05) m7G-related DEGs. Finally,

the visualization results of box diagram, vioplot, and heat

diagram were made using the R software package (pheatmap,

reshape2, ggpubr, vioplot).
Construction of a protein–protein
interaction network

The protein–protein interaction (PPI) network was created

utilizing the online STRING website (cn.string-db.org). The 21

m7G-related DEGs were input into the gene list, homo sapiens

were selected, and the medium confidence was set to 0.400.

Then, we hid the disconnected nodes of the network and

adjusted the position of each node. The barplot package was

used to visualize the number of node connection genes, and the

counts of connections ≥8 were defined as the hub gene.
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Differentially expressed M7G-
related lncRNAs

The lncRNAs gained from the COAD database were filtered

out, and the differential expression analysis was carried out with

the limma package, obtaining 4,745 m7G-related differentially

expressed lncRNAs with significance (P < 0.05, | FC | > 1.5).

Through the correlation analysis between m7G-related

differential genes and the lncRNA expression level in COAD

samples, the lncRNAs related to m7G were identified. Based on

the correlation coefficient >0.30 as well as P < 0.05, 1,020

lncRNAs related to m7G were identified. Then, we

downloaded the GSE17536 database on the official website of

GEO (www.ncbi.nlm.nih. gov/geo/), obtaining the expression

matrix and clinical information with the R software package

(GEOquery). Reannotation with the GPL570 annotation file was

performed to obtain the expression matrix of each symbol.

Intersection with the lncRNAs annotated by TCGA was done,
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finding 1,240 identical lncRNAs. Finally, 88 differentially

expressed m7G-related lncRNAs were obtained by intersecting

the three types of lncRNAs.
Construction of the prognostic m7G-
related lncRNA risk model

Univariate Cox analysis was performed to obtain 11

prognosis-related lncRNAs (P < 0.05) from these 88

differentially expressed m7G-related lncRNAs in order to

check their prognostic significance. In addition, through 1,000-

fold cross-validation, the Lasso Cox regression method was used

to identify the ideal penalty parameter lambda and the relevant

coefficient criterion based on the minimal criterion. Thus, an

eight-lncRNA prognostic risk model was built. Then, we

obtained the risk score by the following formula: risk score =

coef (lncRNAn)*expr (lncRNAn). In the COAD database and
FIGURE 1

The flowchart of the overall study design.
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GSE17536 dataset, this method was used to compute the risk

score of each patient.
Cluster analysis

Cluster analysis was performed on 452 samples of the

COAD data set based on eight lncRNAs in the prognosis

model using “ConensusClusterPlus” software package to

determine m7G-related molecular subtypes. The number k of

clusters was set to 2 to 10, and the “ConensusClusterPlus”

program calculated the average contour width of the common

member matrix. KM analysis was plotted to estimate the

prognosis among different groups, and log-rank test was utilized.
Validation of the prognostic risk model

We unified the expression amount, survival time, survival

status, risk score, and risk level of the eight lncRNAs in each

TCGA sample (n = 452) into a table as the training set. The eight

lncRNAs in GSE17536 (n = 177) were used as the test set. The

prognostic significance of the training set was verified using the test

set. A KM plot was utilized to analyze the risk prognosis, and the

log-rank test was performed. Moreover, the ROC curve was also

drawn using the timeROC program. Then, we utilized the

pheatmap package to draw the risk curve, survival state diagram,

and risk heatmap. The Rtsne and ggplot2 packages were employed

for t-SNE as well as principal component analysis (PCA). Finally,

the risk score was combined with the clinical characters (age,

gender, TNM stage, and grade) of the two data sets for univariate

andmultivariate Cox analyses, then visualized it with a forest map.
Nomogram construction and calibration

We further analyzed the clinical characteristics (age, TNM

stage, and risk score) that weremeaningful (P < 0.05) by univariate

Cox analysis to study their clinical value in predicting patient

survival. We applied the “RMS” tool to create a nomogram that

predicted the 1-, 3-, and5-year survival rates ofCOADpatients.We

also plotted the calibration curves in the same calibration chart to

assess the accuracy of the nomogram. Finally, the decision curve

analysis (DCA) curvewas drawnusing the ggDCAprogram,which

was also utilized to assess the prediction ability of the nomogram

and other clinical parameters.
Gene set enrichment analysis

The link between risk group and Gene Ontology (GO) was

investigated using gene set enrichment analysis (GSEA) after

TCGA samples were separated into high- and low-risk score

groups. For each analysis, 1,000 gene set permutations were done.
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The enrichment function was chosen based on the following

criteria: the gene collection was enriched and evaluated using the

clusterProfiler softwarewith a false discovery rate (FDR)of 0.25 and

a NOM p value of 0.05. The top five functions enriched by two

groups were visualized with an enrichment lot to obtain multiple

GSEA diagrams. After that, differential expression analysis of two

groups was performed to find DEGs between the two groups. GO

and KEGG with the clusterProfiler package were performed to

enrich and analyze the DEGs. Then, utilizing the enrichplot and

ggplot2 packages, the enrichment results were shown as a barplot,

bubble diagram, chord diagram, and cluster circle diagram.
Association with immune cells
and function

Single-sample GSEA (ssGSEA) was applied to examine the

differences in immune cell activity, immunological function, and

immune route between two groups in the training set and depicted

it with a boxplot. The marker genes of different kinds of immune

cells could be found in the previous literature (21). The immune

score, stromal score, estimated score, and tumor purity were

determined using the ESTIMATE program and visualized using a

heat map and violin plot. To acquire the composition of invading

immune cells in each sample in the training set, the CIBERSORT

package was filtered (P 0.05), and the risk score and immune cells

were assessed using Pearson correlation. From COAD expression

data, the likely MCPcounter package was run to estimate the

abundance of immune and non-immune stromal cells, and a

violin diagram was drawn to depict the abundance difference

between the two groups.
RNA extraction and qRT-PCR

In order to further confirm the differential expression of the

eight lncRNAs, we extracted RNA from fresh frozen tissues with

TRIzol reagent (Takara, Japan) and detected the expression level

of the eight lncRNAs by qRT-PCR. The cDNA was produced

utilizing the PrimeScript RTMaster Mix (Takara, Japan) and the

designed primers (RiboBio, China). The related GAPDHmRNA

expression was identified as an internal control. We collected 24

pairs of fresh colon cancer and adjacent tissues from the

Colorectal Center of Jiangsu Provincial People’s Hospital from

2020 to 2021. 2−DD CT was used to represent the expression. The

primer sequences are displayed in Supplementary Table 1. Each

PCR reaction was carried out three times.
Statistical analysis

Statistical analysis was performed using R version 4.1.2. The

“WilcoxTest” function in the limma package was used to
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calculate the difference between two preselected groups or paired

samples. The correlation between two parameters was evaluated

via Pearson correlation analysis. The expression matrices of

COAD and GSE17536 were batch corrected with the sva

package. The survival package was used for KM, univariate,

and multivariate Cox regression analyses to calculate the risk

ratio, P value, and risk confidence interval. The P value of

KM survival curves was calculated by the log-rank test. The

glmnet package was used to calculate the optimal penalty

parameter lambda and the related coefficient criterion of the

Lasso Cox regression algorithm. P < 0.05 was regarded as

statistical significance.
Results

Identification of differentially expressed
m7G-related lncRNAs in COAD patients

Initially, we obtained 27 m7G-related genes from the official

website of GSEA and previous reviews. Combined with the

mRNA expression matrix of TCGA, we obtained the

expression of these 27 genes in 521 COAD samples. There

were 41 paracancerous samples and 480 tumor samples in 521

samples. The difference in expression between tumor samples

and normal samples was evaluated. The Wilcox test (P < 0.05)

was used to test. We found that among the 27 m7G-related

genes, the expressions of METTL1, WDR4, NSUN2, DCPS,
Frontiers in Oncology 05
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NUDT3, NUDT4, AGO2, EIF4E, EIF4E1B, GEMIN5, LARP1,

NCBP1, NCBP2, EIF3D, and EIF4A1 increased, the expressions

of NUDT10, NUDT11, NUDT16, CYPIP1, EIF4E3, and EIF4G3

decreased, and there was no difference in the expressions of

DCP2, EIF4E2, IFIT5, LSM1, NCBP2L, and SNUPN. Then we

visualized the 27 genes with a violin map (Figure 2A) and made a

heat map of 21 differentially expressed genes (Figure 2B). Then

we used the online website STRING, input the 21 genes into the

gene list, and selected Homo sapiens. The medium confidence

was set to 0.400. The disconnected nodes of the network were

hidden, and the position of each node was adjusted. Then we

exported a PPI network diagram (Figure 2C) and TSV file. We

utilized the barplot package to visualize the number of node

connection genes (Figure 2D) and defined the genes whose

counts of connections ≥8 as hub genes. The following hub

genes were EIF4E, EIF4A1, EIF4E1B, NCBP1, NCBP2, EIF4E3,

and EIF4G3. We also visualized the expression of 21 genes with

the corrplot package (Figure 2E). Moreover, we removed the

normal samples from the lncRNA expression matrix, extracted

lncRNAs whose expression was >0.5, and then conducted

Pearson correlation analysis based on these 21 genes to screen

(|cor| > 0.3, P < 0.05) 1,020 m7G-related lncRNAs. Additionally,

14,805 lncRNAs of TCGA were analyzed for differential

expression based on tumor samples and adjacent samples (P <

0.05, | FC | > 1.5). We also obtained the expression matrix of

GSE17536 and found 1,240 same lncRNAs as TCGA. Finally,

1,020 m7G-related lncRNAs (cor-lncRNA), 4,745 differentially

expressed lncRNAs (diff-lncRNA), and 1,240 identical lncRNAs
B

C D E

A

FIGURE 2

Differentially expressed m7G-related genes. (A) Violin plot showing the differential expression of 27 m7G-related genes between tumor and
normal tissues from the COAD. (B) Heat map of 21 differentially expressed m7G-related genes between tumor and normal tissues (P < 0.05).The
PPI network (C) and number of interaction nodes (D) of 21 differentially expressed m7G-related genes. (E) Pearson correlation analysis of 21
differentially expressed m7G-related genes. The red color represents a positive correlation; the blue color represents a negative correlation. *P <
0.05, **P < 0.01, and ***P < 0.001.
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(GSE17536 lncRNA) were intersected to obtain 88 differentially

expressed m7G-related lncRNAs, which were visualized by a

Venn diagram (Figure 3A).
Construction of a risk model for
COAD patients

Initially, we obtained 27 m7G-related genes from the official

website of GSEA and previous reviews. Combined with the

mRNA expression matrix of TCGA, we obtained the

expression of these 27 genes in 521 COAD samples. There

were 41 paracancerous samples and 480 tumor samples in 521

samples. The differential expression between tumor samples and

normal samples was analyzed and tested by Wilcox test (P <

0.05). We found that among the 27 m7G-related genes, the

expressions of METTL1, WDR4, NSUN2, DCPS, NUDT3,

NUDT4, AGO2, EIF4E, EIF4E1B, GEMIN5, LARP1, NCBP1,

NCBP2, EIF3D, and EIF4A1 increased, the expressions of

NUDT10, NUDT11, NUDT16, CYPIP1, EIF4E3, and EIF4G3

decreased, and there was no difference in the expressions of

DCP2, EIF4E2, IFIT5, LSM1, NCBP2L, and SNUPN. Then we

visualized the 27 genes with a violin map (Figure 2A) and made a

heat map of 21 differentially expressed genes (Figure 2B). Then

we used the online website STRING, input the 21 genes into the
Frontiers in Oncology 06
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gene list, and selected human sapiens. The medium confidence

was set to 0.400. The disconnected nodes of the network were

hidden, and the position of each node was adjusted. Then we

exported a PPI network diagram (Figure 2C) and TSV file. We

utilized the barplot package to visualize the number of node

connection genes (Figure 2D) and defined the genes whose

counts of connections ≥8 as hub genes. The hub genes were

EIF4E, EIF4A1, EIF4E1B, NCBP1, NCBP2, EIF4E3, and

EIF4G3. Firstly, the expression matrices of 1,240 identical

lncRNAs of TCGA and GSE17536 were obtained respectively,

and then the sva package was used for batch correction. We

combined the 88 differentially expressed m7G-related lncRNAs

with the batch-corrected database to obtain the expression of

these 88 lncRNAs in TCGA and GSE17536. Then, we

downloaded the clinical data of TCGA and GSE17536,

removed the paracancerous samples, and combined them with

the expression samples. Finally, 452 TCGA samples and 177

GSE17536 samples with both clinical data (overall survival time

and event) and expression were obtained. To discover the

prognostic significance of these 88 differentially expressed

m7G-associated lncRNAs, univariate Cox analysis (P < 0.05)

was used for obtaining 11 prognosis-related lncRNAs (ELFN1-

AS1, GABPB1-AS1, SNHG7, PTOV1-AS2, LINC01138, GS1-

124K5.4, ZEB1-AS1, PCAT6, SNHG15, C1RL-AS1, MCM3AP-

AS1). The 11 lncRNAs were visualized by a forest map
B C
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FIGURE 3

Construction of the prognostic m7G-related lncRNAs risk model. (A) Venn diagram of cor-lncRNA, diff-lncRNA, and GSE17536lncRNA. (B) Forest
map of 11 prognostic m7G-related lncRNAs by univariate Cox analysis (P < 0.05). (C) The correlation between 21 differentially expressed m7G-
related genes and 11 prognostic m7G-related lncRNAs. The red color represents a positive correlation; the blue color represents a negative
correlation. *P < 0.05, **P < 0.01, and ***P < 0.001. (D) 1,000 cross-validation to determine the optimal penalty parameter lambda (l). (E) Lasso
regression of the 11 m7G-related lncRNAs. (F) The Sankey diagram displayed the relationship between the m7G regulators mRNA expression
and the m7G-related lncRNAs.
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(Figure 3B). Additionally, the correlation of 11 lncRNAs and 21

DEGs was analyzed, and the correlation diagram (Figure 3C)

was drawn with the corrplot package. Moreover, we performed

Lasso regression analysis on these 11 lncRNAs (Figures 3D, E).

We determined the optimal penalty parameter lambda and

calculated the corresponding coefficient criterion based on the

minimum criterion through 1,000-fold cross-validation. Thus,

an eight-lncRNA (ELFN1-AS1, GABPB1-AS1, SNHG7, GS1-

124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, MCM3AP-AS1)

prognostic risk model was constructed. The following formula

was used to determine the risk score: risk score = (0.1248634928

618*ELFN1-AS1 expression) + (0.138884459768606*GABPB1-

AS1 expression)+(0.271466216016284*SNHG7 expression) +

(0.0620449890746169*GS1-124K5.4 expression)+(0.643398387

399806*ZEB1-AS1 expression) + (0.344100469251062*PCAT6

expression)+(0.0756308955064826*C1RL-AS1 expression) +

(0.170192664397879 *MCM3AP-AS1 expression). Then we

analyzed the correlation of the eight lncRNAs and made the

correlation circle diagram (Supplementary Figure 1).

Meanwhile, a differential expression box plot was made in

combination with the lncRNA expression matrix of TCGA

(Supplementary Figure 2A). Furthermore, the expression levels

of these eight lncRNAs in 24 frozen paired tissues were tested by

qRT-PCR. It was found that they were upregulated in different

degrees in tumor tissues (Supplementary Figure 2B). Lastly, the

correlation between the eight lncRNAs and the target genes was

represented by a Sankey diagram (Figure 3F). Positive stands for

positive correlation and negative stands for negative correlation.
Frontiers in Oncology 07
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Identification of m7G-associated clusters
and prognostic analysis between clusters

Firstly, we made a further cluster analysis of eight lncRNAs

based on the risk model. Cluster analysis was performed on 452

samples of the COAD data set using the “ConsensusClusterPlus”

package to determine m7G-associated molecular subtypes. The

number k of clusters was selected from 2 to 10 (Figure 4B), and

the “ConsensusClusterPlus” program calculated the average

contour width of the matrix (Figure 4A). After careful

selection, the best K value was 3 and the samples were divided

into three clusters. At last, we analyzed the survival of three

clusters and plotted the KM curve (Figure 4C). The

corresponding p value obtained by the log-rank test was 0.007.

There were significant differences in survival among the three

subgroups. with cluster1 having a worse prognosis than clusters

2 and 3.
Validation using the GSE17536 set

Initially, we identified TCGA database (n = 452) as the

training set and the GSE17536 database as the test set for

verification. We plotted the KM curve (Figures 4D, F) and

ROC curve (Figures 4E, G) of the training set and the test set.

The P value of the training set (P < 0.001) and test set (P = 0.018)

was obtained by the log-rank test. The HR of the training set was

2.876 and 95% CI: 1.935–4.275, while the HR of the test set was
B C
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FIGURE 4

Identification of m7G-associated clusters and prognostic analysis between clusters. (A) The consensus matrix (k = 3) of 452 COAD samples by
Consensus Cluster analysis. (B) The relative change in area under the CDF curve for k = 2–10. The KM plot showing overall survival in three
clusters (C), training set (D), and test set (F).The ROC curve of the training set (D) and test set (F). The 1-, 3-, and 5-year ROC analyses of risk
score in the training set (E) and test set (G).
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1.774 and 95% CI: 1.121–2.808. The risk score’s area under the

ROC curve (AUC) value was examined to determine its

specificity and sensitivity in predicting patient prognosis in

the two data sets. In the training set, the AUC values for the

1-, 3-, and 5-year risk scores were 0.671, 0717, and 0.692,

whereas the AUC values in the test set were 0.679, 0.617, and

0.648. The risk score and survival status of COAD patients

(Figure 5A) and GSE17536 patients (Figure 5B) were

displayed using a risk curve, scatter plot, and risk heat map.

We also made an expression heat map of clinicopathological

features (TMN stage, stage, age, gender), clusters, and risk

score based on TCGA database (Figure 5C). Additionally, the

Rtsne package and ggplot2 package were used for t-SNE

analysis of the training set (Figure 5E)and test set

(Figure 5G). The scatterplot3d package was used to make

3D images of PCA analysis of the training set (Figure 5D) and

test set (Figure 5F). It was demonstrated that the two groups

of the training set and test set were heterogeneous. Moreover,

we further subdivided each clinicopathological feature (TMN

stage, stage, age, gender) and analyzed the survival of the risk

scores of each subgroup (Figure 6A). The KM curve showed
Frontiers in Oncology 08
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that the subgroups with significant survival (P < 0.05) in two

groups are the younger (age less than 65)or older (age greater

than 65)patients, male or female, stage III–IV groups, T III–IV

groups, N0 or N I–II groups, and M0 (patients without any

metastasis) groups. Subsequently, we utilized univariate and

multivariate Cox regression analyses to see if the risk scores

obtained by the two risk models may well be employed as an

independent COAD prognostic signature. Univariate Cox

regression analysis showed that age (HR: 1.027, 95% CI:

1.007–1.047, P = 0.009), T stage (HR: 2.975, 95% CI: 1.929–

4.589, P < 0.001), N stage (HR: 2.045, 95% CI: 1.580–2.646, P

< 0.001), M stage (HR: 4.375, 95% CI: 2.778–6.890, P < 0.001),

and the risk score (HR: 3.373, 95% CI: 2.196–5.180, P < 0.001)

in the training set were significantly positively associated with

OS (Figure 6B). The grade (HR: 2.004, 95% CI: 1.249–3.216, P

= 0.004) and risk score (HR: 4.413, 95% CI: 2.127–9.156, P <

0.001) of the test set were significantly positively correlated

with OS (Figure 6D). Multivariate analysis of significant

factors in univariate analysis showed that age (HR: 1.038,

95% CI: 1.017–1.058, P < 0.001), T stage (HR: 1.982, 95% CI:

(1.213–3.237, P = 0.006), N stage (HR: 1.399, 95% CI: 1.040–
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FIGURE 5

Validation of the prognostic risk model. Scatter plot revealing the risk score distribution of high risk and low risk and the relationship between
survival time and risk score based on the training set (A) and test set (B). Heat map displaying the differential expression of the eight prognostic
m7G-related lncRNAs in the high- or low-risk group. (C) Heat map showing clinicopathological features (TMN stage, stage, age, gender) and
differences in the expression of eight lncRNAs in the high- and low-risk groups. *P < 0.05, **P < 0.01, and ***P < 0.001. The 3D scatter plot of
PCA results of the training set (D) and test set (F).The t-SNE analysis of the training set (E) and test set (G).
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1.881, P < 0.001), M stage (HR: 2.589, 95% CI: 1.501–4.467,

P < 0.001), and risk score (HR: 2.948, 95% CI: 1.801–4.826,

P < 0.001) were significantly associated with OS in COAD

(Figure 6C), whereas the grade (HR: 2.135, 95% CI: 1.311–

3.475, P = 0.002) and risk score (HR: 4.538, 95% CI: 2.187–

9.418, P < 0.001) of the GSE17536 dataset were significantly

positively correlated with OS (Figure 6E), suggesting that

these two parameters can be used as independent prognostic

factors. The risk score was found to be a useful independent

predictor of outcome, outperforming other clinicopathological

characteristics such as TMN stage, stage, age, sex, and grade.
Formulation and examination of
a nomogram

First of all, we created a nomogram comprising clinical

characteristics of TMN stage, age, and risk score depending on

the outcomes of univariate and multivariate Cox analyses
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(Figure 6F). We obtained the total score of a patient according

to his clinical information, which could be used for assessing the

prognosis of patients. Next, we also plotted the calibration curves

(Figure 6G). The higher the number of curves of the three

calibration curves close to the standard curve, the more accurate

the prediction of the nomogram was. In addition, we performed

the DCA (Figure 7A). The benefits of the nomogram were much

higher than those of the extreme curves, according to the image

results. The nomogram curve was higher than other clinical

features (age, TNM stage) and risk score curve, indicating that

the nomogram was more reliable in predicting survival rate.

Finally, we made the ROC curve (Figure 7B) of multiple clinical

factors (age, TNM stage, risk, and nomogram) and calculated the

area under the ROC curve (AUC). We found that the AUC

values of risk, nomogram, age, and TNM stage were 0.668, 0790,

0.606, 0.642, 0.683, and 0.666, respectively. When the AUC

values of the nomogram and other clinical factors were

compared, the nomogram was found to have a significantly

higher AUC value, implying that the nomogram was a good

prognostic predictor.
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FIGURE 6

Survival analysis and construction of a nomogram. (A) Survival analysis in subgroups including gender, age, and tumor stages. Univariate Cox
regression analysis revealing the association between patients’ overall survival and clinicopathological parameters along with m7G-related
lncRNA risk scores in the training set (B) and test set (D). Multivariate Cox regression analysis uncovering independent prognostic factors in the
training set (C) and test set (E). (F) Nomogram depending on the m7G-related lncRNA risk score and other clinicopathologic feature predicting
the 1-, 3-, and 5-year overall survival for COAD patients. (G) Calibration curves illustrating the consistency between predicted and observed 1-,
3-, and 5-year overall survival rates in COAD patients based on the nomogram.
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Gene set enrichment analysis

First of all, the COAD samples (n = 452) were divided into

high- and low-risk groups. The connection between GO and

risk group was investigated using GSEA. The following

conditions were used to filter the enrichment function: NOM

P < 0.05, FDR < 0.25. The top five functions enriched in the

high-risk group were GOBP_NEGATIVE_REGULATION_

OF_PLATELET_DERIVED_GROWTH_FACTOR_RECEP

TOR_SIGNALING_PATHWAY, GOBP_NEUROPEPTIDE_S

IGNALING_PATHWAY, GOBP_REVERSE_CHOLES

TEROL_TRANSPORT, GOMF_DNA_BINDING_TRANS

CRIPTION_REPRESSOR_ACTIVITY, and GOMF_RNA_

BINDING_INVOLVED_IN_POSTTRANSCRIPTIONAL_

GENE_SILENCING, and those enriched in the low-risk group

were GOBP_ADAPTIVE_IMMUNE_RESPONSE, GOBP_

HUMORAL_IMMUNE_RESPONSE, GOBP_IMMUNE_

RESPONSE_REGULATING_SIGNALING_PATHWAY,

GOBP_RESPONSE_TO_BACTERIUM, and GOCC_

IMMUNOGLOBULIN_COMPLEX groups which were

visualized with an enrichment lot to obtain multiple GSEA

diagrams (Figure 7C). The high-risk group was shown to be

mostly linked to DNA transcription and RNA posttranscriptional
Frontiers in Oncology 10
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modification, while the low-risk group was mostly linked to

immunological infiltration. Next, we used the sva package to

batch correct the same 16,397 mRNAs of TCGA and GSE17536,

obtaining the corrected expression matrix. Then we used

differential expression analysis to find 67 genes that were

differentially expressed between the two groups (P<0.05, | FC

| > 1.5). Then, we ran GO and KEGG enrichment analyses. The

top 10 molecular functions (MF), biological process (BP), and

cellular components (CC) according to their enrichment score

were visualized by the barplot (Figure 7D), bubble diagram

(Figure 7E), and chord diagram (Figure 7F). The DEGs were

mainly enriched in “antimicrobial humoral immune response

mediated by antimicrobial peptide”, “antimicrobial humoral

response”, “humoral immune response”, “response to molecule

of bacterial origin”, “response to lipopolysaccharide”, “cellular

response to lipopolysaccharide”, “cellular response to molecule of

bacterial origin”, “neutrophil chemotaxis”, and other functions by

differentially expressed genes. The top 30 KEGG pathways were

visualized by the barplot (Supplementary Figure 3A), bubble

diagram (Supplementary Figure 3B), and cluster circle diagram

(Supplementary Figure 3C). The DEGs enriched in “IL-17

signaling pathway”, “rheumatoid arthritis”, “viral protein

interaction with cytokine and cytokine receptor”, “toll-like
B C

D E F
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FIGURE 7

Gene set enrichment analysis. DCA curve (A) and ROC curve (B) of the nomogram, risk, and other clinicopathologic feature in COAD. (C) GSEA
results illustrating 10 significant enrichment of GO in low-risk and high-risk groups. The results of GO enrichment analysis of the differentially
expressed genes shown by barplot (D), bubble chart (E), and chord diagram (F).
frontiersin.org

https://doi.org/10.3389/fonc.2022.934928
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.934928
receptor signaling pathway”, “influenza A”, “legionellosis”,

“cytokine-cytokine receptor interaction” and “pertussis” were

mainly activated.
Immune infiltration analysis of the
risk model

The results of the GSEA showed that the low-risk category was

mostly associated with immunological infiltration, according to

GSEA outcomes. As a result, we discovered the association in risk

score and the immune infiltrationmicroenvironment.Tobegin, the

infiltration of 16 immune cells and the scores of 13 immunological

functions were analyzed utilizing the ssGSEA method. In

comparison to the high-risk group, the low-risk group had

stronger immune cell infiltration (Figure 8A) and more immune-

related functions or pathways (Figure 8B). Secondly, COAD

samples with a CIBERSORT output p value less than 0.05 were

screened using the CIBERSORT algorithm for research. A bar

graphwas used for illustrating the percentage of 22 immune cells in

220 samples (Supplementary Figure 4). Only neutrophils and

dendritic cells resting were negatively connected (P < 0.05) in the

correlation analysis between these 22 immune cells and risk score

(Figure 8C). In addition, based on COAD expression data, the

MCPcounter software was applied to calculate the content of 10

categories of immune and stromal cells, and the violin diagram

(Figure 8D) was created to demonstrate the abundance difference
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between the twogroups.The low-riskgrouphadconsiderablymore

cytotoxic lymphocytes, monocytic lineage, myeloid dendritic cells,

and natural killer cells (NK cells) than the high-risk group (P <

0.05). Moreover, we obtained the immune score, stromal score,

estimated score, and tumor purity of every patient using the

ESTIMATE algorithm according to the proportion of immune

and stromal cells in the TME. Then, based on the immune score,

interstitial score, estimated score, tumor purity, cluster, and risk

group, the score heat map of 29 immune cells and functions

obtained by ssGSEA was made (Figure 8E). Furthermore, we

detected the expression differences of 24 major histocompatibility

complex (MHC)molecules in two groups and visualized themwith

a boxdiagram(Figure 8F).Wediscovered that the expression in the

low-risk groupwas significantly greater than in the high-risk group.

Finally, we examined the expression differences of 10 common

immune checkpoint molecules (PDCD1, CD274, PDCD1LG2,

CTLA4, LAG3, SIGLEC7, HAVCR2, LILRB2, VSIR, and

FCGR3A) in two groups and made a box plot (Supplementary

Figure 5). We discovered that CD274, PDCD1LG2, LAG3,

SIGLEC7, HAVCR2, LILRB2, and FCGR3A were significantly

overexpressed in the low-risk group.
Discussion

As everyone knows, colon cancer is one of the most common

digestive tract carcinomas, with high malignancy and
B C

D E

A

F

FIGURE 8

Immune infiltration analysis of the prognostic m7G-related lncRNA risk model. The infiltrating levels of 16 immune cell types (A) and 13 immune
functions (B) in high-risk and low-risk groups estimated by ssGSEA. (C) The correlation of immune score and risk score calculated by
CIBERSORT. (D) The violin diagram revealing the abundance of 10 types of immune and stromal cells between two groups via MCPcounter.
(E) Heat map of 29 immune cells and functions displaying the difference of the immune score, stromal score, estimated score, and tumor purity
in two groups through ESTIMATE. (F) Box plot of 24 MHC molecules’ expression level in two groups. ns, not significant, *P < 0.05, **P < 0.01,
and ***P < 0.001.
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invasiveness, as well as a high incidence and fatality rate (22). As

a result, researching prognostic markers in colon cancer is

crucial (23). lncRNA is also important in the genesis and

progression of colon cancer. For instance, the lncRNA

MALAT1, which is upregulated in colon carcinoma, may

accelerate colon cancer cell growth (24). CCAT1 and CCAT2

have also been reported to be closely related to colorectal cancer

(25). According to the existing literature reports, the number of

prognostic models constructed by using the public database

COAD is increasing. For instance, m6A-associated lncRNAs

are potential prognostic biomarkers of colon cancer (26),

prognostic risk model of pyroptosis-associated lncRNAs (27),

and establishment and validation of the ferroptosis-related

lncRNA prognostic signature (28). In addition, RNA

modification is involved in the biosynthesis, metabolism, and

structural stability of RNA molecules, which is highly related to

tumors (29). Overall, this is the first study in colon cancer to

develop an m7G-related lncRNA risk model for predicting

patient prognosis. Furthermore, this prognostic model is

strongly correlated with clinicopathological factors, immune

cells, and immune-related functions. Consequently, it could be

utilized to guide immune targeted therapy and predict

patient survival.

In our research, the prognostic model we constructed

included eight lncRNAs, namely, ELFN1-AS1, GABPB1-AS1,

SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, and

MCM3AP-AS1. ELFN1-AS1 may improve colon cancer cell

growth and migration while activating ERK and the epithelial–

mesenchymal transition (EMT) pathway (30). Small nuclear

RNA host gene 7 (SNHG7) is highly expressed in gastric and

thyroid cancer and is associated with tumor stage and overall

survival (31, 32). By overexpressing zinc finger enhancer-

binding protein (ZEB1), ZEB1-AS1 was able to accelerate

osteosarcoma and prostate cancer progression (33, 34). In

addition, prostate cancer-associated transcript 6 (PCAT6)

could promote the oncogenesis and angiogenesis of triple-

negative breast cancer by regulating VEGFR2 (35). AKT/b-
catenin/c-Myc pathway was activated by C1RL-AS1 to

promote the cancerous behavior in stomach adenocarcinoma

cells (36). Moreover, by affecting the miR-194-5p/FOXA1 axis,

MCM3AP-AS1 has been shown to increase hepatocellular

cancer growth (37). However, there are few reports concerning

GABPB1-AS1 and GS1-124K5.4 in tumors. In summary, these

lncRNAs were critical in the tumorigenesis and progression of

tumors. Therefore, using lncRNA to construct our prognostic

model seemed feasible and convincing.

Next, based on the GSEA outcomes of two groups, the high-

risk group was mainly related to RNA modification, whereas the

low-risk group was primarily enriched in immune cells and

function. Based on the existing research, we have found some

lncRNAs that could be identified as immunomodulatory factors,

including lncRNA-COX2, THRIL, lncRNA-EPS, and
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MORRBID (38). Colon cancer was infiltrated by various

immune cells, including tumor-associated macrophages

(TAMs), tumor-associated neutrophils (TANs), CD8T cells,

and cancer-associated fibroblasts (CAFs) (39). In our study,

the risk score of lncRNAs was associated with immune cells

including neutrophils, resting dendritic cells, cytotoxic

lymphocytes, monocytic lineage, myeloid dendritic cells, and

NK cells. Their abundance was much greater in the low-risk

group than in the high-risk group. Moreover, we also used R

programs like ESTIMATE and ssGSEA to assess the level of

immunological infiltration. To summarize, the tumor immune

infiltration microenvironment was found to be strongly

associated with our risk model.

Of course, our research also have many deficiencies. First of

all, the AUC values of the 1-, 3-, and 5-year risk scores of the

training set and test set were basically <0.7. The accuracy for

prediction was not very high; thus, the risk model needed to be

improved. For example, we could set more strict screening criteria

of FC value and P value in differential expression analysis. In

univariate Cox analysis, the threshold of P could be set to 0.001,

filtering out better prognostic lncRNAs. Secondly, the validation

training set was only verified by the retrospective data of GEO.We

should also verify its long-term clinical value through more

prospective studies. Additionally, we also discovered the

association among risk score and immune cells, immune

function, immune score, and MHC molecules. Referring to a

recent study, the greater the tumor mutation load, the worse the

prognosis of patients (40). Immune infiltration in tumors was an

important prognostic marker of immunotherapeutic response

(41). Therefore, it is important to study the relationship

between tumor mutation burden and the response of

immunotherapy. Last but not least, the eight lncRNAs in the

model needed further experimental verification in vivo and in

vitro to test their role in the tumorigenesis and progression of

colon cancer.
Conclusion

According to the transcriptome expression matrix and

clinical data of TCGA, we created a prognostic risk model

consisting of eight m7G-related lncRNAs for COAD patients.

Next, we also verified the prognostic model according to the

expression matrix and clinical data of the GSE17536 dataset.

This predictive risk model was shown to have independent

prognostic significance and could effectively predict the OS

rate for COAD patients. Furthermore, our research has

provided a deeper understanding of the association between

t h i s p r o gno s t i c mod e l a nd t h e t umo r - immune

microenvironment. Finally, the m7G-related lncRNA risk

model may help us identify possible COAD signatures or

therapeutic targets.
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Induced expression of CCL19
promotes the anti-tumor ability
of CAR-T cells by increasing
their infiltration ability

Jian-fei Hu1†, Zu-wei Wang1†, Cheng-yu Liao1†,
Zhi-wen Chen1, Feng-ping Kang1, Cai-feng Lin1,2,
Tian-sheng Lin2, Long Huang1,2, Yi-feng Tian1,2*

and Shi Chen1,2*

1Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou,
China, 2Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
Background: Chimeric antigen receptor-engineered T cell (CAR-T) therapy

has shown promising potential for anti-cancer treatment. However, for

pancreatic ductal adenocarcinoma (PDAC), the lack of infiltrative ability of

these CAR-T cells leads to sub-optimal treatment outcome.

Methods: Chemokine (C-Cmotif) ligand 19 (CCL19), the expression of which is

regulated by the nuclear factor of activated T cell pathway, was transfected into

targeting mesothelin CAR-T cells (mesoCAR-N19) using NFAT regulating

element. It was expressed in activated CAR-T cells by OKT3 or mesothelin+

tumor cells but not in inactive cells. The migratory ability of these CAR-T cells

was then measured. Subsequently, functional identification of these CAR-T

cells was performed in vivo. In addition, the tumor lytic activity and proliferation

of the CAR-T cells were measured in vitro. The degree of CAR-T cell infiltration

and distribution into the PDAC tumors was examined using the

immunohistochemical staining of hCD3 and the detection of CAR gene copy

number by quantitative PCR. Finally, the functional assessment of chemokine

(C-C motif) receptor 7 knock-out was performed in the CAR-T cells.

Results: Through in vitro Transwell assays, it was demonstrated that mesoCAR-

N19 can be specifically expressed in CAR-T cells activated by tumor cells

compared with conventional mesothelin CAR-T (mesoCAR) cells. We also

observed that upregulating the expression of CCL19 can increase the

recruitment of additional T cells. In vivo studies subsequently revealed that

this highly specific recruitment of T cell infiltration is associated with enhanced

tumor-suppressive activities downstream.

Conclusion: Induced expression of CCL19 can promote the anti-tumor ability

of CAR-T cells by increasing their infiltrative ability. This study potentially

uncovered novel method of activating CAR-T cells to enhance their

infiltrative capacities, which offers a novel direction for PDAC treatment.
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Introduction

Pancreatic cancer (PC) is considered to be a highly

aggressive malignancy that has a poor prognosis, the 5-year

survival rate of which is <10% (Data collected in 2016) (1). The

majority of PC cases are of the pancreatic ductal

adenocarcinoma (PDAC) subtype (2). Typical treatment

methods for PDAC, such as radiotherapy and chemotherapy,

are unable to significantly improve patient survival (1, 2).

Therefore, development of more precise and effective

treatment strategies, including those of immunotherapy and

adaptive immune cell therapy, is in urgent demand (3, 4).

Over the past decade, chimeric antigen receptor-modified T-

cell (CAR-T) therapy has been proposed to be a potential

treatment method for various malignancies such as NHL.

Briefly, CAR is a fusion protein that contains an antigen-

recognizing domain [single-chain variable fragment (scFv)], a

hinge and transmembrane domain and several signaling

domains (5). For the treatment of hematological malignancies,

CAR-T has yielded highly satisfactory therapeutic effects. In

diffuse large B-cell lymphoma (6, 7), the objective response rate

(ORR) of CAR-T therapy can reach over 60%, whereas for

multiple myeloma, the ORR of CAR-T therapy has been

shown to reach over 90% (8, 9). However, in solid tumor

treatment, CAR-T treatment has not been as effective (10, 11).

For the treatment of hepatocellular carcinoma (12, 13),

malignant glioma (14, 15) and ovarian cancer (16), CAR-T

therapy has not resulted in efficacies comparable to that of

leukemia. This discrepancy has been reported to be attributed

to several factors. The degree of infiltration by these CAR-T cells

has been observed to be poor (15, 17). In addition, the

heterogeneity of the tumor tissues served as another obstacle

(18, 19).The chemotaxis of CAR-T cells has not been as efficient

in these solid tumors, which was inhibited further by the tumor

microenvironment (17, 20–22). PC has a number of viable

biomarkers with high levels of specificity, including mesothelin

(23, 24) and HER2 (25, 26). However, for advanced PC, CAR-T

therapy has been able to result in tumor suppression at the

primary lesion due to poor infiltration and chemotaxis (16, 27).

To address this form of CAR-T cell tropism, memory T cell

infiltration was increased by overexpressing the chemokine (C-C

motif) ligand 19 (CCL19) in CAR-T cells (28). CCL19 is a

chemokine ligand for chemokine (C-C motif) receptor 7

(CCR7), which is highly expressed on memory T cells and
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mature antigen-presenting cells (29). Physiologically CCL19 is

expressed in the T zones in the lymph node, which enables

mature fibroblasts to recruit memory T cells and mature

antigen-presenting cells to activate T cells (30). Therefore, if

CCL19 expression is chronically upregulated by CAR-T, then

chemotaxis may become inefficient, since these CAR-T would

then also home towards other tissues non-specifically instead of

exclusively to the tumor tissues.

In this study, we conditionally expressed CCL19 in CAR-T

cells targeting mesothelin using the nuclear factor of the

activated T cell (NFAT) signaling pathway. After the CAR-T

cells reach the tumor tissue and are activated by the antigen, the

NFAT signaling pathway is then activated and triggers CCL19

expression. Subsequently, CCL19 expression is restricted inside

the tumor tissue, which then promotes memory CAR-T

infiltration into the tumor tissue.
Materials and methods

Cell culture

Briefly, 293T cells (cat. no. CRL-3216) were obtained from

American Type Culture Collection (ATCC) and cultured with

Dulbecco’s Modified Eagle’s Medium (DMEM; cat. no. 11995-

065; Gibco; Thermo Fisher Scientific, Inc.) supplemented with

10% fetal bovine serum (FBS; cat. no. 10099-141; Gibco; Thermo

Fisher Scientific, Inc.). BXPC-3 (CRL-1687, ATCC) and AsPC-1

(CRL-1682, ATCC) cells were obtained from ATCC and

cultured in RPMI-1640 medium (cat. no. 11875093; Gibco;

Thermo Fisher Scientific, Inc.) supplemented with 10% FBS.

Human T cells were obtained from Allcells (cat. no. PB009-

CD3-F). Both of the cells were cultured in 5% CO2 at 37°C.
Lentivirus preparation

The CAR and its promotor were designed as shown in

Figure 1A. The genes and their promoters were fully

synthesized and inserted into the lentiviral plasmid vector

pLVX-IRES-GFP. For lentivirus particle packaging, this core

lentiviral plasmid and two helper plasmids, pMD2.G and

psPAX-2 were co-transfected into 293T cells using

Lipofectamine 3000 (cat. no. L3000008;ThermoFisher
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Scientific, Inc.) transfection reagent. After 48 h, the supernatant

was harvested and the lentivirus was concentrated according to

the protocols of Lenti-X Concentrator (cat. no. 631232; Takara

Bio, Inc.).
CAR-T cell preparation

Human T-cells were activated by the Dynabeads™ Human

T-Activator CD3/CD28 (cat. no. 11161D; Thermo Fisher

Scientific, Inc.) and cultured for 24 h. Subsequently, the

lentivirus was added with a multiplicity of infection of 2. The

cells were cultured with X-VIVO-15 (Lonza Group, Ltd.) with

100 IU/ml interleukin (IL)-2 (cat. no. 200-02; PeproTech China).

The medium was changed every 2 days and the cells were

cultured for 10 days after activation.
ELISA

To stimulate mesothelin CAR-T (mesoCAR) cells into

expressing CCL19 in mesoCAR-N19 cells, we activated

mesoCAR-N19 CAR-T cells using PHA (sigma, 11249738001)

or tumor cells. The PHA-L concentration was kept at a 500-fold

dilution, whereas the ratio of CAR-T cells to tumor cells in the

co-culture was 1:1. The co-culture stimulation time with tumor

cells or PHA-L was 6 h at 37°C. The cell supernatant was then

collected afterwards and assayed using the Human CCL19/MIP-

3bDoust ELISA (cat. no. DY361; R&D systems, Inc.) according

to the manufacturer’s protocols. For the mouse plasma samples,
Frontiers in Immunology 03
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blood samples were collected through the eye socket and

centrifuged at 500 ×g for 10 min at room temperature, after

which the supernatant was collected and assayed using the

Human CCL19/MIP-3bDuoSet ELISA according to the

manufacturers’ protocols.
Flow cytometry

In total, 1×106 cells were placed in a tube and centrifuged at

500 ×g for 5 min at room temperature, before the supernatant

was discarded. The cells were then resuspended with phosphate-

buffered saline (PBS) containing 2% bovine serum albumin, after

which 1 mg antibody was added to the tube, followed by

incubation for 30 min at 4˚C. To this solution, 1 ml PBS

solution was added before the mixture was centrifuged at 500

×g for 5 min at room temperature. The supernatant was then

discarded and the cells were resuspended with 200 ml PBS before
flow cytometry (CantoII, BD). The antibodies used were as

follows: CCR7 (cat. no. 557734; BD Biosciences), CCL19 (cat.

no. 566523; BD Biosciences), mesothelin (cat. no. 530203;

Biolegend, Inc.), streptavidin (cat. no. 554067; BD Biosciences)

and protein L (cat. no. RPL-P81Q7).
Cytotoxicity

CAR-T cells and target or non-target cells were first mixed in

a graded ratio, whilst equivalent densities of either CAR-T cells

alone or tumor cells alone were used as corresponding controls.
B C D

A

FIGURE 1

Characterization of chimeric antigen receptor T (CAR-T) cells: (A) Schematic diagram of the CAR structure; (B) Detection of CAR protein
transfection efficiency by flow cytometry and (C) statistics performed on five donor-derived cells; (D) Detection of C-C motif chemokine
receptor 7 positivity by flow cytometry. Error bars represent the mean ± standard deviation (n = 5). ****P<0.0001. ns, no significant.
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After co-culturing for 4 h at 37°C, the 96-well plates were

centrifuged at 500 ×g for 5 min at room temperature before 50

ml of this supernatant solution was subjected to lactate

dehydrogenase quantification using the CytoTox 96® Non-

Radioactive Cytotoxicity Assay (cat. no. G1780; Promega

Corporation). After reading the optical density value at 490

nm using a microplate reader, the cytotoxicity was calculated

according to the following equation: Cytotoxicity (%) =

(Experimental group - T-cell only - tumor only-3 × medium

control)/tumormax-tumorauto.
Transwell assays

We used Transwell plates (cat. no. 3414; Corning, Inc.) for

the present study. Carboxyfluoresceinsuccinimidyl ester (CFSE)-

labeled or unlabeled CAR-T cells were added to the upper

chamber (1×105 cells/well) in RPMI 1640 medium. By

contrast, the lower chamber contained pre-coated immobilized

OKT3 (5 mg/ml) or AsPC-1 cells (1×105 cells) in RPMI 1640

medium supplement 2% FBS. The concentration of CCL19 was

10 ng/ml.
Cytokine assay

For the detection of cytokines released after CAR-T cell co-

culturing with AsPC-1 cells, we mixed CAR-T cells with BxPC-3

or AsPC-1 cells for 18 h in RPMI 1640 medium supplement 2%

FBS. After this, the supernatant was collected before six types of

cytokines were tested using the Human Th1/Th2 Cytometric

Bead Array (CBA) Kit (cat. no. 551809; BD Biosciences).

Cytokine detection were performed by flow cytometry (BD

FACSCanto™ II; BD Biosciences) and analyzed by the

Flowjo software.
CFSE assay

The cells were labeled with the CellTrace™ CFSE Cell

Proliferation Kit (cat. no. 65-0850-84; ThermoFisher Scientific,

Inc.) according to the manufacturer’s protocols. After labeling,

the CAR-T cells were co-cultured with Aspc-1 tumor cells at a

1:1 ratio for 2 days at 37°C, followed by staining of the cells with

an anti-human CD3 antibody (Biolegend, 300311) and analyses

by Flow cytometry.
Cas9/CRISPR gene editing

The T cells were activated and transduced with lentivirus as

previously described. In total, 2×106 CAR-T cells were electroporated,

50pM CAS9 protein (Novoprotein, E365) and 300 pM single guide
Frontiers in Immunology 04
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(sg) RNAwere incubated together for 10min at 25˚C to obtain Cas9/

sgRNA ribonucleoprotein. CAR-T cells were resuspended in 20mlP3
Buffer(Lonza Group, Ltd.), combined with RNP and electroporated

using a 4D-Nucleofector™(Lonza Group, Ltd.) with pulse code

E0115. Next, CAR-T cells were cultured with T cell medium as

previously described for 4-5 days. The sgRNA targeting sequence in

the CCR7 gene was 5′-CGCAACTTTGAGCGCAACA-3’
(CRISPRD HSPD0000007879).
Mouse experiments

Nod Scidgmice aged 6 weeks were purchased from Shanghai

Model Organisms Center, Inc, All mice were female. To obtain

the pancreatic tumor xenograft model, 2×106AsPC-1 cells in

100 ml PBS were injected into the right flank of mice with

Matrigel (Corning, Inc.). When the mean tumor volumes

reached 300 mm3, we injected 2×106 CAR-T or 5×105 CAR-T

cells suspended in 200 ml PBS, into the mice by tail vein injection

before changes in tumor volume were observed every 7 days. The

tumor volumes were monitored by caliper measurement and the

volumes were calculated as follows: Volume = (length ×

width2)/2.

For in vivo imaging experiments, 2×106 AsPC-1-lucferase

cells suspended in100 ml PBS were injected into the right flank of
mice with Matrigel (Corning, Inc.).After CAR-T treatment, the

images of mice were captured using IVIS®Lumina SeriesIII

(PerkinElmer, Inc.) after luciferin (In vivo grade) treatment.

The mice were sacrificed with an overdose of 10% pentobarbital

sodium (100 mg/kg; intraperitoneal injection) and death was

confirmed by the disappearance of heartbeat. The mouse

experiments were approved by the Animal Research and Care

Committee of Fujian Provincial Hospital, Shengli Clinical

Medical College of Fujian Medical University (Fuzhou, China)

and performed in accordance with the NIH guidelines for

Laboratory Animals and established Institutional Animal Use

and Care protocols at the Fujian Provincial Hospital, Shengli

Clinical Medical College of Fujian Medical University.
IHC staining and quantitative PCR

I mmu n o h i s t o c h em i s t r y w a s p e r f o rm e d o n

paraformaldehyde-fixed and paraffin-embedded samples. The

tumors were excised using a microtome and stained according to

standard procedures. The sections were stained with an anti-

human CD3 antibody (cat. no. ab16669; Abcam) and then with

HRP-con juga ted Goat Ant i -Rabb i t IgG (ca t . no .

ab6721; Abcam).

For qPCR, the genomic DNA was extracted by using the

TIANamp Genomic DNA Kit (cat. no. DP304; Tiangen Biotech

Co., Ltd.). qPCR assay was performed according to standard

procedures. The primer and probe sequences were as follows:
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Forward, 5’- CTGGCTGCAGTACGTGATTC-3’ and reverse,

5’-GGCCTCGAACTCTCCCACC-3’ and probe, 5’ fluorescein

amidites-GATCCCGAGCTTCGGGTTGGAAGT-TAMRA 3’.
Statistical analysis

The statistical analysis was performed with using the

GraphPad Prism software 9.2 (GraphPad Software, Inc.). One-

way ANOVA and two-way ANOVA with Bonferroni post hoc

test or t-tests unpaired were performed for different conditions.

Statistical significance was represented by the following P-values:

****P<0.0001,***P<0.001, **P<0.01 and *P<0.05 or no

statistical significance (ns).
Results

CAR-T preparation and phenotype

The lentiviral structures are shown in Figure 1A. In brief, the

targeting mesothelin CAR (mesoCAR) construct was generated

using a tandem construct encoding SS1 ScFv domain that was

fused using the CD8 hinge and the 4-1BB and CD3z intracellular
signaling regions. In addition, the co-expression system of

CCL19 and mesoCAR was created by fusing the mesoCAR

with human CCL19 cDNA using a 2A peptide to produce the

mesoCAR-CCL19 construct. The conditional NFAT signaling-
Frontiers in Immunology 05
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inducible expression of CCL19 was controlled by an NFAT-

binding motif linked to a minimal IL-2 promoter (mesoCAR-

N19). The expression of CAR in these CAR-T cells is shown in

Figures 1B, C. When compared with that in mesoCAR, the

transfection efficiency of CAR in mesoCAR-CCL19 and

mesoCAR-N19 cells was significantly lower. This difference

may have been caused by the larger gene insertions that took

place in themesoCAR-CCL19 and mesoCAR-N19 constructs.

However, there was no memory phenotypic difference among

the three CAR-T cell subtypes (Figure 1D).
CCL19 expression

Next, we detected CCL19 levels in the supernatant. As

shown in Figure 2A, CCL19 secretion could not be detected in

the untransfected (NT-T) or mesoCAR cells. However, unlike

mesoCAR-CCL19 cells, which showed markedly increased

CCL19 secretion, CCL19 could only be weakly detected in the

supernatant of mesoCAR-N19 cells. This difference could be

attributed to the hypothesis that the NFAT promoter is inactive.

Therefore, we measured the levels of CCL19 secreted by the

CAR-T cells with and without PHA-L treatment for 6 h. As

shown in Figure 2B, CCL19 secretion was significantly higher in

the mesoCAR-N19 group stimulated with PHA compared with

those in mesoCAR-N19 not stimulated with PHA. By contrast,

CCL19 secretion in the mesoCAR-CCL19 cells was not

significantly different between the PHA-treated and untreated
B C

D E F

A

FIGURE 2

Identification of C-C motif chemokine ligand 19 (CCL19) expression. (A) Resting CCL19 secretion level measured by ELISA; (B) Detection of
CCL19 secretion in chimeric antigen receptor T (CAR-T) cells before and after activation with PHA-L by ELISA; (C) Detection of mesothelin
expression in the cancer cell lines; (D) Detection of CCL19 expression in CAR-T cells after co-culturing with AsPC-1 cells by ELISA; (E)
Expression of CCL19 at different time points after co-culturing with AsPC-1 cells as detected by flow cytometry; (F) Correlation analysis of
mesothelin expression and CCL19 secretion. Error bars represent the mean ± standard deviation (n = 6). ***P<0.001; ns, no significance.
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groups. Subsequently, we investigated whether CCL19

expression in the mesoCAR-N19 cells can be induced by

mesothelin-positive or negative tumor cells. Mesothelin

expression levels were measured using flow cytometry

(Figure 2C). Mesothelin expression was detected in AsPC-1

cells at high levels but not in BxPC-3. After co-culturing with

AsPC-1 or BxPC-3 for 6 h, we collected the culture supernatant

before measuring the CCL19 content using ELISA (Figure 2D).

In the mesoCAR-N19 cells, CCL19 secretion could be induced

by AsPC-1 but not by BxPC-3 cells. To investigate the CAR-T

CCL19secretion kinetics, we next co-cultured the CAR-T cells

with mesothelin-positive AsPC-1cells and sampled them for

CCL19 secretion at multiple time points using flow cytometric

analysis. As shown in Figure 2E, CCL19 secretion started at 2 h

after co-culturing, before the highest levels of secretion were

maintained for 24 h and gradually declining after 24 h. The

decrease may have been due to the complete clearance of the

tumor cells. By contrast, mesoCAR-CCL19 cells consistently

released high levels of CCL19, which only decreased slightly after

24 h. This was most likely due to the deteriorating culture

conditions. To investigate the correlation between mesothelin

expression and CCL19 secretion, we constructed eight cell lines

with differential mesothelin expression levels based on the

BxPC-3 cell line. CAR-T cells were then co-cultured with these

tumor cells for 16 h, before the concentration of CCL19 secreted

into the supernatant was detected. In the mesoCAR-N19 group,

CCL19 secretion showed a positive correlation with the levels of

mesothelin expression, but not mesoCAR-CCL19 group
Frontiers in Immunology 06
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(Figure 2F). Altogether, these results suggest that NFAT

signaling-regulated CCL19 can be induced by tumor cell-

surface mesothelin in vitro.
Chemotaxis of CCL19

CCR7 is a known receptor for CCL19 that is expressed on

the surfaces of memory T cells and can mediate T cell

chemotaxis toward areas of high CCL19 concentrations.

Therefore, to assess ifCCL19 can recruit memory CAR-T cells,

we performed a Transwell assay. The experimental schematic is

shown in Figure 3A. In a 6.5-µm Transwell plate, serum-free

RPMI 1640 culture medium containing a gradient concentration

of CCL19 was added to the lower chamber, whereas CAR-T cells

suspended in serum-free RPMI1640 media were added into the

upper chamber. After 4 h, cells in the lower chamber were

counted and collected for flow cytometry analysis. The results

are presented in Figures 3B, C. There was no significant

difference in the number of migratory cells in the lower

chamber, since the proportion of the memory T cell

population was similar in the groups. The CCR7 expression-

positivity rate of the recruited cells in the lower chamber was

significantly higher compared with that of the pre-experimental

period in all the groups. Next, we assessed whether CCL19

secreted by the CAR-T cells serves a recruitment function. Since

the mesoCAR-N19 cells can only release CCL19 in the activated

state, we constructed two activation models, namely the coated
B C

D E F

G H I

A

FIGURE 3

Migratory ability of the chimeric antigen receptor T (CAR-T) cells. (A) Schematic diagram of the experimental principle; (B) CAR-T cell migration
and quantification; (C) C-C motif chemokine receptor 7 expression on cells undergoing migration detected by flow cytometry; (D) Schematic
diagram of the experimental principle; (E) CAR-T cell migration and quantification; (F) Detection of C-C motif chemokine ligand 19 (CCL19)
concentration in the upper and lower chambers by ELISA; (G) Schematic diagram of the experimental principle; (H) CAR-T cell migration and
quantification; (I) Detection of CCL19 concentration in the upper and lower chambers by ELISA. Migration efficiency was calculated as cells
undergoing migration/total number of cells in the upper chamber. Error bars represent the mean ± standard deviation (n = 6). **P<0.01;
***P<0.001; ns, no significance.
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OKT3 antibody model and the tumor cell stimulation model.

The experimental models are shown in Figures 3D, G. A total of

8 h before the start of the experiment, we replaced the CAR-T

cell culture medium with a RPMI 1640 medium without 2% FBS

to avoid residual CCL19. The CAR-T cells to be added to the

upper chambers were then stained with CFSE before the lower

chamber was treated with coated OKT3 antibodies or

mesothelin-positive tumor cells. An equivalent number of

unlabeled CAR-T cells were added directly to the lower

chamber whereas an equivalent number of CFSE-labeled CAR-

T cells were added to the upper chamber. In total, 6 h later, cells

from the lower chamber were collected for flow cytometry

analysis and the number of CFSE-positive cells was counted.

The results are presented in Figures 3E, H. MesoCAR-N19 cells

demonstrated a potent chemoattractant ability compared with

control group and mesoCAR-CCL19 group in both models

tested, namely with OKT3 antibodies and with mesothelin-

positive tumor cells, whilst cells in the other groups did not

show significant recruitment ability relative to the inactivated

state. In particular, mesoCAR-CCL19 cells, which chronically

express CCL19, did not increase recruitment capacity. This may

be due to the absence of a CCL19 gradient between the upper

and lower chambers. Therefore, we collected the supernatants

from the upper and lower chambers for ELISA, the results of

which are depicted in Figures 3F, I. Only mesoCAR-N19 cells

demonstrated a CCL19 concentration difference. In the

mesoCAR-CCL19 group, despite the higher CCL19
Frontiers in Immunology 07
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concentrations, there was no significant difference in the

concentrations between the upper and lower chambers. These

findings suggest that mesoCAR-N19 cells can effectively release

CCL19 in sites of activation to recruit other T cells.
In vivo tumor suppression

To evaluate the potential tumor-suppressive efficiency of

mesoCAR-N19 cells, we used the AsPC-1 cell line xenograft

mouse model (Figure 4A). Changes in tumor volume were

shown in Figure 4B. We found that the tumor suppression

efficiency of mesoCAR-N19 cells was significantly higher

compared with that of mesoCAR and mesoCAR-CCL19 cells in

the initial stage (Figure 4B). The plasma CCL19 profile in the mice

is shown in Figure 4C. Significantly higher levels of CCL19

secretion could be detected in both the mesoCAR-CCL19 and

mesoCAR-N19 groups but not in the control or mesoCAR

groups. CCL19 secretion in the mesoCAR-CCL19 group was

significantly higher compared with that in the mesoCAR-N19

group, which maybe because mesoCAR-N19 tended to be only

activated in the tumor tissue site. After tumor recession, traceable

quantities of CCL19 expression could be detected in serum in the

mesoCAR-CCL19 group but not in the mesoCAR-N19 group,

although the presence of CD3-positive T cells could be detected in

peripheral blood by flow cytometry in both of these CAR-T

groups (Figure 4D). In addition, in peripheral blood, the CD3-
B C D

E F G

A

FIGURE 4

Analysis of chimeric antigen receptor T (CAR-T) cell function in vivo. (A) Schematic diagram of the experimental design; (B)Tumor volume
measurements; (C) Changes in C-C motif chemokine ligand 19 levels in the mouse plasma as measured using ELISA; (D) Detection of CD3-
positve cells using flow cytometry on day 40. (E) Images of tumors after CAR-T treatment; (F) Bioluminescence images and luminescence
curve; (G) Mouse survival presented as Kaplan-Meier curves. In (B, C), the error bars represent the mean ± SD whereas in (F) the error bars
represent the means± standard error of the mean (n =6). **p<0.01
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positivity rates in the mesoCAR-CCL19 and mesoCAR-N19

groups were significantly higher compared with that in the

mesoCAR group. This may be caused by the mesoCAR-CCL19

and mesoCAR-N19 cells exhibiting superior CAR-T cell

recruitment capabilities compared with those of mesoCAR cells

due to the expression of CCL19. As a result, after these CAR-T

cells were activated and proliferate, the number of CAR-T cells in

the bloodstream would be higher compared with that of

mesoCAR. To further compare the tumor suppressive effects of

mesoCAR-N19 and mesoCAR-CCL19 CAR-T cells in vivo, we

reduced the number of CAR-T cells injected to 5×105. MesoCAR-

N19 cells showed significantly more potentoncolytic effects

compared with those by mesoCAR-CCL19 cells (Figures 4E, F).

In addition, the mesoCAR-N19 cells significantly prolonged the

survival of mice compared with that in mice injected with NT-T

andmesoCAR-CCL19 cells (Figure 4G). These results suggest that

mesoCAR-N19 cells confer superior tumor suppressive effects

compared with conventional CARs.
Assessment of the impact of CCL19 on
CAR-T function

In vivo experiments have shown that CAR-T expressing

CCL19 can consistently and conditionally exert beneficial

tumor-suppressive effects. Therefore, we next attempted to
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investigate if CCL19 is able to regulate the physiology of CAR-

T itself. We assessed the killing activity of mesoCAR cells in the

presence or absence of CCL19 at a final concentration of 50 ng/

ml against mesothelin-positive cell lines. The presence of CCL19

in mesoCAR cells did not affect their mesothelin-positive tumor

cell Aspc-1 killing activity over 4 h (Figure 5A). Subsequently, we

tested the killing activity of the three CAR-TS against AsPC-1

cells over a 4-h period. There was no significant difference

among the three CAR-T groups without CCL19 supplement

(Figure 5B). In addition, cytokine release was measured. The

type and quantity of cytokine released from each group of CAR-

T cells are shown in Figures 5C–H. There was no significant

difference in the effects of CCL19 on three group CAR-T cells. In

addition, CCL19 did not significantly enhance the proliferative

ability of the CAR-T cells that did not encounter the tumor cells,

where there was no significant difference in the proliferation rate

among the groups (Figure 6A). We next labeled CAR-T cells

with CFSE before co-culturing them with mesothelin-positive

tumor cells for 2 days to estimate the rate of CAR-T cell division

(Figure 6B). The results showed that neither the addition of

CCL19 nor the overexpression of CCL19 could increase the rate

of T cell division (Figures 6C, D). These results suggest that

CCL19 itself cannot increase the killing activity of CAR-T on the

tumor cells. Therefore, the potent tumor-suppressive effects of

CAR-T cells expressing CCL19 are unlikely to be directly derived

from CCL19.
B
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FIGURE 5

Chimeric antigen receptor T (CAR-T) cell activity assays in vitro. (A) Killing activity assay of the mesothelin CAR-T cells with different
concentrations of C-C motif chemokine ligand 19 on AsPC-1 cells by LDH assay; (B) Killing activity of CAR-T cells on theAsPC-1 cell line
without CCL19; Secretion of (C) interleukin (IL)-2, (D) IL-4, (E) IL-6, (F) IL-10, (G) tumor necrosis factor-a and (H) interferon-gafter co-culturing
the CAR-T cells with tumor cells, respectively (n = 3).
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Effect of CCL19 on the distribution of T
cells in vivo

The AsPC-1 tumor xenograft mouse model was used to

assess the distribution of T cells. When the tumor volume

reached ~300 mm3, we injected the CAR-T cells through the

tail vein. Days later, we extracted the mouse liver, lung and

tumor tissues to determine their mass before dividing them into

two groups. One group was used for the immunohistochemical

study of CD3 cell infiltration, whereas the other was used for

analyzing the copy number of the CAR gene after genome

extraction (Figure 6A). Both groups of CAR-T cells expressing

CCL19 showed rapid infiltration in the tumor tissues.

Specifically, mesoCAR-N19 cells exhibited significantly higher

degrees of tumor infiltration compared with those in the other

groups. By contrast, in the lung and liver tissues, mesoCAR

exhibited higher levels of residency. MesoCAR-N19 also

demonstrated a greater ability to specifically infiltrate the

tumor tissues compared with that by mesoCAR-CCL19 cells

(Figures 7A–D).

To verify that the stronger tumor suppressive effects of

mesoCAR-N19 cells was mediated through enhanced tumor

homing, the CCR7 expression was knocked down in the CAR-T

cells by Cas9/CRISPR before the CAR+CCR7- cells were sorted

(CCL19-KO andN19-KO). CCR7 expression was first measured by

flow cytometry (Figure 8A). After the CCR7 expression was

knocked out, it could not be detected in cell surface by flow

cytometry. The killing activity by CAR-T cells (mesoCAR-
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CCL19, mesoCAR-N19, CCL19-KO and N19-KO) of AsPC-1

cells was assessed. As Figure 8B shows, the capacity of cell killing

was not significantly different among the CAR-T cell groups. After

CCR7expression was knocked out, the migratory capacity of the

CAR-T cells (mesoCAR-CCL19, mesoCAR-N19, CCL19-KO and

N19-KO) were evaluated (Figure 3E). As Figure 8C shows,

activated N19-KO cells by OKT3 in the lower chamber could not

improve the migration rate of CAR-T cells in the upper chamber.

Furthermore, in vivo tumor experiments were performed.

Briefly, AsPC-1 cells were injected subcutaneously. After the

mean tumor volume reached >300 mm3, 5×105 CAR-T cells

were injected intravenously and tumor volume was measured

once a week. As Figure 8D shows, the tumor suppressive activity

of N19-KO cells was significantly weaker compared with that of

mesoCAR-N19 cells but had no significant difference with that

of CCL19-KO cells. These observations suggest that mesoCAR-

N19 cells can attract additional CAR-T cells to the tumor to

facilitate suppression by enhancing infiltration into the

tumor tissues.
Discussion

In this study, we designed a CAR-T targeting mesothelinco-

expressing CCL19 downstream of an inducible expression

system regulated by NFAT signaling. Furthermore, we

compared the infiltrative capabilities and killing abilities of

these CAR-T cells with those of the mesoCAR-T cells without
B

C D

A

FIGURE 6

Chimeric antigen receptor T (CAR-T) cell proliferation in vitro. (A) The proliferation curve of CAR-T cells in in vitro culture by cell count;
(B) Schematic diagram of the principle of carboxyfluoresceinsuccinimidyl amino ester(CFSE) staining; (C) Flow cytometry detection of CFSE
fluorescence; (D) Cell division generation statistics summarized from CFSE staining results. n = 6.
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CCL19 expression in addition to those of chronically CCL19-

expressing CAR-T cells as controls. Both types of CAR-Ts

overexpressing CCL19 (mesoCAR-CCL9 and mesoCAR-N19)

exhibited higher tumor infiltration abilities when compared with
Frontiers in Immunology 10
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those by conventional CAR-T (mesoCAR-T). However,

mesoCAR-N19 cells had higher tumor-specific infiltration

ability and superior killing effects on the tumor compared with

those by mesoCAR-CCL9 cells.
B

C D

A

FIGURE 7

Chimeric antigen receptor (CAR) T (CAR-T) cell infiltration and distribution. (A) Schematic diagram of experimental design; (B)
Immunohistochemical staining of hCD3 and (C) quantification; (D) Detection of CAR gene copy numbers by quantitative PCR. Error bars
represent the mean ± standard deviation (n = 6).*P<0.05; **P<0.01; ***P<0.001; ns, no significance.
B C

D E

A

FIGURE 8

Functional assessment of C-C motif chemokine receptor 7 (CCR7) knockout in chimeric antigen receptor T (CAR-T) cells. (A) CCR7 expressing
detection on surface of wild type or CCR7 knockout CAR-T cells; (B) Tumor cell lysis assessment in vitro at 5 ET ratio(n = 6);
(C) Migratory capacity estimation using Transwell assays (n = 6); (D) Tumor suppression curve; (E) Mouse survival presented as Kaplan-Meier
curves (n =6). Error bars represent the mean ± standard deviation (n = 6). **P<0.01;***P<0.001; ns, no significance.
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For the treatment of solid tumors with CAR-T cell therapy,

the level of CAR-T cell infiltration is critical for determining the

therapeutic outcome (10, 17). However, CAR-T infiltration into

solid tumors has been poor owing to the lack of effective

chemokines for inducing CAR-T tropism in the tumor tissues

(31). Inducing the expression of chemokines in CAR-T cells to

promote additional CAR-T cell infiltration has been proposed to

be a feasible approach. It has been previously shown that

overexpressing CCL19 in CAR-T cells can promote the

infiltration of CAR-T cells and other immune cell types such

as dendritic cell to enhance therapeutic effects (28, 32). However,

at the initial stages following CAR-T cell transfusion, the

destination of CAR-T cells is not tumor-specific. In particular,

after intravenous administration, CAR-T cells were found to

preferentially enter the pulmonary circulation before homing to

various secondary lymph nodes throughout the body (33).

Therefore, if the CAR-T cells were programmed to chronically

overexpress CCL19, it would not be able to efficiently recruit

other CAR-T cells or immune cells to specifically infiltrate the

tumor tissue. Therefore, use of an inducible signaling pathway,

namely the NFAT signaling pathway which is necessary

signaling for T cell activated, to regulate CCL19 expression

was attempted for the present study. The rationale is that only

CAR-T cells that have successfully infiltrated into the tumor

tissues can be activated by the tumor cells and release CCL19 to

recruit other immune cells for infiltration. A similar

experimental design has been previously applied to CAR-T

cells expressing IL-12 (34). Since mesothelin is also weakly

expressed in the normal tissues, such as the peritoneum and

pericardium, off-target toxicity has been observed in previous

clinical studies testing mesothelin CAR-T cells (35). If CAR-T or

other immune cells can be specifically recruited to the tumor

tissues, then this off-target toxicity can theoretically be alleviated.

CCL19 is mainly expressed in cells in the lymph node and is

used to recruit memory T cells and mature antigen-presenting

cells. In terms of CAR-T cells, it has been proposed that cells

with a memory phenotype tend to have a high proliferative

capacities and resistance to depletion in vivo. Therefore, there is

frequently an association between the size of the memory cell

population and beneficial therapeutic effects in hematoma

treatment (36). In the case of solid tumors, since memory

CAR-T cells express CCR7, they may tend to home to lymph

nodes but fail to infiltrate into the tumor tissue in vivo.

Therefore, in the present study, conditionally-expressed

CCL19 could facilitate the recruitment of CAR-T cells. In

particular, memory CAR-T cells may infiltrate into sites with

high CCL19 concentration to augment the suppressive effects in

the tumor.

In addition, another factor limiting the use of CAR-T cells in

the clinic is the time required for CAR-T cell preparation. This

process typically takes 17 days, which is dominated by the

expansion of CAR-T cells required to obtain clinically
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sufficient doses (37). For solid tumors, the general dose of

CAR-T cells needs to be higher compared with that for

lymphomas, which is mainly due to insufficient CAR-T

infiltration. In the present study, inducing the expression of

CCL19 effectively directed the chemotactic CAR-T cells to

specifically infiltrate the PC tumor tissue. This infiltration can

potentially lower the CAR-T dose required in the clinical setting.

The reduction in the preparation cost may also improve the

therapeutic effects because of the shortened time period required

for CAR-T cell division and differentiation.

In summary, the NFAT-regulated expression of CCL19 in

mesothelin-targeting CAR-T cells in the present study was able

to effectively lyse the PC tumor cells. Furthermore, these cells

can precisely release CCL19 in the tumor tissues to recruit

additional memory T cells, including memory CAR-T cells, to

infiltrate inside the PC tumor tissues for enhancing the tumor

suppressive effects.
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Dynamics of PD-1 expression
are associated with treatment
efficacy and prognosis in
patients with intermediate/high-
risk myelodysplastic syndromes
under hypomethylating
treatment

Suxia Geng †, Ruohao Xu †, Xin Huang, Minming Li,
Chengxin Deng, Peilong Lai, Yulian Wang, Ping Wu,
Xiaomei Chen, Jianyu Weng* and Xin Du*

Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of
Medical Sciences, Guangzhou, China
Hypomethylating agents (HMAs) are widely used in patients with higher-risk

MDS not eligible for stem cell transplantation. However, the general response

rate by HMAs is lesser than 50% in MDS patients, while the relapse rate is high.

Emerging evidence indicates that demethylating effects committed by HMAs

may facilitate the up-regulation of a range of immune checkpoints or cancer

suppressor genes in patients with MDS, among which the programmed death

protein 1 (PD-1) and its ligands are demonstrated to be prominent and may

contribute to treatment failure and early relapse. Although results from

preliminary studies with a limited number of enrolled patients indicate that

combined administration of PD-1 inhibitor may yield extra therapeutic benefit

in some MDS patients, identifications of this subgroup of patients and optimal

timing for the anti-PD-1 intervention remain significant challenges. Dynamics

of immune checkpoints and associated predictive values during HMA-

treatment cycles remained poorly investigated. In this present study,

expression levels of immune checkpoints PD-1 and its ligands PD-L1 and

PD-L2 were retrospectively analyzed by quantitative PCR (Q-PCR) in a total

of 135 myelodysplastic syndromes (MDS) cohort with higher-risk stratification.

The prognostic value of dynamics of these immune checkpoints during HMA

cycles was validated in two independent prospective cohorts in our center

(NCT01599325 and NCT01751867). Our data revealed that PD-1 expression

was significantly higher than that in younger MDS patients (age ≤ 60) and MDS

with lower IPSS risk stratification (intermediate risk-1). A significantly up-

regulated expression of PD-1 was seen during the first four HMA treatment

cycles in MDS patients, while similar observation was not seen concerning the

expression of PD-L1 or PD-L2. By utilizing binary logistic regression and

receiver operating characteristic (ROC) models, we further identified that
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higher or equal to 75.9 PD-1 expressions after 2 cycles of HMA treatment is an

independent negative prognostic factor in predicting acute myeloid leukemia (AML)

transformation and survival. Collectively, our data provide rationales for monitoring

the expression of PD-1 during HMA treatment cycles, a higher than 75.9 PD-1

expression may identify patients who will potentially benefit from the combined

therapy of HMA and PD-1 inhibitors.
KEYWORDS

Myelodysplastic syndromes (MDS), programmed death protein 1 (PD-1), programmed
death-ligand 1 (PD-L1), programmed death-ligand 2 (PD-L2), hypomethylating agent (HMA)
Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous

group of clonal hematopoietic stem cell diseases characterized

by bone marrow failure, dysplasia of myeloid cell linage, and a

high risk of acute myeloid leukemia (AML) transformation (1).

Hypomethylating agents (HMAs) such as decitabine and

azacitidine are the current standard of care for patients with

higher-risk MDS (1). Despite prolonged survival achieved when

patients respond to HMA, the overall response rate (ORR)

remains low, and the duration of response is often transient

(2). According to the revised prognostic scoring system of MDS

(IPSS-R), median overall survival (OS) ranges from 3.0 years for

the intermediate-risk group to 0.8 years for the very high-risk

group in MDS, with progression to AML accounting for almost

half of deaths (3).

The pathogenesis of MDS remains poorly understood.

Studies have revealed the involvement of both hematopoietic

cell-intrinsic events (such as age-related mutations) and

extrinsic alternations (such as immune deregulation and

proinflammatory microenvironment) (4–6). More recently,

emerging evidence emphasizes an immune evasion mechanism

in the pathogenesis of MDS. Dysfunctional T cells may

contribute to the disease progression of MDS and be

preferentially associated with a higher risk of AML

transformation (7, 8). Negative immune regulatory factors

have been proposed to contribute to a protect ive

microenvironment for malignant cells and are associated with

a higher risk of AML transformation (9–11).

Immune checkpoint proteins, expressed on different cell

subsets with the ability to initiate immune responses either by

their activation or inhibition, have been considered a vital part of

immune evasion in multiple cancers. The programmed death

protein 1 (PD-1) immune checkpoint is considered one of the

central mediators of immune tolerance in multiple tumors (12).

PD-1 binds two ligands, programmed death-ligand 1 (PD-L1)

and PD-L2. PD-L1 is the primary ligand expressed on T and

primary B cells, which induces co-inhibitory signals in activated
02
110
T cells. Furthermore, PD-L1 is expressed in multiple tumor types

that deliver negative signals, inhibiting anti-tumor immunity (4).

PD-L2 expression is mainly restricted to antigen-presenting

cells, such as dendritic cells and macrophages (13). The

combined therapy of HMA with PD-1 inhibitors may be of

potential therapeutic value in treating patients with higher-risk

or relapsed/refractory MDS. Yet another important

consideration in the design of an HMA-based combination is

the timing of administration of checkpoint inhibitors (14).

Evaluation of dynamics of immune checkpoint proteins during

HMA treatment cycles may provide rational intervention time

points for the combined use of PD-1 inhibitors. However,

studies on the dynamics of these checkpoint markers in MDS

patients treated with HMA are still limited (15).

To evaluate the dynamics and prognostic value of immune

checkpoints PD-1, PD-L1, and PD-L2 in HMA treatment cycles,

a total of 135 patients with intermediate/high-risk MDS were

enrolled and retrospectively investigated in this present study.

Our data identified elevated expression of PD-1 post-HMA

treatment may serve as a prognostic marker for inferior

survival and AML transformation. Inhibition of the post-HMA

elevation of PD-1 may be of potential benefit in higher-

risk MDS.
Materials and methods

Patients

One hundred thirty-five newly diagnosed and treatment-

naïve MDS patients, including 93 males and 42 females, were

enrolled in the Guangdong Provincial People’s Hospital from

April 2008 to March 2016. For the evaluation of baseline PD-1,

PD-L1, and PD-2, expression levels of these immune

checkpoints were analyzed in a 102-patient cohort (baseline

cohort) under untreated conditions. An additional age- and risk-

matched 33-patient cohort from 2 prospective trials serve as the

validation cohort to investigate the dynamics and predictive
frontiersin.org
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value of the immune checkpoint factors during HMA cycles

(16). Treatments for these patients are azacitidine 75mg/m2/day

subcutaneously (SC) for 7 days every 28 days (NCT01599325,

n=16) and decitabine 15mg/m2 as a continuous intravenous

infusion within 3 hours, repeated every 8 hours for 3 consecutive

days (NCT01751867, n=17). Written informed consent was

obtained from all patients. The present retrospective study was

approved by the Institutional Ethics Committee of Guangdong

Provincial People’s Hospital. Diagnoses were conducted

according to the French-American-British classification and

re-classified according to the 2016 edition of WHO

classification of myeloid neoplasms and acute leukemia. The

median age of the enrolled patients was 60 (15-84) years. All

patients were classified as the intermediate/high-risk group

according to the international prognostic scoring system

(IPSS) (17). As the revised edition of the international scoring

system (IPSS-R) has re-classified the prognosis of MDS into 5

prognosis-based stratifications (18), we re-calculated the scores

of MDS patients according to each edition of IPSS systems and

compared risk-based stratifications. Results revealed that the

utilization of IPSS-R did not significantly change the

intermediate/high-risk entity of these enrolled MDS patients

(Supplemental Table 1). Thus, the IPSS- stratifications were kept

and utilized in the subsequent risk-based analysis. Karyotypes

were classified according to the new comprehensive cytogenetic

scoring system for primary MDS and oligoblastic acute myeloid

leukemia (19). All baseline characteristics, including sex ratio,

median age, bone marrow (BM) blast percentage, WHO

classification, and IPSS risk stratification, remained similar

between the baseline and the validation cohort (Table 1).
RNA extraction and cDNA synthesis

Whole bone marrow mononuclear cells (MNCs) were

collected from patients at the time points of pre-treatment,

after the 2nd (C2), the 4th HMA cycle (C4), and the 6th HMA

treatment cycle (C6). Total RNA was extracted with TRIzol

(Life Technologies) according to the manufacturer ’s

recommendations. The quality of extracted RNA was analyzed

using a 0.8% agarose gel stained with Goldview. RNA (~1mg)
was synthesized into the first single-strand cDNA with random

hexamer primers using the PrimeScript™ RT Reagent Kit

(TaKaRa) for subsequent quantitative PCR assays.
Quantitative PCR (Q-PCR)

Quantification of PD-1, PD-L1, and PD-L2 transcripts was

performed by real-time PCR (TaqMan) with the ABI 7500

Sequence Detection System (Applied Biosystems, Foster City,

CA) as previously described (20). The internal control gene

ABL1 was used for normalization of the Q-PCR results to
Frontiers in Immunology 03
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compensate for variations in the quality and quantity of RNA

and cDNA (21). PD-1, PD-L1, and PD-L2 Q-PCR primers and

probes were designed by Primer Express software and

synthesized by Life Technologies (Supplemental Table 2). The

amplification efficiency of the primers and probes was

determined. ABL1 plasmids standard (1×106, 1×105, 1×104,

1×103, and 1×102 copies/ml) were made. The amplification

efficiency of the target genes was close to that of the ABL1

reference gene; thus, they shared a set of standards.

Q-PCR reactions for the cDNA samples, DNA standards,

and water as negative control were conducted in a total volume

of 20 mL, including 10 mL 2× FastStart Universal Probe Master

(ROX) (Roche, Mannheim, Germany), 300 nM of each primer,

and 200 nM probe. The thermal cycler parameters were as

follows: 2 minutes at 50°C, 10 minutes at 95°C, and 45 cycles

of 95°C for 15 seconds and 62°C for 1 minute. The expression

levels of the target genes are indicated as “(copy number of the

target gene/copy number of the internal reference*100) %” with

comparisons between different samples. All PCR assays were

performed in duplicate and reported as means.
Flow cytometry

Cell surface staining for flow cytometry was performed using

the following antibodies: CD3-AF700 (clone UCHT1, BD),

CD4-APC-H7 (clone RPA-T4, BD), CD8-APC-H7 (clone SK1,

BD) and PD-1-BV421 (clone EH12.2H7, Biolegend). Isotype-

matched antibodies, labeled with the proper fluorochromes,

were used as negative controls. Cells were analyzed using a BD

Fortessa flow cytometer (BD Biosciences), and data analysis was

performed with Flowjo 10.6 software as previously

described (22).
Targeted gene sequencing

Targeted gene sequencing of a 13-gene panel of hotspot

mutations was performed using whole bone marrow

mononuclear cells (MNCs) at diagnosis. These hot mutations

including TET2, TP53, DNMT3A, and ASXL1 were listed.

(Supplemental Table 3).
Statistical analysis

All data were analyzed using SPSS software (version 19.0;

IBM Corp.) and presented with mean ± SEM. Differences in PD-

1, PD-L1, and PD-L2 expression between two groups were

analyzed using Student’s t-test or Mann-Whitney u-test.

Differences among multiple groups were determined by one-

way or two-way ANOVA followed by Tukey’s post hoc test. For

comparisons between paired samples, paired t-test was applied.
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Spearman correlation analysis was used to analyze correlations.

The Wilcoxon signed-rank test was used to compare data

between two paired groups. Receiver operating characteristic

(ROC) curves were used to evaluate factors’ sensitivity and

specificity in predicting AML transformation events. A binary

logistic regression model was used to investigate the predictive

value of factors in predicting AML transformation events. A p-

value lower than 0.05 was considered statistically significant.
Results

Baseline and subgroup expression of
PD-1, PD-L1, and PD-L2 in MDS

Of 135 enrolled patients in this study, 58 patients (58/135,

43.0%) were diagnosed with refractory anemia with excess blast

1 (MDS-EB1), 37 patients (37/135, 27.4%) with MDS-EB2, and

40 patients (40/135, 29.6%) with MDS with multilineage

dysplasia (MDS-MLD). The median age of enrolled patients

was 60 (15-84) years. All patients were assessed and were

classified into the intermediate/high-risk group according to

the international prognostic scoring system (IPSS) (17). To

test the reliability of the Q-PCR method in investigating

checkpoint expression in BM, paired Q-PCR and flow

cytometry assays for PD-1 were performed using MNC

samples at diagnosis from nine patients with MDS. A median
Frontiers in Immunology 04
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of 11.69% (7.22%-20.25%) MNCs were positive for PD-1

expression by flow cytometry (FCM) assays (Figure 1A), while

the median Q-PCR expression for PD-1 in these samples was

29.72 (5.06-47.88). Pearson’s correlation analysis indicated that

PD-1 expression levels by FCM assays correlated with those

from Q-PCR assays (R = 0.6181, P = 0.007) (Figure 1B). Thus,

these results confirmed the feasibility of the Q-PCR method in

evaluating immune checkpoint expression in MNC samples. For

mutation profiling, targeted gene sequencing of a 13-gene panel

of hotspot mutations was performed using whole bone marrow

mononuclear cells (MNCs) at diagnosis. These hot mutations

including TET2, TP53, DNMT3A, and ASXL1 were listed.

(Supplemental Table 3). Generally, a high frequency of hotspot

mutations was detected in 92.3% (48/58) patients, with the most

frequent mutations seen in SF3B1 (21.2%), SRSF2 (19.2), TET2

(19.2%), and ASXL1 (17.3%) (Figure 1C). By profiling the

expression levels of PD-1, PD-L1, and PD-L2 in MNCs from

MDS and normal individuals, a significantly elevated expression

of PD-1 was seen in MDS samples compared with normal

samples (58.77 ± 3.820 vs. 31.95 ± 3.692, P = 0.007)

(Figure 1D). In contrast, the expression of PD-L1 and PD-L2

in MDS patients was not significantly different from healthy

individuals (Figures 1E, F).

Next, PD-1, PD-L1, and PD-L2 expression levels in MDS

subgroups were investigated. BM samples from both the young

MDS cohort (age ≤ 60 years) and older MDS cohort (age > 60

years) displayed significantly higher PD-1 expression than that
TABLE 1 Baseline characteristics of enrolled patients.

Baseline cohort (n=102) Validation cohort (n=33) P value

Sex, n (%) 0.58

Male
Female

69 (66.7%)
33 (32.3%)

24 (72.7%)
9 (27.3%)

Median age (year) 60 (15-84) 61 (38-73) 0.67

2016 WHO classification, n (%) 0.61

RAEB1
RAEB2
MLD

42 (41.2%)
25 (24.5%)
35 (34.3%)

16 (48.5%)
12 (36.4%)
5 (15.2%)

Hemoglobin (g/L) 72 (49-116) 68 (42-49) 0.34

Leukocyte count (109/L) 2.4 (0.69-11.90) 2.3 (0.88-11.75) 0.82

Platelet count (109/L) 71 (11-391) 68 (14-340) 0.51

Neutrophil count (109/L) 1.07 (0.22-11.31) 0.97 (0.35-10.03) 0.61

Blast% (bone marrow) 5% (1%-18%) 5% (1%-16.5%) 0.36

Cytogenetics, n (%) 0.82

Good
Intermediate
Poor
Very poor
unassessable

59 (57.8%)
28 (27.5%)
6 (6.0%)
1 (1.0%)
8 (8.0%)

19 (57.6%)
8 (24.2%)
2 (6.1%)
1 (3.0%)
3 (9.1%)

IPSS risk group, n (%) 0.42

Int-1
Int-2
High

46 (45.1%)
32 (31.4%)
24 (23.5%)

11 (33.3%)
13 (39.4%)
9 (27.3%)
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in the normal cohort, while those young MDS patients were

associated with a slightly higher PD-1 expression than in older

MDS patients (64.49 ± 5.592 vs. 52.91 ± 5.147, P = 0.13)

(Figure 2A). Expression levels of PD-L1 and PD-L2 remained

similar across age-based subgroups in the MDS cohorts
Frontiers in Immunology 05
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(Figures 2B, C). For expression levels of these immune

checkpoints in IPSS-based MDS subgroups, PD-1 expression

was significantly higher in the intermediate-1 risk MDS than

that in normal samples (59.17 ± 7.484 vs. 31.95 ± 3.692, P =

0.02), and slightly higher in the intermediate-2 (48.38 ± 5.862 vs.
A B

D E F

C

FIGURE 2

Baseline expression of PD-1, PD-L1, and PD-L2 in age-based and risk-based MDS subgroups (A–C) Normalized baseline expression levels of
PD-1, PD-L1, and PD-L2 in healthy individuals, young MDS (age ≤ 60 years), and older MDS (age>60 years). (D–F) Normalized baseline
expression levels of PD-1, PD-L1, and PD-L2 in healthy individuals and patients with intermediate-1, intermediate-2, and high-risk stratification.
Results were presented as mean ± SEM of independent cases. *P < 0.05. ***P < 0.001.
A B

D E F

C

FIGURE 1

Baseline expression of PD-1, PD-L1, PD-L2, and mutational characteristics of MDS patients. (A) FCM detection for the expression of PD-1
protein in each gated cell subset in BM-MNC samples from patients with MDS (n=9). (B) Pearson analysis between the PD-1 gene expression
(qPCR value) and protein levels in patients with MDS (n=9, R = 0.6181, P = 0.007). (C) Mutational profile of a 13-gene panel of hotspot
mutations (Supplemental Table 3) in MDS patients (n=52). (D) Normalized baseline expression of PD-1 in the bone marrow samples from normal
individuals (n=23) and MDS patients (n=102). (E) Normalized baseline expression of PD-L1 in the bone marrow samples from normal individuals
(n=23) and MDS patients (n=102). (F) Normalized baseline expression of PD-L2 in the bone marrow samples from normal individuals (n=18) and
MDS patients (n=102). Results were presented as mean ± SEM of independent cases. *P < 0.05. **P < 0.01. ***P < 0.001.
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31.95 ± 3.692, P = 0.06) and high-risk group (50.67 ± 12.91 vs.

31.95 ± 3.692, P = 0.12) (Figure 2D). Expression levels of PD-L1

and PD-L2 were not significantly up-regulated in MDS patients

with intermediate-1 or intermediate-2 risk groups. Interestingly,

a trend of lower expression of PD-L1 (23.35 ± 10.84 vs. 31.95 ±

3.692, P = 0.11) and PD-L2 (3.523 ± 0.479 vs. 7.847 ± 2.286, P =

0.08) were seen in those BM samples from MDS patients from

the high-risk group.
Dynamics of PD-1, PD-L1, and PD-L2
expression in HMA treatment cycles

To elucidate the dynamics of PD-1, PD-L1, and PD-L2

expression and potential predictive value during HMA

treatment cycles, expression levels of these immune

checkpoints at timepoints of pre-treatment (baseline), after the

2nd cycle (C2), 4th cycle (C4) and 6th cycle (C6) of HMA

treatment were analyzed. Furthermore, treatment response and

survival data were extracted and analyzed in an additional 33-

patient cohort of intermediate/high-risk MDS from two clinical

trials (NCT01599325 and NCT01751867). In the validation

cohort, 51.5% of patients (17/33) were treated with decitabine,
Frontiers in Immunology 06
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while 48.5% (16/33) received azacitidine. HMA dosages and

treatment schedules could be seen in our previous report (16).

The median number of treatment cycles was 12 (3-21), and

57.6% of patients (19/33) acquired at least 1 clinical response to

HMA (CR/mCR/HI) according to the IWG 2006 criteria (23).

Compared with the expression at pre-treatment condition,

PD-1 levels significantly increased after the first 2 cycle (C2) of

HMA treatment (66.38 ± 7.709 vs. 42.74 ± 7.405, P = 0.03), then

gradually decreased after the 4th (47.58 ± 7.408 vs. 61.23 ± 9.304,

P = 0.05) and 6th (47.58 ± 7.408 vs. 42.74 ± 7.405, P = 0.65)

HMA cycles (Figure 3A). Similar trends of up/down-regulated

PD-L1 and PD-L2 were also seen in these MDS patients, while

these differences did not reach statistical significance during

HMA treatment cycles (Figures 3B, C). To investigate whether

PD-1, PD-L1, and PD-L2 dynamics were associated with

treatment efficacies, MDS patients were classified as HMA

responders or HMA non-responders according to the IWG

2006 criteria (23). Expression of these markers at time points

of pre-treatment (baseline), C2, C4, and C6 were analyzed and

compared between the two groups (Figures 3D–F). Generally,

the expression of PD-1, PD-L1, and PD-L2 fluctuated through

treatment cycles. Expression of PD-1 increased in most HMA

non-responders after the 2nd treatment (12/14, 85.7%) and
A B

D E F

G IH

C

FIGURE 3

Dynamics of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles. (A–C) Pre-treatment and post-treatment expression of PD-1, PD-L1,
and PD-L2 in HMA treatment cycles in MDS patients who received at least 2-cycle of HMA treatment. (D–F) Dynamic expression of PD-1, PD-
L1, and PD-L2 in HMA treatment cycles in HMA responders and HMA non-responders. (G–I) Dynamic expression of PD-1, PD-L1, and PD-L2 in
HMA treatment cycles in MDS patients with or without AML transformation event. Results were presented as mean ± SEM of independent cases.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950134
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2022.950134
remained higher than that in those HMA responders (78.58 ±

8.302 vs. 55.28 ± 6.340, P = 0.06). After the 4th cycle of HMA

treatment, PD-1 expression decreased in most HMA responders

(13/19, 68.4%), while the PD-1 expression remained at elevated

levels in half of the HMA non-responders (7/14, 50.0%)

(Figure 3D). However, no difference was observed concerning

the expression of PD-L1 or PD-L2 between HMA responders

and non-responders through HMA cycles (Figures 3E, F).
PD-1 dynamics in HMA treatment cycles
were associated with the risk of
AML transformation

Patients with higher-risk MDS faced a higher risk of AML

transformation (1, 18). In this study, 17 patients progressed to

AML in the validation cohort (17/33, 51.5%), with a median

leukemia-free survival (LFS) of 24.0 months. Subgroup analysis

was performed in patients with AML transformation (AML-t,

n=17) and patients without AML transformation (MDS, n=16).

Expression of these markers at time points of baseline, C2, C4,

and C6 was analyzed. The median expression of PD-1

significantly increased at C2 (76.39 ± 16.419 vs. 46.12 ±

12.315, P = 0.04) and C4 (71.22 ± 24.915 vs. 46.12 ± 12.315,

P = 0.05) than the baseline PD-1 expression in the AML-t

subgroup, then decreased at C6. By utilizing paired t-test analysis

between subgroups, the AML-t group displayed significantly

higher expression levels of PD-1 at C2 (81.92 ± 17.482 vs. 54.21

± 14.315, P = 0.03) and C4 (74.31 ± 21.294 vs. 43.987 ± 11.411, P

= 0.05) than the that in the non-transformed group (Figure 3G).

No correlation was seen between the incidence of AML

transformation and the expression of PD-L1 or PD-L2 in the

HMA treatment cycles (Figures 3H, I). These data indicated a

potential prognostic value of post-HMA dynamics of PD-1

expression in predicting AML transformation events in

higher-risk MDS patients.
Up-regulated PD-1 after the 2nd

treatment cycle predicts long-term
survival after HMA treatment

Next, receiver operating characteristic (ROC) models were

further utilized to validate the sensitivity and specificity of

expression levels of immune checkpoints in predicting AML

transformation events. By enrolling expression levels of these

checkpoints at baseline, C2, and C4, the specificity and

sensitivity of each factor in predicting AML transformation

events were calculated and displayed. Generally, most

checkpoints failed to display values predicting AML

transformation events (Figures 4A, B). However, PD-1

expressions at C2 were associated with a significant value to

predicted AML transformation, which yielded an area under the
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ROC curve (AUC) of 0.747 (0.520-0.895), with a cut-off value of

75.9 and a sensitivity/specificity ratio of 0.72/0.77 (P < 0.05)

(Figure 4B). By using the calculated PD-1 cut-off value of 75.9 at

C2 as a factor and re-classifying MDS patients into high PD-1

expression group (≥75.9, n=17) and low PD-1 expression group

(<75.9, n=16), a binary logistic regression analysis enrolling PD-

1 C2 expression, ORR, gender cytogenetics, and age was

performed. Generally, high PD-1 expression at C2 was

significantly associated with a higher risk of AML

transformation (HR:6.919; 95%CI:1.213-39.47, P=0.03).

Meanwhile, abnormal cytogenetics also predicted the AML

transformation events in the present MDS cohort (HR: 6.863;

95%CI: 0.895-52.607, P=0.06), while the factors of ORR events

(HR: 1.045; 95%CI: 0.169-6.447, P=0.962), female gender (HR:

1.151; 95%CI: 0.047-1.341, P=0.896) and elder age (HR: 1.191;

95%CI: 0.130-4.101, P=0.845) did not reach a statistic

significance in the logistic regression model (Figure 4C).

To further validate the long-term prognostic value of PD-1

after the 2nd HMA treatment cycle, a univariate survival

analysis was performed between the high PD-1 expression

group and the low PD-1 expression group. Four patients

were still alive at the last follow-up, with a median follow-up

of 23.4 months in the whole cohort. Median leukemia-free

survival (LFS) was 27.0 months in the low PD-1 group, whereas

in the high PD-1 group was 18.0 months (HR: 2.25; 95%CI:

1.04-6.45; log-rank test, P=0.05) (Figure 5A). For overall

survival, 2-year OS in the low PD-1 group was 93.8% (15/16),

whereas in the high PD-1 group was 88.2% (15/17). Those MDS

patients in the low PD-1 group were associated with

significantly longer estimated OS than that in the high PD-1

group (38.0 vs. 20.0 months; HR:2.590; 95%CI: 1.13-5.92, P =

0.02) (Figure 5B).
Discussion

The treatment response/resistance mechanisms after HMA

cycles were not fully understood until now. Existing data

indicated that dysregulated gnomic-wide methylation is

closely involved in the development and progression of MDS

(24). Thus, demethylation and reactivation of silenced tumor-

suppressing genes are initially considered pivotal mechanisms

during the treatment cycles of HMA and other HMA-based

treatment schemes (25, 26). With emerging evidence indicating

a wider range of cellular/molecular regulations by HMAs,

induced expression of tumor antigens (27) and enhancement

of effective T cells (28) may represent parallel mechanisms.

However, despite prolonged survival in patients who have

responded to HMA, the overall response rate (ORR) to

HMAs remains low (~50%), and the duration of treatment

response is often transient (2). Loss of response frequently

happens within 2 years after the first administration of HMAs,

with no standard-of-care options for patients after treatment
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failure. Expected survival for these patients remains

dismal (29).

On the other hand, emerging evidence indicates a “side-

effect” of HMAs underlying treatment failure and disease
Frontiers in Immunology 08
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progression. Based on updated concepts, HMAs demethylate a

range of immune checkpoints with negative prognostic values in

multiple cancers (30–32). Enhanced expression of PD-1, PD-L1,

PD-L2, CTLA-4, and other immune checkpoints after HMA
A B

FIGURE 5

Univariate survival analysis of LFS and OS by the post-treatment PD-1 expression. (A) LFS by PD-1 expression at C2 in MDS patients treated with
HMA. (B) OS by PD-1 expression at C2 in MDS patients treated with HMA.
A

B

C

FIGURE 4

Assessment of objective cut-off and prognostic value of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles. (A, B) Receiver operating
characteristic (ROC) curves and statistics of PD-1, PD-L1, and PD-L2 expression at time points predict AML transformation. (C) Binary logistic
regression analysis for factors to predict AML transformation in MDS patients treated with HMA.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950134
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2022.950134
treatment potentially contributes to an immunosuppressive

bone marrow/peripheral environment in MDS patients (15,

33). Moreover, a recent study by Liu, Y.C., et al. revealed that

HMAs strikingly enhance the expression of SALL4 (a well-

described oncogene) by demethylation in its CpG island

within the 5’ untranslated region in a group of MDS. This

demethylating effect on SALL4 was then confirmed to associate

with an inferior clinical outcome (34–36).

In this context, many combined therapies using HMA with

novel drugs were designed for long-term synergistic effects and

prolonged survival in treating MDS (26, 37). These

combinations included HMA plus immune checkpoint

inhibitors (anti-PD-1/PD-L1) (38, 39), HMA plus histone

deacetylase inhibitors (HDACi) (40, 41), and HMA plus

immunosuppressive agent (lenalidomide) (42, 43) and others.

Combining HMA with immune checkpoint inhibitors is

designed primarily to sensitize the antitumoral immune

response of these therapies. However, although some HMA-

based combined therapies have demonstrated a favorable

response rate in patients with higher-risk MDS, survival

benefit was not achieved in these trials. At the same time,

non-neglectable toxicities were frequently noted (38, 39). A

recent head-to-head study by Zeidan, A.M., et al. revealed the

combination of azacitidine plus durvalumab (a PD-L1 inhibitor)

leads to up to 89.5% grade 3-4 hematologic adverse events (AEs)

in higher-risk MDS, while the incidence of grade 3-4 AEs

remains 68.3% in patients treated with single azacitidine (39).

Thus, a more rationally designed medication timing and dosage

of these combinations will be especially important. Evaluation of

baseline and dynamic expression of immune checkpoints during

HMA treatment cycles may provide evidence for patient

selection and rational timing for an anti-PD-1 intervention.

However, the dynamics of immune checkpoints in HMA

treatment cycles remain largely uninvestigated in patients with

MDS (15), especially in those patients with higher

IPSS stratification.

In previous studies, Yang et al. showed that the mRNA

expression of PD-1, PD-L1, and PD-L2 was increased in CD34+

cells and peripheral blood mononuclear cells fromMDS patients

(15). Kondo et al. found that PD-1 expression on CD3+, CD4+,

and CD8+ T cells was significantly increased in MDS patients

(44). Similar to these reports, our data revealed a significantly

elevated baseline expression of PD-1 in the bone marrow of

patients with MDS (Figure 1A). However, expression levels of

PD-L1 and PD-L2 in the MDS cohort remained similar to the

normal individuals (Figures 1E, F). In contrast with the

observation from Yang et al. (15), our result showed that PD-1

expression was slightly higher in high-risk MDS patients of

younger age (Figure 2A), and the expression level of PD-L1 and

PD-L2 remained similar between age-based MDS subgroups

(Figures 2B, C).

Interestingly, although the expression levels of PD-1 in MDS

were generally upregulated, it seemed that there were discrepant
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expression levels of immune checkpoints within risk-based

subgroups in higher-risk MDS. Patients with intermediate-1

risk stratification always displayed with highest median

expression levels of PD-1, PD-L1, and PD-L2. In contrast, the

expression levels decreased when the IPSS risk score increased

and remained lowest in the high-risk MDS (Figures 2D–F). A

recent study has revealed time- and dose-dependent

upregulation of immune checkpoints in CD34+ cells in vitro

(15). Similar to this observation, our data indicated a post-HMA

up-regulation of PD-1, PD-L1, and PD-L2 in MDS patients.

Median expression of PD-1 was significantly up-regulated after 2

cycles of HMA treatment, then gradually decreased during

continuous HMA treatment (Figure 3A). The potential

mechanism of these immune checkpoints’ up-regulation may

be attributed to the demethylation effect by HMA on the

transcripts (15, 33). In contrast, the mechanism of decrease of

these markers after continuous administration of HMA

remains unknown.

Next, clinical correlations between dynamics of immune

checkpoints and clinical outcomes were seen by monitoring

the expression of PD-1, PD-L1, and PD-L2 in each MDS patient.

Unlike the previous studies, which reported a clinical correlation

of baseline expression of PD-1 in MDS patients (15), our data

indicated that only the upregulation of PD-1 after the 2nd cycle

of HMA treatment was associated with inferior ORR in higher-

risk MDS patients. At the same time, similar observations were

not seen concerning the baseline expression of PD-1

(Figure 3D). For long-term survival, MDS patients with

intermediate/high-risk stratification faced a higher risk of

AML transformation and AML-related mortality (3). Our data

indicated that those MDS patients who eventually progressed to

AML displayed a significantly higher PD-1 expression of PD-1

after the 2nd cycle of HMA treatment (Figure 3G). To further

elucidate the predictive value of PD-1, PD-L1, and PD-L2 at each

timepoint in HMA treatment cycles, receiver operating

characteristic (ROC) curves were used to evaluate the potential

sensitivity and specificity of factors in predicting AML

transformation event. Similar to the results above, the baseline

expression of PD-1, PD-L1 and PD-L2 was not associated with a

significant value in predicting AML transformation events. Only

the PD-1 expression after the 2nd HMA treatment was associated

with significant specificity and sensitivity in predicting AML

transformation (Figure 4B). The optimal cut-off of the PD-1

expression after the 2nd HMA treatment cycle was compromised

at 75.9, with a sensitivity/specificity of 0.72/0.77. An additional

binary logistic regression model further validated the prognostic

value of the 75.9 cut-off of PD-1 (Figure 4C). At last, by binarily

grouping MDS patients into the low PD-1 group and high PD-1

group using this calculated cut-off, significant inferior LFS and

OS were confirmed in the high PD-1 group (Figure 5).

In summary, this present study identified discrepant

expression profiles of immune checkpoints in age- and risk-

based MDS subgroups. Our data provide detailed dynamics of
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up-regulation of PD-1 after HMA treatment and further

identified the ≥75.9 PD-1 expression as an independent

negative prognostic factor in higher-risk MDS patients. At last,

evaluation of the bone marrow PD-1 expression after the 2nd

cycle of HMA treatment may identify patients who will benefit

from the combined therapy of HMA and PD-1 inhibitors.
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Revised international prognostic scoring system for myelodysplastic syndromes.
Blood (2012) 120(12):2454–65. doi: 10.1182/blood-2012-03-420489
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PTPRO-related CD8+ T-cell
signatures predict prognosis
and immunotherapy response in
patients with breast cancer
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Ruijun Zhao3†, Yusheng Lin1,4,5, Yichen Luo1,
Shuanglong Chen1, Yanfang Qin6, Yexi Chen7*

and Hao Zhang2,7,8*
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Nanchang, Nanchang, China, 4Department of Hematology, University of Groningen, University
Medical Center Groningen, Groningen, Netherlands, 5Graduate School, Shantou University Medical
College, Shantou, China, 6Department of Pathology, School of Medicine, Jinan University,
Guangzhou, China, 7Department of General Surgery, The Second Affiliated Hospital of Shantou
University Medical College, Shantou, China, 8Institute of Precision Cancer Medicine and Pathology,
School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan
University, Guangzhou, China
Background: Poor immunogenicity and extensive immunosuppressive T-cell

infiltration in the tumor immunemicroenvironment (TIME) have been identified

as potential barriers to immunotherapy success in “immune-cold” breast

cancers. Thus, it is crucial to identify biomarkers that can predict

immunotherapy efficacy. Protein tyrosine phosphatase receptor type O

(PTPRO) regulates multiple kinases and pathways and has been implied to

play a regulatory role in immune cell infiltration in various cancers.

Methods: ESTIMATE and single-sample gene set enrichment analysis (ssGSEA)

were performed to uncover the TIME landscape. The correlation analysis of

PTPRO and immune infiltration was performed to characterize the immune

features of PTPRO. Univariate and multivariate Cox analyses were applied to

determine the prognostic value of various variables and construct the PTPRO-

related CD8+ T-cell signatures (PTSs). The Kaplan–Meier curve and the receiver

operating characteristic (ROC) curve were used to estimate the performance of

PTS in assessing prognosis and immunotherapy response in multiple validation

datasets.

Results:High PTPRO expression was related to high infiltration levels of CD8+ T

cells, as well as macrophages, activated dendritic cells (aDCs), tumor-

infiltrating lymphocytes (TILs), and Th1 cells. Given the critical role of CD8+ T

cells in the TIME, we focused on the impact of PTPRO expression on CD8+ T-

cell infiltration. The prognostic PTS was then constructed using the TCGA

training dataset. Further analysis showed that the PTS exhibited favorable
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prognostic performance in multiple validation datasets. Of note, the PTS could

accurately predict the response to immune checkpoint inhibitors (ICIs).

Conclusion: PTPRO significantly impacts CD8+ T-cell infiltration in breast

cancer, suggesting a potential role of immunomodulation. PTPRO-based PTS

provides a new immune cell paradigm for prognosis, which is valuable for

immunotherapy decisions in cancer patients.
KEYWORDS

breast cancer, PTPRO, prognosis, immune cell, TILs, immunotherapy response indicator,
PTPRO-related CD8+ T-cell marker genes signature
Introduction

Immunotherapy emerged as a new promising therapeutic

approach for breast cancer, especially in triple-negative breast

cancer (TNBC), and has been approved in combination with

chemotherapy, radiation, and targeted therapeutics (1, 2).

However, most types of cancers are recognized as “cold”

tumors characterized by poor immunogenicity and T-cell

dysfunction in the tumor immune microenvironment (TIME),

which have been considered obstacles to immunotherapy

efficacy. TNBC is more responsive to immunotherapy than

other breast cancer subtypes as it has more tumor-infiltrating

lymphocytes (TILs), higher expression of programmed cell death

ligand-1 (PD-L1) on tumor and immune cells, and a higher

number of non-synonymous mutations (3, 4). Although TNBC

has a greater response rate to immune checkpoint inhibitors

(ICIs) than other breast cancer subtypes, monotherapy response

rates remain extremely low, with only 5% of unselected patients

responding and 23% of PD-L1-positive patients responding (5,

6). Currently, three validated biomarkers (mismatch repair

deficiency, PD-L1, and TILs) have been adopted for selecting

patients and predicting clinical benefit from single-agent ICIs (2,

7). However, the coordination between cancer cells and the

immune system in breast cancer is a dynamic, evolving, and

complex biological process, which needs to discover more

comprehensive immune-related biomarkers (2). Therefore,

identifying effective indicators of immunotherapy response is

critical for immunotherapy in breast cancers.

Tumor-infiltrating CD8+ T cells are associated with the

clinical benefit of ICI therapy in many cancers (8). However,

given that CD8+ T cells become dysfunction states (tolerance,

ignorance, anergy, and exhaustion, respectively) during cancer

development, most patients are unable to maintain a long-term

response to immunotherapy (9). Currently, there is not any

effective indicator to predict which patients will respond, even

though much effort has been made. The mechanisms that

determine clinical response to immunotherapy remain largely
02
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unknown. Emerging technologies (such as spatially resolved

transcriptomics, bulk and single-cell transcriptomics, single-

nucleus RNA-seq, and epigenetic profiling) have allowed us to

initially characterize the features of CD8+ T-cell heterogeneity

and the regulatory mechanisms of CD8+ T-cell differentiation

and dysfunction (9, 10). More recently, CD8+ tissue-resident

memory T (TRM) cells were revealed by single-cell RNA

sequencing (scRNA-seq) on breast cancer T cells (11). These

T-cell subsets are characterized by high expression levels of

immune checkpoint molecules and effector proteins and

contribute to patient prognosis and response to anti-PD-1

therapy in TNBC (11, 12). The scRNA-seq has provided

important insights into the features of TRM cells, and hence

can aid in the development of effective immunotherapy targeting

T cells; however, the molecular basis of T-cell dysfunction states

in breast cancer remains elusive (11). It is necessary to refine the

indicators that allow for the identification of CD8+ T-cell

phenotypes and to explore the regulatory mechanisms of

CD8+ T cells, especially in other breast cancer subtypes except

for TNBC (11, 13, 14).

The protein tyrosine phosphatases (PTPs) catalyze the

dephosphorylation of specific target protein tyrosine kinases

(PTKs) as a common means of regulating cellular signal

transduction and play an important regulatory role in immune

cell signaling (15, 16). Protein tyrosine phosphatase receptor

type O (PTPRO), a member of the PTP family, has been

reported that it can function as a tumor suppressor and

prognostic factor in various cancers (16–19). Furthermore,

downregulation of PTPRO by aberrant hypermethylation in

various cancer types, including lung cancer, hepatocellular

carcinoma (HCC), breast cancer, esophageal cancer, and

leukemia, suggests that it may be a therapeutic candidate for

epigenetic therapy (20–24). Additionally, given the regulatory

functions of PTPRO in immune cells, we and other groups have

begun to focus on the roles of PTPRO in tumor immunity (16).

Our recent study indicated that tumor-derived exosomal

PTPRO could ameliorate the immunosuppressive tumor
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microenvironment (ITM) and inhibit breast tumor cell

metastasis by resetting tumor-associated macrophages (TAMs)

(25). We also found that PTPRO could predict patient prognosis

and be significantly associated with the immune infiltrate of

clear cell renal cell carcinoma (ccRCC) (26). Another study

further confirmed that PTPRO is a therapeutic target and

promotes the infiltration of immune cells including CD8+ T

cells, macrophages, dendritic cells, and neutrophils in pancreatic

cancer (27). However, little is known about PTPRO’s role in the

immunotherapy response in breast cancer. In this study, we

provide evidence that PTPRO as a potential immune indicator

and PTPRO-related CD8+ T-cell signatures (PTSs) can be used

to predict prognosis and immunotherapy response in breast

cancer patients.
Materials and methods

Data collection and reprocessing

The RNA-seq data contained 130 patient samples (from the

series GSE65194), and 251 patient samples (from the series

GSE3494) were obtained from the Gene Expression Omnibus

(GEO) database. ScRNA-seq profiling of two primary TNBCs

was obtained from GSE110686. The Cancer Genome Atlas

(TCGA) breast cancer RNA-seq profiling [in the form of

fragments per kilobase million (FPKM)], mutation data, and

corresponding clinicopathological data were obtained from

TCGA database. RNA-seq expression data of 3,273 breast cancer

samples (GSE96058) in the form of log2 (FPKM + 0.1) and

corresponding clinicopathological characteristics were obtained

from the GEO database. RNA-seq profiling of 1,904 breast cancer

samples (METABRIC) and corresponding clinicopathological

characteristics were derived from the cBioPortal. The profiling in

the form of FPKM or log2 (FPKM + 0.1) was converted into

transcripts per kilobase million (TPM) values and was further log2-

transformed [log2 (TPM + 0.1)] (28).
Associations between PTPRO and the
infiltration of immune cells

The “ESTIMATE” R package was utilized to calculate the

immune scores, stromal scores, and ESTIMATE scores,

respectively, which can be used to evaluate the abundance of

immune cells and stromal cells in the breast cancer

microenvironment. The infiltration and function of immune

cells were quantified by single-sample gene set enrichment

analysis (ssGSEA) via the “gsva” R package. Among the

GSE65194 and GSE3494 datasets with complete gene

expression data, samples based on PTPRO expression were

divided into high (upper 50%) and low (lower 50%)

expression groups, respectively.
Frontiers in Immunology 03
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Patients

Breast cancer patients (n = 30) were obtained from the

Cancer Hospital affiliated to Shantou University Medical

College, undergoing surgical treatment at the Department of

Surgery, during the period from 2010 to 2013. All patients

received primary treatment by surgery followed by adjuvant

radiotherapy, chemotherapy, or hormone therapy. The mean

age of the patients was 50 years (range: 20–75 years). The clinical

research protocols of this study were reviewed and approved by

the Ethics Committee of Shantou University Medical College

(IRB serial number: #04-070). Written informed consent was

obtained from the patients in accordance with the principles

expressed in the Declaration of Helsinki.
Immunohistochemical analysis

Immunohistochemistry (IHC) staining was performed as

previously described (18, 19). In brief, 4-µm sections from

representative breast cancer tumor tissue were cut from

formalin-fixed paraffin-embedded specimens and underwent

deparaffinization, rehydration, endogenous peroxidase

blocking, and antigen retrieval. The following primary

antibodies were used: PTPRO (Cat# sc-365654, Santa Cruz,

CA, USA), and CD8 (Cat# ab101500, Abcam, Cambridge,

UK). Furthermore, the primary antibodies were incubated at

4°C overnight. Then, the sections were incubated with

horseradish peroxidase (HRP)-conjugated secondary

antibodies at room temperature for 1 h, followed by color

development with 3,3′-diaminobenzidine (DAB) substrate kit

(DAKO, Glostrup, Denmark). The nuclei were counterstained

with hematoxylin.

The percentage of PTPRO expression in the tumor cells was

scored using the following scales: 0, negative; 1, ≤10%; 2, 11%–

50%; 3, 51%–75%; and 4, >75%. The intensity of staining was

scored using the following scales: 1, weak staining; 2, moderate

staining; and 3, strong staining. The percentage (P) and intensity

(I) of the cytoplasm or membrane expression were multiplied to

generate a numerical score (S = P*I), which was modified from

previous studies (19).
Identification of PTPRO-related CD8+

T-cell marker genes

The “Seurat” and “SingleR” packages were used to analyze

the scRNA-seq data (29). Cells with a number of detectable

genes less than 200 and genes detected less than 3 cells were

moved. We performed principal component analysis (PCA)

with 1,500 variable genes to cluster the single cells followed by

t-distributed stochastic neighbor embedding (t-SNE) with the

first 20 PCA components using the RunPCA and RunTSNE
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functions, respectively. The “SingleR” R package was utilized for

cell-type annotation, which works by comparing the

transcriptome of every single cell with reference datasets.

Absolute log2 fold change > 0.5 and an adjusted P < 0.05 were

used to define the marker genes. After that, expression

correlation assays between PTPRO with CD8+ T-cell marker

genes were conducted using Spearman’s coefficient correlation

among the TCGA dataset.
Construction and validation of a
prognostic signature in breast cancer

The cases from the TCGA breast cancer datasets were

included for the construction of the prognostic model.

Univariate Cox analysis of overall survival (OS) was

complemented to screen PTPRO-related CD8+ T-cell marker

genes with prognostic values. The multivariate Cox proportional

hazards model was established using statistically significant

genes from the univariate Cox analysis. The independent

prognostic factors were evaluated by the multivariate Cox

proportional hazard regression model. The risk scores of the

patients were established as follows: risk score = b1 x1 + b2 x2 +
… + bixi. In this formula, xi was the expression value of each

gene obtained from the prognostic model, while bi was the

corresponding coefficient. The Kaplan–Meier method was used

for survival analysis, and the samples were divided into high and

low groups according to the median value of the risk score. The

prognostic model’s prediction capability was quantified by the

receiver operating characteristic (ROC) curve using the R-

package “timeROC” (30).
Construction of the nomogram

Based on the results of the multivariable Cox regression

analysis, a nomogram integrating clinicopathological parameters

(including age, stage, TNM stage, and risk score) was developed

through the R package “rms.” All of these points are added up

for each individual to generate a total point, which can predict

the 1-, 3-, and 5-year survival probability of breast cancer

patients. The calibration curve was plotted to evaluate the

nomogram’s discrimination. The predictive accuracy of the

nomogram was quantified by the concordance index (C-index).
Genomic and clinical datasets with anti‐
PD‐L1 therapy

A urothelial carcinoma cohort (298 cases with complete

clinical characteristics) that received the anti‐PD‐L1 therapy

from the IMvigor210 cohort was used to analyze and explore

the predictive accuracy of the prognostic signature (31). RNA-
Frontiers in Immunology 04
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seq profiling and the corresponding clinicopathological

characteristics were obtained from the Creative Commons

3.0 License. The count value was transformed into the log2
(TPM + 1) value.
Statistical analysis

Student’s t-tests were used to compare the normal

distributions between two groups, and the Wilcoxon rank-sum

test was performed to compare the non-normal distributions

between two groups. The prognostic factors were evaluated via

the univariate and multivariate Cox regression models, and

further construction of the prognostic model was established

through the “survival” and “survminer” R packages. The

multivariable analysis model was constructed with variables

with a P-value < 0.15 in the univariable analysis (32). Then, in

the multivariate model, 11 candidate genes (P-value < 0.15) were

selected because correlations can play an important role to build

better prognostic models (33). In the TCGA, METABRIC,

GSE96058, and IMvigor210 datasets, patients were grouped

according to high or low risk based on median risk scores

(34). Survival analysis was measured using the Kaplan–Meier

method. Then, the log-rank test was performed to analyze the

significance of disparity. The “timeROC” R package was

performed to evaluate the accuracy of the prognostic model.

The “ClusterProfiler,” “org.Hs.eg.db,” and “enrichplot” R

packages were utilized for the GSEA analysis. The statistical

analysis was performed using R software (version 4.1.0). P-value

<0.05 was considered to be statistically significant.
Results

The role of PTPRO on breast cancer
tumor microenvironment

As shown in Figure 1, the TCGA cohort was used as the

training cohort, with 1,034 patients having a survival time of more

than 30 days included. The METABRIC and GSE96058 cohorts

were viewed as the external validation cohorts, consisting of 1,904

and 3,069 patients with survival data, respectively. To investigate the

influence of PTPRO on the TIME, we explored the correlation

between PTPRO expression and immune cell distribution. Through

ESTIMATE, we found that samples with low PTPRO had

significantly lower immune scores than the high PTPRO samples

(Supplementary Figure S1A, GSE65194; Supplementary Figure S1B,

GSE3494). We further evaluated the correlation between PTPRO

and immune status and found that the enrichment scores for 16

immune cell types and 13 immune-related pathways were lower in

the PTPRO-low group than in the PTPRO-high group, indicating

that patients in the PTPRO-high group may have better immune

status and immune function (Figure 2A, Supplementary Figure
frontiersin.org
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S1C, GSE65194; Figure 2B, Supplementary Figure S1D, GSE3494).

Notably, in two GEO cohorts, five immune cell types, namely,

CD8+ T cells, macrophages, activated dendritic cells (aDCs), TILs,

and Th1, were found to be significantly more abundant in the

PTPRO-high group (Figure 2C). It is well known that CD8+ T cells

are the central subpopulation of cytotoxic T cells, which are

primarily responsible for eliminating tumor cells (35). Given the

importance of CD8+ T-cell infiltration in the TIME, the relationship

between CD8+ T-cell infiltration levels and PTPRO expression was

further investigated. The results showed that PTPRO expression

was significantly positively related to CD8+ T-cell infiltration levels

in the TISIDB database (Figure 2D). Furthermore, we performed

the IHC staining assay to analyze PTPRO and CD8 expression in 30

human breast cancer tissues (Figure 2E). Tumor infiltration of

CD8+ T cells was significantly higher in tumors with higher PTPRO

expression than in tumors with low PTPRO expression (r = 0.914;

P < 0.001) (Supplementary Figure S1E). Collectively, these results

suggest that PTPRO plays an essential role in mediating the

reprogramming of TIME, thereby suppressing tumor progression.
Construction of prognostic PTPRO-
related PTS

Given that TIME’s immune profile, including CD8+ T-cell-

related genes, has been shown to correlate with prognosis (36,

37), and based on PTPRO’s regulatory role in promoting CD8+

T-cell infiltration, we further investigated the association
Frontiers in Immunology 05
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between CD8+ T-cell-related genes and PTPRO. By analyzing

the scRNA-seq data from the GSE110686 cohort, 127 CD8+ T-

cell marker genes were confirmed (Figure 3A, Supplementary

Figure S2A). Among them, 56 CD8+ T-cell-related genes were

subsequently identified to be significantly associated with

PTPRO (filtering thresholds were set as R > 0.3, P < 0.05) in

the TCGA dataset (Supplementary Table 1). Next, the TCGA

breast cancer dataset was used as the training cohort to evaluate

the prognostic value of the above 56 genes. A total of 31 genes

(SRGN, SERPINB9, ICOS, CD74, TNFRSF1B, CXCR6, BIRC3,

TIGIT, CTLA4, APOBEC3G, TRAC, CD69, SIRPG, GZMA,

CD52, CST7, RGS1, CD8A, GZMK, SPOCK2, ZNF683,

GBP2, CCL5, HCST, NKG7, KLRB1, CTSW, CD8B, TRGC2,

PGAM1, and PIM2) were found to contribute to the OS as

revealed by the univariate Cox proportion hazards regression

analysis (Supplementary Figure S2B). A multivariate Cox

regression analysis revealed that 11 candidate genes were

determined and subsequently used to create a prognostic

signature (i.e., PTS) (Figure 3B). The PTS risk score for

predicting prognosis was calculated using the formula: PTS

risk score = TNFRSF1B expression × (0.5385) + BIRC3

expression × (−0.2625) + TIGIT expression × (0.2949) +

APOBEC3G expression × (−0.2651) + CD69 expression ×

(0.3853) + RGS1 expression × (−0.1672) + CCL5 expression

× (−0.3752) + NKG7 expression × (0.4308) + KLRB1 expression

× (−0.6283) + CTSW expression × (−0.2624) + PGAM1

expression × (0.2686) (Supplementary Table 2).

The corresponding PTS risk scores were calculated for each

breast cancer patient in the training cohort (Figure 3C). The

median value of the PTS risk score was used as the cutoff value to

divide patients into low-risk (n = 517) and high-risk (n = 517)

groups. The distribution of PTS risk score and patient survival

status revealed that patients with high risk died sooner than

those with low risk (Figure 3D). Consistently, patients with high

risk had a significantly shorter OS than patients with low risk

(P < 0.001, Figure 3E). ROC analysis was performed to interpret

the predictive performance of PTS risk score, and the results

showed that the AUCs for 1-, 3-, and 5-year OS were 0.700,

0.713, and 0.688, respectively (Figure 3F). Furthermore, GSEA

showed that immune-related gene sets were enriched in patients

with low-risk score (Supplementary Figure S2C). Therefore, our

findings suggest that PTS risk score has a high specificity and

sensitivity for predicting the OS of breast cancer patients.
Validation of the prognostic value of PTS
risk score

To evaluate the robustness of the PTS, we tested its

predictive power in two independent validation cohorts from

the METABRIC and GSE96058 datasets. Risk scores were

calculated for patients in two cohorts using the same formula

generated in the training cohort (Figures 4A, B). Similar to the
FIGURE 1

The flowchart of signature construction and verification.
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training cohort, patients with high risk died sooner than those

with low risk (Figures 4C, D). Patients were then separately

classified into high-risk groups (METABRIC, n = 951;

GSE96058, n = 1,534) and low-risk groups (METABRIC,

n = 952; GSE96058, n = 1,535) based on the median values

of the risk score. Patients in the low-risk group had a

s ignificant ly bet ter OS than those with high r isk

(METABRIC, P < 0.001; GSE96058, P < 0.001) (Figures 4E,

F). Moreover, the AUCs for 1-, 3-, and 5-year OS of this

classifier were 0.647, 0.523, and 0.532 in METABRIC and

0.633, 0 .633, and 0.616 in GSE96058, respectively

(Figures 4G, H), further confirming the prognostic role of

the PTS.
Frontiers in Immunology 06
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Independence of the PTS risk score from
other clinical characteristics

In order to better understand the utility of the PTS in predicting

the OS of breast cancer patients, the risk score and clinical features

were integrated into the univariate and multivariate analyses

(Figure 5). The multivariate analysis revealed that low-risk score

remained significantly associated with favorable OS even after

adjusting for other clinical characteristics. The risk score for OS

was 1.891 (95%CI=1.547–2.312,P<0.001; Figure 5A) in theTCGA

training set, 2.122 (95%CI=1.296–3.475,P=0.003; Figure 5B) in the

METABRIC validation set, and 1.289 (95% CI = 1.076–1.544,

P = 0.006; Figure 5C) in the GSE96058 validation set. Together,
A B

D

E

C

FIGURE 2

Characterization of protein tyrosine phosphatase receptor type O (PTPRO) in breast cancer tumor microenvironment. Comparison of the
ssGSEA scores between the PTPRO-high group and the PTPRO-low group in the GSE65194 (A) and GSE3494 (B) cohorts. (C) Overlapped
immune cell types correlated with PTPRO expression in the two cohorts. (D) The dot plots displayed the correlations between PTPRO
expression and the infiltration pattern of CD8+ T cells in TISIDB. (E) Representative IHC staining indicates higher PTPRO levels correlated with
increased CD8+ T-cell infiltrates in human breast cancer. Scale bars: 100 mm (left panel), 50 mm (right panel). ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001 by Student’s t-test.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.947841
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2022.947841
thesedata stronglydemonstrate that theprognostic signaturederived

from PTPRO-associated immunomodulators was an independent

predictor of OS in breast cancer patients.
Construction and evaluation of a
prognostic nomogram

Based on the findings of multivariate analysis, we constructed a

nomogrammodel employing clinical factors, such as risk score, age,

and stage. By calculating the score of the aforementioned variables

for each patient, we can predict the individuals’ 1-, 3-, and 5-year
Frontiers in Immunology 07
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OS probability (Supplementary Figure S3A). The calibration curves

further revealed that the nomogram performed well in predicting

breast cancer patients’ survival (Supplementary Figures S3B–D).

The C-index of the nomogram was 0.747, which shows that it has a

good capacity for discrimination.
The prognostic value of PTS in patients
with anti-PD-L1 therapy

To investigate the potential clinical efficacy of PTS in

immunotherapy, we examined the distribution of checkpoint-
A B

D

E
F

C

FIGURE 3

Construction of the PTPRO-related CD8+ T-cell signature (PTS) in the training set. (A) t-SNE plot depicted various cell types. (B) The prognostic
signature was developed by multivariate analysis of candidate genes that were associated with the overall survival (OS) of breast cancer patients in
the training set. (C) Breast cancer patients in the training set were divided into high-risk and low-risk groups based on the median value of the risk
score. (D) Breast cancer patients’ survival status and risk score distribution in the training set. (E) Kaplan–Meier curve analysis of OS between the
high-risk and low-risk groups in the training set. (F) ROC curves of the risk score to predict the 1-, 3-, and 5-year OS in the training set.
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related genes (LAG3, HAVCR2, PDCD1LG1, IDO1, TIGIT,

PDCD1, PD-L1, and CTLA-4) and tumor mutation burden

(TMB) in different PTS subgroups and found that LAG3,

PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4 were

upregulated in patients with low risk in the TCGA training set

(Supplementary Figure S4A), while TMB was higher in patients
Frontiers in Immunology 08
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with high risk (Supplementary Figure S4B). Furthermore, we

evaluated the predictive value of TMB by ROC analysis in the

IMvigor210 cohort (urothelial carcinoma dataset), and we did

observe that TMB does not outperform at a predictive advantage

(Supplementary Figure S4C). Since anti-PD-L1 immunotherapy

has emerged as a promising anticancer treatment (38), we next
A B

D

E F

G H

C

FIGURE 4

Validation of the prognostic value of risk score in independent cohorts. Breast cancer patients in the training set were separated into high-risk
and low-risk groups based on the median value of risk score in the METABRIC cohort (A) and the GSE96058 cohort (B). Breast cancer patients’
survival status and risk score distribution in the METABRIC cohort (C) and the GSE96058 cohort (D). Kaplan–Meier curves of OS between the
high-risk and low-risk groups in the METABRIC cohort (E) and the GSE96058 cohort (F). ROC curves showed the performance of risk score in
predicting the 1-, 3-, and 5-year OS in the METABRIC cohort (G) and the GSE96058 cohort (H).
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investigated the prognostic value of the risk score for

immunotherapy in the IMvigor210 cohort of patients treated

with anti-PD-L1. Patients with high risk who received

atezolizumab had significantly shorter OS than patients with

low risk (Figure 6A). Moreover, the AUCs for the 8-, 16-, and

24-month OS of this classifier were 0.597, 0.612, and 0.834 in the

IMvigor210 cohort (Figure 6B), respectively. Patients with low

risk had better immunotherapeutic responses (Figures 6C, D).

Therefore, rather than TMB, the predictive value of PTS in

immunotherapy may benefit from the upregulation of the

checkpoint-related genes.
Discussion

Here, we found that phosphatase PTPRO exhibits potential as

an immune modulator, and PTPRO-based PTS is an independent

prognostic indicator for prognosis and associated with
Frontiers in Immunology 09
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immunotherapeutic responses. We first used ESTIMATE and

ssGSEA to determine whether PTPRO expression is associated

with the levels of CD8+ T-cell infiltration in breast cancer immune

infiltrates. Then, using scRNA-seq data, we identified 56 CD8+ T-

cell-related genes that were significantly associated with PTPRO.

Furthermore, 11 candidate genes (TNFRSF1B, BIRC3, TIGIT,

APOBEC3G, CD69, RGS1, CCL5, NKG7, KLRB1, CTSW, and

PGAM1) were identified and used to build the risk model.

Finally, the PTS-based risk score was used to predict prognosis

and immunotherapeutic response, and it performed well inmultiple

validation datasets.

CD8+ T cells are one of the major effector cells in

immunotherapy. However, when T cells are exposed to cancer

antigens repeatedly, they differentiate into dysfunctional states (39,

40). Furthermore, T-cell receptor (TCR)-mediated signaling

pathways are required for the establishment and progression of

T-cell dysfunction (39, 40). Earlier studies have already proven that

coordinated interactions between PTKs and PTPs play a key role in
A

B

C

FIGURE 5

The prognostic values of PTS risk score in breast cancer. Univariate and multivariate Cox regression analyses of the PTS risk score in the TCGA
training dataset (A), METABRIC validation dataset (B), and GSE96058 validation dataset (C) regarding OS.
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TCR-mediated signaling and then affect immune responses (41).

Additionally, PD-L1-mediated immunosuppression is controlled

largely by the activation of EGFR, MEK/ERK, NF-kB, PI3K/Akt,
COX2/mPGES1/PGE2, JAK/STAT1, or JAK/STAT3 pathways,

some of which are regulated by PTPRO (16, 42, 43). Therefore,

our previous and other findings suggest that PTPRO, as an

immunosuppressor, regulates immune infiltrates, shedding new

light on immunotherapy (26, 27, 44). In this study, 11 PTPRO-

related CD8+ T-cell marker genes were chosen to construct a

PTPRO-based risk score. Our results showed that patients with

low-risk scores had a significantly longer OS than those with high-

risk scores in the METABRIC and GSE96058 datasets. Moreover,

we established a prognostic nomogram based on the risk score and

several important clinical variables for predicting individuals’

survival probability. The calibration curves revealed a higher

consistency between the actual and predicted values for 1-, 3-,

and 5-year OS.

We also investigated the prognostic value of risk score in anti-

PD-L1 therapy to see if it can accurately predict the potential clinical

efficacy of immunotherapy. We found that checkpoint-related genes

(LAG3, PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4)
Frontiers in Immunology 10
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were upregulated in patients with low risk in the TCGA training set.

High TMB is associated with longer survival in patients treated with

ICIs in multiple cancer types (45). We found that patients in the

high-risk group had higher TMB levels in this study. Furthermore, in

the IMvigor210 cohort, TMB had a poor predictive value. According

to a recent study, high TMB only predicts PD-L1 blockade

responsiveness in approximately 25% of several cancer types where

high TMB correlates with CD8+ T-cell infiltration of the tumor (46).

Numerous studies have shown that high TMB does not correlate

with CD8+ T-cell infiltration and overall response rates (ORR) to

ICIs in glioma, TNBC and prostate cancer (47). Due to the lack of

broad ICI approval, a biomarker to optimize patient selection is most

urgently needed. Furthermore, we found that the predictive value of

risk score in immunotherapy response was validated in the

IMvigor210 cohort, that is, a high-risk score predicted poorer

survival and a poor response to immunotherapy. As a result of

our findings, the predictive value of PTS in immunotherapy may

benefit from increased expression of checkpoint-related genes rather

than TMB. With technological advancements, a large number of

high-dimensional databases and bioinformatics tools will emerge in

the future, and PTPRO-based PTS warrants further extension and
A B

DC

FIGURE 6

The prognostic value of PTS in patients with anti-PD-L1 therapy. (A) Kaplan–Meier curves of OS between the high-risk and low-risk groups in
the IMvigor210 cohort. (B) ROC curves showed the performance of the risk score in predicting the 8-, 16-, and 24-month OS in the IMvigor210
cohort. (C, D) Risk score in patients with different responses to PD-1 treatment [complete response (CR), progressive disease (PD), partial
response (PR), and stable disease (SD)].
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investigation. Furthermore, this is a retrospective study based on

omics data, which requires additional experimental validation,

particularly the regulatory effect of PTPRO on CD8+ T-cell

markers or immune infiltration.

In summary, we found that PTPRO may play a role in

antitumor immunity regulation. The immune indicator PTPRO-

based PTS-related risk score can pre-evaluate the response to

immunotherapy. We conclude that patients with low-risk breast

cancer, as defined by high CD8+ T-cell infiltration and elevated

expression of checkpoint-related genes, should have a better

prognosis and clinical benefit from either monotherapy or

combined immunotherapy.
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Background: Glutamine (Gln) metabolism has been reported to play an essential

role in cancer. However, a comprehensive analysis of its role in lung

adenocarcinoma is still unavailable. This study established a novel system of

quantification of Gln metabolism to predict the prognosis and immunotherapy

efficacy in lung cancer. Further, the Gln metabolism in tumor microenvironment

(TME) was characterized and the Glnmetabolism-related genes were identified for

targeted therapy.

Methods: We comprehensively evaluated the patterns of Gln metabolism in

513 patients diagnosed with lung adenocarcinoma (LUAD) based on 73 Gln

metabolism-related genes. Based on differentially expressed genes (DEGs), a

risk model was constructed using Cox regression and Lasso regression analysis.

The prognostic efficacy of the model was validated using an individual LUAD

cohort form Shandong Provincial Hospital, an integrated LUAD cohort from

GEO and pan-cancer cohorts from TCGA databases. Five independent

immunotherapy cohorts were used to validate the model performance in

predicting immunotherapy efficacy. Next, a series of single-cell sequencing

analyses were used to characterize Gln metabolism in TME. Finally, single-cell

sequencing analysis, transcriptome sequencing, and a series of in vitro

experiments were used to explore the role of EPHB2 in LUAD.

Results: Patients with LUAD were eventually divided into low- and high-risk

groups. Patients in low-risk group were characterized by low levels of Gln

metabolism, survival advantage, “hot” immune phenotype and benefit from

immunotherapy. Compared with other cells, tumor cells in TME exhibited the

most active Gln metabolism. Among immune cells, tumor-infiltrating T cells
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exhibited the most active levels of Gln metabolism, especially CD8 T cell

exhaustion and Treg suppression. EPHB2, a key gene in the model, was shown

to promote LUAD cell proliferation, invasion and migration, and regulated the

Gln metabolic pathway. Finally, we found that EPHB2 was highly expressed in

macrophages, especially M2 macrophages. It may be involved in the M2

polarization of macrophages and mediate the negative regulation of M2

macrophages in NK cells.

Conclusion: This study revealed that the Gln metabolism-based model played

a significant role in predicting prognosis and immunotherapy efficacy in lung

cancer. We further characterized the Gln metabolism of TME and investigated

the Gln metabolism-related gene EPHB2 to provide a theoretical framework

for anti-tumor strategy targeting Gln metabolism.
KEYWORDS

lung adenocarcinoma, glutamine metabolism, prognosis, tumor microenvironment,
immunotherapy, EphB2
Introduction

Lung cancer remains the leading cause of cancer-related

death worldwide (1). Non-small cell lung cancer (NSCLC)

accounts for 85% of lung cancers, with lung adenocarcinoma

(LUAD) constituting half of all cases of NSCLC (2).

Notwithstanding the advances in treatment strategies, the five-

year survival rate of patients with LUAD remains limited. In

recent years, immunotherapy showed significant efficacy in

LUAD, while drug resistance and recurrence due to tumor

heterogeneity still limit the efficacy of immunotherapy (3, 4).
cinoma; TME, Tumor

; DEGs, Differentially

cells, Natural killing

verall survival; TPM,

Per Kilobase of exon

olecular Signatures

c; GSVA, Gene Set

enrichment analysis;

utation burden; IPS,

IDE, Tumor immune

a; MDSCs, Myeloid-

ability; CAF, cancer

phages; GEPIA, Gene

y number variations;

ocytes; APC, antigen-

rincipal Components

Immune checkpoint

and Projection; GO,

and Genomes.

02
133
Therefore, it is essential to comprehensively investigate the

mechanisms underlying the differential response to

immunotherapy and develop tools to predict prognosis and

immunotherapy efficacy.

Recent inves t iga t ions revea led that oncogenic

transformation induces a well-characterized metabolic

phenotype in tumor cells, which in turn affects the tumor

environment (TME) (5). TME is composed of distinct cell

populations in a complex matrix, which is characterized by

inefficiencies of oxygen and nutrition delivery due to limited

or poorly differentiated vasculature. In order to meet the energy

demands, rapidly proliferating cancer cells compete with

immune cells for nutrients required to manifest anti-tumor

effects, thus creating an immune suppressive environment. In

this harsh TME, infiltrating immune cells are forced to undergo

relevant metabolic adaptations, which in turn disrupt the anti-

tumor effects of immune cells (6, 7). Therefore, therapeutic

strategies that target tumor metabolism and thus modulate or

improve immune cell metabolism to enhance inflammation are

extremely promising. However, tumor cells share a large number

of metabolic pathways with inflammatory immune cells, which

makes metabolic blocking strategies often counterproductive (8).

Therefore, targeting the appropriate metabolic pathway to block

tumor metabolism and activate inflammatory immunity is

essential to improve immunotherapy. Targeting Gln

metabolism is one of the optimal choices available.

As the most abundant amino acid in circulation, glutamine

(Gln) is rapidly consumed by cultured tumor cells (9). Gln is

commonly used to maintain TCA flux in cellular aerobic

glycolysis, or as a source of citrate for lipid synthesis in

reductive carboxylation. Besides, glutaminolysis also promotes
frontiersin.org
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survival of proliferating cells by suppressing oxidative stress and

maintaining the integrity of mitochondrial membrane (10). Gln

is an energy source required by both tumor and immune cells.

However, inflammatory antitumor immune cells do not appear

to rely on or even reject Gln metabolism, which is particularly

evident in macrophages (11, 12). Compared with naïve

macrophages, M2 macrophages exhibit strong dependence on

Gln, while pro-inflammatory M1 macrophages can be induced

by suppressed Gln metabolism. Therefore, Gln metabolism

represents a potential target to convert tumor-associated

macrophages (TAMs) from M2 to M1 phenotype, thereby

enhancing the anti-tumor inflammatory immune response

(13). In addition, Gln metabolism is also involved in the

differentiation of Th1 cells and the activation of effector T cells

(13, 14). These findings suggest that targeting Gln metabolism

can potentially remodel TME and improve immunotherapy

efficacy. In fact, recent studies reported that extensive blockade

of Gln metabolism significantly improves the anti-tumor effect

of anti-PD-1, accompanied by enhanced cytotoxic function of

effector T cells due to metabolic reprogramming (15). In LUAD,

although targeting Gln metabolism in combination with

immunotherapy is extremely promising, the landscape of Gln

metabolism in TME is still not fully known. Therefore, we

performed this study for a systematic analysis of Gln

metabolism and immunotherapy in LUAD.

Our study comprehensively evaluated the expression of Gln

metabolism-related genes. Based on these genes, 514 patients

with LUAD from The Cancer Genome Atlas (TCGA) were

clustered using a consensus clustering algorithm and

eventually a scoring system was constructed for predicting

overall survival (OS) and immunotherapy efficacy. An

integrated Gene-Expression Omnibus (GEO) cohort including

719 patients with LUAD and 32 cohorts of pan-cancer from

TCGA were used to validate the predictive performance of the

risk model. Five independent immunotherapy cohorts were

identified to validate the predictive performance for

immunotherapy efficacy. Multiple single-cell sequencing data

were used to describe the Gln metabolism landscape of various

cell types in TME. Finally, using in vitro experiments based on

second-generation sequencing and public single-cell sequencing

analysis, we investigated the regulation of biological behavior

and signaling pathways of LUAD cells by EPHB2, a key gene

related to Gln metabolism, which is also significantly enriched

and plays an essential role in M2 macrophages.
Materials and methods

Data source and preprocessing

Public gene expression data (fragments per kilobase million,

FPKM) and full clinical annotations were respectively retrieved

from TCGA (https://cancergenome.nih.gov/) and GEO (https://
Frontiers in Immunology 03
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www.ncbi.nlm.nih.gov/geo/) databases. The FPKM values of

LUAD were transformed into transcripts per kilobase million

(TPM). The training cohort included 513 patients with LUAD

from TCGA while 6 eligible LUAD cohorts (GSE13213,

GSE37745, GSE31210, GSE3141, GSE30219, GSE50081) from

GEO dataset represented the validating cohort of our study,

which consisted of 719 patients with LUAD. Pan-cancer gene

expression data were extracted from TCGA for further validation.

An individual cohort with 33 LUAD specimens from

Shandong Provincial Hospital was set as a validating cohort.

Besides, 22 tumor specimens and 11 normal specimens from

Shandong Provincial Hospital were used to perform differential

expression analysis and survival analysis of EPHB2.
Consensus molecular clustering based
on Gln metabolism-related genes

73 Gln metabolism-related genes were extracted from

Molecular Signatures Database (MSigDB, http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). These genes are listed in

Supplementary Materials. A consensus clustering algorithm

was used to classify LUAD cohorts into distinct GlnClusters

and test the corresponding stability based on survival-related

Gln genes. ConsensuClusterPlus package was used to perform

the above steps and 1000 repetitions were conducted to

guarantee the corresponding stability.
Identification of DEGs and construction
of geneClusters

Differentially expressed genes (DEGs) among 3 GlnClusters

were identified using “limma” package in R with an adjusted P

value< 0.001 and a |logFC|>1. Survival-related DEGs were

identified via univariate cox regression analysis, and patients

with LUAD were classified into distinct geneClusters based on

selected DEGs using R package “ConsensuClusterPlus”.
Construction and validation of a
prognostic risk model

Survival-related DEGs were sequentially subjected to Lasso

Cox regression analysis and multivariate Cox regression

analysis. Ten genes were finally identified and involved in the

construction of the prognostic risk model, including EPHB2,

CAV2, RTN2, SCPEP1, UNC5D, FURIN, PITPNC1, CH25H,

RGS20 and TSPAN11. The risk score was calculated following

the formula:

Risk score =o(Expi*Coefi)
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Coefi and Expi denote the risk coefficient and gene

expression, respectively. Based on the median risk score of

training cohort, patients from training and validating cohorts

were divided into low-risk and high-risk groups, respectively.

Kaplan–Meier survival analysis was followed by the generation

of receiver operating characteristic (ROC) curves involving low-

and high-risk groups.
Enrichment analysis and
functional annotation

Gene Set Variation Analysis (GSVA) enrichment was

performed to explore the heterogeneity of various biological

processes using “GSVA” package. Hallmark gene sets

“h.all.v7.4.symbols.gmt” extracted from MSigDB database were

used for GSVA. R package “ClusterProfiler” was applied to

perform functional annotation. Single sample gene set

enrichment analysis (ssGSEA) was performed to calculate the

score of Gln metabolism based on 73 previously extracted Gln

metabolism-related genes.
Mutation and drug
susceptibility analysis

The mutation annotation format (MAF) from the TCGA

database was generated using R package “maftools” and the

somatic mutations of LUAD in low- and high-risk groups were

plotted. The tumor mutation burden (TMB) of each patient with

LUAD in the TCGA cohort was also calculated. Drug sensitivity

analysis was performed with R package “pRRophetic”. A

parliament plot was developed to demonstrate drug sensitivity

of low- and high-risk groups using the website HIPLOT (https://

hiplot.com.cn/).
TME landscape analyses

Single sample gene set enrichment analysis (ssGSEA) was

performed to calculate and compare the enrichment scores of

infiltrating immune cells and immune function (16, 17).

Immune score, ESTIMATE score and stromal score were

calculated using the ESTIMATE algorithm (18). Data of T cell

dysfunction, T cell exclusion and TIDE scores were obtained

from TIDE website (http://tide.dfci.harvard.edu/). A correlation

heatmap of 10 genes in the risk model and 4 panels of immune

function were also downloaded from the TIDE website (19).

Immunophenoscore (IPS) of patients in TCGA was obtained

from The Cancer Immunome Atlas (https://tcia.at/).
Frontiers in Immunology 04
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Immunotherapy datasets

Five immunotherapeutic cohorts were used to validate the

prediction of immunotherapy efficacy using the risk model:

melanoma treated with adoptive T cell therapy (ACT)

(GSE100797) (20); melanoma treated with pembrolizumab, an

anti-PD-1 antibody (GSE78220) (21); melanoma treated with

anti-CTLA4 and anti-PD1 therapy (GSE91061) (22); NSCLC

treated with nivolumab or pembrolizumab, an anti-PD-1

antibody (GSE126044) (23); and advanced urothelial cancer

treated with atezolizumab, an anti-PD-L1 antibody

(IMvigor210 cohort) (24). The response and benefit of TCGA

cohort were calculated based on the TIDE website (http://tide.

dfci.harvard.edu/) by integrating TIDE score, INFG, MSI score,

CD274, Merck18, CD8, MDSC, CAF and TAM M2.
Establishment and validation of a
nomogram scoring system

A predictive nomogram was constructed using R package

“rms”, which consisted of risk, age and stage. The total score of

each patient was calculated based on each variable matched

score. The calibration plot was used to assess the predictive value

between the predicted 1-, 3-, and 5-year OS rates and the actual

results observed. Time-dependent ROC curves were plotted to

assess the prediction of 1-, 3-, and 5-year OS by the nomogram.
Single-cell RNA-seq analysis and online
website analysis

GSE111907 was used to evaluate the degree of Gln

metabolism in malignant, pan-immune cells, endothelial and

fibroblast cells. GSE117570, GSE131907, GSE99254 and

GSE127465 were analyzed in the website scTIME Portal

(http://sctime.sklehabc.com/unicellular/home) (25). The degree

of Gln metabolism was calculated using ssGSEA based on 73

identified Gln metabolism-related genes.

The differential expression analysis of 10 pan-cancer genes

was performed online at Gene Expression Profiling Interactive

Analysis (GEPIA, http://gepia.cancer-pku.cn/).
Transcriptome sequencing

Transcriptome sequencing was performed in EPHB2-siRNA

treated PC-9 cells using the Illumina NovaSeq platform with

Annoroad Gene Technology. The differentially expressed genes

were identified with FC > 2 and P< 0.05.
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RNA extracting and real-time PCR

Following manufacturer’s protocol, the total RNA of LUAD

specimens or cells was extracted using the AG RNAex Pro

Reagent (Accurate Biotechnology (Hunan) Co., Ltd China). The

cDNA was synthesized after reverse transcription using Evo M-

MLVRT Master Mix kit (Accurate Biotechnology (Hunan) Co.,

Ltd China). The relative gene expression was detected using the

SYBR Premix Ex Tap kit (Accurate Biotechnology (Hunan)Co.,

Ltd China) and normalized to the expression using 18S. The

primers are listed in Supplementary Table 1.
Cell culture and reagents

Human PC-9, A549 and THP-1 cell lines were purchased

from Procell Life Science & Technology Co., Ltd. PC-9 and

THP-1 cells were maintained in RPMI 1640 (Gibco)

supplemented with 10% FBS, and A549 cel ls were

maintained in F12K (Gibco) supplemented with 10% FBS.

The cell lines were cultured at 37°C in a humidified

incubator containing 5% CO2.
EPHB2 knockdown

PC-9 cells were plated at a density of 3*105 per 60 mm dish.

After 24 h culture, the medium was changed to fresh medium.

The PC-9 cells were transfected with EPHB2-short interfering

RNAs (siRNAs) or control-siRNA purchased from

TransheepBio (Shanghai, China), accompanied by jetPRIME®

transfection reagent (PolyPlus transfection, Illkirch, France).

The transfected cells were cultured for at least 24 h in 10%

FBS RPMI 1640 medium. The sequences of the EPHB2 siRNA

were as follows: 5’GGGAAAUACAAGGAAUAUU3’ (si1),

5’CGCUUUCUAGAGGACGAUA3’ (si2), 5’GGAGUUU

GCCAAGGAAAUU3’ (si3) and 5’GAUGAUGAUGGAGGA

CAUU3’ (si4).
Proliferation assay

Cells were seeded in 96-well plates at a density of 1500 cells

per well. After at least 6 hours, the first dish was fixed with 10%

cold trichloroacetic acid for at least 24 hours, and the other

plates were fixed every 24 hours. After washing and drying, the

plates were stained with Sulforhodamine B sodium salt (SRB)

(Sigma, USA) for 20 minutes and washed with 1% (vol/vol)

acetic acid. After drying, 150 µL of 10 mmol/L Tris was added

and the absorbance was measured using the microplate reader

(Thermo Fisher, USA) at 562 nm. The results were analyzed with

GraphPad Prism 8.0.2.
Frontiers in Immunology 05
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Colony formation assay

Cells were seeded in 6-well plates at a density of 500 cells per

well and cultured at 37°C for two weeks. Subsequently, the plates

were washed with phosphate-buffered saline (PBS) and fixed with

4% paraformaldehyde for 30 minutes. Finally, 0.1% crystal violet

was used to stain the plates. The colonies were counted with ImageJ

software (Wayne Rasband, National Institutes of Health, USA).
Wound healing assay

Cells were seeded in 12-well plates and monolayers were

scratched with a pipette tip until 95% confluence. The cells were

subsequently photographed every 12 hours and the migrated

areas were calculated using ImageJ software.
Transwell assay

Cells (4×104) were seeded in the upper chamber in RPMI

1640 without FBS. The lower chamber was filled with 600 µL of

RPMI 1640 medium containing 20% FBS. After 24 hours of

incubation, the cells were fixed and stained with crystal violet.

The cells in the upper chamber were removed, the migrated cells

were photographed and counted with ImageJ software.
THP-1 polarization

THP-1 cells were seed into 6-well plates and treat with PMA

(Sigma-Aldrich, St. Louis, MO, USA) for 48 h. Then cells were

treated with IL-4 (20 ng/ml; PeproTech) for 24h to induce M2-

phenotype polarization.
Immunofluorescence (IF)

IF assay was implemented according to the methods

described previously (26). The primary antibodies included

EPHB2 (1:100, 2D12C6, Santa Cruz Biotechnology) and

CD206 (1:100,24595, Cell Signaling Technology).
Western blot analysis

Protein samples were dissolved in lithium dodecyl sulfate

(LDS) sample buffer (Invitrogen). Equivalent amounts of total

protein extract were separated on 10% SDS-PAGE gels (90 V for

30 min and 120 V for 60 min) and transferred to polyvinylidene

fluoride membranes. The transfer was carried out at 100 V for 2 h

using a Bio-Rad transfer apparatus. Membranes were then blocked
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for 1 h at room temperature in 5% BSA solution. Appropriate

primary antibody was incubated overnight at 4°C. The primary

antibodies were listed as followed: Akt, p-Akt (Ser473), ERK1/2 and

p-ERK1/2 (Thr202/Tyr204) (Cell Signaling Technology, USA:

1:1000); GAPDH and EPHB2 (Santa Cruz, USA: 1:1000).
Statistical analysis

The statistical analysis of this study was performed using R-

4.1.2 software. For quantitative data, the statistical significance of

normally distributed variables was estimated by the Student’s t-

test, and non-normally distributed variables were analyzed using

the Wilcoxon rank sum test. Comparisons between more than

two groups were made using the Kruskal-Wallis test and one-

way analysis of variance as non-parametric and parametric

methods, respectively. Kaplan-Meier survival analysis was

performed with the R package “Survminer”. Statistical

significance was set as P< 0.05.
Results

Landscape of genetic variation of Gln
metabolism-related genes in LUAD

The overall design of our study is shown in the flow chart

(Figure 1). Seventy-three Gln metabolism genes were identified

from MSigDB and published articles. Based on univariate Cox

regression analysis, 21 survival-related Gln metabolism genes

were selected for further analyses (Figure 2A). A waterfall chart

was plotted to show the somatic mutations of the 21 genes and

the highest rate of somatic mutations in CPS1 (Figure 2B). The

location of copy number variations (CNV) on chromosomes is

shown in Figure 2C. The frequency of CNV amplification and

deletion is displayed in Figure 2D. Differential expression

analysis revealed that 13 genes were significantly upregulated

in tumor, while 4 genes were downregulated (Figure 2E). The

correlation network showed expression correlation between the

21 survival-related genes (Figure 2F).
Construction of distinct GlnClusters

Based on survival-related Gln metabolism genes, 513

patients with LUAD from TCGA were stratified into 4 distinct

patterns, which were defined as GlnClusters (Figure 3A). PCA

revealed significant differences in Gln metabolism genes between

the 4 clusters (Figure 3B). Survival analysis revealed improved

prognosis of patients in cluster C4 and poor overall survival in

cluster C1 (Figure 3C). Most of the Gln metabolism genes were

significantly upregulated in clusters C1 and C2, followed by

cluster C3, which implied relatively active Gln metabolism.
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Alternatively, cluster C4 showed reduced Gln metabolism with

widespread low expression of Gln metabolism-related

genes (Figure 3D).

We also analyzed the infiltrating immune cells and immune-

related functions in different clusters. Interestingly, the

abundance of most infiltrating immune cells gradually

increased from clusters C1 to C4, which was inversely

proportional to the Gln metabolic activity, including various

DCs (aDCs, DCs, iDCs and pDCs), mast cells, neutrophils, T

helper cells and TILs (Figure 3E). Simultaneously, APC co-

stimulation, HLA, T cell co-stimulation and type II IFN response

showed trends suggesting highly active antigen presentation and

antitumor immunity (Figure 3F).
Construction of geneClusters based
on DEGs

The 237 DEGs among 4 GlnClusters were screened out (P

value< 0.001, |logFC|>1) and intersected with GEO validating

cohort. Univariate Cox regression analysis of these DEGs was

performed and 35 survival-related DEGs were identified for

further analysis (Figure 4A). Based on the 35 DEGs, 513

patients were divided into 3 geneClusters. Compared with

geneClusters B and C, the geneCluster A exhibited significant

survival disadvantage (Figure 4B). PCA analysis revealed

obvious differences in dimensions between distinct

geneClusters (Figure 4C). A heatmap illustrated that the DEGs

were significantly different between distinct geneClusters, and

most DEGs were upregulated in geneCluster A (Figure 4D).

Corresponding to the survival disadvantage, geneCluster A also

exhibited a lower abundance of most infiltrating immune cells

and immune functions (Figures 4E, F). In summary, geneCluster

A can be defined as immune “cold” phenotype.
Development and validation of a
risk model

To construct a more convenient scoring model for clinical

prediction, we performed Lasso regression analysis of the identified

35 survival-related DEGs and 18 Gln metabolism-related genes

remained based on the minimum partial likelihood deviance

(Figure 5A). Subsequently, we performed multivariate Cox

regression analysis of the 18 genes based on Akaike information

criterion (AIC) value and 10 Gln metabolism-related genes were

finally obtained, including EPHB2, CAV2, RTN2, SCPEP1,

UNC5D, FURIN, PITPNC1, CH25H, RGS20 and TSPAN11

(Figure 5B). Based on the results of multivariate Cox regression

analysis, a risk model was constructed based on the formula:

Risk score =o(Expi*coefi)
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Coefi and Expi denote the risk coefficient and gene

expression, respectively.

Based on the median of risk score in training cohort, patients

with LUAD from training (TCGA) and validating (integrated

GEO) cohorts were divided into low- and high-risk groups,

respectively. A heatmap demonstrated a high abundance of Gln

metabolism-related genes in the low-risk group, suggesting the

activation of Gln metabolism (Figure 5C). The Kaplan–Meier

survival curves demonstrated a significant survival advantage of

patients in the low-risk group compared with patients in the

high-risk group in training (Figure 5D) and validating cohorts

(Figure 5F), respectively. The area under the ROC curves

(AUCs) were 0.714, 0.705 and 0.685 in TCGA training cohort
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and 0.701, 0.674 and 0.662 in GEO validating cohort for

predicting 1-, 3-, 5-year survival times, respectively, which

revealed the excellent performance of the model in predicting

overall survival of patients with LUAD (Figures 5E,G). Besides,

an individual validating cohort with 33 LUAD patients from

Shandong Province Hospital was used to validate the risk model.

Consistently, patients in the low-risk group revealed a significant

survival advantage, compared with high-risk group (Figure 5H).

The ROC curves indicate the excellent performance of the risk

score in predicting prognosis (Figure 5I). Figure 5J illustrates the

distribution of patients diagnosed with LUAD in four

GlnClusters, three geneClusters and two risk groups.

Compared with GlnClusters C1, C2 and C3, patients in
FIGURE 1

Analysis workflow of this study.
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GlnCluster C4 exhibited significantly lower risk scores

(Figure 5K). Patients in geneCluster A exhibited the highest

risk scores, while patients in geneCluster B showed the lowest

risk score (Figure 5L).

The distribution of risk scores (Supplementary Figures 1A,

B), survival status (Supplementary Figures 1C, D) and gene

expression (Supplementary Figures 1E, F) in training and

validating cohorts are presented. PCA revealed discernible

dimensions between high- and low-risk groups in training and

validating cohorts, respectively (Supplementary Figures 1G, H).
TMB and drug susceptibility analysis

To investigate the correlation between risk score and TMB,

Spearman correlation analysis was performed and significant

positive correlation was found between risk score and TMB (R =

0.22, P< 0.001, Figure 6A). Patients in high-risk group had higher

levels of TMB than in low-risk group (Figure 6B). After integrating

TMB scores, patients with LUAD from TCGA were divided into

four groups. Survival analysis revealed that patients with high TMB

and low risk exhibited significant survival advantage, followed by

the group with high TMB + low risk and low TMB + high risk,

sequentially. The group with low TMB and high risk showed
Frontiers in Immunology 08
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significant survival disadvantage (Figure 6C). The variation in the

distribution of somatic mutations between low- and high-risk

groups was investigated in the TCGA-LUAD cohort. Patients in

high-risk group displayed significantly higher frequencies of

somatic mutations compared with patients with low risk scores,

especially in TP53 (53% vs 34%), TTN (49% vs 32%), MUC16 (43%

vs 35%), RYR2 (40% vs 27%), CSMD3 (41% vs 26%) and LRP1B

(36% vs 21%) (Figures 6D, E). We further performed drug

sensitivity analysis to predict IC50 of 136 chemotherapy drugs

(Figure 6F). Our results revealed that 84 drugs had lower IC50

values in the high-risk group, indicating sensitivity. Alternatively,

patients in low-risk group were sensitive to 18 drugs. Together,

these results provide a standard of reference for treatment

stratification of patients with LUAD.
Distribution of Gln metabolism and
risk scores

To determine the correlation between risk score and clinical

characteristics, we evaluated the differences in risk score among

different subgroups based on survival status, stage and TNM

stage. Patients in alive, stage I, stage T1 and stage N0 exhibited

lower risk scores compared with other groups, while there was
A B

D E F

C

FIGURE 2

Genetic and transcriptional alterations of Gln metabolism regulators in LUAD. (A) Prognosis-related Gln metabolism regulators after uniCox
regression analysis. (B) 119 of the 561 LUAD patients showed genetic alterations of prognosis-related Gln metabolism regulators. (C) The
location of CNV alterations of prognosis-related Gln metabolism regulators on chromosomes. (D) CNV mutation was widespread in 21
prognosis-related Gln metabolism regulators. The column represented the alteration frequency. Deletion, green dot; Amplification, pink dot. (E)
Differential mRNA expression of prognosis-related Gln metabolism regulators between normal and tumor samples (*P < 0.05; **P < 0.01; ***P <
0.001). (F) Correlation network between prognosis-related Gln metabolism regulators.
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no difference in risk score across M stages (Figures 7A–E). To

further investigate the distribution of Gln metabolism, we

performed ssGSEA to calculate the value of Gln metabolism

based on 73 Gln-related genes identified. Similar to the risk

score, dead patients had higher levels of Gln metabolism

(Figure 7F). In addition, the level of Gln metabolism was

significantly and positively correlated with stages T, N and M,

with higher stage implying higher Gln metabolism (Figures 7G–

J). We next analyzed the differences in Gln metabolism between

low- and high-risk groups. The heatmap revealed significant

upregulation of prognostic Gln metabolism-related genes in the

high-risk group (Figure 7K). Consistently, patients with higher

risk scores revealed higher levels of Gln metabolism (Figure 7L).

In conclusion, Gln metabolism and risk scores were significantly

correlated, and both were positively associated with malignant

progression of LUAD.
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Evaluation of TME and prediction of
immunotherapy efficacy in high- and
low-risk groups

To further investigate the functional characteristics, we

performed GSVA enrichment analysis of the two groups

(Figure 8A). The results showed that bile acid metabolism was

significantly upregulated in the low-risk group. Alternatively, the

KRAS signaling pathway was inhibited in the low-risk group. In

addition, various carcinogenic pathways were activated in the

high-risk group, suggesting a possible positive correlation with

Gln metabolism, such as TGF-b signaling, hypoxia, glycolysis,

EMT, PI3K-AKT-MTOR signaling, DNA repair, MYC signaling

and E2F targets.

To further explore the correlation between risk score and

TME, we analyzed the differential abundance of immune-
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FIGURE 3

Distinct Gln metabolism-related patterns. (A) Consensus clustering matrix for k = 4. (B) Principal component analysis (PCA) for the
transcriptome profiles of four clusters. (C) Survival analyses for four different clusters based on 513 LUAD patients from TCGA. (D) Heatmap of
prognosis-related Gln metabolism regulators in four clusters. (E) The abundance of tumor infiltrating immune cells in four clusters. (F) The
difference of immune functions between four clusters. "*” means that p < 0.05; “**” means that p < 0.01; "“***” means that p < 0.001; ns, no
significance.
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infiltrating cells and immune function to characterize the

landscape of TME. Various immune cells involved in antigen

presentation, processing and tumor killing were present at

higher levels of abundance in the low-risk group, such as

aDCs, B cells, DCs, iDCs, NK cells, T helper cells, Th1 cells

and TIL (Figure 8B). Correspondingly, the low-risk group

also showed active signaling of antigen recognition,

processing and presentation, and antitumor effects,

including APC co-stimulation, HLA, T cell co-stimulation

and type II IFN response (Figure 8C). Besides, the low-risk

group showed a higher expression of immune checkpoints,

revealing possible benefit from immune checkpoint inhibitor

(ICI) therapy. The risk score was also positively correlated

with other carcinogenic pathways, such as nucleotide excision

repair, DNA damage repair, mismatch repair and DNA

replication (Figure 8D). A low risk score was also
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significantly correlated with a high immune score and

ESTIMATE score, indicating increased abundance of

infiltrating immune cells (Figure 8E). In summary, the low-

risk group can be defined as a “hot” immune phenotype,

associated with highly infiltrated antitumor immune cells and

upregulated antitumor pathways.

To further investigate the correlation between risk score and

efficacy of immunotherapy, we calculated the TIDE score.

Patients with a low risk exhibited higher levels of T cell

dysfunction and a lower level of T cell exclusion and TIDE

score (Figure 8F). We further evaluated the association between

the expression of each gene and several immunotherapy-related

features, including T cell dysfunction, ICB response outcome,

phenotypes in genetic screens and cell types promoting T cell

exclusion (Figure 8G). Higher IPS was also exhibited by patients

in the low-risk group compared with those in the high-risk
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FIGURE 4

Construction of gene clusters based on DEGs. (A) Univariate cox regression analysis of DEGs. (B) Survival analyses for the three gene clusters
based on the prognosis-related DEGs. (C) PCA for the transcriptome profiles of three gene clusters. (D) Expression of prognosis-related DEGs in
three gene clusters. (E) The abundance of tumor infiltrating immune cells in three gene clusters. (F) The difference of immune functions
between three gene clusters. “**” means that p < 0.01; "“***” means that p < 0.001; ns, no significance.
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group, which indicated that patients with a low-risk score were

more sensitive to immunotherapy (Figures 8H–K). To fully

validate the accuracy of risk score in predicting the efficacy of

immunotherapy, multiple independent immunotherapy cohorts

in the published literature were used to validate immunotherapy

efficacy and prognosis. Melanoma treated with adoptive T cell

therapy (ACT) (Figures 9A–C), melanoma treated with

pembrolizumab, an anti-PD-1 antibody (Figures 9D–F),

melanoma treated with anti-CTLA4 and ant-PD1 therapy

(Figures 9G–I) , NSCLC treated with nivolumab or

pembrolizumab, an anti-PD-1 antibody (Figures 9J–L),

advanced urothelial cancer treated with atezolizumab, an anti-

PD-L1 antibody (Figures 9M–O) were used to validate the
Frontiers in Immunology 11
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performance of risk score in predicting prognosis and efficacy

of immunotherapy. Patients with a low-risk score were more

sensitive to immunotherapy (Figures 9A, D, G , J, M). Further,

patients in the low-risk group had a significant survival

advantage compared with those in the high-risk group

(Figures 9B, E, H, K, N), and the predictive performance was

tested using ROC curves (Figures 9C, F, I, L, O). The response to

anti-PD1 and anti-CTLA4 therapy was calculated using the

TIDE website based on TCGA cohort (Figures 9P–S). Patients

in the low-risk group were established as responders to

immunotherapy (Figures 9P, Q). By contrast, patients in the

high-risk group were shown to be less likely to benefit from anti-

PD1 and anti-CTLA4 immunotherapy (Figures 9R, S).
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FIGURE 5

Construction and validation of a prognostic risk model. (A, B) Lasso regression analysis of prognosis-related DEGs. (C) Multivariate Cox
regression analysis. (D) Survival analyses for low- and high-risk group in training cohort. (E) ROC curves of predicting prognosis in training
cohort. (F) Survival analyses for low- and high-risk group in GEO validating cohort. (G) ROC curves of predicting prognosis in GEO validating
cohort. (H) Survival analyses for low- and high-risk group in individual validating cohort. (I) ROC curves of predicting prognosis in individual
validating cohort. (J) Alluvial diagram showing the relationships of survival status, Gln clusters, gene clusters and risk score. (K) The distribution
of risk score in different clusters. (L) The distribution of risk score in different gene clusters. "*” means that p < 0.05; “**” means that p < 0.01.
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Prognostic validation of risk score in
pan-cancer

To further validate the performance of risk score in predicting

prognosis of other tumors, we performed a survival analysis of

patients in the high- and low-risk groups involving 32 types of

tumors in TCGA other than LUAD (Figure 10A). Patients in the
Frontiers in Immunology 12
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low-risk group had a significant survival advantage in 22 tumors,

including bladder urothelial carcinoma (BCLA, p = 0.001),

cervical squamous cell carcinoma and endocervical

adenocarcinoma (CESC, p = 0.004), cholangiocarcinoma

(CHOL, p = 0.017), colon adenocarcinoma (COAD, p = 0.001),

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC, p =

0.02), glioblastoma multiforme (GBM, p = 0.003), head and neck
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FIGURE 6

TMB and drug susceptibility analysis. (A) Correlation analysis between risk score and TMB. (B) Difference between low and high-risk group. (C)
Kaplan–Meier curves show overall survival differences stratified by TMB and risk score (p < 0.001). Visualization of gene mutations in high-risk
group (D) and low-risk group (E). (F) Drug sensitivity analyses between low-and high-risk groups. Green, sensitive to patients with low risk
scores; Red, sensitive to patients with high risk scores; Blue, no sense.
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squamous cell carcinoma (HNSC, p< 0.001), kidney renal clear

cell carcinoma (KIRC, p< 0.001), kidney renal papillary cell

carcinoma (KIRP, p< 0.001), acute myeloid leukemia (AML, p =

0.007), brain lower grade glioma (LGG, p< 0.001), liver

hepatocellular carcinoma (LIHC, p<0.001), mesothelioma

(MESO, p = 0.005), pancreatic adenocarcinoma (PAAD, p<

0.001), pheochromocytoma (PCPG, p = 0.013), sarcoma (SARC,

p = 0.002), skin cutaneous melanoma (SKCM, p< 0.001), thyroid

carcinoma (THCA, p = 0.003), thymoma (THYM, p = 0.022),

uterine corpus endometrial carcinoma (UCEC, p< 0.001), uterine

carcinosarcoma (UCS, p = 0.017) and uveal melanoma (UVM, p<

0.001). The ROC curves were performed to evaluate the

prognost ic performance of pan-cancer risk scores

(Supplementary Figure 2). The AUC values are presented

in Figure 10B.
Development of a nomogram to
predict survival

Considering the inconvenience of risk score in predicting OS

in patients with LUAD, a nomogram was developed to predict 1-
Frontiers in Immunology 13
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, 3-, and 5-year OS rates by integrating the risk score, age and

clinicopathological parameters (Figure 11A). The performance

of the constructed nomogram in TCGA-LUAD cohort was

comparable to an ideal model (Figure 11B). We further

constructed ROC curves to evaluate the performance of

nomogram, risk, stage and age in predicting 1-, 3- and 5-year

OS (Figures 11C–E). The nomogram always showed the best

performance in predicting the 1-, 3- and 5-year OS rates,

followed by risk and stage.
Analysis of Gln metabolism at the level of
single cell

To investigate the differences in Gln metabolic activity of

various cell types in LUAD, we performed an in-depth analysis

of public single-cell sequencing data of lung cancer. We

developed a heatmap to present the expression of Gln

metabolism-related genes in four types of major cells that

constitute the TME, including flow-sorted malignant cells,

endothelial cells, immune cells and fibroblasts (Figure 12A).

Gln metabolism-related genes were most significantly
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FIGURE 7

Association between Gln metabolism, risk scores and clinical characteristics. Difference of risk score between different survival status (A), stages
(B), T stages (C), N stages (D), and M stages (E). Level of Gln metabolism in different survival status (F), stages (G), T stages (H), N stages (I), and
M stages (J). (K) Expression of Gln metabolism regulators between low- and high-risk groups. (L) Difference of Gln metabolism level between
low- and high-risk groups. " **” means that p < 0.01.
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upregulated in malignant cells, followed by fibroblasts, while

the lowest expression of Gln metabolism was observed in

immune cells (Figure 12A). The ssGSEA revealed the highest

level of Gln metabolism in malignant cells, and the least
Frontiers in Immunology 14
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activity of Gln metabolism in infi l trating immune

cells (Figure 12B).

To further investigate the differences in Gln metabolism of

infi ltrating immune cells in the TME, 208506 lung
A B

D

E F

G IH

J K

C

FIGURE 8

Characteristic of TME between low- and high-risk group. (A) GSVA enrichment analyses based on the Hallmarker gene sets showed the states
of biological processes in low- and high- risk groups. (B) The abundance of tumor infiltrating immune cells in low- and high-risk groups. (C)
The difference of immune functions between low- and high-risk groups. (D) Correlation between risk score and tumor-related functions. (E)
Differences of ESTIMATE score, stromal score and immune score between low- and high- risk score. (F) Differences of T cell dysfunction,
exclusion and TIDE in low- and high-risk score. (G) Enrichment of 10 selected genes in T cell dysfunction level, ICB response outcome,
phenotypes in genetic screens and cell types promoting T cell exclusion. Difference of IPS with CTLA4- and PD-1- (H), CTLA4- and PD-1+ (I),
CTLA4+ and PD-1 (J) and CTLA4+ and PD-1+ (K) between low- and high-risk group. "*” means that p < 0.05; “**” means that p < 0.01; "“***”
means that p < 0.001; ns, no significance.
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FIGURE 9

Prediction of immunotherapy efficacy by the risk model. Response to ACT (A), survival analyses (B) and ROC curves of predicting prognosis (C)
between low- and high-risk groups in melanoma cohort (GSE100797). Response to anti-PD-1 therapy (D), survival analyses (E) and ROC curves
of predicting prognosis (F) between low- and high-risk groups in melanoma cohort (GSE78220). Response to anti-CTLA4 and ant-PD1 therapy
(G), survival analyses (H) and ROC curves of predicting prognosis (I) between low- and high-risk groups in melanoma cohort (GSE91061).
Response to anti-PD-1 therapy (J), survival analyses (K) and ROC curves of predicting prognosis (L) between low- and high-risk groups in
NSCLC cohort (GSE126044). Response to anti-PD-L1 therapy (M), survival analyses (N) and ROC curves of predicting prognosis (O) between
low- and high-risk groups in advanced urothelial cancer cohort (IMvigor210 cohort). (P) Difference of responder between low- and high-risk
group of LUAD in TCGA. (Q) Difference of risk score between responder and non-responder of LUAD in TCGA. (R) Difference of benefits
between low- and high-risk group of LUAD in TCGA. (S) Difference of risk score between benefit and no benefit of LUAD in TCGA.
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FIGURE 10

Prognostic validation of risk score in pan-cancer. (A) Survival analyses between low- and high-risk group in 32 pan-caner cohorts of TCGA. (B)
Corresponding AUC values in 32 pan-cancer cohorts.
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adenocarcinoma cells from 58 specimens were clustered and

defined into 10 cell types, including B lymphocytes, endothelial

cells, epithelial cells, fibroblasts, mast cells, myeloid cells, NK

cells, oligodendrocytes, T lymphocytes, and undetermined cells

(Figure 12C). Cell type fraction of each sample is presented in

Figure 12D. A heatmap was plotted to show the expression of

key regulators of Gln metabolism (Figure 12E). Compared with

other cells, T lymphocytes exhibited the most active Gln

metabolism. To further validate our findings, 9705 NSCLC

cells from GSE117570 were also clustered and defined

(Figure 12F). Cell composition is presented in Figure 12G.

Consistently, the key regulators of Gln metabolism were

significantly overexpressed in a variety of T cells, revealing a

relatively active Gln metabolism in infiltrating T cells

(Figure 12H). Subsequently, we used single-cell sequencing

data of T cells (GSE99254) to investigate the heterogeneity of

Gln metabolism in various types of T cells in NSCLC

(Figure 12I). Based on ssGSEA, exhausted CD8 T cells (C6-

LAYN) and suppressive Tregs (C9-CTLA4) were shown to

express the most active Gln metabolism compared with other
Frontiers in Immunology 17
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T cells (Figure 12J). Interestingly, exhausted CD8 T cells and

suppressive Tregs are also key target cells for immune

checkpoint inhibitor (ICI) therapy.
EPHB2 affects the biological behaviors of
LUAD cells in vitro

We performed differential expression analysis of the 10 genes in

pan-cancer risk score (Supplementary Figure 3). Among the 10

genes, EPHB2 showed the most significant difference between

normal and tumor cells of all cancers and was significantly

overexpressed in tumors. However, the biological role of EPHB2

in LUAD was rarely studied. We subsequent performed a series of

experiments to elucidate the role of EPHB2 in LUAD.

The expression of EPHB2 in 22 LUAD specimens and 11

normal specimens was detected and EPHB2 was highly

expressed in LUAD specimens (Figure 13A). Patients with

high expression of EPHB2 showed worse overall survivals

compared with low EPHB2 group (Figure 13B).
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FIGURE 11

Construction of a nomogram. (A) Construction of a nomogram based on risk, age and stage. (B) Calibration curves of the nomogram in
predicting OS of TCGA-LUAD patients. ROC curves of the nomogram, risk, stage and age in predicting 1 year- (C), 3 years- (D) and 5 years- (E)
OS of TCGA-LUAD patients.
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FIGURE 12

Characteristic of Gln metabolism in TME. (A) Expression of identified Gln metabolism regulators in malignant cells, endothelial cells, fibroblasts
and pan-immune cells. (B) Difference of Gln metabolism levels in malignant cells, endothelial cells, fibroblasts and pan-immune cells. (C) The
distribution of immune cell clusters in UMAP plot of GSE131907. (D) Cell type fraction of each sample in GSE131907. (E) Expression of key Gln
metabolism regulators in immune cells of GSE131907. (F) The distribution of immune cell clusters in UMAP plot of GSE117570. (G) Cell type
fraction of each sample in GSE117570. (H) Expression of key Gln metabolism regulators in immune cells of GSE117570. (I) The distribution of T
cell clusters in UMAP plot. (J) Level of Gln metabolism in 16 distinct T cells. “**” means that p < 0.01; "“***” means that p < 0.001; ****” means
that p < 0.0001; no significance.
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FIGURE 13

EPHB2 affects the biological behaviors of LUAD cells in vitro. (A) Expression of EPHB2 in normal and tumor specimens. (B) Survival analyses
between low and high EPHB2 groups in LUAD cohorts. Expression of EPHB2 with treatment of Gln-replete and Gln-deprived in A549 cell line
(C) and PC-9 cell line (D). (E) QRT-PCR was performed to detect the efficiency of EPHB2-siRNA transfection. (F) Growth curves of PC-9 cells
treated with EPHB2 knockdown was developed using SRB assay. (G) Colony formation assay was conducted to detect the proliferation of PC-9
cells. (H) Transwell assay was performed to detect the invasion of PC-9 cells with treatment of EPHB2 knockdown. (I) The cell migration of
EPHB2 knockdown was detected by wound healing assay in PC-9 cells. (J) Expression of PD-L1 with treatment of Gln-replete medium, Gln-
deprived medium for 12h and Gln-deprived medium for 24h. (K) A volcano map to exhibit differential expressed genes between normal and
EPHB2 knockdown treated PC-9 cells. (L) GO and KEGG enrichment analysis between normal and EPHB2 knockdown treated PC-9 cells after
sequencing. (M) GAPDH, EPHB2, AKT, P-AKT (Ser473), ERK1/2, P-ERK1/2 (Thr202/Tyr204) were detected by western blotting in EPHB2
knockdown treated PC-9 cells. (N) Expression of key Gln metabolism regulators in normal and si-EPHB2 treated PC-9 cells. "*” means that p <
0.05; “**” means that p < 0.01; "“***” means that p < 0.001.
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To validate the association between EPHB2 and Gln

metabolism, we used Gln-deprived/replete medium to culture

A549 and PC-9 cells. The expression of EPHB2 was significantly

downregulated by Gln-deprived medium in A549 and PC9

(Figures 13C, D). We further designed siRNA for EPHB2

knockdown and transfected siRNA into PC9 cells. The siRNA-

1 and siRNA-4 were selected for further investigation due to the

greater than 70% transfection efficiency (Figure 13E). The SRB

assay was performed to test the cell proliferation, and the

knockdown of EPHB2 significantly inhibited the proliferation

of PC9 cells (Figure 13F). The number of cell clones was

decreased in PC9 cells with EPHB2 knockdown (Figure 13G).

Transwell assay was performed to investigate the cell invasion:

EPHB2 knockdown significantly reduced the invasion of PC9

cells (Figure 13H). EPHB2 knockdown also promoted migration

of PC9 cells in wound healing assay (Figure 13I). In conclusion,

knockdown of EPHB2 significantly inhibited cell proliferation,

migration and invasion. In addition, surprisingly, the removal of

Gln significantly upregulated the PD-L1 expression of PC9 cells,

which may indicate the potential therapeutic role of combining

Gln metabolism inhibitors with PD-L1 inhibitors (Figure 13J).

To explore the regulation of downstream signaling by

EPHB2, we knocked down EPHB2 in PC9 cells, followed by

transcriptome sequencing, which revealed 565 DEGs, which

were screened out with FC > 2 and P< 0.05, including 296

upregulated genes and 269 downregulated genes (Figure 13K).

GO and KEGG enrichment analysis was performed to identified

regulated pathways (Figure 13L). EPHB2 was mainly associated

with cell communication, cellular metabolic process, regulation

of immune, regulation of cell death, cytokine-mediated signaling

pathway, response to amino acids, TNF signaling pathway,

MAPK pathway and regulation of IL-1b and IL-8 production

(Figure 13L). Simultaneously, AKT pathway and ERK pathway

were verified to be down-regulated when EPHB2 was knocked

out, suggesting that EPHB2 is involved in the regulation of these

pathways (Figure 13M). Besides, 11 key Gln metabolism-related

genes were downregulated after treating with EPHB2

knockdown (Figure 13N). In particular, the key regulators of

Gln metabolism, SLC7A7, GLS, ALDH5A1 and GLUL were

significantly downregulated, which indicated significant

correlation between EPHB2 and Gln metabolism.
Effect of EPHB2 on infiltrating immune
cells of TME

To investigate the expression and role of EPHB2 in immune

cells, we selected single cell sequencing data of NSCLCs

(GSE127465) for further analysis by clustering and defining

53215 cells into 21 types using algorithm Uniform Manifold

Approximation and Projection (UMAP) (Figure 14A). EPHB2

was found to be mainly enriched in M0 and M2 macrophages,

especially in M2 macrophages, suggesting that EPHB2 may
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function mainly in macrophages (Figure 14B). The cell type

fraction of each sample is shown in Figure 14C, with M2

constituting almost the highest proportion. We further

analyzed the correlation between EPHB2 expression in M0/M2

and the composition of infiltrating immune cells. The expression

of EPHB2 in M0 macrophages was significantly and positively

correlated with abundance of infiltrating M2 macrophages,

which indicated that EPHB2 may be involved in the

polarization of M2 macrophages (Figure 14D). Besides, the

expression of EPHB2 in M2 macrophages was negatively

correlated with the abundance of activated NK cells and

resting NK cells (Figures 14E, F). These results suggest that

EPHB2 may be associated with cell communication between M2

macrophages and NK cells. The interaction network of

infiltrating immune cells showed that M2 macrophages

exhibited the most extensive interactions with other immune

cells (Figure 14G). The ligand-receptor interaction between M2

macrophages and activated NK cells is presented in Figure 14H.

Similarly, the ligand-receptor interaction between M2

macrophages and resting NK cells was also investigated

(Figure 14I). To verify the distribution of EPHB2 in

macrophages M0 and M2, we induced THP-1 cells into

macrophages M0 and M2, and detected the expression of

EPHB2 by qPCR (Figure 14J). Compared with M0

macrophages, M2 macrophages showed a significant

upregulation of EPHB2, accompanied by significant

upregulation of the markers of M2. We further used Gln-

deprived medium to culture M0 and M2 macrophages and

found that Gln deprivation significantly downregulated

EPHB2 expression in M0 macrophages, but did not affect the

expression in M2 macrophages (Figure 14K). Besides, we also

found that EPHB2 was significantly co-expressed with the M2

macrophage marker CD206 in LUAD ti s sues v ia

immunofluorescence (Figure 14L). These results suggest that

EPHB2 also plays a huge role in macrophages.
Discussion

Although targeting cancer metabolism to enhance

immunotherapy responsiveness is highly promising, the

heterogeneity and crosstalk of metabolic pathways between

cancer cells and immune cells in TME lead to disruption of

normal metabolic pathways in immune cells by strategies to

inhibit/alter cancer metabolism (27). Therefore, it is critical to

target the appropriate metabolic pathways and molecules to kill

tumors without interfering with or even promoting anti-tumor

immunity. However, recent studies have shown that JHU083, a

broad-spectrum inhibitor of Gln metabolism, effectively kills

tumor cells while activating the anti-tumor effects of CD8+ T

cells, thereby significantly enhancing the efficacy of anti-PD-1

immunotherapy (15). Meanwhile, another study reported that

targeting Gln metabolism increased antitumor immunity in
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FIGURE 14

Effect of EPHB2 on infiltrating immune cells of TME. (A) The distribution of immune cell clusters in UMAP plot. (B) The expression of EPHB2 in
distinct clusters of immune cells. (C) Cell type fraction of each sample. (D) Correlation analysis between expression of EPHB2 in macrophages
M0 and composition of infiltrating macrophages M2. Correlation analysis between expression of EPHB2 in macrophages M2 and composition of
infiltrating activated NK cells (E) and resting NK cells (F). (G) Correlation network between tumor infiltrating immune cells. (H) The ligand-
receptor interaction between macrophages M2 and activated NK cells. (I) The ligand-receptor interaction between macrophages M2 and resting
NK cells. (J) Expression of EPHB2 and macrophages M2 markers in macrophages M0 and M2. (K) Expression of EPHB2 in normal macrophages
M0, M2 and Gln-deprived macrophages M0, M2. (L) Co-localization between EPHB2 and CD206 detected by IF in LUAD specimen. “**” means
that p < 0.01; "“***” means that p < 0.001; ns, no significance.
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mouse models by upregulating mitochondrial metabolism of

CTLs in NSCLC (28, 29). These studies make Gln metabolism an

ideal target for improving tumor immunotherapy, but related

multi-omics systematic studies are still extremely rare in LUAD

and even in other tumors.

Herein, we first defined four patterns based on prognosis-

related regulators of Gln metabolism. The four clusters exhibited

significantly different prognostic features, Gln metabolism and

TME. The immune phenotype gradually changes from “cold” to

“hot” sequentially, from clusters C1 to C4, accompanied by an

upregulation of the abundance of infiltrating immune cells and

activation of the anti-tumor immune pathway. Notably, the

“hot” immune phenotype in different clusters is often

associated with a survival advantage and low levels of Gln

metabolism. Gln is a common metabolic substrate in tumor

and immune cells (9), and therefore tumor cells can reduce the

anti-tumor effect of Gln-dependent immune cells, such as T cells

and DCs, by competing for and depleting Gln. Gln metabolism

was shown to mediate the activation of DCs, and coincidentally,

low levels of Gln metabolism and highly enriched DCs were

present concurrently in cluster C4, followed by upregulation of

APC co-stimulation and HLA. These suggest activation of the

antigen presenting pathway, which may contribute to the

significant upregulation of TIL and T cell co-stimulation in

cluster C4. Based on DEGs, patients with LUAD were further

classified into three geneClusters. Similar to the previous

clusters, the immune phenotype also showed a transition from

“cold” to “hot” from geneClusters A to C, and exhibited a similar

TME landscape. In addition to DCs, various helper T cells

exhibited significant differences, including Th1 and Th2 cells.

Studies have shown that Gln deficiency alters Th1 differentiation

and converts CD4+ T cells to a Treg phenotype (30). In addition,

genetic deletion of the Gln transporter protein ASCT2 impaired

Th1 production and function (31). In the group with low Gln

metabolism, CD4+ T cells may acquire additional Gln and thus

promote Th1 cell differentiation and activation. Th1 mediates

anti-tumor immunity mainly by expressing CD40L and

secreting cytokines such as INFg and IL-2 to recruit and

activate macrophages and cytotoxic T cells, which may be

involved in the upregulation of TIL, macrophages and type II

IFN response in geneCluster C (32). In addition, we found that

low Gln metabolism in tumors may drive the Th1/Th2 balance

toward Th1, which favored anti-tumor immunity (33).

Based on prognosis-related DEGs, we developed a risk score

and divided patients with LUAD into low- and high-risk groups.

Similarly, the low-risk group was defined as “hot”

immunophenotype, corresponding to a survival advantage and

lower levels of Gln metabolism, while the high-risk group showed

the opposite effect. In the low-risk group, the low levels of tumor

Gln metabolism may imply a weaker competitive depletion of

Gln, thus allowing immune cells to acquire further Gln and
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activate anti-tumor effects, which may explain the upregulation

of anti-tumor immune cells or pathways such as DCs, TIL, Th1

cells, NK cells, APC co-stimulation, T-cell co-stimulation and type

II IFN response. “Hot” immune phenotype was shown to benefit

strongly from immunotherapy, which was also validated by the

levels of immune checkpoints, TIDE, IPS and immunotherapy

cohorts. Patients in low-risk group benefited significantly from

immunotherapy, especially following ACT therapy of melanoma

cohort and anti-PD-1 antibody treatment of NSCLC cohort.

Deletion of glutaminase enhanced the effector differentiation of

CAR-T cells (34). Alternatively, no further studies are available to

demonstrate that Gln metabolic blockade improves the efficacy of

ACT therapy. Although extensive blockade of Gln metabolism has

been shown to significantly enhance the efficacy of anti-PD-1

therapy, corresponding studies in LUAD are still lacking.

Therefore, the constructed risk model not only facilitates the

differentiation of the efficacy of immunotherapy, but also provides

an important reference for Gln blockade combined with

immunotherapy. In addition, the risk model was used to

significantly differentiate patient prognosis in 23 different

cancers, indicating the generalizability of the model.

Gln metabolism was shown to be involved in multiple cancer

progression as shown in our study. Gln metabolism was

significantly and positively correlated with TNM and stage

(Figures 7G–J). We performed single-cell sequencing analysis

to describe the landscape of Gln metabolism in TME. Consistent

with previous results, tumor cells exhibited significantly

activated Gln metabolism compared with immune cells or

fibroblasts. However, in two independent single-cell

sequencing analyses of LUAD, T cells exhibited relatively

higher active Gln metabolism compared with other immune

cells. Although Gln metabolism has been reported to be involved

in T cell differentiation and activation, the landscape of Gln

metabolism in tumor-infiltrating T cells remains elusive (30).

Therefore, we further extracted and analyzed single-cell

sequencing data targeting lung cancer-infiltrating T cells.

Surprisingly, exhausted CD8 T cells and suppressive Tregs

exhibited the most active Gln metabolism compared with

other 14 types of T cells, and represent key target cells in anti-

PD1 and anti-CTLA4 immunotherapy, respectively (35, 36).

These results suggest the feasibility of utilizing Gln metabolism

inhibitors combined with immunotherapy. Indeed, due to the

robust plasticity of T cell metabolism, the blockade of Gln

metabolism increases T cell proliferative capacity and

anticancer activity, in addition to preventing exhaustion via T

cell metabolic reprogramming (15).

To further characterize the genes used in the model, we

performed differential pan-cancer analysis, showing that EPHB2

is most differentially and highly expressed in the vast majority of

tumors (Supplementary Figure 3). EphB2 is a significant member

of the Eph receptor family, which has been verified to regulate the
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malignant progression of various tumors through different

signaling pathways. In hepatocellular carcinoma, EPHB2

enhances cancer stem cell properties and drive sorafenib

resistance by activating SRC/AKT/GSK3b/b-catenin signaling

cascade. Moreover, EPHB2 mediated malignant progression of

medulloblastoma by regulating ERK, P38 and mTOR pathway

(37, 38). Although studies have shown that EPHB2 is involved in

the malignant progression of various cancers, its role in LUAD has

yet to be investigated (37). In the present study, we found that

EPHB2 was closely associated with malignant progression of

LUAD, promoting proliferation, invasion and migration of

LUAD cells. Simultaneously, EPHB2 has been verified to be

involved in the regulation of AKT pathway and ERK pathway,

which may be the potential mechanism for promoting the

malignant progression of LUAD by EPHB2. Interestingly, Gln

deprivation significantly downregulated EPHB2 expression, and

knockdown of EPHB2 in turn downregulated key regulators of

Gln metabolism, such as GLS, GLUL, SLC7A7 and GLUD1.

Meanwhile, the results of enrichment analysis after

transcriptome sequencing showed that EPHB2 was associated

with cellular metabolic regulation and response to amino acid

stimulus. Therefore, we speculate that EPHB2 may be involved in

the Gln metabolic pathway, which has yet to be reported.

Based on transcriptome sequencing analysis, EPHB2 was also

significantly associated with cell communication and immune

regulation. Although previous studies reported that EPHB2

promoted monocyte activation and T-cell migration, studies

investigating the regulation of tumor immunity by EPHB2 are

still unavailable (39, 40). In our study, we found that EPHB2 was

mainly enriched in macrophages, especially in M2 types. EPHB2

expression in M0 macrophages enhanced the levels of M2

macrophages, and the expression of EPHB2 in M2 macrophages

reduced the composition of activated and resting NK cells

(Figure 14). These results suggest that EPHB2 may promote M2-

like polarization and also mediate the interactions between M2

macrophages and NK cells, which in turn suppress NK cell

infiltration or proliferation. Previous studies revealed that the

expression of EPHB2 was significantly correlated with trans-

differentiation of monocytes into macrophages by upregulating

CCL2 and IL-8 (40). However, no previous study explored the

function of EPHB2 in M2 macrophages, which was precisely the

focus of our study. Previous research revealed that Gln metabolism

positively regulated M2-like polarization of macrophage, which

may be the potential mechanism of regulating M2-like

polarization by EPHB2 (13).

However, our study did not elucidate the mechanism of

EPHB2 in LUAD cells and M2 macrophages, which will be

addressed in future studies.

In conclusion, based on the regulators of Gln metabolism,

we finally constructed a Gln metabolism-related risk model to
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accurately predict the prognosis of patients with LUAD and even

multiple cancers as well as the efficacy of multiple

immunotherapies. In addition, we described the Gln

metabolism of cells in TME at the single-cell level. Finally,

EPHB2, a Gln metabolism-related molecule in the model was

shown to promote the malignant progression of LUAD cells and

also play an essential role in M2 macrophages.
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Establishment of three
heterogeneous subtypes and a
risk model of low-grade gliomas
based on cell senescence-
related genes

Jing Chen1*†, Lingjiao Wu2†, Hanjin Yang3, XiaoChen Zhang1,
SuZhen Xv1 and Qiong Qian1

1Department of Medical Oncology, The First Affiliated Hospital of College of Medicine, Zhejiang
University, Hangzhou, China, 2Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The
First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, 3Department of
Pathology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
Background: Cellular senescence is a key element in the occurrence and

progression of a variety of tumors. As a result, cellular senescence-related

markers can be categorized based on the prognosis status of patients. Due to

the heterogeneity and the complexity of the tumor microenvironment (TME),

the long-term effectiveness of low-grade glioma (LGG) treatment remains a

clinical challenge. Consequently, developing and refining effective treatment

approaches to aid with LGG management is critical.

Methods: Based on the expressions of cell senescence-related genes (CSRGs)

acquired from the cellAge database, consensus clustering was utilized to

identify stable molecular subtypes. Clinical features, immune infiltration,

route modifications, and genetic changes of various subtypes were also

assessed. Following that, the least absolute shrinkage and selection operator

(LASSO) regression and univariate Cox regression analysis were used for

developing the cell senescence-related risk score (CSRS) model. Finally, a

correlation study of the CSRS model with molecular, immunological, and

immunotherapy parameters was performed.

Results: C1, C2, and C3, are the three senescence-related subtypes that were

identified. Patients belonging to the C1 subtype had poor prognoses and a

substantial proportion of themwas in the grade G3. The differentially expressed

genes (DEGs) among the three subtypes were used to develop the CSRSmodel.

In both the training and independent validation cohort, the model had a high

area under the receiver operating characteristic (ROC) curve in predicting the

overall survival (OS) of patients. As a result, this model can predict clinical

features and responses to immunotherapy in a variety of patients and it is a

potential independent prognostic factor for LGG.
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Conclusion: This research discovered three LGG subtypes related to cell

senescence and created a CSRS model for six genes. Cell senescence was

highly associated with unfavorable prognosis in LGG. The CSRS model can be

used to predict the prognosis of patients and identify patients who would

benefit from immunotherapy.
KEYWORDS

low-grade glioma, cell senescence, tumor microenvironment, molecular subtypes,
prognostic model
Introduction

Low-grade glioma (LGG) is a common central nervous

system tumor that typically consists of World Health

Organization grades II and III and is less malignant than

glioblastoma (GBM) (1). LGG has recently been shown to

have molecular traits that can help with diagnosis and

treatment. IDH1, IDH2, TP53, EGFR, and ATRX mutations,

1p/19q co-deletion, and MGMT promoter methylation are all

known prognostic markers for LGG patients. These genetic

characteristics, on the other hand, are unable to accurately

predict survival outcomes. Despite advancements in LGG

therapies such as surgical resection, adjuvant chemotherapy,

postoperative radiation, and immunotherapy (2), patients with

LGG still have a low overall survival rate. Therefore, studying the

underlying molecular mechanisms of LGG initiation and

progression for identifying effective biomarkers is crucial to

optimizing LGG diagnosis and treatment regimes.
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Cell senescence is a sustained proliferative arrest hallmarked

by changes in cell shape, gene expression, heterochromatin

formation, and metabolic activity caused by excessive stress-

inducing stimuli (3). Following the identification of various cell

senescence-related markers, cellular senescence has been

detected in several malignancies in recent years. Cell

senescence serves two purposes. On the one hand, because

their proliferative capacity is reduced, senescent tumor cells

can impede carcinogenesis (4). Furthermore, tumorigenic Ras

expression is linked to the presence of senescent cells in diverse

cancer lesions (5). In precancerous lesions, inactivation of tumor

suppressors promotes cell senescence. Moreover, VO-OHpic, a

phosphate and tension homology deleted on chromosome ten

(PTEN) inhibitor, also promotes cell senescence and reduces

carcinogenesis (6). On the other hand, senescent cells often have

oncogenic properties. The senescence-associated secretory

phenotype (SASP) has been observed, and it can affect the

tumor microenvironment in both the autocrine environment

and paracrine manner. In mammary epithelial cells, senescent

human fibroblasts can induce the formation of precancerous and

malignant mammary epithelial cells (7). The CXCR2 ligands

GRO- and IL-8 can drive malignant melanocytes to develop by

expressing high levels of CXC chemokine receptor 2 (CXCR2)

(8, 9). Senescent stromal cells can aid cancer cell metastasis by

promoting epithelial-mesenchymal transition (EMT) (10). As a

result, cell senescence is important for tumor progression, tumor

pathway modulation, and immunotherapeutic responses. As a

result, identifying cell senescence-related genetic traits can aid in

a more thorough investigation of the mechanisms underlying

the link between LGG progression and cellular senescence.

Several systems biology approaches are currently available for

identifying biomarkers and constructing genetic signatures

linked to the prognosis of patients with LGG. Tan et al. looked

at immune-related genes in LGG and discovered six genetic

markers that could help diagnose LGG and predict patient

prognoses (11). Bai et al. examined N6-adenosine methylation

(m6A) methylation-regulated genes in LGG and built a

prognostic model based on their findings, to improve

prognosis prediction accuracy in LGG patients (12).
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Using Cox regression analysis, Liu et al. created a ten-gene

signature for LGG (13). Young people with LGG, on the other

hand, have a terrible prognosis. As a result, more stable

prognostic models, as well as particular markers, must

be investigated.

In this research, we studied stable molecular subtypes

according to cell senescence-related genes (CSRGs) by constant

clustering and carried out a comparison of pathway and immune

features among subtypes. Afterward, differential expression

analysis and LASSO were used to find prognosis-related CSRGs.

Moreover, we made a cell senescence-related risk score (CSRS)

model that can help in the treatment of LGG and aid in

developing personalized treatment strategies for affected people.
Materials and methods

Data collection and pre-processing

The LGG dataset (TCGA–LGG) was gathered from The

Cancer Genome Atlas and comprised RNA sequencing (RNA-

seq) data and clinical information from 506 samples (TCGA).

The Chinese Glioma Genome Atlas (CGGA, http://www.cgga.

org.cn/) was also retrieved to obtain “mRNAseq 693 (batch1)”

and “mRNAseq 325 (batch2).” By combining two batches of

RNA-seq data, a total of 408 LGG samples (CGGA cohort) were

included in this study. Following that, the TCGA–LGG and

CGGA cohorts were employed as the training and validation

sets, respectively. In addition, the cellAge database (https://

genomics.senescence.info/cells/) yielded 279 CSRGs.
Molecular typing of CSRGs

To classify data into distinct kinds, consistency matrices

were created using the ConsensusClusterPlus R package’s

consistency clustering function (14). The samples’ molecular

subtypes were determined using CSRG expression data. Then,

using the “km” method and “canberra” as the metric distance,

500 bootstraps were run, with each bootstrapping operation

involving 80 percent of the patients in the training set. To

establish the molecular subtypes of the samples, the number of

clusters was varied from 2 to 10, with the ideal number

established by computing the consistency matrix and the

consistency cumulative distribution function.
Lasso Cox regression analysis

A shrinkage estimation algorithm is the Lasso method. It

constructs a penalty function that decreases some coefficients

while setting others to zero, resulting in a more refined model.

As a result, it preserves the benefit of subset shrinking and is a
Frontiers in Immunology 03
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biassed estimator for multicollinear data. As a result, it is

possible to pick variables while estimating parameters,

allowing it to better tackle the multicollinearity problem in

regression analysis. The Lasso Cox regression was carried out

in this work with the help of the R package glmnet (15).
Construction and evaluation of the
CSRS model

The coxph function in the survival R package (https://mran.

microsoft.com/web/packages/survival/index.html) was used to

perform a univariate Cox analysis of CSRGs in the TCGA–LGG

and CGGA cohorts, yielding two sets of CSRGs closely linked to

the prognosis of LGG patients, and the overlapping genes were

chosen for further analysis with the criterion of P value less than

0.05. Then, across the three categories previously identified,

differently expressed CSRGs were discovered. Lasso regression

was used to minimize the number of genes to produce

prognosis-related CSRGs. The MASS package’s stepAIC was

applied to further compress the number of prognostic CSRGs.

StepAIC starts with the most complicated model and removes

one variable at a time to reduce the AIC, with a smaller AIC

value indicating a better model that achieves a sufficient fit with

fewer parameters. In addition, each patient’s CSRS was

calculated using the following equation: CSRS=Sbi×Expi,
where Expi is the level of gene expression of prognosis-related

CSRGs and b is the Cox regression coefficient of corresponding

genes. CSRS score was converted to z-score. We set z-score = 0 as

a cut-off to classify samples into high- (z-score > 0) and low-risk

(z-score < 0) groups. Furthermore, the Kaplan–Meier (KM)

algorithm was utilized for plotting the survival curves for

subsequent prognostic studies. Finally, we used a log-rank test

for determining the value of differences.
Single-sample gene set
enrichment analysis

The R package GSVA (16) was used to perform a single-

sample gene set enrichment analysis (ssGESA) on the gene

expression profiles corresponding to LGG samples in the

TCGA–LGG cohort to examine the association between CSRS

and biological functions in various samples. The scores of each

sample on various functions were then measured (i.e., ssGSEA

scores for each sample corresponding to each function). Finally,

we calculated the correlations between these functions and CSRS.
Patient response to different
immunotherapies and drugs

To predict the clinical responsiveness of patients in the high-

and low-CSRS groups to immune checkpoint inhibitors, the
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Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

was utilized (17). The TIDE algorithm probed into the M2

subtype of cancer-associated fibroblast (CAF), myeloid-derived

suppressor cells (MDSCs), and tumor-associated macrophages

as three cell types that reduced T-cell infiltration in cancers

(TAMs). To avoid immune evasion, this algorithm used two

different mechanisms: a malfunction score for tumor-infiltrating

cytotoxic T cells (CTLs) and an exclusion score for the

immunosuppressive factor CTL. Immune escape is more likely

with a higher TIDE prediction score, implying that patients are

less likely to benefit from immunotherapy. Moreover, we

measured the half-maximal inhibitory concentration (IC50) of

the drug using the pRRophetic R package (18) to observe the

sensitivity of patients in the high- and low-CSRS groups to

different chemotherapeutic agents and targeted drugs.
Gene set enrichment analysis

In distinct biological processes, GSEA can reveal pathways of

various molecular subtypes. GSEA was used in this investigation

with all candidate gene sets from the Hallmark database (19),

and FDR<0.05 was set as the criterion of substantial enrichment.
Cell abundance in TME

The relative abundance of 22 immune cells in LGG was

quantified using the CIBERSORT algorithm (20)(https://

cibersort.stanford.edu/). The fraction of immune cells was also

determined with the help of the Estimation of STromal and

Immune cells in MAlignant Tumours Using Expression Data

(ESTIMATE) software (21).
Statistical analysis

R (https://www.r-project.org/, version 3.6.3) was used for all

statistical studies and data visualization. P < 0.05 represented a

significant difference, and all estimated P-values were two-tailed.
Results

Identification of three cell senescence-
related molecular subtypes of LGG

Initially, we carried out a univariate cox analysis (P < 0.05)

on CSRGs from both TCGA–LGG and CGGA datasets to get

115 genes strongly linked to LGG patients’ prognoses.

Afterward, by consistent clustering, we grouped 506 LGG

samples. Cluster number was optimized using the cumulative
Frontiers in Immunology 04
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distribution function (CDF), and the CDF delta area curve

suggested that the outcomes of clustering were stable when the

number of clusters was 3 (Figures 1A, B). Consequently, the

number (k) was selected as three to get three molecular subtypes

(Figure 1C). We further studied the prognostic features of these

three molecular subtypes. We observed a remarkable difference

in patient prognosis between the three molecular subtypes in the

TCGA–LGG cohort (Figure 1D), the best prognosis was

observed in patients of the C3 subtype and patients of the C1

subtype showed the worst prognosis. Moreover, the mortality of

patients in the C1 subtype was greatly enhanced in comparison

with those in the C3 subtype (Figure 1E). Afterward, using the

same strategy, molecular typing was carried out on samples in

the CGGA cohort and we observed similar a remarkable

difference in the prognosis of patients belonging to these three

molecular subtypes (Figures 1F, G), which aligned with the

outcomes from the TCGA–LGG training set. Then, a

comparison was done between the CSRSs in the various

molecular subtypes in the TCGA–LGG and CGGA cohorts

(Figures 1H, I). Remarkable differences were observed in

CSRSs of various molecular subtypes, the lowest CSRS was

observed in the C1 subtype and the highest in the C3 subtype.
Differences in clinicopathological
characteristics among three molecular
subtypes

The TCGA dataset was used for comparing the differences in

clinical features among the three subgroups. There was no

discernible gender difference between the three categories.

However, the C1 subtype had a higher number of patients in

the G3 grade, whereas the C2 and C3 subtypes had a higher

proportion of patients in the G2 grade. In terms of IDH

mutations, the C2 and C3 subtypes had the highest frequency

of patients with mutations. Furthermore, the C3 subtype had a

considerably larger number of individuals with 1p19q co-

deletion than the C1 and C2 subtypes. Individuals with the C2

and C3 subtypes also had considerably more MGMT promoter

methylation events than patients with the C1 subtype (Figure

S1A). Patients who experienced both IDH mutations and 1p19q

co-deletion also had the greatest prognosis, with a median OS of

8 years. Patients with an IDH mutation but no 1p/19q deletion

(astrocytoma) had a median survival time of 6.4 years.

Furthermore, patients with IDH wild-type LGG had a median

OS of 1.7 years, which was comparable to those with IDH wild-

type glioblastoma and commensurate with the prognosis of

patients with the C3 subtype. In the CGGA cohort, differences

in age, gender, grade, IDH mutation, 1p19q co-deletion, and

MGMT promoter methylation were compared (Figure S1B). In

the CGGA cohort, differences in age and gender were

not significant.
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Differences in mutational characteristics
among three molecular subtypes

We analyzed the mutational profiles of various molecular

subtypes further for revealing the possible underlyingmechanisms

used in the classification of cell senescence-related subtypes. In

this report, data on the molecular properties in the TCGA–LGG

cohort was retrieved from previous research on pan-cancer (22).

The cellular senescence subtypes were linked with measures of

DNA damage, such as the fraction of genome altered, homologous

recombination defects, aneuploidy, tumor mutation burden, and

the number of segments. Moreover, patients of the C3 subtype

had lower scores of aneuploidies, number of segments, fraction

altered, homologous recombination defects, and tumor mutation

burden (Figure 2A). Additionally, further molecular subtypes

were provided in the above study. Therefore, these six molecular

subtypes were compared with our three molecular subtypes

(Figure 2B). More “Codel” molecular subtypes were discovered
Frontiers in Immunology 05
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in the C3 subtype and more “G-CIMP-high” molecular subtypes

in the C2 subtype. Furthermore, LGG was sorted into six

molecular subtypes based on 160 different immune signatures in

the above study, the best prognosis was observed in patients of

immunoassay subtype C3 and the worst prognosis was seen in

subtypes C4 and C6. Hence, a comparison of these six immuno-

molecular subtypes was carried out with the three molecular

subtypes. We defined and observed that the C4 subtype of the

immuno-molecular subtypes occupied more of the C1 subtypes

(Figure 2C). Additionally, the connection between gene mutations

and molecular subtypes was studied and a strong correlation was

identified. In LGG, ATRX, CIC, IDH1, TP53, and TTN genes

went through numerous somatic mutations. The IDH1 gene

among them had a higher frequency of mutations in C2 and C3

subtypes, and patients with IDH1/2 mutations showed a better

prognosis. Moreover, the TP53 gene had the highest mutation

frequency in the C subtype , fo l lowed by the C1

subtype (Figure 2D).
A
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F G IH

C

FIGURE 1

LGG subtypes sorted by CSRGs found in the TCGA–LGG and CGGA cohorts. (A) CDF curves of TCGA–LGG cohort samples. CDF curves for
consensus scores (based on different numbers of subtype, k = 2 – 10) are illustrated using various colors; (B) CDF Delta area curves for samples
in the TCGA–LGG cohort; (C) Clustering plot of consensus scores for samples in the TCGA–LGG cohort at k = 3; (D) KM curves indicating
prognostic differences between the three molecular subtypes in the LGG cohort; (E) Differences in survival status of patients from different
subtypes in the TCGA–LGG cohort; (F) KM curves indicating prognostic differences between the three molecular subtypes in the CGGA cohort;
(G) Differences in survival status of patients from different subtypes in the CGGA cohort. (H) Differences in CSRS between the three molecular
subtypes in the TCGA–LGG cohort; (I) Differences in CSRSs between the three molecular subtypes in the CGGA cohort. Significance was
measured by variance analysis (*P < 0.05; ***P < 0.001; ****P < 0.0001).
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Differences in immune characteristics
among three molecular subtypes

To better understand the differences in the immunological

milieu of patients belonging to distinct molecular subtypes, the

degree of immune cell infiltration of patients in the TCGA–LGG

cohort was measured using the expression levels of genes in

immune cells. CIBERSORT was used to calculate the relative

abundance of 22 immune cell types (Figure 3A), and most

immune cell subtypes differed significantly. Immune cell

infiltration was measured using ESTIMATE (Figure 3B), and

patients belonging to the C1 subtype had a considerably higher
Frontiers in Immunology 06
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“ImmuneScore” and immune cell infiltration degree than patients

belonging to other subtypes. Finally, the immune infiltration

degree of samples in the CGGA cohort was examined

(Figures 3C, D), and a similar phenomenon was observed as in

the TCGA cohort. Moreover, EPIC analysis also displayed the

similar result with CIBERSORT analysis (Figures 3E, F).

Pathway analysis of different
molecular subtypes

We performed GSEA on all candidate gene sets from the

Hallmark database (19) to find out the differentially activated
A

B

D

C

FIGURE 2

Comparison of genomic alterations among the three molecular subtypes. (A) Differences in fraction altered, the number of segments,
homologous recombination defects, aneuploidy score, and tumor mutation burden in the molecular subtypes in the TCGA–LGG cohort;
(B) Comparison of the three molecular subtypes with immuno-molecular subtypes; (C) Comparison of the three molecular subtypes with other
molecular subtypes; (D) Somatic mutations in the three molecular subtypes. (ns, no significance. *P < 0.05, ***P < 0.001, ****P < 0.0001).
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pathways (DAPs) in different molecular subtypes. The C1 subtype

was considerably enriched in 27 DAPs in the TCGA cohort, while

35 DAPs were significantly enriched in the CGGA cohort

(Figures 4A, B). In addition, in different LGG cohorts, aberrant

routes between C1 and C3 subtypes were compared (Figure 4B).

Immune-related pathways such as interferon-gamma, interferon-

alpha, allograft rejection, and inflammatory response were the

most common DAPs. E2F targets, G2M checkpoint, and Myc

targets v1 were also active, as were some cell cycle-related pathways

(Figure 4C). Following that, DAPs between C1 and C2, C1 and C3

subtypes, and C2 and C3 subtypes in different TCGA–LGG

cohorts were compared (Figure 4D). Immunomodulatory

pathways, cell cycle-related pathways, and numerous critical

tumor-related pathways, including P53, hypoxia, and EMT, were
Frontiers in Immunology 07
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all active in patients with the C1 subtype. As a result, CSRGs might

have an important role in both the immunosuppressive and

malignant microenvironments (TME).
Identification of DEGs associated with
cell senescence-related subtypes

CSRGs were used to identify three separate molecular

subtypes that were significant in the univariate analysis.

Following that, with the criterion of FDR < 0.05 and |

log2FC| > 1, the limma package was utilized for calculating the

differentially expressed CSRGs (DECSRGs) across C1 and non-

C1, C2, and non-C2, and C3 and non-C3 molecular subtypes. By
A B

D

E F

C

FIGURE 3

Proportions of immune cell components in the two LGG cohorts. (A) Differences in 22 immune cell scores among different molecular subtypes
in the TCGA–LGG cohort; (B) Differences in ESTIMATE immune infiltration in various molecular subtypes in the TCGA–LGG cohort;
(C) Differences in 22 immune cell scores in various molecular subtypes in the CGGA cohort; (D) Differences in ESTIMATE immune infiltration
among various molecular subtypes in the CGGA cohort. (E, F) EPIC analysis for the estimated proportion of immune cells in TCGA-LGG (E) and
CGGA (F) cohorts. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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looking for DECSRGs in different molecular subtypes, a total of

21 genes were discovered. For gene number reduction in the risk

model, Lasso regression was employed to compress these 21

CSRGS even more. The number of independent variables whose

coefficients tended to zero gradually rose as the lambda

increased, as illustrated in Figure S2A, and the number of

independent variables whose coefficients tended to zero

gradually increased as the lambda increased. The confidence

intervals under each lambda were assessed after the model was

built using 10-fold cross-validation (Figure S2B). When lambda

= 0.0317, the model was at its best. As a result, the target genes

for the subsequent analyses were chosen from a list of eight

genes with lambda = 0.0317. We also used the Akaike

information criterion (AIC) to run a stepwise multivariate

regression analysis based on these eight genes. AIC considers

the model’s statistical fit as well as the number of parameters

required to fit it. The MASS package’s stepAIC technique starts

with the most complicated model and removes one variable at a

time to reduce the AIC, with a smaller AIC value indicating a

better model that achieves a sufficient fit with fewer parameters.
Frontiers in Immunology 08
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Finally, six genes were identified as prognosis-related CSRGs:

thymosin beta 4 (TMSB4X), cyclin-dependent kinase 6 (CDK6),

forkhead box M1 (FOXM1), insulin-like growth factor-binding

protein-5 (IGFBP5), integrin beta 4 (ITGB4), and IGFBP3

(Figure S2C).
Construction and validation of the
clinical prognostic model

We used the expression levels and coefficients of six CSRGs

to develop a prognostic model related to cellular senescence.

Each sample’s CSRS was measured and normalized based on the

CSRS calculation equation. Afterward, the samples were sorted

into high- and low-risk (CSRS) groups as per the normalized

cutoff value (0). The CSRS distribution of patients in the TCGA–

LGG cohort is illustrated in Figure 5A. The mortality rate of

patients in the high-risk group was high with a shorter survival

time. Consequently, the worse prognosis of patients was related

to high CSRSs. Furthermore, six genes had greatly increased
A B

DC

FIGURE 4

Comparative analysis of pathways between the three different molecular subtypes. (A) GSEA outcomes of C1 vs C3 in the TCGA–LGG cohort;
(B) Bubble plots of GSEA outcomes of C1 vs C3 in two LGG cohorts; (C) Bubble plots of comparative outcomes between various molecular
subtypes in the TCGA–LGG cohort; (D) Radar plot of consistently activated pathways in the TCGA–LGG cohort (C1 vs C2 and C2 vs C3).
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expression levels with increasing CSRSs. Furthermore, ROC

analysis for prognostic classification was done with the help of

R package timeROC (23) and quantified the one-, three-, and

five-year prognostic predictive effectiveness (Figure 5B), and the

model had high AUC values (one-, three-, and five-year AUC

values of 0.87, 0.84, and 0.75, respectively). Finally, the KM curve

indicated a significant difference in survival between patients in

the high- and low-CSRS groups (P < 0.0001), showing that the

overall survival of patients having higher CSRSs was worse in the

training cohort (Figure 5C). In addition, a validation analysis

was done in the CCGA cohort to confirm the strength of the

CSRS model. The CSRSs of patients in the CCGA cohort were

identified similarly and the analysis outcomes are demonstrated

in Figures 5D, E. Similar outcomes were seen in the validation

cohort, patients with high CSRSs had a poor prognosis, and

patients with low CSRSs had a better prognosis (P < 0.0001).
Frontiers in Immunology 09
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CSRS distribution in different
clinicopathological characteristics and
patient prognosis
The CSRS distribution in the TCGA–LGG cohort was

examined amongst different groups. Grade, IDH Mutation,

IDH/codel subtype, and MGMT promoter methylation all

showed significant differences in CSRS score in both two

cohorts (Figures S3A, B). We also looked at the differences in

CSRS between molecular subtypes, finding that patients with the

C1 and C3 subtypes had the highest and lowest CSRS,

respectively. The prognostic difference between our established

high- and low-risk categories in the TCGA–LGG cohort was also

evaluated, with the results indicating that our risk groupings

were reliable (Figure S3C).
A B

D E

C

FIGURE 5

The creation and validation of the clinical prognostic model. (A) CSRS, survival time, survival status, and CSRG expression in the TCGA–LGG
dataset; (B) ROC curves and AUC of CSRS in the TCGA–LGG dataset; (C) KM survival curves of CSRS in the TCGA–LGG dataset; (D, E) ROC
curves and KM survival curves of CSRS in the CGGA cohort.
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Differences in immune/pathway
characteristics between different
SRS groups

To better understand the changes in the immunological

milieu, researchers analyzed the relative abundance of 22

immune cells in the TCGA–LGG cohort’s high- and low-CSRS

groups (Figure 6A). The relative abundance of immune cells in

the two groups differed significantly. ESTIMATE was also used

to measure immune cell infiltration (Figure 6B). Patients with a

high CSRS had considerably greater “ImmuneScore” and levels

of immune cell infiltration than those with a low CSRS. Similar

findings were also reported in the CGGA cohort (Figures 6C, D).

The link between CSRS and 22 immune cells was then

investigated (Figure 6E). CSRS was found to have a

remarkable association with B cell naive, plasma cells, naive

CD 4 T cells, M0macrophages, andM1macrophages. Moreover,

we performed ssGSEA for calculating the correlation coefficient

of these pathways with CSRS (Figure 6F) and filter out the
Frontiers in Immunology 10
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pathways with a correlation coefficient greater than 0.6. Most of

these pathways, like the p53 signaling pathway, JAK-STAT

signaling pathway, and ECM receptor interaction had a

positive relationship with CSRS. Moreover, a major positive

correlation was observed between CSRS and necroptotic score

(P = 1.35e-33, R = 0.5) (Figure 6G). Finally, the link between the

age of the patients and CSRS was measured and a major positive

association was observed between CSRS and age (P =0.013, R =

0.11) (Figure 6H).
Differences in immunotherapy/
chemotherapy efficacy between different
CSRS groups

The differences in immunotherapy sensitivity across patients

in different CSRS groups in the TCGA–LGG cohort were

investigated further. The difference in immune checkpoint

expression between the two CSRS groups was first compared
A B

D

E

F

G H

FIGURE 6

Differences in immune/pathway properties between different CSRS groups. (A) Proportion of immune cells in the TCGA–LGG cohort;
(B) Proportion of immune cells in the CGGA cohort; (C) Proportion of immune cells in the TCGA–LGG cohort measured using the ESTIMATE
software; (D) Proportion of immune cells in the CGGA cohort calculated using the ESTIMATE software; (E) Correlation analysis of 22 immune
cells with cellular CSRS in the TCGA–LGG cohort; (F) Correlation analysis outcomes of KEGG pathways with a correlation coefficient greater
than 0.6 with CSRS; (G) Correlation analysis of CSRS with prognosis-related CSRS in the TCGA–LGG cohort; (H) Correlation analysis of age with
prognosis-related CSRS in the TCGA–LGG cohort. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.982033
(Figure 7A). The expression of most immune checkpoint genes

differed between the two CSRS groups. Immune checkpoint gene

expression was found to be considerably higher in the high-

CSRS groups than in the low-CSRS groups. Following that, the

immunotherapy efficacy differences between the two CSRS

groups were compared. The TIDE program was used to

evaluate the clinical effects of immunotherapy on the two

categories of patients. No significant differences in MDSC,

dysfunction, exclusion, or TIDE scores were found in the

TCGA–LGG cohort, as illustrated in Figure 7B. The response

of patients in the two CSRS groups in the TCGA–LGG cohort to

traditional chemotherapy medications such as Temozolomide,

Bleomycin, Cisplatin, Cyclopamine, and Bleomycin, as well as

targeted therapies such as A-443654, AZD6482, and GDC0941,

was also studied. Cisplatin, A-443654, and Bleomycin were more

sensitive in the high-CSRS group, whereas AZD6482,

Cyclopamine, and GDC0941 were more sensitive in the low-

CSRS group (Figure 7C).
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CSRS–nomogram improves the
accuracy of patient prognosis and
survival prediction

Univariate and multivariate Cox regression analyses of CSRS

and clinicopathological features in the TCGA–LGG cohort

revealed that CSRS was the most important prognostic predictor,

with age being an independent prognostic factor (Figures 8A, B).

Following that, a nomogram including CSRS and age was created

(Figure 8C). The most significant impact on survival prediction

was CSRS. The calibration curve was used to further assess the

model’s prediction accuracy (Figure 8D). Furthermore, the one-,

three-, and five-year prediction calibration curves nearly coincided

with the standard curve, indicating that the nomogram performed

well in terms of prediction. Furthermore, decision curve analysis

(DCA) was used to verify the model’s robustness, and both CSRS

and nomogram yielded much more advantages than the extreme

curves. Furthermore, when compared to age, both the nomogram
A

B

C

FIGURE 7

Differences in immunotherapy/chemotherapy effectiveness among two different CSRS groups. (A) Differentially expressed immune checkpoints
between two CSRS groups in the TCGA–LGG cohort; (B) Differences in TIDE analysis outcomes among two CSRS groups in the TCGA–LGG
cohort; (C) Box plots of the estimatedIC50 for Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A-443654, AZD6482, GDC0941, and
Bleomycin in TCGA–LGG cohort. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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and the CSRS had a better ability to predict prognosis

(Figures 8E, F).
Discussion

In clinical practice, the long-term efficacy of LGG therapy

has been a significant issue due to the instability of LGG and the

complexity of TME. Therefore, we need to develop and optimize

the appropriate therapeutic interventions urgently. With the

development of microarray technology and RNA-seq, many

research studies have used gene expression profiles to

categorize tumors. Predictive models according to gene

expression profiles using mathematical and statistical modeling

techniques have tremendous clinical potential. Cells undergo

different types of senescence depending on the type of stress and/

or stimulus, including stress-induced premature senescence

(SIPS), oncogene-induced senescence (OIS), replicative

senescence (RS), paracrine senescence (PS), treatment-induced

senescence (TIS) and epigenetics-induced senescence (EIS) (24).

Senescent cells collect in various organs and tissues with different

physiological and pathological functions (25). Many preclinical

studies prove that chemotherapy and radiotherapy cause

senescent cells to accumulate in normal tissues as well as

tumors. Though, senescent cells in tumors can partially

stimulate metastasis, tumor recurrence, and resistance to
Frontiers in Immunology 12
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therapy by expressing a secretory phenotype linked with aging.

Moreover, senescent cells in normal tissues can worsen the side

effects caused as a result of certain chemotherapies or radiation.

Therefore, cellular senescence can be an important target for the

treatment of cancer due to its several roles (26).

506 and 408 LGG samples were acquired from TCGA and

CGGA, respectively, for this study. Based on the expression of

115 prognosis-related CSRGs, HCC samples from each cohort

were divided into three subtypes, with significant differences in

OS between the three subtypes. The clinicopathological, genetic,

route, and immunological aspects of the three subgroups were

then compared. The C1 subtype had a worse prognosis, had the

largest prevalence of TP53 gene alterations, and had a significant

degree of immune cell infiltration, with a large proportion of

them in the G3 stage. Immunomodulatory and cell cycle

pathways were also active in these patients. As a result, CSRGs

may be important in the immunosuppressive microenvironment

and TME. Finally, differential analysis of and LASSO found a

total of six prognosis-related CSRGs, including TMSB4X, CDK6,

FOXM1, IGFBP5, ITGB4, and IGFBP3.

CDK6 is a major component of the cell cycle that drives the

transition from the G1 to the S phase by phosphorylating and

inactivating the retinoblastoma protein (27). Activation of the

YAP–CDK6 pathway may slow down the aging of the brain as

well as the resulting neurodegenerative diseases (28). Dysregulated

CDK6 promotes the senescence bypass during tumorigenesis and
A
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FIGURE 8

Developing the nomogram according to CSRS. (A, B) Univariate and multivariate Cox analysis of CSRS and clinicopathological properties;
(C) Constructing a Nomogram model; (D) One-, three-, and five-year calibration curves for the nomogram; (E) Decision curve for the
nomogram; (F) Prognosis-related AUC predicted by different clinical variable ***P < 0.001.
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progression and its inhibition restores the senescence response in

tumor cells (29). Akt/Fox M1 signaling pathway-mediated

MYBL2 upregulation promotes the progression of human

glioma (30) and is a probable candidate gene for molecular

targeted therapy and a biomarker for glioma-related radiation

therapy. In breast cancer, FOXM1 has a role in response to DNA

damage, genotoxic drug resistance, and DNA damage-induced

senescence (31). IGFBP-5 is elevated during cellular senescence in

response to the tumor suppressor p53 activation; this mechanism

mediates interleukin-6/gp130-induced PS of human fibroblasts,

irradiation-induced PS of human endothelial cells, and RS of

human endothelial cells independent of IGF-I and IGF-II (32).

ITGB4 is a structural adhesion molecule and clears airway

epithelial cells by activating the p53 pathway in vitro and in

vivo, and its deficiency results in senescence (33). Interfering with

the NTN4-ITGB4 connection or using inhibitors of the AKT

pathway concurrently with temozolomide may protect against

temozolomide-induced senescence in glioblastoma and improve

therapeutic efficiency (34). IGFBP3 is a hypoxia-inducible gene

that regulates multiple cellular processes, such as senescence,

apoptosis, cell proliferation, and EMT (35). Domenico et al.

identified IGFBP-3 as one of the genes linked with senescence

genes in human gliomas (36). Though the link between the

progression of TMSB4X and LGG was not reported, and it is

required to explore in detail.

Based on prognosis-related SCRGs, a clinical prognostic

CSRS model was developed in this work. The model exhibited

great robustness and sustained prediction accuracy in

independent datasets, regardless of clinicopathological features.

Furthermore, this model exhibited a high prediction accuracy

and excellent survival prediction power, demonstrating

significant efficacy in predicting the OS of LGG patients and

describing the clinical characteristics of distinct individuals. The

CSRS algorithm assigned each sample a unique risk score and

divided patients into different risk groups. Patients in the high-

CSRS group had a worse prognosis than those in the low-CSRS

group, confirming our hypothesis. Furthermore, in the

TCGA–LGG and CGGA cohorts, significant differences in the

distribution of CSRS were detected amongst clinicopathological

feature groupings. Patients in the high-CSRS group had a

considerably higher “ImmuneScore” than those in the low-

CSRS group, and the expression of most immune cells differed

significantly between the two groups. Cisplatin, A-443654, and

Bleomycin sensitivity were also higher in the high-CSRS group.
Conclusion

The identification of three cell senescence-related molecular

subtypes helped to understand the crosstalk between cell

senescence and LGG development. Cell senescence had an

association with activated tumor-related pathways and

immune infiltration. Cell senescence was highly associated
Frontiers in Immunology 13
169
with unfavorable prognosis, which may contribute to LGG

development. High cell senescence score was significantly

correlated with poor prognosis and high CSRS score. In

addition, the CSRS model, a classifier, was constructed and

verified. This model exhibited great robustness and stable

prediction performance in independent datasets, regardless of

clinicopathological features. Furthermore, this model exhibited a

high prediction accuracy and significant survival prediction

power, which aids in prognosis prediction and the selection of

optimal treatment for patients. Overall, the synergistic effect of

pro-and anti-aging therapies in cancer can be used to design

novel therapeutic techniques.
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Pancreatic adenosquamous carcinoma (ASPC) is a rare subtype of pancreatic

cancer with lethal malignancy, and few studies have focused on the

heterogeneity of ASPC. Here, we performed a single-cell sequencing

procedure on pancreatic tumor tissue from an ASPC patient and a patient

with high-grade intraductal papillary mucinous neoplasm (IPMN). Through the

combined analysis of single-cell sequencing data from five pancreatic ductal

adenocarcinoma (PDAC) patients, one IPMN patient, and one ASPC patient in a

public database, we identified 11 main types of cells, including macrophages, B

cells, cancer stem cells, ductal cells, fibroblasts, endo/stellate cells, neutrophils,

acinar cells, T cells, natural killer (NK) cells, dendritic cells, and mast cells. Then,

the different characteristics and differentiation paths of the immune

microenvironment among IPMN, ASPC, and PDAC in macrophages, T cells,

and cancer-associated fibroblasts (CAFs) were identified through multiple

bioinformatics analyses. Two novel special cancer-associated fibroblasts

were identified as nCAFs and imCAFs. Then, cancer cells in duct cells were

identified using the infercnv software. Two ASPC-specific subgroups of cancer

cells with squamous cell features were identified. Finally, the identified specific

CAFs and cancer cells were mapped to TCGA-PAAD cohort through the

cibersoftx software. All of these identified subgroups were calculated to have

a significant prognostic value in pancreatic cancer patients. These findings will

promote the clinical application of single-cell sequencing data of pancreatic

cancer and deepen our understanding of ASPC.
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Introduction

Pancreatic cancer is one of the most malignant solid tumors.

In 2018, it affected 450,000 people worldwide, and there were

more than 40,000 related deaths. The overall 5-year survival rate

of pancreatic cancer is less than 3.5%, indicating that it is a

serious threat to the lives and health of patients worldwide (1).

The major subtype of pancreatic cancer is pancreatic ductal

adenocarcinoma (PDAC) (2). Pancreatic adenosquamous

carcinoma (ASPC) is a rare subtype of malignant pancreatic

tumor that accounts for 0.6%–4% of pancreatic exocrine tumors,

with a reported incidence of 0.38%–10%. The mortality rate of

pancreatic adenosquamous carcinoma is significantly higher

than that of pancreatic ductal adenocarcinoma, and the

prognosis of patients is extremely poor, with a median survival

of only 4.4–13.1 months, and only a few patients survived for

more than 1 year (3).

The histopathological characteristics of ASPC include the

mixed presence of adenocarcinoma and squamous cell

carcinoma tissues, and the squamous cell carcinoma

component accounts for at least 30% of the total tissues (4).

Squamous cell carcinoma tissues are mostly located in the center

of the tumor and are prone to liquefaction necrosis in the early

stage of ASPC. After collecting and analyzing 1,745 ASPC cases,

Caitlin et al. reported that the proportion of squamous cell

carcinoma in tumor tissue is not significantly correlated with the

overall survival of patients (5). A series of studies illustrated that

compared with PDAC, ASPC tumors are likely to have large

diameters, occurring in the body part or tail part of the pancreas

(4, 6). Lymph node or other organ metastasis and tumor

embolus formation can occur at an early stage, along with

liver metastasis and portal vein invasion.

Due to the low morbidity of ASPC, studies on this subtype

are rare, and many aspects remain unclear. The most

controversial aspect is the origin of ASPC. Pancreatic epithelial

tissue does not contain a squamous component, and the origin

of ASPC could be complicated. There are several hypotheses

about the initial origin of ASPC. 1) A widely accepted hypothesis

posits that after chronic inflammatory stimulation or biliary duct

obstruction, pancreatic duct columnar epithelium cells undergo

metaplasia to the squamous-like epithelium and then evolve into

ASPC (7). 2) Tissue collision theory suggests that two

histologically different tumor cells, i.e., columnar-like and

squamous-like tumors, appear independently in the pancreas

and peripheral tissue and subsequently form ASPC (8). 3) After
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carcinogen stimulation, pancreatic stem cells differentiate

separately to form adenocarcinoma or squamous cell

carcinoma, and then, these two components combine into

ASPC (9) . S tudie s focus ing on the ASPC tumor

microenvironment using single-cell sequencing analysis are

also rare, and there is only one study related to ASPC. Xin

et al. reported single-cell sequencing results from one ASPC

sample, demonstrating that epidermal growth factor receptor

(EGFR)-associated ligand–receptor pairs are activated in ductal-

stromal cell communications (10). However, their study lacked a

depiction of the ASPC tumor microenvironment and a

comparison between PDAC and ASPC.

Moreover, intraductal papillary mucinous neoplasm (IPMN) is

a papillary cystic tumor that originates from themain and or branch

pancreatic ducts with the capability of secreting mucus. It has been

recognized as a classical precancerous lesion in pancreatic cancer

with a canceration rate of about 30% (11). Some studies illustrated

that ASPC could originate from IPMN (12). However, the evolution

path between IPMN and PDAC or ASPC is yet to be elucidated.

In the current study, single-cell sequencing was

performed on pancreatic tumor tissue from an ASPC

patient and a patient with high-grade intraductal papillary

mucinous neoplasm. A combined analysis was conducted of

single-cell sequencing data from five PDAC patients, one

high-grade IPMN patient, and one ASPC patient, which

were obtained from a public database. Eleven main types of

cells, including macrophages, B cells, cancer stem cells, ductal

cells, fibroblasts, endo/stellate cells, neutrophils, acinar cells,

T cells, natural killer (NK) cells, dendritic cells (DCs), and

mast cells, were identified. Then, the different characteristics

and differentiation paths of the immune microenvironment

among IPMN, ASPC, and PDAC in macrophages, T cells, and

cancer-associated fibroblasts (CAFs) were identified through

multiple bioinformatics analyses. Two novel special cancer-

associated fibroblasts were identified as nCAFs and imCAFs.

Then, cancer cells in duct cells were identified using infercnv

software. Two ASPC-specific subgroups of cancer cells with

squamous cell features were identified. Finally, the identified

specific CAFs and cancer cells were mapped to TCGA-PAAD

cohort through the cibersoftx software. All of these identified

subgroups were calculated to have a significant prognostic

value in pancreatic cancer patients. These findings will

promote the clinical application of single-cell sequencing

data of pancreatic cancer and deepen our understanding

of ASPC.
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Materials and methods

Patients and involved samples

Between January 2020 and March 2021, one ASPC

pancreatic sample and one IPMN pancreatic sample were

harvested in Changhai Hospital, Shanghai, during Whipple

surgery. The diagnosis of IPMN and ASPC was made

according to the intraoperative pathological diagnosis. Written

informed consent was acquired from all patients. The Ethics

Committee of Changhai Hospital, Shanghai, approved the

current study. Another two pancreatic cancer cohorts were

acquired from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/), including GSE155698 and

GSE165399. First, five PDAC samples (PDAC1–PDAC5) from

GSE155698 were acquired (13). Then, one ASPC sample and one

IPMN sample were acquired from GSE165399 (10).
Single-cell sequencing procedure

Chromium Single Cell 3′ Reagent v3 kits were used to

prepare libraries according to the manufacturer’s protocol.

Single-cell suspensions were loaded onto the Chromium Single

Cell Controller Instrument (10x Genomics, Pleasanton, CA,

USA) to generate single-cell gel beads in emulsions (GEMs).

After the generation of GEMs, reverse transcription reactions

were performed. Then, cDNA was amplified, fragmented, end-

repaired, A-tailed, index adapter ligated, and subjected to library

amplification. Every library was sequenced on a NovaSeq 6000

platform (Illumina, San Diego, CA, USA), and 150-bp paired-

end reads were generated. The Cell Ranger software pipeline

(version 3.1.0) provided by 10x Genomics was used to

demultiplex cellular barcodes, map reads to the genome and

transcriptome using the STAR aligner, and downsample reads as

required to generate normalized aggregate data across samples,

producing a matrix of gene counts versus cells.
Quality control and data correction

Quality control and data correction for single-cell samples

were based on the number of detected genes, the number of

detected molecules, and the percentage of mitochondrial,

ribosomal, and hemoglobin genes from each single-cell

sample. In detail, for all of the datasets, including our local

datasets GSE155698 and GSE165399, samples with fewer than

1,000 genes, more than 3,000 genes, fewer than 200 molecules,

more than 1% mitochondrial genes, and more than 2%

ribosomal genes were removed. The remaining data in the

three datasets were later used to produce a combined dataset.
Frontiers in Immunology 03
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Removal of batch effect, integration,
dimensionality reduction, clustering and
visualization, and cluster annotation

After quality control, Seurat R package v4.0.2 was used to

process the data (14). Harmony, an integration algorithm, was

used to integrate the abovementioned three datasets and

perform dimensional i ty reduct ion (15) . Then, the

NormalizeData() function was used to normalize the count

data in the RNA assay by the LogNormalize method. With the

help of the sharing nearest neighbor (SNN) modularity

optimization-based clustering algorithm and Uniform

Manifold Approximation and Projection (UMAP) algorithm,

all cells were expressed in two-dimensional coordinates

for visualization.
Calculation and display of differentially
expressed genes

The FindAllMarkers() and FindMarkers() functions of the

scran package were used to perform the Wilcoxon test between

pairs of cell clusters to find the genes specifically expressed in

each cluster. According to the calculation results, the ggplot2

and heatmap packages were used to visually display the heat,

violin, and bubble maps.
Identification of significantly related
pathways in different neutrophil
cell types

To assess whether the gene set is enriched in a neutrophil cell

subpopulation, the ‘irGSEA’ package (https://github.com/

chuiqin/irGSEA/) in R software was used. This package was

used to score individual cells using multiple gene set enrichment

methods and generate a multiple gene set enrichment score

matrix. Then, the Wilcoxon test was used to calculate the

differentially expressed gene sets of each cell subpopulation in

the enrichment fraction matrix of each gene set. Some specific

enriched pathways were marked and visualized in single plots.
Pseudotime analysis

Monocle2 (http://cole-trapnell-lab.github.io/monocle-

release) was used to execute the single-cell trajectory analysis

utilizing DDR-Tree and default parameters. Marker genes of the

Seurat (version 4.0.2) clustering result and raw expression

counts of the cell passed filtering were selected. On the basis of

pseudotemporal analysis, the branch expression analysis model
frontiersin.org
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(BEAM Analysis) was used to analyze branch fate-

determining genes.
Analysis of cell differentiation trajectory

Monocle2 was used to order cells along the trajectories

based on the pseudotime in the mesenchyme cells. The

expression matrix of the mesenchymal cells derived from

the Seurat object was submitted to Monocle3. The

new_cell_data_set() function was used to create a cds object

and perform dimensionality reduction, cell clustering, and

differentiation trajectory inference.
Chromosome copy number
variation analysis

The inferCNV (V1.6.0) method with recommended

parameters for 10x data was used to illustrate the diverse

patterns of chromosome copy number variation in tumor cell

clusters. The macrophage cells were used as the reference.
The cancer genome atlas pancreatic
cancer data acquisition

Pancreatic cancer sequencing data from The Cancer

Genome Atlas (TCGA-PAAD) database were screened. The

standardized RNA-sequence counts and clinical files were

downloaded from TCGA data portal on 18 March 2022. A

total of 180 samples with complete clinical follow-up

information were obtained.
Subtypes from single-cell sequencing
estimation in TCGA-PAAD bulk
sequencing data and Kaplan–Meier
survival curve analysis

The downloaded TCGA data and subtype matrix acquired

from Seurat analysis were uploaded to cibersoftx (https://

cibersortx.stanford.edu/runcibersortx.php). The relative

enrichment score of target subtypes in TCGA data was

acquired through cibersoftx deconvolution analysis. The

enrichment score of each sample in TCGA-PAAD was

combined with their prognostic data (survival times). For

the integrated dataset, Kaplan–Meier survival curves of

different subtype gene sets in the dataset were drawn with

the best cutoff using the Survival package. The OS rate from

diagnosis to death or the last follow-up was calculated.
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Results

Cell clustering of the landscape
combined with intraductal papillary
mucinous neoplasm, pancreatic ductal
adenocarcinoma, and pancreatic
adenosquamous carcinoma

After quality filtration, 45,238 cells were obtained for

subsequent analysis; 0.05 was chosen to display the subgroup

in the initial analysis (Figures 1A, B). The cells were catalogued

into distinct cell lineages annotated with canonical marker gene

expression (Figure 1C). As a result, macrophages, T$NK cells, B

cells, cancer stem cells, ductal cells, fibroblasts, endo/stellate

cells, neutrophils, acinar cells, dendritic cells, and mast cells were

identified (Figure 1D). The highly expressed genes in each

cluster are shown in Figure 1E. In summary, there are a

greatly increased proportion of cancer stem cells and duct cells

in ASPC tissue, indicating that the phenotype of ASPC cancer

cells is more malignant than that of PDAC cells. The proportion

of B cells, NK cells, and T cells in ASPC tissue was significantly

less than that in PDAC tissue, revealing that the infiltration of

immune cells could be difficult in ASPC (Figure 1F).
M2-like macrophages tend to progress in
the tumor microenvironment of
pancreatic adenosquamous carcinoma

The cluster tree plot shows different resolution ratios, and

0.5 was chosen for subsequent analysis (Figures 2A, B). To make

the correct annotation, the marker genes of the macrophage

subgroup were based on a previous study on the definition of

macrophage subtypes from Zhang et al. (16). C1QB and C1QC

were used to identify C1QC+ TAMs. SPP1, CXCL2, and INHBA

were used to identify INHBA+monocytes. According to Zhang’s

study, these two kinds of macrophages are defined as M2

macrophages and are related to immune inactivation in the

tumor microenvironment. FCN1 and S100A8 were used to

identify FCN+ monocytes. This kind of macrophage represents

an initial stage of macrophage chemotaxis from peripheral blood

to the pancreatic tumor region. S100A8 and S100A12 were used

to identify a subgroup related to M1 macrophages with

antitumor activation. CD1C was used to identify conventional

DCs (cDCs), and RACK1 and MAZB1 were used to identify

plasmacytoid DCs (pDCs) (Figures 2C, D). As shown in the bar

plot, M1-like macrophages show a significant decrease in ASPC

compared to PDAC. Additionally, M2-related macrophages,

including INHBA+ monocytes and C1QC+ tumor-associated

macrophages, were significantly increased in ASPCs, followed by

a reduction in juvenile macrophages in the tumor

microenvironment (FCN+ monocytes) (Figures 2E, F). C1QC+
frontiersin.org
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tumor-associated macrophages and INHBA+ monocytes

showed a significant reduction in inflammation-related

pathways, including the interferon alpha pathway, IL-6

pathway, and interferon gamma pathway (Figure 2G).
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Pseudotime analysis confirmed that FCN+ monocytes are the

initial stage of all macrophages. Then, the monocytes could

transfer to M1-like macrophages. Finally, during survival in the

tumor microenvironment, macrophages tended to differentiate
A B

D E F

G
IH

C

FIGURE 2

(A) Cluster tree of subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before annotation.
(C) Expression of each marker in each subgroup. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Bar graph of the
proportion of each identified subgroup in each sample. (F) Bar graph of the proportion of each identified subgroup in each group. (G) GSVA plot
showing the differentially enriched pathways in each identified subgroup. (H, I) Pseudotime analysis of these annotated groups. UMAP, Uniform
Manifold Approximation and Projection; GSVA, gene set variation analysis.
A B

D E F
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FIGURE 1

(A) Cluster tree of subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before annotation. (C)
Annotation of each subgroup with markers. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Heatmap shows the
significantly expressed genes in each cluster. (F) Bar graph of the proportion of each identified subgroup in each sample or group. UMAP,
Uniform Manifold Approximation and Projection.
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into two subtypes of M2 macrophages, INHBA+ monocytes and

C1QC+ tumor-associated macrophages (Figure 2H).
T cells in pancreatic adenosquamous
carcinoma tissue show a widely
inactivated phenotype compared to
pancreatic ductal adenocarcinoma

The cluster tree plot shows different resolution ratios, and

0.2 was chosen for subsequent analysis (Figures 3A, B). As

shown in Figure S1 and Figures 2C, D, groups 0 and 3 were

identified as naïve CD8+ T cells (XCL1 and XCL2). Group 1 was

identified as CD4+ central memory T cells (CD4+ Tcm, CCR7

CD40LG). Groups 2 and 4 were identified as NK (natural killer)

cells (NKG7). Group 5 was identified as Treg (Foxp3). Group 7

was identified as NKT cells because of the double-positive

expression of CD3 and NKG7. However, group 6 could not be

defined, and the reason may be the sequencing error and

unidentified double cells. The proportion of naïve CD8+ T

cells showed a great increase in ASPC tissue, and CD4+ TCM
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cells were increased in PDAC tissue, followed by an ascending

proportion of NKT cells (Figure 3E). Gene set variation analysis

(GSVA) shows that NK cells and CD4+ CTM cells have a wide

activation of pathways. In contrast, naïve CD8+ T cells were

widely inactive (Figure 3F). Interestingly, CD8+ naïve T cells

were enriched in the epithelial–mesenchymal transition

pathway, indicating that CD8+ naïve T cells could promote a

malignant phenotype in pancreatic cancer (Figure 3G).

Pseudotime analysis indicated that the transition between

IPMN and ASPC in T cells and NK cells could be minor, and

the T cells and NK cells in PDAC could be different from ASPC

and IPMN.
Two novel subtypes of cancer-
associated fibroblasts are identified with
inactivation or full activation phenotype

The cluster tree plot shows different resolution ratios, and

0.5 was chosen for subsequent analysis (Figures 3A, B). The

whole CAF cells were divided into eight groups. According to the
A B

D E F

G
IH

C

FIGURE 3

(A) Cluster tree of lymphocyte subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before
annotation. (C) Heatmap shows the significantly expressed genes in each cluster. (D) UMAP cluster plot shows the divided subgroup after
annotation. (E) Bar graph of the proportion of each identified subgroup in each group. (F) Histogram showing the number of different
enriched pathways in each identified subgroup. (G) GSVA plot showing the terms of different enriched pathways in each identified subgroup.
(H, I) Pseudotime analysis of these annotated groups in ASPC, IPMN, and PDAC. UMAP, Uniform Manifold Approximation and Projection; GSVA,
gene set variation analysis; ASPC, pancreatic adenosquamous carcinoma; IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic
ductal adenocarcinoma.
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classical definition of CAF subtypes (17), the main subtypes of

CAFs are myofibroblastic CAFs (myCAFs) and inflammatory

CAFs (iCAFs). MyCAFs mainly perform fibrogenesis, and

ATCA2 and TGFB1 are the marker genes of myCAFs. ICAFs

have more competence to react to inflammatory responses and

produce a large series of inflammatory cytokines. The marker

genes of iCAFs that were selected in this study were CXCL14,

IGF1, IL6, CXCL5, and IGHG1. As shown in Figure 4C,

according to the expression of myCAFs and iCAFs, four CAF

subtypes were identified, including two common CAF and two

novel CAF subtypes. For two common CAF subtypes, groups 1,
Frontiers in Immunology 07
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3, 4, and 5 were iCAFs, and group 6 was a myCAF. For two novel

CAF subtypes, group 2 was identified as imCAFs because gene

markers from both iCAFs and myCAFs were activated, and

groups 0 and 7 were identified as nCAFs because gene markers

from both iCAFs and myCAFs were inactivated (Figures 4C, D).

Then, a significant increase in imCAFs in PDAC compared to

ASPC was observed (Figure 4E). Additionally, in line with the

definition of each kind of CAF, the amount of activated

pathways in GSVA showed an ascendant tendency from non-

reactive CAFs to imCAFs (Figure 4F). Moreover, nCAFs showed

a wide range of downregulated inflammatory pathways, and
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FIGURE 4

(A) Cluster tree of lymphocyte subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before
annotation. (C) Expression of each marker in each subgroup. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Bar graph
of the proportion of each identified subgroup in each group. (F) Histogram showing the number of different enriched pathways in each
identified subgroup. (G) GSVA plot showing the terms of different enriched pathways in each identified subgroup. (H) Gene set score of the
interferon-a pathway. (I) Gene set score of the response to the inflammatory pathway. (J) Pseudotime analysis of these annotated groups in
ASPC, IPMN, and PDAC. UMAP, Uniform Manifold Approximation and Projection; GSVA, gene set variation analysis; ASPC, pancreatic
adenosquamous carcinoma; IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma.
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imCAFs were active in multiple inflammatory pathways

(Figures 4G-I). These results reveal different characteristics of

CAF subtypes, and nCAF could be insensitive to chemotherapy

and targeted therapy. Finally, pseudotime analysis revealed the

evolutionary characteristics of CAFs (Figure 4J). ICAFs could be

the initial phenotype of CAFs, and the microenvironment of

PDAC is enriched with non-reactive CAFs compared

with ASPCs.
Cancer cells have different
characteristics between pancreatic
adenosquamous carcinoma and
pancreatic ductal adenocarcinoma

Then, the heterogeneity of cancer cells among IPMN, ASPC,

and PDAC was identified and portrayed. To identify and confirm

cancer cells in duct cells and cancer stem cells, the infercnv

procedure was performed. Macrophages were chosen as the

normal cell control, and these three types of cells were divided

into 14 groups (Figures 5A, B). The UMAP plot shows the different

distributions between PDAC and ASPC (Figure 5C). According to

the infercnv plot, subgroups 5, 6, and 8 were identified as normal

ductal cells and were excluded from our subsequent studies. Then,

by staining for squamous epithelium markers (including KRT5,

KRT6A, SFN, and KRT14) and columnar epithelium markers

(including EPCAM and KRT8), groups 3, 7, and 10 were

identified as squamous cancer cells, and groups 5, 6, and 8 were

identified as adenocarcinoma cells (Figures 5D, E). The different

proportions of subgroups among IPMN, PDAC, and ASPC

confirmed that groups 3, 7, and 10 were significantly enriched in

the ASPC group and ASPC samples (Figures 5F, G).

According to the GSVA results, proliferation-related pathways,

including the G2M checkpoint pathway and mitotic pathway, were

enriched in group 7, indicating that group 7 could be the promoter

of ASPC carcinogenesis. Cancer-related pathways, including the

epithelial–mesenchymal transition pathway and angiogenesis, were

enriched in group 1, indicating that group 1 plays a pivotal role in

PDAC development (Figure 5H). Pseudotime analysis shows that

the differentiation paths in PDAC and ASPC are different. Both of

them could develop from IPMN, and then the paths of ASPC and

PDAC are divided. Finally, ASPC could be divided into two

subtypes. One subtype contained less adenocarcinoma than the

other (Figures 5I-K).
The identified subgroup of PACS in
cancer cells and cancer-associated
fibroblasts has great prognostic value in
pancreatic cancer patients

Finally, the prognostic value of our identified subgroup in

cancer cells and CAFs was explored. As described in the
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Materials and Methods section, the seurat matrix of each

subgroup was extracted and uploaded to the cibersoftx

software. Then, the count matrix of bulk RNA sequencing data

acquired from TCGA-PAAD was also uploaded to the cibersoftx

software. The estimated proportion of each subgroup was

calculated in TCGA data by a deconvolution algorithm.

Combined with survival outcomes, high expression of ASPC-

specific cancer cell subtypes (combined expression of groups 3,

7, and 10) or identified nCAF subgroup in pancreatic cancer

patients was correlated with poor clinical outcomes (Figures 6A,

E). High expression of the identified iCAF subgroup, myCAF

subgroup, or imCAF subgroup was associated with favorable

clinical outcomes (Figures 6B-D).
Discussion

As described in the Introduction, pancreatic cancer is a

common kind of malignant tumor with high morbidity and

mortality worldwide. The main kind of pancreatic cancer is

PDAC, which accounts for nearly 80% of the morbidity of

pancreatic cancer (1). Additionally, pancreatic cystic tumors

are considered to be the precursors of pancreatic cancer,

among which the most common is IPMN. Most IPMNs are

low-grade heteroplastic hyperplasia, but some IPMNs are

malignant and can develop into pancreatic adenocarcinoma

with a worse prognosis (18). Bernard et al. (19) performed

single-cell RNA sequencing on 5,403 cells from two low-grade

IPMN, two high-grade IPMN, and two pancreatic cancer

specimens and analyzed the heterogeneity changes in epithelial

cells and the tumor microenvironment during cancer

development. They reported that both oncogenic gene

expression and tumor suppressor gene expression were

unregulated in low-grade IPMN. However, the expression of

these tumor suppressor genes disappeared in high-grade IPMN

and PDAC. Additionally, they also reported that during the

process of high-grade IPMN progression to PDAC, iCAFs are

upregulated and often accompanied by the formation of an

immune escape microenvironment. Some studies have focused

on the investigation of heterogeneous PDAC compared to

normal pancreatic tissue. Peng et al. used single-cell

transcriptome sequencing to explore the internal heterogeneity

of pancreatic cancer and regulators in the progression of PDAC.

This study reports two types of ductal cell subsets with different

malignant gene expression profiles, including the ductal cell

subsets with unique proliferative characteristics. In addition, this

study demonstrated the role of abnormal pathways such as Wnt

and Notch in pancreatic cancer and identified new genes such as

EGLN3, MMP9, and FOS KLF5 and other transcription factors

involved in carcinogenesis (20). In our current research, some

new phenotypes and characteristics were identified between

high-grade IPMN and PDAC. PDAC tissues exhibit an

inflammatory phenotype in the tumor microenvironment,
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especially in macrophages, and the epithelial–mesenchymal

transition pathway is enriched in PDAC-related cancer cells.

The most interesting finding in our current analysis is the

exploration of heterogeneity between ASPC and PDAC. In

fact, our current study is not the first to focus on the single-
Frontiers in Immunology 09
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cell pattern of ASPC. Xin et al. reported single-cell sequencing

results from one ASPC sample, demonstrating that EGFR-

associated ligand–receptor pairs are activated in ductal-

stromal cell communications (10). However, their study has

some questions that need to be explored. First, their study
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FIGURE 5

(A) UMAP plot of cancer stem cells, ductal cells, and macrophages. (B) UMAP plot of subgroups in cancer stem cells, ductal cells, and
macrophages. (C) UMAP plot of cancer stem cells, ductal cells, and macrophages among ASPC, IPMN, and PDAC. (D) Infercnv plot
identified malignant cells in duct cells and cancer stem cells. (E) Expression of squamous and columnar epithelium markers in the
subgroups. (F) Bar graph of the proportion of each identified subgroup in each group. (G,H) Bar graph of the proportion of each
identified subgroup in each sample. (I–K) Pseudotime analysis of these annotated groups in ASPC, IPMN, and PDAC. UMAP, Uniform
Manifold Approximation and Projection; ASPC, pancreatic adenosquamous carcinoma; IPMN, intraductal papillary mucinous neoplasm;
PDAC, pancreatic ductal adenocarcinoma.
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lacked a depiction of the ASPC tumor microenvironment,

and the sample size was too short in this study to draw a

concre te conc lus ion . Second , as descr ibed in the

Introduction, the origin of ASPC has yet to be fully

clarified, and some studies have illustrated the potential

correlation between PDAC and ASPC (7, 8). Based on

differential transcription factor expression of samples with

>40% cellularity from resectable primary pancreatic cancer,

Bailey et al. described four subtypes using machine learning

methods, including squamous, pancreatic progenitor,

immunogenic, and aberrantly differentiated endocrine

exocrine. Among them, the squamous subtype has notable

pan-squamous features, including a significant association

with ASPC histology (21). These findings illustrated that

ASPC has a potential relationship with squamous-like

PDAC. However, both ASPC and PDAC samples were not

included in their study simultaneously. In our study, we

performed single-cell sequencing in one ASPC tissue and

one high-grade IPMN tissue. Then, we involved the ASPC

and IPMN samples from the study of Xin et al. (10) and five

PDAC samples from the study of Steele et al. (13). The

immune-related microenvironment is different between

PDAC and ASPC. Specifically, M1-like macrophages show a

significant decrease in ASPC compared to PDAC. M2-related

macrophages, including INHBA+ monocytes and C1QC+

tumor-associated macrophages, were significantly increased
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in ASPC, following a reduction in juvenile macrophages in

the tumor microenvironment (FCN+ monocytes). However,

the proportion of naïve CD8+ T cells shows a great increase in

ASPC tissue, and CD4+ TCM cells are increased in PDAC

tissue, followed by an ascending proportion of NKT cells.

These results indicate the complex heterogeneity of the

immune-related microenvironment in ASPC and PDAC.

Another interesting finding in our research is that we

identified two novel subtypes of CAFs. According to the

classical definition of CAF subtypes (17), the main subtypes

of CAFs are myCAFs and iCAFs. MyCAFs mainly perform

fibrogenesis. ICAFs have more competence to react to

inflammatory responses and produce a large series of

inflammatory cytokines. However, in our current study, we

identified two novel CAFs. One subtype is named ‘imCAF’

because this subgroup expresses both fibrogenesis-related

genes and genes related to inflammatory cytokines. Another

subtype is named ‘nCAF’ because this subgroup expressed

neither fibrogenesis-related genes nor genes related to

inflammatory cytokines. Then, we observed a significant

increase in imCAFs in PDAC compared to ASPC,

indicating that PDAC could have better chemoreactivity

than ASPC.

Our study also analyzed the origin of ASPC at single-cell

resolution. There are several hypotheses about the initial

origin of ASPC: 1) after chronic inflammatory stimulation
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C

FIGURE 6

The Kaplan–Meier plot shows that the previously identified subgroups had significant prognostic value in patients. (A) ASPC-specific cancer cell
subtypes (combined expression of groups 3, 7, and 10). (B) Identified iCAF subgroup. (C) Identified myCAF subgroup. (D) Identified imCAF
subgroup. (E) Identified nCAF subgroup. ASPC, pancreatic adenosquamous carcinoma; iCAF, inflammatory cancer-associated fibroblast; myCAF,
myofibroblastic cancer-associated fibroblast.
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or biliary duct obstruction, pancreatic duct columnar

epithelium cells undergo metaplasia to the squamous-like

epithelium and then evolve into ASPC, and this hypothesis

is widely accepted by scholars worldwide (7). 2) Tissue

collision theory: two histologically different tumor cells,

co lumnar- l ike and squamous- l ike tumors , appear

independently in the pancreas and peripheral tissue and

subsequent ly form ASPC (8) . 3) After carcinogen

stimulation, pancreatic stem cells differentiate separately to

form adenocarcinoma or squamous cell carcinoma, and then,

these two components combine into ASPC (9). By comparing

the potential differentiation path between IPMN to PDAC

and IPMN to ASPC, our analysis strongly supported the first

hypothesis because we observed an early separation of the

differentiation path between IPMN to PDAC and IPMN to

ASPC. This finding could deepen our understanding of

carcinogenesis in ASPC.

However, this study also has some limitations. Firstly, the

results in this study are based on bioinformatics analysis of our

clinical samples without immunofluorescence validation.

Further validation in immunofluorescence could strengthen

our findings. Secondly, the number of enrolled samples is

small. More samples are needed for further research.
Conclusion

In conclusion, we examined the microenvironmental

changes among IPMN, PDAC, and ASPC during ASPC

progression from a single-cell perspective.

Two novel special cancer-associated fibroblasts were

identified as nCAFs and imCAFs. Then, two ASPC-specific

subgroups of cancer cells with squamous cell features were

identified. Finally, the identified specific CAFs and cancer cells

were mapped to TCGA-PAAD cohort through the cibersoftx

software. All of these identified subgroups were calculated to

have a significant prognostic value in pancreatic cancer patients.

These findings provide valuable information to understand the

critical microenvironment underlying PDAC and ASPC and

demonstrate potential therapeutic targets for pancreatic cancer.
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Background: Esophagogastric junction adenocarcinoma (EGJA) is a special

malignant tumor with unknown biological behavior. PD-1 checkpoint inhibitors

have been recommended as first-line treatment for advanced EGJA patients.

However, the biomarkers for predicting immunotherapy response remain

controversial.

Methods: We identified stromal immune-related genes (SIRGs) by ESTIMATE

from the TCGA-EGJA dataset and constructed a signature score. In addition,

survival analysis was performed in both the TCGA cohort and GEO cohort.

Subsequently, we explored the differences in tumor-infiltrating immune cells,

immune subtypes, immune-related functions, tumor mutation burden (TMB),

immune checkpoint gene expression, immunophenoscore (IPS) between the

high SIRGs score and low SIRGs score groups. Finally, two validation cohorts of

patients who had accepted immunotherapy was used to verify the value of

SIRGs score in predicting immunotherapy response.

Results: Eight of the SIRGs were selected by LASSO regression to construct a

signature score (SIRGs score). Univariate and multivariate analyses in the TCGA

and GEO cohort suggested that SIRGs score was an independent risk factor for

the overall survival (OS) and it could increase the accuracy of clinical prediction

models for survival. However, in the high SIRGs score group, patients had more

immune cell infiltration, more active immune-related functions, higher

immune checkpoint gene expression and higher IPS-PD1 and IPS-PD1-

CTLA4 scores, which indicate a better response to immunotherapy. The

external validation illustrated that high SIRGs score was significantly
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associated with immunotherapy response and immune checkpoint inhibitors

(ICIs) can improve OS in patients with high SIRGs score.

Conclusion: The SIRGs score may be a predictor of the prognosis and

immune-therapy response for esophagogastric junction adenocarcinoma.
KEYWORDS

esophagogastric junction adenocarcinoma, SIRGs score, prognosis, immunotherapy,
tumor microenvironment
Introduction

Esophagogastric junction carcinoma is a kind of malignant

tumor with a special location and unknown biological

behaviors (1). Compared with distal gastric cancer (GC),

esophagogastric junctional adenocarcinoma (EGJA) has

lower differentiation and higher malignancy (2, 3).

Unfortunately, most EGJA patients in China are in an

advanced stage when diagnosed, with poor chemosensitivity

and poor prognosis, with a 5-year survival rate of 14% ~ 22%

(4). Therefore, it is very important to explore new treatment

methods other than surgery, chemotherapy and radiotherapy

for EGJA.
Immunotherapy is widely used in digestive tract malignancies,

especially gastric cancer and esophageal cancer (5–7). However, at

present, there are obvious differences in the understanding of this

tumor between Europe, America and East Asia (8). In clinical

studies in Europe, EGJA is often classified as esophageal cancer (9,

10), while in Asia, it is classified as gastric cancer (11). Although

several biomarkers have been shown to predict the efficacy of the

PD-1 inhibitor, none of them have been accurate enough (12). As

a new therapeutic strategy, treatment aimed at the tumor

microenvironment (TME) has attracted public attention (13).

The TME is composed of a variety of cell types, including the

matrix, blood vessels, secretory factors, surrounding matrix and

the internal environment of tumor cells. It plays an important role

in the occurrence, development and invasion of tumors (14, 15).

As the TME is mainly determined by the genomic landscape of

tumors (16), some algorithms, such as Estimation of Stromal and

Immune cells in Malignant Tumor tissues using Expression data

(ESTIMATE) and Tumor IMmune Estimation Resource

(TIMER) methods (17, 18), have been developed to predict

tumor purity and estimate the abundance of tumor-infiltrating

immune cells based on the gene expression profile. Many studies

have applied these big-data-based algorithms to various tumors,

including cutaneous melanoma (19), prostate cancer (20),

glioblastoma (21), and breast cancer (22), and validated their

effectiveness; however, their utility in EGJA has not

been investigated.
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In our study, we employed the ESTIMATE algorithm to

handle the RNA dataset downloaded from the TCGA database.

We calculated the immune and stromal scores to identify the

SIRGs to construct a signature for predicting the immunotherapy

efficacy in EGJA.
Materials and methods

Gene expression datasets

We downloaded the transcriptome expression profiles and

the clinicopathological data from the TCGA database. We

calculated immune and stromal scores for each sample.

Validation data were downloaded from the GEO database,

including GSE66229 and GSE84437. Both of these groups of

patients had the following clinicopathological characteristics:

sex, age, tumor staging, etc.
Differential expression analysis

We divided the patients into a high/low immune score group

and a high/low stromal score group, which were evaluated by the

ESTIMATE algorithm. Then, we identified differentially

expressed genes (DEGs) by the “limma” package of R (4.1.0)

in different immunoscore groups. A false discovery rate (FDR)

<0.05 and a |log2-fold change |> 1 were screening criteria. The

stromal-related DEGs were confirmed by the same methods. The

genes that were co-upregulated/downregulated by the immune

group and stromal group were selected as stromal-immune

related genes (SIRGs).
Pathway and function
enrichment analysis

We used R software to explore the specific molecular

mechanisms through Gene Ontology (GO) and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses for SIRGs using the “clusterProfiler” package.
Survival analysis and construction of the
SIRGs prognostic signature and SIRGs
score-based nomogram

We used univariate Cox regression analysis to identify

prognostic SIRGs. The SIRGs with p<0.05 were included in

least absolute shrinkage and selection operator (LASSO) analysis

to avoid overfitting (glmnet package). After screening by LASSO

analysis, 8 selected IRGSs were used to construct a signature:

SIRGs score = level of gene a * coefficient a + level of gene b *

coefficient b + level of gene c * coefficient c +…… + level of gene

n * coefficient. All EGJA patients were classified into high SIRGs

group and low SIRGs group according to median SIRGs scores.

Kaplan-Meier analysis and multivariate Cox regression were

conducted to evaluate the efficiency of the SIRGs score in

predicting prognosis (survival package).

In addition, SIRGs scores and clinical characteristics were

included to construct a nomogram using the “RMS” package.

Discrimination was verified by the Harrell concordance index

(C-index) and area under the ROC curves (AUCs).
Gene set enrichment analysis (GSEA) and
single-sample GSEA (ssGSEA)

GSEA was carried out in high and low SIRGs groups by the

package “org.Hs.eg.db” (23). To compare the state of immune

function between high and low SIRGs group’s patients, ssGSEA

was used to evaluate the 29 immune signature gene sets in each

EGJA patient by the package “GSVA” (24, 25).
TME-associated analysis

We calculated 22 types of infiltrating immune cells,

including B cells, CD4+ T cells, CD8+ T cells, neutrophils,

macrophages, and dendritic cells and so on, by using the R

script from CIBERSORT. Then, we divided these 110 EGJA

patients into 4 immune subtypes according to the characteristics

of immune cell infiltration by unsupervised clustering.
Tumor mutation burden (TMB) analysis

The mutation data was downloaded from TCGA (https://

portal.gdc.cancer.gov/). The TMB score for each patient was

calculated and analyzed using the “maftools” package. We

exclude 3 patients without mutation data before TMB analysis.
Frontiers in Immunology 03
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Predicting patient response
to immunotherapy

We compared the expression of immune checkpoints and

their ligands in different SIRGs score groups. The

immunophenoscore (IPS) was obtained without bias by

analyzing the expression of four categories of immunogenicity-

determining genes: effector cells, immunosuppressive cells,

MHC molecules, and immunomodulators. IPS was calculated

on a range of 0–10 according to z scores representing gene

expression in cell types. IPS was positively associated with the

immunotherapeutic response. We downloaded the IPS for EGJA

patients from the Cancer Immunome Atlas (TCIA, https://tcia.

at/home).
Statistical analysis

Clinicopathological factors associated with prognosis were

determined by univariate and multivariate Cox regression.

Kaplan–Meier survival curves were drawn by the package

“survminer”, and differences in survival between the two

groups were determined using the log-rank test. Statistical

significance was set at two-sided p<0.05. Data were analyzed

using SPSS v.22.0 (SPSS, Inc., Chicago, IL, USA) and R

version 4.1.0.
Results

Identification of SIRGs by immunoscore
and stromalscore

The clinicopathological characteristics of 110 EGJA patients

from the TCGA database are shown in Table 1. The ESTIMATE

algorithm is applied for inferring the infiltration of immune cells

and stromal cells in the microenvironment, and the results were

revealed by immunescore and stromalscore. We separated the

patients into the high-immunoscore group and the low-

immunoscore group based on the median immunoscore. For

comparison, there were 981 upregulated genes and 144

downregulated genes in the high immunescore EGJA patients

(Figure 1A). Additionally, we divided these patients into high-

stromalscore and low-stromalscore groups according to the

median stromalscores. There were 1359 upregulated genes and

108 downregulated genes in the high-stromalscore EGJA

patients (Figure 1B). As shown in the Venn diagram

(Figure 1C), we defined overlapping genes that were up- or

downregulated in the stromal and immune groups as stromal-

immune related genes (SIRGs). We further used GO and KEGG

pathway enrichment to analyze these SIRGs. The results

demonstrated that immune response, plasma membrane,
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MHC class II receptor activity and another immune-related gene

ontology were enriched (Figure 1D, E). The tumor-related

stromal cell may participate in tumor progression, metastasis

and chemotherapy response to further influence prognosis (26).

We also found that the stromalscore was correlated with T stage

and TNM stage, and EGJA patients in the high stromalscore

group had higher T stage and TNM stage (Figure 1F). Survival

analysis showed that EGJA patients with high stromalscore had a

poorer prognosis than those with low stromalscore (p=0.037),

which are consistent with the results of other researches (27–29).

However, there was no significant survival difference between

high immunescore patients and low immunoscore patients

(Figure 1G, p=0.279).
Survival analysis of SIRGs and gene set
enrichment analysis (GSEA)

We further explored the prognostic value of these 617 SIRGs.

Univariate Cox analysis showed that 122 of them were associated

with the prognosis of the EGJA patients, as shown in

Supplementary S1. To avoid overfitting, a further LASSO

analysis identified that 8 of 122 genes were core prognostic
Frontiers in Immunology 04
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factors for EGJA patients (Figures 2A, B). We further used

multivariate Cox proportional hazards regression analysis to

construct a predictive model: SIRGs score=(0.1582*CFP)+

(-0.06340*ZDHHC11) +(0.05201*ASB5)+(0.09763*LILRA4)+

(0.002203*FRZB)+(0.004185*PTGDR)+(0.5599*LRRC55)+

(0.1443*FCN1). The contribution of 8 core SIRGs on the overall

survival are shown in Figure 2C. CFP (p<0.001), ASB5 (p=0.008),

LILRA4 (p=0.001), FRZB (p=0.002), PTGDR (p=0.001), LRRC55

(p<0.001) and FCN1 (p<0.001) were prognostic risk factors for

the EGJA patients. Among them, only ZDHHCC11(p=0.030) was

a prognostic protective factor. These 8 SIRGs of Kaplan–Meier

survival curves are show in Supplementary S2.

Furthermore, GO- and KEGG-related GSEA in the high

SIRGs score group revealed that activation of multiple immune

responses was enriched in GO biological processes (GOBP) and

that cell adhesion molecules, chemokine signaling pathways and

cytokine–cytokine receptor interactions were enriched in KEGG

pathways (Figures 2D, E). In the low SIRGs score group, the

GSEA enrichment focused on cornification, epidermal cell

differentiation and epidermal development in GOBP and cell

cycle, glutathione metabolism and olfactory transduction in

KEGG (Figures 2F, G).

We calculated the SIRGs score of the 110 EGJA patients by

this formula and ranked the SIRGs score (Figure 3A). The dot

plot in Figure 3B shows the distribution of SIRGs score and

overall survival time. Then, we divided them into a high SIRGs

score group and a low SIRGs score group according to the

median value. The heatmap in Figure 3C illustrates the

expression patterns of 8 SIRGs in the low and high SIRGs

score groups. Kaplan–Meier analysis showed that the

prognosis of the low SIRGs score group was better than that of

the high SIRGs score group (Figure 3D, p=0.009).

We used the GEO gastric cancer database to validate this

formula. A total of 733 gastric cancer patients from GSE66229

and GSE84437 were involved to calculate the SIRGs score. We

also divided these patients into a GEO high SIRGs score group

and a GEO low SIRGs score group. There were 367 and 366

patients in these two groups, respectively. We also ranked the

SIRGs score, and the results are shown in Figure 3E. The

distribution of SIRGs score and overall survival time were

exhibited in Figure 3F. The expression patterns of 8 SIRGs

showed as heatmap in Figure 3G. Kaplan–Meier analysis showed

that the prognosis of the GEO low SIRGs score group was better

than that of the GEO high SIRGs score group (Figure 3H,

p=0.006). The median survival of these two groups was 67

months and 120 months, respectively.
SIRGS-score-based nomogram model to
predict the prognosis of EGJA patients

Univariate and multivariate Cox analyses indicated that age

and SIRGs score were independent prognostic factors for the
TABLE 1 Clinical characteristics of EGJA and GC patients.

Variables TCGA-EJGA cohort
(n=110)

GEO-GC cohort
(n=733)

Age (mean ± SD,
years)

64.9 ± 10.9 60.8 ± 11.5

Gender

Male 72(65.5%) 495(67.5%)

Female 38(34.5%) 238(32.5%)

T stage

T1-T2 35(31.8%) 237(32.3%)

T3-T4 75(68.2%) 496(67.7%)

unknown 0(0%) 0(0%)

N stage

N0 32(29.1%) 118(16.1%)

N+ 78(70.9%) 615(83.9%)

unknown 0(0%) 0(0%)

M stage

M0 102(92.7%) 273(26.4%)

M1 8(7.3%) 27(2.6%)

unknown 433(100%)

Stage

I 19(17.3%) 31(4.2%)

II 34(30.9%) 97(13.2%)

III 45(40.9%) 95(13.0%)

IV 12(10.9%) 77(10.5%)

unknown 0(0%) 433(59.1%)

SIRGs score (mean
± SD)

0.34 ± 0.41 0.27 ± 0.16
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TCGA-EGJA patients (Figures 4A, B) and GEO-GC patients

(Table 2). However, TNM stage is widely considered a

prognostic factor. Therefore, we also included TNM stage in

the nomogram model (Figure 4C). The C-index of this model
Frontiers in Immunology 05
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was 0.798. The AUCs of the 1-year and 3-year OS for

the nomogram were 0.798 and 0.740, respectively. The

prognostic test efficacy of the nomogram model containing

the SIRGs score was better than that of the TNM staging (0.553
A B

D

E

F

G

C

FIGURE 1

Identification SIRGs and enrichment analyses. (A) Volcano plot of DEGs in immunescore; (B) Volcano plot of DEGs in stromalscore; (C) Venn
plot to identify SIRGs; (D) GO enrichment analysis; (E) KEGG pathway enrichment analysis; (F) The relationship between stromalscore and TNM
stage; (G) Kaplan-Meier analysis in different groups.
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and 0.558) or the SIRGs score alone (0.756 and 0.654)

(Figures 4D, E).
Exploring the role of SIRGs in tumor
immune cell infiltration, immune typing
and immune function

The effect of immunotherapy for malignant tumors is often

closely related to the tumor microenvironment. Tumor-

infiltrating immune cells play essential roles in the TME. We

further calculated the 22 types of tumor-infiltrating immune
Frontiers in Immunology 06
188
cells in 110 EGJA patients by CIBERSORT (30) (Figure 5A).

The relationships of 22 types of infiltrating immune cells to

each other are presented in the correlation matrix (Figure 5B).

Then, these patients were divided into four immune types by

unsupervised clustering algorithms according to infiltrating

immune cells (Figure 5C). Moreover, in category D, we

found that CD8+ T cells increased significantly, as did

activated CD4+ T cells and NK cells (Figure 5D). Both

stromal score and immunoscore were also significantly

increased in category D (Figure 5D). We explored the

distribution of these 4 categories in different SIRGs score

groups. We found that in the high SIRGs score group, the
A B

D E

F G

C

FIGURE 2

Construction of SIRGs score by LASSO analysis. (A, B) The LASSO Cox analysis identified that eight core SIRGs were associated with the
prognosis of EGJA patients; (C) Forest plot of hazard ratios for eight core prognostic SIRGs; (D, E) GSEA analysis in high SIRGs score group;
(F, G) GSEA analysis in high SIRGs score group.
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proportion of type D accounted for 45%, which was much

higher than that of the low SIRGs score group (Figure 5E,

p=0.001). Subsequently, we explored the immune states

between the high- and low SIRGs score groups by calculating

the enrichment scores with ssGSEA. In total, 29 immune

signature gene sets associated with immune status were

analyzed. As Figure 5F shows, all 29 immune-state scores

were higher in the high SIRGs score group, which suggested

that those patients’ immune functions were more active.
Frontiers in Immunology 07
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The relationship between SIRGs score
and tumor mutation burden (TMB)

As EGJA is a disease that features highly somatic alterations,

we further detected the relationship between the SIRGs score

and the TMB. The top 30 mutated genes in the high and low

SIRGs score groups are shown in Figures 6A, B. We found that

the mutations of ARID1A, ADAMTS1 and CSMD3 were high in

the high SIRGs score group and rarely demonstrated in the low
A

B

D

E

F

G

H

C

FIGURE 3

Survival analysis of SIRGs score in TCGA cohort and GEO cohort. (A, E) The rank of SIRGs scores; (B, F) The distribution of SIRGs score and
overall survival time; (C, G) The heatmap of expression patterns of 8 SIRGs in low- and high-SIRGs score group; (D, H) Survival curves of
different SIRGs score group.
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A B

D E

C

FIGURE 4

Establishment SIRGs score-based nomogram for predicting EGJA patients’ prognosis. (A) Forest plot presenting univariate Cox regression
analysis result; (B) Forest plot presenting multivariate Cox regression analysis result; (C) SIRGs score-based nomogram; (D) AUC values of ROC
predicted 1-year OS rates of Nomogram, SIRGs score and TNM stage; (E) AUC values of ROC predicted 3-year OS rates of Nomogram, SIRGs
score and TNM stage.
TABLE 2 Univariate and multivariate Cox regression analyses of overall survival for 733GC patients in the GEO cohort.

Univariate Analysis Multivariate Analysis

HR [95%CI] P value HR [95%CI] P value

Age 1.016 [1.007 - 1.026] 0.001 1.018 [1.008 - 1.028] <0.001

Sex 0.464

male Reference

female 0.920 [0.735 - 1.151]

T stage 0.023 0.079

T1-T2 Reference Reference

T3-T4 1.310 [1.038 - 1.653] 1.237 [0.975 - 1.570]

N stage 0.004 0.004

N0 Reference Reference

N+ 1.584 [1.162 - 2.159] 1.582 [1.160 - 2.157]

SIRGs score 2.709 [1.464 - 5.010] 0.001 2.599 [1.386 - 4.872] 0.003
Frontiers in Immunology
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SIRGs group (Figures 6C, D). Moreover, the distribution of the

SIRGs score was balanced in the high- and low-TMB groups

(Figure 6E). Similarly, the OS showed no differences in the TMB

groups (Figure 6F).
The SIRGs score could be a predictive
biomarker for immunotherapy

Our next step was to test whether the SIRGs score can be

used as a biological target to predict the effectiveness of

immunotherapy. We first examined the expression of immune

checkpoints. The results showed that the expression of PDL1,

CTLA4, HAVCR2 LAG3, TIGIT, and PD1 in the high SIRGs

score group was increased significantly (Figures 7A–F). The IPS

plays an essential role in evaluating the response to immune
Frontiers in Immunology 09
191
checkpoint inhibitors (ICIs) therapy. The IPS-PD1 and IPS-

PD1-CTLA4 scores were higher in the high SIRGs score group

(Figure 7G). Therefore, the above results indicate that EGJA

patients with high SIRGs score may be more sensitive to

immunotherapy. More importantly, we included 281 advanced

clear cell renal cell carcinoma patients and 85 melanoma patients

receiving immunotherapy for validation. In advanced clear cell

renal cell carcinoma validation cohort, 29.0% of patients

achieved complete response (CR) or partial response (PR) in

the high SIRGs group (Figure 7H, p=0.030), which significantly

improved the high SIRGs score patients’ OS (Figure 7I,

P=0.048). In other words, patients in the low SIRGs group

were not sensitive to immunotherapy, with only 14% CR/PR

patients. Therefore, in the immunotherapy cohort, the low

SIRGs patients’ prognosis was worse. Similarly, in melanoma

cohorts (GSE78220 and GSE91061), 43.8% of patients with high
A

B D

E F

C

FIGURE 5

The difference TME in low- and high-SIRGs score group. (A) Relative proportion of immune infiltration in each EGJA patients; (B) The
relationship in different immune infiltration cells; (C) Identify four immune subtypes by unsupervised clustering according to the immune
infiltration state; (D) The difference infiltration immune cells in four immune subtypes; (E) The distribution of four immune subtypes in low- and
high-SIRGs score group; (F) Immune-related functions analysis in in low- and high-SIRGs score group. *p<0.05, **p<0.01, ***p<0.001, ns,
not significant.
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SIRGs score reached CR/PR, with only 22.2% CR/PR patients in

low SIRGs group (p=0.036, Figure 7J). The Kaplan–Meier

survival analysis illustrated that there was a trend of better OS

in high SIRGs group (p=0.063, Figure 7K).
Discussion

EGJA is a malignant tumor in a special location. Different

countries and regions have different treatment principles. Some

studies in Europe and the United States have combined EGJA

with esophageal cancer for research (31). While in Asia, clinical
Frontiers in Immunology 10
192
trials mostly combine EGJA and gastric cancer (32). Therefore,

the biological characteristics of EGJA need to be further studied.

However, immunotherapy has shown promising results in both

esophageal cancer and gastric cancer (5). However, not all EGJA

patients can benefit from immunotherapy. At present, there is

still no good indicator to evaluate whether patients can benefit

from immunotherapy before treatment, especially patients with

EGJA. Studies have shown that the prognosis of gastric cancer

patients and the effect of immunotherapy are related to the

tumor immune microenvironment (13, 33). The stromal and

immune cel ls crosstalk with cancer cells in tumor

microenvironment. In the past, few researches fully considered
A B

D

E F

C

FIGURE 6

The mutation profile and TMB in low- and high-SIRGs score group. (A) Mutation profile of EGJA patients in high SIRGs score groups; (B) Mutation
profile of EGJA patients in low SIRGs score groups; (C) The summary of mutation in high SIRGs score groups; (D) The summary of mutation in low
SIRGs score groups; (E) The distribution of TMB in low- and high-SIRGs score group; (F) The association of TMB and OS.
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the overall landscape of the infiltrating stromal and immune cells

at the same time in tumor microenvironment. Therefore, we

hope to construct a signature through stromal-immune related

genes to predict the survival and immunotherapeutic effect of

EGJA patients.

The ESTIMATE score is used to infer the infiltration of

immune cells and stromal cells in the microenvironment of solid

tumor tissues through the transcriptome data of tumor samples
Frontiers in Immunology 11
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(17). Therefore, the SIRGs determined by ESTIMATE may be an

important factor affecting the immune microenvironment. After

calculating the stromal score and immune score of EGJA

patients from TCGA, we identified 618 SIRGs. The results of

KEGG and GO enrichment analyses suggested that the enriched

pathways and functions are related to immunity, implying that

the imbalance of these genes may cause changes in the immune

microenvironment. Subsequently, we selected 122 SIRGs closely
A B

D E F

G

IH J K

C

FIGURE 7

The estimation and validation of two SIRGs score groups in immunotherapy response. (A-F) The different expression of six immune checkpoint
molecules (CD274, CTLA4, HAVCR2, LAG3, TIGIT, PDCD1) in different SIRGs score groups; (G) The association between IPS and SIRGs score;
(H) The different immunotherapy response between two SIRGs score groups in advanced clear cell renal cell carcinoma cohort; (I) The
association between SIRGs score and OS in advanced clear cell renal cell carcinoma cohort; (J) The different immunotherapy response between
two SIRGs score groups in melanoma cohort; (K) The association between SIRGs score and OS in melanoma a cohort.
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related to prognosis for LASSO regression and obtained the

following 8 core genes: CFP, ZDHHC11, ASB5, LILRA4, FRZB,

PTGDR, LRRC55 and FCN1. Then, we constructed the

signature named SIRGs score through Cox regression analysis.

Among them, CFP is a tumor prognostic marker associated with

immune infiltration in gastric and lung cancer (34). ZDHHC11

can regulate the innate immune response to DNA viruses (35).

Further survival analysis confirmed that the SIRGs score can

effectively predict the prognosis of this group of EGJA patients as

an independent prognostic factor. As some studies have

reported, the prognosis of EGJA was similar to that of GC, so

to evaluate the postoperative prognosis of EGJA, they should be

considered a part of GC instead of esophageal cancer (EC) (36,

37). In order to acquire sufficient cases to validate the SIRGs in

predicting prognosis, we selected 733 GC patients as validation

cohort. The results suggested that this score was also verified in

gastric cancer data from GEO. Therefore, we can more

effectively predict the prognosis of EGJA patients by TNM

staging combined with the SIRGs score. These results suggest

that this SIRGs score may be closely related to the biological

behavior of the tumor itself and plays a unique role by changing

the composition of the tumor microenvironment.

To further evaluate the relationship between the SIRGs score

and the immune microenvironment, we used CIBERSORT to

evaluate the infiltration abundance of 22 immune cells in the

immune microenvironment of EGJA patients. Then, we divided

them into four subtypes by unsupervised clustering. In theory,

patients with more infiltrated and activated immune cells in the

TME may have better immunotherapeutic effects (38). In subtype

D, the infiltration of CD8+ T cells was more obvious than that of

the other three subtypes, and activated CD4+ T cells and NK cells

were also significantly increased. The immune and stromal scores

were also higher in type D, suggesting that immune therapy may

be more sensitive. In contrast, type C has fewer infiltrated CD8+ T

cells and other immune cells and lower immune and stromal

scores, which often indicates that the effect of immunotherapy is

worse. Further analysis found that there were significant

differences between high SIRGs score and low SIRGs score

patients in the distribution of types C and D. High SIRGs score

patients were mainly concentrated in subtype D, while low SIRGs

score patients were mainly concentrated in subtype C. In addition,

ssGSEA of immune-related functions showed that almost all

immune-related functions in the high SIRGs score group were

more active than those in the low SIRGs score group. Given the

above, high SIRGs score patients with a “hot” immune

microenvironment tend to have a relatively higher response rate

to immunotherapy. However, we also found that the prognosis

of EGJA patients with more obvious immune infiltration and

more active immune function was worse. We speculate that this

is due to the immune escape of tumor cells. Tumor cells and

the TME are interdependent and antagonistic (39). The

immunosuppressive tumor microenvironment is defined as the
Frontiers in Immunology 12
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immunosuppressive part of the TME. Immune cells in the TME

can always recognize and remove tumor cells in time. Immune

escape means that tumor cells can avoid the recognition and

attack of the immune system through various mechanisms to

continue to grow and proliferate in the body (40). The

immunosuppressive microenvironment consists of various

immunosuppressive cells, immunosuppressive cytokines and

various immune checkpoint molecules, which play an important

role in tumor cell immune escape (41). As Figure 5D shows,

gamma delta T cells, as a kind of immunosuppressive cell (42),

were also upregulated in the TME of high SIRGs score patients.

Current studies suggest that the upregulated expression of PD-L1

and CTLA4 on the surface of tumor cells plays a key role in the

ability of tumor cells to escape from the host immune system.

Therefore, we further compared the expression of immune

checkpoint genes in tumor tissues of the high SIRGs score

group and the low SIRGs score group and found that PD-L1,

CTLA-4, HAVCR2, LAG3, TIGIT and PDCD1 were also up-

regulated in the high SIRGs score group. Therefore, even if these

patients had more obvious immune cell infiltration and the

prognosis was still worse due to immune escape of the tumor,

such patients might achieve better results after receiving immune

checkpoint blockade treatment. Pornpimol Charoentong et al.

used a random forest approach to identify determinants

of immunogenicity and developed an immunophenoscore (IPS)

based on the infiltration of immune subsets and the expression of

immunomodulatory molecules (43). The IPS is a robust method

for predicting anti-CTLA-4 and anti-PD-1 immunotherapy. It has

been validated in independent cohorts. Furthermore, we

investigated the relationship between IPS and different SIRGs

score in EGJA patients. The results showed that the IPS-PD1 and

IPS-PD1-CTLA4 scores were higher in the high SIRGs score

group, indicating that they were more able to benefit from anti-

PD-1 or anti-PD-1 plus anti-CTLA4 immunotherapy. The

important role of PD-1/PD-L1 inhibitors in the therapy of some

refractory tumors has been confirmed. However, in our study,

IPS-PD1-CTLA4 scores also significantly improved in the high

SIRGs group, suggesting that the SIRGs score may be able to

identify EGJA patients who can benefit from PD-1/PD-L1 +

CTLA4 inhibitor treatment. Checkmate 142, a phase II

randomized controlled trial, demonstrated that nivolumab plus

low-dose ipilimumab can significantly improve the disease control

rate in metastatic colorectal cancer. However, the results regarding

nivolumab in combination with ipilimumab in advanced GC or

EGJA from Checkmate649 have not yet been published. The

SIRGs score in our study may have predictive value to

some extent.

To further confirm the efficacy of the SIRGs score, we

selected two external cohorts of patients receiving

immunotherapy for verification (44). In the advanced clear cell

renal cell carcinoma cohort, 29% percent of the 31 patients in the

high SIRGs group achieved complete response/partial response
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(CR/PR), while only 14% percent of 250 patients achieved CR/

PR in the low SIRGs score group, and the p value of the chi-

square test was 0.030. Kaplan–Meier survival curves revealed

that the OS of high SIRGs score patients was better than that of

low SIRGs score patients, with log-rank p=0.048, implying that

immunotherapy may reverse the poor prognosis of high SIRGs

score patients. The similar results were found in melanoma

cohorts (GSE78220 and GSE91061). It was demonstrated that

patients with high SIRGs score can significantly benefit from

immunotherapy (p=0.036). Although the difference of Kaplan–

Meier survival curves did not reach statistical significance

(p=0.063), there was a trend towards better OS with

immunotherapy in high SIRGs group. The deficiency may be

attributed to insufficient sample in this cohort.

However, our research still has some limitations. First, we

focused on one kind of malignant tumor at a specific site, so the

overall number of cases and sequencing data are very limited.

Second, the current obtainable cohort based on high-throughput

sequencing to explore the efficacy of immunotherapy is very

limited. We could only select another type of tumor for

validation but not EGJA patients, and the number of cases in

the validation group was also small. We should use EGJA cohort

with immunotherapy for further verification in the future. Third,

there is still a lack of some basic experiments to further explore

the roles of these eight genes in changing the tumor

microenvironment, which needs further research and

exploration. Finally, in order to identify the cut-off value of

SIRGs for distinguishing between high and low SIRGs group

patients, we need include a large number of EGJA patients with

immunotherapy for analysis in the future.
Conclusion

In conclusion, the SIRGs score we constructed can effectively

predict the prognosis of EGJA patients and prompt the tumor

microenvironment of patients, providing a predictive role for the

use of immunotherapy.
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Autophagy-related prognostic
signature characterizes tumor
microenvironment and predicts
response to ferroptosis in
gastric cancer

Haoran Li1†, Bing Xu2†, Jing Du1†, Yunyi Wu1, Fangchun Shao3,
Yan Gao1, Ping Zhang1, Junyu Zhou1, Xiangmin Tong1*,
Ying Wang4* and Yanchun Li4*

1Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s
Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China, 2Department
of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China, 3Department of Pulmonary
and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital,
Hangzhou Medical College), Hangzhou, China, 4Department of Central Laboratory, Affiliated
Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
Background: Gastric cancer (GC) is an important disease and the fifth most

common malignancy worldwide. Autophagy is an important process for the

turnover of intracellular substances. Autophagy-related genes (ARGs) are

crucial in cancer. Accumulating evidence indicates the clinicopathological

significance of the tumor microenvironment (TME) in predicting prognosis

and treatment efficacy.

Methods: Clinical and gene expression data of GC were obtained from The

Cancer Genome Atlas and Gene Expression Omnibus databases. A total of 22

genes with differences in expression and prognosis were screened from 232

ARGs. Three autophagy patterns were identified using an unsupervised

clustering algorithm and scored using principal component analysis to

predict the value of autophagy in the prognosis of GC patients. Finally, the

relationship between autophagy and ferroptosis was validated in gastric

cancer cells.

Results: The expression of ARGs showed obvious heterogeneity in GC patients.

Three autophagy patterns were identified and used to predict the overall

survival of GC patients. These three patterns were well-matched with the

immunophenotype. Kyoto Encyclopedia of Genes and Genomes and Gene

Ontology enrichment analyses showed that the biological functions of the

three autophagy patterns were different. A scoring system was then set up to

quantify the autophagy model and further evaluate the response of the patients

to the immunotherapy. Patients with high autophagy scores had a more severe

tumor mutation burden and better prognosis. High autophagy scores were

accompanied by high microsatellite instability. Patients with high autophagy

scores had significantly higher PD-L1 expression and increased survival. The
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experimental results confirmed that the expression of ferroptosis genes was positively

correlated with the expression of autophagy genes in different autophagy clusters,

and inhibition of autophagy dramatically reversed the decrease in ferroptotic cell

death and lipid accumulation.

Conclusions: Autophagy patterns are involved in TME diversity and complexity.

Autophagy score can be used as an independent prognostic biomarker in GC

patients and to predict the effect of immunotherapy and ferroptosis-based therapy.

This might benefit individualized treatment for GC.
KEYWORDS

autophagy, gastric cancer, tumor microenvironment, microsatellite instability,
prognosis, ferroptosis
Introduction

Gastric cancer (GC) is the fifth most common cancer

worldwide and the third most common cause of cancer-related

death. The estimated number of GC cases exceeds one million

annually (1). The most important GC risk factor is Helicobacter

pylori infection; age and a diet high in salt intake are also

associated with GC (2–5). GC is usually diagnosed by

endoscopy. Surgery or endoscopic resection remains a

powerful treatment option (6). GC is mostly found in late

stages. Tumor heterogeneity and immune response are due to

abnormalities in the tumor microenvironment (TME).

Therefore, the prognosis of patients cannot be guaranteed.

Although several different molecular classification systems for

GC have been proposed in the past decade (7, 8), effective

precision treatment strategies still need to be explored.

Autophagy is the process of transporting damaged,

denatured, or senescent proteins and organelles in cells to

lysosomes for digestion and degradation. Autophagy plays a

key role in regulating organismal development and maintaining

homeostasis and quality control of proteins and organelles (9).

Under normal physiological conditions, autophagy helps cells

maintain their homeostatic state (10). During stress, autophagy

prevents the accumulation of toxic or carcinogenic proteins and

inhibits carcinogenesis. Once a tumor is formed, autophagy

provides abundant nutrients for cancer cells and promotes

tumor growth (11). Additionally, autophagy is increasingly

investigated as a molecular target for cancer therapy. Our

recent study demonstrated that excess autophagy results in

autophagic cell death (12). However, autophagy plays two

roles in tumorigenesis and development. The impact of

autophagy on cancer depends on a variety of factors, such as

TME, cancer type and stage, and genetic background (13). This

reflects the intricate regulatory relationship of autophagy in
02
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tumors, which needs to be further clarified through more

extensive studies. Ferroptosis is a regulated form of cell death

that is morphologically, biochemically, and genetically distinct

from apoptosis, necrosis, and autophagy (14). In recent years,

research on ferroptosis in cancer has grown rapidly, providing

prospects for its application in cancer therapy (15). The

interaction between ferroptosis and tumor-related signaling

pathways has potential applications in systemic therapy,

radiotherapy, and immunotherapy. Targeting GC cells by

stimulating ferroptosis through various targets has become a

potential therapeutic strategy for gastric cancer (16). In addition,

the sensitivity of tumors to ferroptosis therapy has become an

important condition for judging the prognosis of patients (15).

The TME is an important component of tumor tissues,

including various immune cells, stromal cells, and extracellular

components. The composition of resident cell types within the

TME and their associated inflammatory pathways differ among

cancer patients. These changes correlate with clinical outcomes in

various malignancies, including gastric, lung, and breast cancers

(17). As malignant tumors develop, they interact with the

metabolites of TME, and autophagy is activated in this process

to provide nutrients to the tumor (18). Growing evidence indicates

the clinicopathological significance of TME in predicting tumor

treatment and its prognostic effects (19, 20). Currently, due to

technical limitations, only a single autophagy-related gene (ARG)

is evaluated in most tumor studies. The characteristics of

antitumor mechanisms are by no means explained by one gene,

but rather reflect the highly coordinated interaction of numerous

genes. Therefore, a comprehensive understanding of the TME

mediated by multiple ARGs is required.

In the present study, we identified the role of ARGs in GC

progression and predicted the overall survival (OS) of GC patients

using a combined analysis of The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases. Importantly, we
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report a potential role of cell autophagy patterns in assessing tumor

TME, providing important insights for understanding the

underlying mechanisms of gastric carcinogenesis and predicting

response to immunotherapy and ferroptosis-based therapy.
Materials and methods

Data sources

RNA sequencing transcriptome profiling and clinical data of

samples, including 343 GC and 30 normal control samples, were

downloaded from TCGA database (available online: https://

portal.gdc.cancer.gov/). Moreover, GSE84437 (433 samples)

with clinical information of stomach adenocarcinoma was

downloaded from the GEO database (available online: https://

www.ncbi.nlm.nih.gov/geo/). A total of 232 ARGs were obtained

from the Human Autophagy Database (available online: http://

www.autophagy.lu/index.html). One hundred twenty-one

ferroptosis-verified driver genes were obtained from the

FerrDb database (available online: http://www.datjar.

com:40013/bt2104/), as described previously (21).
Mutation analysis of ARGs

Mutation frequencies and oncoplot waterfall plots of ARGs

in gastric cancer patients were generated by the “maftools”

package. The locations of copy number variation (CNV)

alterations in ARGs on 23 chromosomes were mapped using

the “RCircos” package in R software.
Identification and functional annotation
of differentially expressed genes

Differentially expressed genes (DEGs) between the different

autophagy clusters were identified using the “limma” package in

R with an adjusted p-value of <0.001. Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis and Gene Ontology (GO),

including biological process (BP), cellular component (CC), and

molecular function (MF) categories, were performed with the

“ggplot2” package in R software to further explore the potential

functions of autophagy-related DEGs (22).
Immune infiltration, tumor mutation
burden, and microsatellite
instability analysis

We used the ssGSEA (single-sample gene-set enrichment

analysis) algorithm to quantify the relative abundance of each

cell infiltration in the gastric cancer TME. Correlations between
Frontiers in Oncology 03
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prognostic ARGs and immune filtering were analyzed using a

TME-filtered immune cell gene set with diverse human immune

cell subtypes, including activated CD8 T cells, activated dendritic

cells, giant natural killer T cells, and regulatory T cells. In tumor

mutation burden (TMB) and microsatellite instability (MSI)

analyses, Spearman correlation analysis was used to calculate

the correlation between high- and low-autophagy score groups.

MSI status was classified as microsatellite stable (MSS), MSI-low

(MSI-L, one marker unstable), and MSI-high (MSI-H, over two

markers unstable).
The establishment of an autophagy
scoring model and prognostic analysis

Principal component analysis (PCA) was used to evaluate

the autophagy gene signature of each gastric cancer patient,

which we termed as autophagy score. Patients were divided into

the high-score group and low-score group based on the

maximally selected rank statistics determined by the

“survminer” R package. We used Kaplan–Meier survival

curves to identify the ability of the model to distinguish

different clusters of patients to determine the efficiency of

the model.
Cell viability assay

BGC823 cells were seeded into 96-well plates in DMEM

(Gibco, Carlsbad, CA, USA), supplemented with 10% fetal

bovine serum (Gibco, USA), 100 U/ml penicillin, and 100 mg/
ml streptomycin at a density of 2 × 104 cells/well. Cells were

treated with bafilomycin A1 (BafA1, 40 nm), chloroquine (CQ,

25 µM), and 3-methyladenine (3MA, 2 mM) in the presence or

absence of erastin for 36 h. Then, 10 ml of Cell Counting Kit-8

(Beyotime) reagent was added to each well and incubated for 2 h

at 37°C. The absorbency was measured at 450 nm using a plate

reader, and the percentage viability was calculated.
BODIPY staining

BGC823 cells in culture were collected in a chamber confocal

dish and incubated with boron dipyromethene (BODIPY 581/

591) (Thermo Fisher Scientific) at a concentration of 5 mM, and

nuclei were counterstained with DAPI for 10 min.

Quantification of lipid bodies was performed using ImageJ.
Ethics statement

Ethical approval was not required, as there is no patient

recruitment and absence of animal trials for this study.
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Statistical analyses

The correlation coefficient between TME and ARG

expression in filtered immune cells was calculated by

Spearman and differential expression analyses. Continuous

variables were compared between two groups through the

Wilcoxon rank-sum test. Classified variables were compared

between two groups by chi-square test. One-way ANOVA and

Kruskal–Wallis test were used to conduct difference

comparisons of three or more groups. The R package of

“survminer” was used to determine the cutoff point for each

dataset subgroup. The survival curves for the prognostic analysis

were generated via the Kaplan–Meier method, and log-rank tests

were utilized to identify the significance of differences. The

waterfall function of the maftools package was used to present

the mutation landscape in patients with high and low autophagy

scores in TCGA-STAD cohort. All statistical analyses were

performed using R version 4.1.0. Statistical significance was set

at p < 0.05.
Results

Defining expression of ARGs in GC

A total of 232 ARGs were obtained from the Human

Autophagy database. A heatmap involving TCGA-STAD

cohort revealed differences in the expression profiles of 148

ARGs in normal and tumor tissues (Figure 1A). Univariate Cox

regression analysis of these DEGs revealed that 22 ARGs were

significantly associated with TCGA-STAD prognosis

(Supplementary Table 1). Figure 1B presents the incidence of

somatic mutations in the 22 ARGs in GC. The TP53 gene

displayed the highest mutation frequency (44%), followed by

the DAPK1 and CASP8 genes, among the 22 ARGs. We

considered the relationship between TP53 mutations and ARG

expression, in light of the highest mutation frequency in TP53.

The expression levels of eight ARGs were significantly correlated

with TP53 mutation status (Figure S1). We then investigated

somatic copy number alterations in these ARGs. Copy number

changes were evident in all 22 ARGs. More than half of the 22

ARGs had copy number amplification, while CNV deletion

frequencies, such as BAG3 and PINK1, were widespread

(Figure 1C). Figure 1D shows the location of CNV alterations

in these ARGs on the chromosomes. We further compared the

mRNA expression levels between GC and normal tissues. The

expression of 13 ARGs was increased, while the expression of

nine ARGs was decreased in tumors compared with normal

tissues in GC (Figure 1E). More specifically, compared to normal

tissues, the expression of CNV-increased autophagy modulators

in GC tissues (such as CASP8 and CXCR4) was significantly

increased. Conversely, the expression of CNV-deficient

autophagy modulators of GC tissues (such as BNIP3 and
Frontiers in Oncology 04
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EEF2) was reduced, suggesting that CNV variation may be a

cause for the regulation of ARG expression. Additionally, the

expression levels of 22 ARGs were associated with survival in GC

patients (Figure S2), suggesting that ARGs were involved in the

development of GC and had the potential to predict

patient prognosis.
Identification of the autophagy clusters

We created a queue using the GEO and TCGA datasets

along with OS data and clinical information to construct a

more precise autophagy cluster with prognostic significance.

The autophagy network diagram showed that the expression

of most ARGs was positively correlated, with some genes

being negatively correlated (Figure 2A). Subsequently, we

identified three different regulation patterns using the

unsupervised clustering method (Figure S3). The survival

advantage of clusters B and C was higher than that of

cluster A (Figure 2B).
Infiltration characteristics of TME cells
under different autophagy
modification patterns

To explore the differences in biological behavior among

these three patterns, we performed GSVA enrichment analysis

(Figures 2C, D). Autophagy cluster A was markedly enriched in

stromal and carcinogenic activation pathways, such as TGFb
signaling pathway, ECM receptor interaction, cell adhesion, and

MAPK signaling pathways. Autophagy cluster B was

significantly associated with biological metabolism. Autophagy

cluster C presented enrichment pathways associated with

immune full activation, including the activation of chemokine

signaling, JAK-STAT signaling, T-cell receptor signaling, and

Toll-like receptor signaling pathways. Subsequent analysis of

TME cell infiltration showed that autophagy cluster C was

remarkably rich in innate immune cell infiltration, including

natural killer cells, macrophages, MDSCs, monocytes, and

immature B cells. The three autophagy modification patterns

showed significantly different infiltration characteristics of TME

cells (Figure 3A). PCA revealed significant differences in the

autophagy modification profiles between the three subtypes

(Figure 3B). Comparison of the clinicopathological features of

GC revealed significant differences in the expression of ARGs

and clinicopathological characteristics (Figure 3C). Among these

autophagy-related DEGs, the intersection of the three autophagy

clusters A, B, and C confirmed 1,337 DEGs (Figure 3D). To

clarify the function of these DEGs, pathways were analyzed

using GO and KEGG databases. The 1,137 DEGs were mainly

involved in T-cell activation, positive regulation of cell adhesion,

extracellular matrix organization, extracellular structure
frontiersin.org
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A

B

D E

C

FIGURE 1

Landscape of genetic and expression variation of ARGs in gastric cancer. (A) mRNA expression profiles of 148 differentially expressed ARGs in
TCGA-STAD cohort. (B) The mutation frequency of ARGs in gastric cancer patients of TCGA-STAD cohort. The upper bar graph shows TMB; the
right bar graph shows the proportion of each variant type. (C) The CNV variation frequency of each ARG based on CNV variation. (D) The
location of CNV alteration of ARGs on 23 chromosomes. (E) Expression distributions of ARGs between normal (green) and tumor (red) tissues.
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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organization, and collagen-containing extracellular matrix

(Figure 3E and S4A). Moreover, KEGG pathway analysis

suggested that these DEGs were mainly involved in cell

adhesion molecules, cytokine–cytokine receptor interactions,

cell adhesion molecules, chemokine signaling pathways, and

focal adhesion (Figures S4B, C). Then, 632 differentially

expressed and prognostic genes were screened out from the

three autophagy clusters and used for the subsequent analysis.
Frontiers in Oncology 06
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Construction of autophagy gene
signature and functional annotation

Consistent with the clustering grouping of autophagy

modification patterns, the unsupervised clustering algorithm

also divided the patients into three distinct autophagy

modification genomic phenotypes depending on the 632

prognostic genes (gene clusters 1, 2, and 3; Figure S5). The
A B

D

C

FIGURE 2

The clinicopathological and biological characteristics of three autophagy clusters. (A) Interaction network diagram between the ARGs. (B) Survival
analysis for the three autophagy clusters in gastric cancer patients. (C) The differences between functional pathways in autophagy clusters by GSVA.
Blue represents the autophagy cluster A, and orange represents the autophagy cluster B. (D) The differences between functional pathways in
autophagy clusters by GSVA. Orange represents the autophagy cluster B, and red represents the autophagy cluster C.
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heat map of the genetic modification patterns revealed that most

genes were expressed at low levels in gene cluster B and were

highly expressed in gene cluster C (Figure 4A). The findings

indicate the presence of three distinct autophagy modification

patterns in GC. Kaplan–Meier curves showed that patients with

gene cluster 3 had the worst prognosis, whereas patients in

cluster 2 showed a favorable prognosis (Figure 4B). The three
Frontiers in Oncology 07
203
autophagy gene clusters showed significant differences in the

expression of ARGs, consistent with the three autophagy clusters

(Figure 4C). Considering the individual heterogeneity and

complexity of autophagy, we developed an autophagy score

based on principal component analysis to quantify autophagy

modification patterns in individual GC patients. Then, we

divided the patients into high-score group and low-score
A B

D E

C

FIGURE 3

Immune cell infiltration and transcriptome features among the three autophagy clusters. (A) The differences in immune cell infiltration among
three autophagy clusters. (B) The scatter plot of principal component analysis. (C) Clinicopathological features and expression levels of 22 ARGs
in three autophagy clusters. (D) Venn diagram showing overlapping genes in three autophagy clusters. (E) GO enrichment analysis of the
overlapping genes. ∗∗∗p < 0.001.
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group. An alluvial diagram was used to visualize the flow of the

autophagy score fraction construction (Figure 4D). We then

conducted immune correlation analysis. The autophagy score

was significantly positively correlated with CD4 T immune cells
Frontiers in Oncology 08
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and neutrophils and negatively correlated with activated B

immune cells and macrophages (Figure 4E). Differences were

evident in autophagy scores among the autophagy clusters and

also among the three gene clusters. Autophagy cluster A showed
A
B

D E

F G

C

FIGURE 4

Construction of the autophagy score. (A) Heatmap of relationships between clinicopathological features and autophagy gene clusters. (B) Kaplan–
Meier survival curves of different autophagy gene clusters. (C) The differential expression of ARGs among different gene clusters. (D) Alluvial diagram
showing genotype distributions in different gene clusters and survival outcomes. (E) The correlation analysis between the autophagy score and
immune cells; red indicates positive correlation, and blue indicates negative correlation. (F) Differences in autophagy score among three autophagy
clusters. (G) Differences in autophagy score among three gene clusters. ∗∗p < 0.01; ∗∗∗p < 0.001.
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the lowest score compared with the other clusters (Figure 4F).

Simultaneously, compared with the other clusters, autophagy

gene cluster 2 had the highest autophagy score and autophagy

gene cluster 3 had the lowest score (Figure 4G).
Autophagy molecular subtypes
and prognosis

Next, we tried to further determine the value of autophagy

score in predicting the prognosis of GC patients. The prognosis

of patients in the low autophagy score group was poorer than

that of patients in the high autophagy score group (Figure 5A).

In addition, Spearman correlation analysis demonstrated that

the autophagy score was positively associated with TMB, which

reflects the total number of mutations carried by tumor cells and

is related to tumor recognition by immune cells (Figure 5B). We

explored the association of TMB with different autophagy scores.

TMB in the high autophagy score group was greater, indicating a

better response to immunotherapy (Figure 5C). Survival analysis

of TMB in GC revealed that the prognosis of the high-TMB

group was better than that of the low-TMB group (Figure 5D).

As expected, the TMB survival curve combined with the

autophagy score showed that patients in the high tumor

mutation group and high autophagy score group had the best

prognosis (Figure 5E). As shown in Figures 5F, G, the high

autophagy score group had a higher TMB frequency than the

low autophagy score group (total genes rate 97.37% versus

83.87%). These results indicate the value of the autophagy

score in predicting the prognosis of GC patients and reflect

the effect of immunotherapy to a certain extent.
Role of autophagy score in GC
immunotherapy and chemotherapy

Immunotherapy can increase the survival rate of patients

with multiple types of tumors. Therefore, it is important to

determine which patients could respond better to

immunotherapy. Survival analysis revealed that death of GC

patients occurred mainly in the low autophagy score group

(Figure 6A). Moreover, the autophagy score was lower in

patients who died of GC (Figure 6B). Stratified analysis of the

autophagy score for the GC patients showed that the high

autophagy score group had a better prognosis than the low

autophagy score group of T1–2 and T3–4 (Figures 6C, D). MSI

has been associated with the development of tumors. MSI-high

(MSI-H) patients are more sensitive to immunotherapy (23). In

the present study, the high autophagy score was accompanied by

the MSI-H state, while a low autophagy score was accompanied

by a microsatellite stable state (Figures 6E, F). Immunotherapy

targeting PD1 and PD-L1 has improved survival in cancer (24).

In this study, GC patients with high autophagy scores displayed
Frontiers in Oncology 09
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significantly high PD-L1 expression, suggesting a potential

benefit of anti-PD-L1 immunotherapy (Figures 6G, H).
Ferroptosis in different autophagy
subtypes in GC patients

Ferroptosis, a novel form of regulated cell death, is associated

with iron accumulation and lipid peroxidation (25, 26). Our recent

studies demonstrated that achieving ferroptosis via ferroptosis-

inducing drugs is emerging as a new alternative therapy modality

(27–29). Moreover, in our previous study, autophagy accelerates the

degradation of ferritin, increases the unstable iron pool, promotes

the accumulation of cellular reactive oxygen species, and ultimately

leads to ferroptosis (30). Therefore, we extracted 121 ferroptosis-

verified driver genes from the FerrDb database and analyzed the

association of these genes in our established autophagy model in

GC patients. As expected, in GC patients, these ferroptosis-verified

driver genes showed differential expression in different autophagy

clusters (Figure 7A). Surprisingly, the heat map showed that

ferroptosis-verified driver genes were reduced in gene cluster B

and highly expressed in gene cluster C, which was consistent with

the expression level of ARG (Figures 4A and 7B). In addition, three

gene clusters showed significant differences in the expression of

ferroptosis-verified driver genes (Figure 7C). We can conclude that

the expression of genes related to ferroptosis was positively

correlated with the expression of ARGs.
Validation of functional phenotypes in
GC cell lines

We wonder whether the autophagy cluster model could

predict the sensitivity to ferroptosis-inducing therapy. BGC823

cells were induced to undergo ferroptosis with erastin in vitro. Of

note, a significant reduction in cell viability by erastin treatment

was observed, but cell viability was significantly reversed by

different autophagy inhibitors, including BafA1, CQ, and 3MA

(Figure 8A). We also detected the generation of lipid reactive

oxygen species (ROS) by BODIPY, a classical ferroptosis maker

(16). The fluorescence results showed a large amount of lipid ROS

accumulation in BGC823 cells under the treatment of erastin,

while the presence of autophagy inhibitors dramatically

ameliorated the accumulation of lipid ROS (Figures 8B, C).

These results suggest that detection of autophagy typing can

predict tumor susceptibility to ferroptosis therapy.

Discussion

Growing evidence suggests that autophagy plays an integral role

in inflammation, innate immunity, and antitumor activity by

degrading damaged organelles and excess proteins (31, 32).

Autophagy has various roles in various cancers. Historically, the
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role of autophagy in tumorigenesis may have been misunderstood.

The clinical use of autophagy inhibitors may not have a positive

effect on cancer patients but may promote tumorigenesis (33). Little

is known about the phenomenon of autophagy in GC cells, and the
Frontiers in Oncology 10
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mechanism between autophagy and GC remains controversial.

However, studies in animal models have shown that the

inhibitory effect of autophagy on tumors may be greater than its

facilitation in cells with impaired apoptotic machinery (34). In this
A B

D E

F G

C

FIGURE 5

The relationship between autophagy score and tumor somatic mutation. (A) Survival analysis of the patients with high autophagy scores and low
autophagy scores. (B) Spearman correlation analysis of the autophagy score and TMB. (C) TMB in different autophagy score groups. (D) Survival
analysis of low or high TMB in gastric cancer patients. (E) Survival analysis of TMB combined with autophagy score in gastric cancer patients. (F) The
waterfall plot of somatic mutation features established with high autophagy score. (G) The waterfall plot of somatic mutation features established
with low autophagy score.
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FIGURE 6

The role of autophagy score in immunotherapy and chemotherapy. (A, B) Stratified analysis of autophagy scores in gastric cancer patients
according to survival status. (C, D) Stratified analysis of autophagy scores in gastric patients according to the T stage. (E) Relationships between
autophagy score and MSI. (F) Stratified analysis of autophagy scores in gastric patients according to MSI. (G, H) Expression levels of PD-L1 and
PD1 in two distinct groups.
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study, we identified 22 ARGs and classified them into three clusters.

Moreover, combining the filtering properties of TME cells in

different clusters of ARGs generated data that improve the

understanding of TME antitumor immune responses in GC.

We observed that the three clusters of autophagy patterns were

significantly correlated with immune activation and other pathways.

Cluster A was characterized by immunosuppression, corresponding

to the immune desert phenotype. Cluster B was characterized by the

activation of innate immunity and matrix, corresponding to an

immune-excluded phenotype. Cluster C was characterized by the
Frontiers in Oncology 12
208
activation of adaptive immunity, corresponding to the immune

inflammatory phenotype. The latter phenotype corresponds to the

“hot tumor”, in which CD4 and CD8 T cells are expressed in the

tumor parenchyma. The immune-excluded phenotype has

abundant immune cells that do not penetrate the parenchyma of

these tumors but which remain in the matrix surrounding the tumor

cells. The immune desert phenotype corresponds to the “cold

tumor”, with no T cells in the tumor parenchyma or stroma (35,

36). Our results were consistent with these definitions, confirming

that different patterns of autophagy are important in shaping the
A

B

C

FIGURE 7

Expression levels of ferroptosis-verified driver genes in different autophagy patterns. (A) Clinicopathological features and expression levels of 121
ferroptosis-verified driver genes in three autophagy clusters. (B) Clinicopathological features and expression levels of 121 ferroptosis-verified
driver genes in three autophagy gene clusters. (C) The differential expression of ferroptosis-verified driver genes among different gene clusters.
*p<0.05, **p<0.01, ***<p.0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.959337
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.959337
antitumor immune response in different TME landscapes. Cluster C

featured the activation of chemokines, T-cell receptors, and Toll-like

receptor signaling pathways. All these pathways contribute to the

involvement of cluster C in immune inflammation typing.

Therefore, it was not surprising that cluster C activated innate

immunity and resulted in a better survival curve.

Similar to the clustering results of the three modes of

autophagy, three gene clusters were identified based on the

DEGs among the three autophagy clusters, which were also

significantly associated with stroma and immune activation.

This confirmed that autophagy is involved in the composition

and structure of the TME landscape. Therefore, analysis of
Frontiers in Oncology 13
209
autophagy patterns will help understand the characteristics of

TME cell infiltration. In this study, we established a scoring

system to assess autophagy patterns in patients with GC.

Autophagy scores were higher for the autophagy patterns of

the immune-excluded phenotype. The autophagy score was

significantly positively correlated with CD4 T immune cells,

neutrophils, and macrophages, suggesting that the autophagy

score could be used to assess tumor autophagy patterns and

immunophenotypes. In addition, the gene mutation frequency

in the high autophagy score group was higher than the total gene

mutation frequency in the low autophagy score group. Patients

in the high autophagy score group also had better survival rates
A

B

C

FIGURE 8

Inhibition of autophagy blocks erastin-induced ferroptosis. (A) Cell viability of BGC823 cells with the treatment of erastin in the presence or
absence of autophagy inhibitors. (B, C) Representative BODIPY fluorescence images with indicated treatment and respective quantification.
Scale bars = 10 mm. Data represent mean ± SEM. ***p < 0.001 vs. erastin-treated cells.
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across the different cancer stages. Furthermore, we found that

autophagy patterns influenced the therapeutic effect of the

immune checkpoint blockade. The autophagy score was

markedly correlated with MSI status and PD-L1 expression,

which might be a more effective predictor of immunotherapy.

Previous studies have demonstrated that Beclin1, LC3, and P62/

SQSTM1 are autophagy-related markers with prognostic values in

GC (37–39). Compared with normal mucosal epithelial cells, the

expression of BNIP3 is increased in malignant gastric epithelial cells

than in normal mucosal epithelial cells, suggesting that BNIP3

expression may play a role in GC development (40). However, the

molecular mechanisms of many other ARGs in GC are not yet fully

understood. Therefore, considering ARGs as a whole to construct a

tumor prediction model will be an effective method to study

autophagy and tumor development. Assessing tumor-driver

mutations is a key basis for cancer diagnosis and treatment (41).

We observed that patients with high autophagy scores had

significantly higher frequencies of TTN, MUC16, and ARID1A

mutations than patients with low autophagy scores. Moreover, the

TTN mutation spectrum serves as a predictor of MSI-H and the

mutational load in the TTN also represents a high TMB state (42).

In the present study, the proportion of patients with MSI-H was

higher in those with high autophagy scores. This suggests a complex

interplay between autophagy patterns and immune genes in TMB.

The concept of ferroptosis-suppressing tumors has become

widely accepted, with FDA-approved drugs identified as

ferroptosis inducers and the potential of ferroptosis as a new

promising approach to killing therapy-resistant cancers (43). Past

studies have emphasized that the regulation of ferroptosis is

autophagy-dependent and involves multiple autophagy-related

molecular factors in the process of ferroptosis (44). Our results

found that the expression of ferroptosis genes was positively

correlated with the expression of autophagy genes in GC patients.

Furthermore, inhibition of autophagy significantly reversed the

decline in cell viability and lipid accumulation caused by

ferroptosis. Therefore, we have reason to believe that our

established autophagy analysis can predict the sensitivity of GC

patients to ferroptosis treatment.

This study has some limitations that need to be acknowledged.

As all analyses were based on data from public databases, extensive

in vivo and in vitro experiments are still required to support our

findings. Thus, further studies should be performed to prove the

relationship between autophagy and GC in the future.

In conclusion, we performed comprehensive and systematic

bioinformatics analyses of GC patients and identified 22 ARGs to

analyze their application in GC. The findings establish an autophagy

scoring system for GC patients. Our findings concerning the

association between autophagy score and clinicopathological

features indicate that the autophagy score could serve as an

independent prognostic biomarker in GC patients. The autophagy

score can also predict the effect of immunotherapy and ferroptosis-

based treatment in GC patients, providing new insights for guiding

the precise treatment of such patients.
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Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev
Cancer (2020) 20(10):555–72. doi: 10.1038/s41568-020-0290-x

42. Oh J-H, Jang SJ, Kim J, Sohn I, Lee J-Y, Cho EJ, et al. Spontaneous mutations
in the single gene represent high tumor mutation burden. NPJ Genom Med (2020)
5:33. doi: 10.1038/s41525-019-0107-6

43. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to
iron out cancer. Cancer Cell (2019) 35(6):830–49. doi: 10.1016/j.ccell.2019.04.002

44. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D. Autophagy-
dependent ferroptosis: Machinery and regulation. Cell Chem Biol (2020) 27(4):420–
35. doi: 10.1016/j.chembiol.2020.02.005
frontiersin.org

https://doi.org/10.3322/caac.21492
https://doi.org/10.3892/or.2016.5145
https://doi.org/10.3748/wjg.v23.i13.2435
https://doi.org/10.1016/j.cgh.2015.05.040
https://doi.org/10.1007/s10120-007-0420-0
https://doi.org/10.1007/s10120-007-0420-0
https://doi.org/10.1016/S0140-6736(20)31288-5
https://doi.org/10.4016/32808.01
https://doi.org/10.1053/j.gastro.2013.05.010
https://doi.org/10.1016/j.cell.2018.09.048
https://doi.org/10.1016/j.yjmcc.2013.10.014
https://doi.org/10.1038/nrc2254
https://doi.org/10.3389/fcell.2021.734818
https://doi.org/10.1186/s12943-020-1138-4
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1002/adma.201904197
https://doi.org/10.1002/adma.201904197
https://doi.org/10.1186/s12943-020-01168-8
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/nature20815
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1097/SLA.0000000000002116
https://doi.org/10.3389/fcell.2022.832892
https://doi.org/10.3389/fcell.2022.832892
https://doi.org/10.3389/fimmu.2022.864156
https://doi.org/10.1038/nm.3850
https://doi.org/10.1038/nm.3850
https://doi.org/10.1038/s41577-019-0264-y
https://doi.org/10.1038/s41577-019-0264-y
https://doi.org/10.1080/15548627.2016.1187366
https://doi.org/10.1038/s41419-021-04128-2
https://doi.org/10.1038/s41419-021-03996-y
https://doi.org/10.1016/j.redox.2021.102122
https://doi.org/10.1016/j.bbrc.2020.10.083
https://doi.org/10.1016/j.freeradbiomed.2018.12.011
https://doi.org/10.1016/j.freeradbiomed.2018.12.011
https://doi.org/10.1172/JCI73941
https://doi.org/10.1158/2159-8290.CD-14-0363
https://doi.org/10.1038/s41586-019-0885-0
https://doi.org/10.1016/j.atherosclerosis.2016.01.045
https://doi.org/10.1038/nature21349
https://doi.org/10.1016/j.coi.2013.02.009
https://doi.org/10.1016/j.coi.2013.02.009
https://doi.org/10.1186/s13046-020-01696-7
https://doi.org/10.3892/ijo_00000028
https://doi.org/10.3389/fonc.2015.00070
https://doi.org/10.3389/fonc.2015.00070
https://doi.org/10.1111/j.1600-0643.2007.00795.x
https://doi.org/10.1038/s41568-020-0290-x
https://doi.org/10.1038/s41525-019-0107-6
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1016/j.chembiol.2020.02.005
https://doi.org/10.3389/fonc.2022.959337
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jian Song,
University Hospital Münster, Germany

REVIEWED BY

Lele Zhu,
University of Texas MD Anderson
Cancer Center, United States
Ling Yin,
University of Texas MD Anderson
Cancer Center, United States
Yi Sun,
Zhejiang University, China

*CORRESPONDENCE

Hanxiang An
anhanxiang@xmu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 14 June 2022
ACCEPTED 01 August 2022

PUBLISHED 18 August 2022

CITATION

Huang T, Li J, Liu X, Shi B, Li S and
An H-X (2022) An integrative pan-
cancer analysis revealing the
difference in small ring finger family of
SCF E3 ubiquitin ligases.
Front. Immunol. 13:968777.
doi: 10.3389/fimmu.2022.968777

COPYRIGHT

© 2022 Huang, Li, Liu, Shi, Li and An.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 18 August 2022

DOI 10.3389/fimmu.2022.968777
An integrative pan-cancer
analysis revealing the difference
in small ring finger family of SCF
E3 ubiquitin ligases

Tingting Huang1,2†, Jiwei Li3†, Xinli Liu1, Bingbing Shi4,
Shiqin Li5 and Han-Xiang An1*

1Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China,
2Department of Medical Oncology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision
Medicine, Xiamen, China, 3Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an
Hospital of Xiamen University, Xiamen, China, 4Department of Critical Care Medicine, The Affiliated
Hospital of Putian University, Putian, China, 5Department of Gastroenterology, Xiamen Branch,
Zhongshan Hospital, Fudan University, Xiamen, China
Background: The SCF (Skp1-cullin-F-box proteins) complex is the largest

family of E3 ubiquitin ligases that mediate multiple specific substrate proteins

degradation. Two ring-finger family members RBX1/ROC1 and RBX2/RNF7/

SAG are small molecular proteins necessary for ubiquitin ligation activity of the

multimeric SCF complex. Accumulating evidence indicated the involvement of

RBX proteins in the pathogenesis and development of cancers, but no research

using pan-cancer analysis for evaluating their difference has been directed

previously.

Methods:We investigated RBX1/2 expression patterns and the association with

clinicopathological features, and survivals of cancer patients obtained from the

TCGA pan-cancer data. The binding energies of RBX1/2-CUL1 complexes were

preliminarily calculated by using molecular dynamics simulations. Meanwhile,

we assessed their immune infiltration level across numerous databases,

including TISIDB and Timer database.

Results: High expression levels of RBX1/2 were observed in most cancer types

and correlated with poor prognosis of patients analyzed. Nonetheless,

exceptions were observed: RBX2 expression in KICH was higher than normal

renal tissues and played a detrimental role in KICH. The expression of RBX1 was

not associated with the prognostic risk of KICH. Moreover, the combination of

RBX1 and CUL1 expression is more stable than that of RBX2 and CUL1. RBX1/2

expression showed their own specific characteristics in tumor pathological

stages and grades, copy number variation and immune components.

Conclusions: These findings not only indicated that the difference of RBX1/2

might result in varying degrees of tumor progression, but also suggested that

they might serve as biomarkers for immune infiltration in cancers, shedding

new light on therapeutics of cancers.
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Introduction

The ubiquitin–proteasome system (UPS) is the major

proteolytic system that degrades accumulated or misfolded

proteins for cellular homeostasis (1, 2). It operates through the

presentation of ubiquitin to the substrate proteins using a

covalent modification pattern, which involves a series of

multienzymes, i.e., Ubiquitin (Ub)-activating enzyme (E1),

Ub-conjugating enzyme (E2) and Ub ligase (E3) (3). Among

the three enzymes, the E3 ubiquitin ligases play a pivotal role in

determining specificity of substrate proteolysis (4, 5). Based on

the structural characteristics, E3 enzyme can be divided into four

categories: RING E3s, HECT E3s, U-box E3s and RBR E3s (4).

The SCF multisubunit complex, the most common RING E3s

composing of a scaffold protein cullin1, a Ring protein (RBX1 or

RBX2), an adaptor protein and a substrate receptor protein, is

the largest family of E3s that promote the degradation of about

20% of UPS-regulated proteins (6, 7).

RBX1/2 usually ubiquitously expressed in human tissues,

such as heart, colon, skeletal muscle, and testes (8, 9). RBX

proteins can promote ubiquitin transfer from the E2 to the

substrates and further enhances cullins activity, therefore, they

constitute the catalytic cores of SCF complexes (10). Previous

studies have confirmed that RBX proteins were found to be

functionally non-redundant. Deletion of RBX1 in mice results in

early embryo death (E7.5) due to proliferation failure in a wild-

type RBX2 background, whereas inactivation of RBX2 causes

late embryo death (E11.5-12.5) associated with cardiovascular

defects (11, 12). Although both RBX proteins are highly

conservative at protein level, share similar ring finger domain

structure, their effect on the regulation of substrate degradation

may vary (11). RBX1 mainly mediates proteolysis, including cell

cycle regulators (e.g., cell cycle inhibitor p21/p27/p53/p57, and

cyclin A/D/E), transcription factors (e.g., E2F1, FOXO1, myc,

and c-Jun), DNA replication factor CDT1, and others. RBX2

promotes ubiquitination and degradation of a number of protein

substrates, including c-Jun, DEPTOR, HIF-1a, IkBa, NF1,
NOXA, p27 and procaspase-3, to degrade different substrates

causing various phenotypes (13–16).

To be specific in cancers, RBX1 was shown to be highly

expressed in bladder, gastric, prostate and renal cancer (17–19).

Notably, RBX2, is rarely expressed in normal tissues, but highly

expressed in lung, liver, gastric and renal cancer (20–22).

Previous studies on the Ring finger family have focused on the
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oncogenic function and degradation ability of RBX1 and RBX2

in specific tumors, respectively, which provides a limited

understanding of their role in SCF E3s. However, the

difference of RBX members in pan-cancer has not been

described. To explore the effect of RBX1/2 on the overall

picture of SCF complex and in the tumor evolution, we

comprehensively analyzed their difference in pan-cancer using

the TCGA database in the present study. Their diversities were

reflected in the following aspects including mRNA level, protein

level, pathological features, prognosis and copy number

variation, immune infiltration level.
Materials and methods

Evaluation the two cullin1-based
complexes by binding free
energy simulations

The CUL1-RBX1 and CUL1-RBX2 complexes were obtained

from the Protein Data Bank (RCSB PDB www.rcsb.org) database

(23). The molecular dynamic simulation for the CUL1-RBX1/2

complex used PDB ID: 1LDJ and 7 ONI as the templates. A

molecular dynamic simulation was performed for the two

complexes in a water environment (310 K temperature) with

the force field charmm36-feb2021.ff using GROMACS software

(24). The binding affinity was calculated using g_mmpbsa and

the PyMOL software was used for visualization (25).
The cancer genome atlas
pan-cancer data

We used the UCSC Xena (https://xenabrowser.net/) to

download TCGA pan-cancer data, including survival data,

clinical data, stemness score (RNA based) and immune

subtype (26). RBX1/2 expression was integrated by Perl

software. We used the Wilcox test to assess the difference

between normal and tumor tissues. P value less than 0.05 is

considered as difference. A heatmap and box plot were

illustrated by the R-package “ggpubr” and “pheatmap”,

respectively. Furthermore, Correlation analysis among Ring

finger family genes was performed by R-package “corrplot”.
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Clinicopathologic features and survival
analysis of expression of Ring
finger members

UALCAN was used to analyze the RBX-proteins expression

in several cancers, including BRAC, OV, UCEC and PAAD

(27). ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. Additionally, we

obtained box plots of the RBX1/2 expression in different

pathological grades and stages via the TISIDB database (28)

(http://cis.hku.hk/TISIDB/index.php). Survival analysis of

RBX1/2 was used for the “survival” and “survminer” R

package. A difference of p less than 0.05 was statistically

significant. Meanwhile, we downloaded the TCGA pan-cancer

mRNA expression and survival data to conduct the Cox analysis

for illustrating the association between RBX1/2 expression and

the survival of patients.
RBX1/2 CNV profile in pan-cancer based
on GSCA

Gene Set Cancer Analysis (GSCA) platform is a web server

that integrated multiomics data based on TCGA database (29)

(http://bioinfo.life.hust.edu.cn/web/GSCA/). Based on CNV

module, the proportion of RBX1/2 heterozygous/homozygous

and amplification/deletion, Spearman correlation between

RBX1/2 mRNA expression and CNV, and the survival

difference between their CNV and wild type were displayed in

pan-cancer.
Correlation analysis of Ring finger family
gene expression with immune
components in pan-cancer

The correlation between Ring finger family expression and

immune subtypes of different cancer types were explored via the

TISIDB database. Furthermore, we selected four types of cancers

(COAD, GBM, LIHC, LUAD) to analyze the relationship

between RBX1/2 and immune infiltration using Timer

database (30)(https://cistrome.shinyapps.io/timer/). Moreover,

the associations of RBX1/2 levels with 47 common immune

checkpoint genes selected were also evaluated. R software was

used to calculate the correlation between RBX1/2 expression and

TMB/MSI and the Fmsb R package was used for visualization.

Then, we performed the tumor microenvironment analysis for

obtaining the estimate score profile by using the “estimate” R

package, and the Spearman correlation test for conducting the

correlation analysis between RBX1/2 expression and immune

score, estimate score, stromal score, DNAss, RNAss and tumor

purity in pan-cancer.
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Cell culture

All human breast cancer cell lines (MDA-231, BT-474,

MCF-7) and normal breast epithelial cell (MCF-10A), lung

cancer cell lines (H1975, A549, PC9) and normal lung

epithelial cell (BEAS-2B), colorectal cancer cell lines (HCT116,

SW480, SW620) and normal colon epithelial cell (HCoEpic),

renal cancer cell lines (Caki-1, 786-O, 769-P) and normal renal

tubular epithelial cell (HK-2) were purchased from the

American Type Tissue Collection (ATCC) and cultured

according to the manufacturer’s instructions.
qRT-PCR analysis

cDNA reverse transcription and fluorescence quantitative

PCR amplification were performed using SPARKscript IISYBR

Green qRT-PCR Kit (Shandong Sparkjade Biotechnology Co.,

Ltd.) as previously reported (31). The primers used were as

f o l l ows : RBX1 fo rward , 5 ′ -TTGTGGTTGATAAC

TGTGCCAT -3′,
RBX1 reverse, 5′-GACGCCTGGTTAGCTTGACAT -3′;
RBX2 forward, 5′-TGGAAGACGGAGAGGAAACCT -3′,
RBX2 reverse, 5′-TGAGGGAGAACATCTTGTCGC -3′
b-Actin forward, 5′- CGTGCGTGACATTAAGGAGAAG

-3′,
b-Actin reverse, 5′- GGAAGGAAGGCTGGAAGAGTG

-3′;.
All genes were normalized to b-actin, and the 2−DDCt method

was applied to evaluate the relative levels of genes. The

comparison between the experimental group and the normal

group was performed using the Dunnett’s t test. P less than 0.05

was considered statistically significant.
Results

Molecular dynamics simulations and free
energy calculations of the CUL1-RBX1
and CUL1-RBX2 complexes

The SCF complexes are Ring-type E3s that composited of

cullin1, SKP1, RBX1/2 and a member of the F-box protein

family. Although the abundance of SCF is increased by the

variety of F-box proteins, they share the two ring components

RBX1 and RBX2 (32–34). RBX1 is constitutively expressed and

induced upon mitogen, whereas RBX2 is stress-inducible and

induced upon UV, TPA or ROS (14). In this study, we separately

calculated the binding affinity of CUL1-RBX1 and CUL1-RBX2

complexes to rough compare stability of SCF complex formed by
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RBX1/2. The binding energy calculated by the former was

-262 .59 kJ /mol and the la t ter was -146 .8 kJ/mol

(Supplementary Figures 1A, B). The result displayed the

combination of RBX1 and CUL1 may be more stable than that

of RBX2 and CUL1, suggesting that RBX1 is more likely to form

stable SCF complexes to degrade more substrates.
Expression of RBX1/2 in various types of
cancers and association with
pathological characteristics

We performed a scale analysis of the expression of RBX1/2

from the TCGA database and found that they are highly

expressed in most cancers. However, there were a few

apparent exceptions in the 18 types of cancers, a lower RBX1
Frontiers in Immunology 04
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expression was detected in KICH compare to the matches

normal tissues, whereas RBX2 was under expressed in COAD

and READ in addition to KICH (Figure 1A). To validate the

differences of RBX1/2 expression, we analysed transcriptional

expression of these both genes in various tumor cell lines of four

common types of cancer (breast, lung, colorectal and renal

cancer) and normal cells. Except for the expression of RBX1 in

lung cancer and RBX2 in COAD, the experimental results are

basically consistent with the bioinformatics analysis

(Supplementary Figure 2).

Further analysis revealed that there were significant

difference of Ring finger genes expression comparing primary

tumor to adjacent normal tissues, for example, RBX2 expression

in COAD tissues was lower than adjacent non-COAD tissues,

while RBX1 was in the opposite situation. The difference of

RBX2 expression between LUSC and adjacent tissues was much
A

B

D

C

FIGURE 1

The mRNA expression patterns of RBX1/2 in cancers. (A) Comparison of RBX1/2 expression between tumor and normal samples. (B) Heatmap
showing the difference of RBX1/2 gene expression in 18 cancer types from TCGA database. The red and green indicate the high or low
expression, respectively. (C) Boxplot illustrating the distribution of RBX1/2 gene expression in various cancer. (D) The correlation between RBX1
and RBX2. The blue dot indicated the positive correlation. *P < 0.05, **P < 0.01, ***P < 0.001.
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more obvious than that of RBX1 (Figure 1B). Meanwhile, the

overall expression level of RBX2 was higher than that of RBX1 in

pan-cancer (Figure 1C). We also analyzed that RBX1 and RBX2

are the two genes with significant positive correlation

(Correlation coefficient = 0.49, Figure 1D).

We investigated the RBX-proteins expression levels in

BRCA, OV, UCEC and PAAD (Figure 2A). The results

showed RBX2 expression in BRCA and OV was lower than in

normal tissues, while RBX1 expression had no significant

difference on the above tumors. Moreover, there was no

difference on RBX2 expression in PAAD, however, RBX1

expression was higher in matched normal tissues. Another

interesting phenomenon that RBX-proteins expression in

UCEC was exact opposite and statistically significant was also

illustrated. We showed RBX1/2 expression with pathological

grades of KIRC, LIHC, LGG and UCEC using TISIDB database

(Figure 2B), revealing that there were no differences in the

association between RBX1 expression and clinical grades in

LIHC and UCEC, whereas RBX2 expression has statistical

significance in association with pathological grade of KIRC,

LIHC and UCEC. We also observed the significant correlation

between RBX1/2 expression and the pathological stages of

several cancers including KIRC, KIRP, LIHC and PAAD

(Figure 2C). The expression of RBX1 was not related to the

stage of LIHC and PAAD, while RBX2 was in the opposite

situation. Moreover, the association with RBX1/2 expression and

KIRP stages was completely opposite, RBX1 was significantly

correlated with the stages of KIRP. In conclusion, different

expression patterns of RBX1/2 in various cancer types may

lead to different characterization of tumors.
Prognostic value of RBX1/2 across
cancer types

The survival analysis of TCGA database presented a

correlation between Ring finger family gene expression and

prognosis in several cancers, showing that higher RBX1

expression was associated with poor OS in ACC (P<0.001),

KIRC (P=0.011), LIHC (P=0.008), and UVM (P<0.001)

(Figure 3A), whereas higher RBX2 expression was linked to

poor prognosis in KICH (P=0.025), KIRC (P=0.001), LAML

(P=0.026), LGG (P=0.043), LIHC (P=0.005) and PAAD

(P=0.038) (Figure 3B). Interestingly, RBX1 had a protective

role in OV (P=0.002), PCPG (P=0.014), suggesting RBX1 may

exert tumor suppressor effect in OV and PCPG (Figure 3A).

We further investigated prognosis risk of the Ring finger

family genes in pan-cancer by COX analysis (Figure 4). Our

results indicated that RBX1 played a detrimental role in ACC,

KIRC, LIHC and UVM (HR>1, P<0.05). On the other hand,

RBX1 had a protective role in LGG, PCPG and CESC (HR<1,

P<0.05). RBX2 acted as a detrimental prognostic factor in ACC,
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KICH, KIRC, LIHC and PAAD (HR>1, P<0.05). In contrast,

RBX2 was a protective prognostic factor in CESC (HR<1,

P<0.05). We have enumerated three tumors of the highest

incidence (breast, colorectal and lung cancer) to perform

comprehensive prognosis analysis with RBX1/2 expression by

the PrognoScan database (35) (Table 1). RBX1 and RBX2 were

the high-risk genes in breast cancer (RFS). Notably, RBX2 acted

as a detrimental prognostic factor in colorectal cancer (OS, DFS)

and lung cancer (OS, RFS). However, RBX1 had no significant

relation with the prognosis in above cancers. The difference

between RBX1 and RBX2 may lead to different tumor outcomes.
RBX1/2 CNV profile in pan-cancer based
on GSCA analysis

We summarized RBX1/2 CNV landscape in 33 cancer types

by using the GSCA database, respectively (Figure 5). The highest

heterozygous amplification ratio (45.71%) for RBX1 was found

in LUSC, whereas the heterozygous amplification ratio of RBX2

presented a higher level of state in several cancers (>50%)

including CESC, HNSC, LUSC and OV. Furthermore, a

relatively higher heterozygous deletion ratio (>50%) for RBX1

was found in MESO, OV and UCS. However, RBX2 showed a

heterozygous deletion ratio of more than 50% only in PCPG.

The homozygous amplification of RBX2, had a significant

proportion in some specific cancers containing CESC, ESCA,

HNSC, LUSC and OV, for example, RBX2 homozygous

amplification in LUSC was accounted for about 20%

(Figure 5A). We also explored the association between RBX1/2

CNV and their mRNA expression (Figure 5B). Except for

CHOL, DLBC, KICH, KIRC, LAML, PRAD, READ, THYM

and UVM, the rest 24 cancer types were statistically significant

for the correlation between RBX1 CNV and its mRNA

expression. In addition to DLBC, LAML and THCA, RBX2

CNV had also a statistical significance with its mRNA expression

in most cancers (Figure 5B). Subsequently, the profile of survival

between the two members associated gene set CNV groups in the

selected cancers was also summarized. The results suggested that

wide type RBX1 had all statistical significance on OS, PFS, DFS

and DFI in UCEC and KIRP. However, wide type RBX2 had all

statistical significance on above four survival indicators only in

UCEC (Figure 5C).
RBX1/2 expression is related to immune
subtypes in cancers

Previous studies determined that RBX1 and RBX2 were

involved in immunomodulatory processes (19, 36), therefore,

we compared the relationships between RBX1/2 expression and

immune subtypes through the TISIDB database (Figure 6).
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Immune subtypes were classified into six types, including C1

(wound heal ing) , C2 (IFN-gamma dominant) , C3

( i nfl amma t o r y ) , C4 ( l ympho c y t e d ep l e t e d ) , C5

(immunologically quiet) and C6 (TGF-b dominant). Our
Frontiers in Immunology 06
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analyses showed that RBX1 expression in the immune

subtypes of BLCA, UCEC and UVM had no statistical

significance, while RBX2 expression in above three cancers

was closely related with those immune subtypes. Conversely,
A

B

C

FIGURE 2

RBX1/2 expression based on tumor types and individual pathological grades and stages. (A) RBX-proteins expression in BRCA, OV, UCEC and
PAAD. ns is considered as no statistical difference, **P < 0.01, ***P < 0.001. Up or down arrow represented the expression of tumor samples
more or less than the corresponding normal samples, respectively. (B) The expression levels of RBX1/2 were analyzed by tumor pathological
grades (grade1, grade2, grade3, grade4) of KIRC, LIHC, LGG and UCEC. P value less than 0.05 is considered as difference. (C) The expression
levels of RBX1/2 were analyzed by tumor pathological stages (stage I, stage II, stage III, and stage IV) of KIRC, KIRP, LIHC and PAAD. P value less
than 0.05 is considered as difference.
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RBX2 expression had no correlation with the COAD immune

subtypes. Of interest, taking KIRC as the example, RBX1 showed

high expression in C2 and C6 types, however, RBX2 expression

on C1 immune subtype was the highest in KIRC. Furthermore,

we investigated the association with RBX1/2 expression and

immune subtypes in the TCGA pan-cancer data, illustrating that

the expression of RBX1 was lowest in the C3 immune subtype,

while RBX2 was lowest in the C5 immune subtype

(Supplementary Figure 3). Based on the above results, we

concluded that RBX1/2 expression differs in immune subtypes

of various tumor cancers.
Frontiers in Immunology 07
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Association between RBX1/2 mRNA
expression and immune infiltration
in pan-cancer

Studies indicated that RBX1 expression are associated with

the immune suppressive function of Treg cells, and T-cell

deficiency, and RBX2 could trigger a series of immune

responses, suggesting they may play important roles in

regulating immune cells (37, 38). We found a strong

correlation between RBX1/2 expression and the levels of

immune infiltration in COAD, GBM, LIHC and LUAD by
A

B

FIGURE 3

Kaplan-Meier survival curves comparison of high and low expression of Ring finger family gene in pan-cancer. (A) OS survival curves of RBX1 in
different cancers: ACC, p<0.001; KIRC, p=0.011; LIHC, p=0.008; UVM, p<0.001; OV, p=0.002; PCPG, p=0.014. (B) OS survival curves of RBX2 in
different cancers: KICH, p=0.025; KIRC, p=0.001; LAML, p=0.026; LGG, p=0.043; LIHC, p=0.005; PAAD, p=0.038.
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analysis of the TIMER database (Figure 7). The expression of

RBX1 was in connection with the infiltration of B cell, CD4+ T

cells and neutrophils in above four cancers (Figure 7A). With

regard to RBX2, the infiltration of CD8+ T cells and

macrophages have a positive correlation with RBX2 in COAD

and LIHC (Figure 7B). We also conducted the co-expression

analysis to further explore the association between RBX1/2

expression and immune checkpoints in pan-cancer using the

TCGA database. As shown in Figure 8A, RBX1 was positively

correlated with these immune markers in SARC, TCGT and
Frontiers in Immunology 08
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UVM, whereas the positive association between RBX2 mRNA

and immune checkpoints existed in LGG and LIHC (Figure 9A).

Interestingly, we found that RBX1 was positively correlated with

the expression levels of PD1 (PDCD1) and CTLA-4 in BRCA,

KIRP, LIHC, SARC, TCGT, THCA and UVM (Figure 8A).

RBX2 had a closely tie with the expression level of PD-L1

(CD274) in BLCA, COAD, HNSC, KIRC, LAML, LIHC, OV,

PCPG, PRAD, SKCM, TGCT and THCA (Figure 9A). These

results indicated that RBX1/2 might regulate different immune

response in various cancer types.
FIGURE 4

Association of RBX1/2 gene expression with patient’s overall survival for different cancer types. The forest plots with the hazard ratios and 95%
confidence intervals for overall survival for different cancer types showing the survival advantage and disadvantage with the increased gene
expression of RBX1/2. The univariate Cox proportional hazard regression models were used for the association tests.
TABLE 1 Ring finger family gene expression was related to the prognosis of different cancers in PrognoScan.

Gene Dataset Cancer type Endpoint Number COX P-value HR 95% CI (low-high)

RBX1 GSE1456 Breast cancer RFS 159 0.026281 1.01 1.13-6.70

RBX1 GSE7378 Breast cancer DFS 54 0.602293 0.33 0.40-4.92

RBX1 GSE17537 Colorectal cancer OS 55 0.992477 -0.01 0.26-3.73

RBX1 GSE17536 Colorectal cancer DFS 145 0.707538 0.19 0.44-3.36

RBX1 GSE13213 Lung cancer OS 117 0.051215 0.76 1.00-4.63

RBX1 GSE31210 Lung cancer RFS 204 0.082506 0.81 0.90-5.58

RBX2 GSE1456 Breast cancer RFS 159 0.002736 1.32 1.58-8.81

RBX2 GSE7378 Breast cancer DFS 54 0.046315 -0.96 0.15-0.98

RBX2 GSE17537 Colorectal cancer OS 55 0.041411 1.20 1.05-10.58

RBX2 GSE17536 Colorectal cancer DFS 145 0.043114 1.07 1.03-8.20

RBX2 GSE13213 Lung cancer OS 117 0.000608 1.12 1.62-5.83

RBX2 GSE31210 Lung cancer RFS 204 0.000007 1.64 2.52-10.58
RFS, relapse free survival; DFS,Disease Free Survival; OS, overall survival; HR, hazard ratio; CI, Confidence Interval.
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RBX1/2 expression is related to tumor
mutational burden, microsatellite
instability and tumor microenvironment

Further analysis found that RBX1 expression was positively

correlated with TMB in ACC, BRCA, STAD and UCEC, but

negatively correlated with ESCA, THCA and THYM, as seen in

Figure 8B. However, RBX2 expression had no relation with TMB

in ACC, ESCA, THCA and THYM (Figure 9B). We also found

that the RBX1 had a positive association with MSI in BRCA,

DLBC, HNSC, KIRC, KIRP, LGG, LIHC, PRAD, SARC, SKCM,

STAD and THCA, but had a negative association with CESC,

LUSC and TGCT, as seen in Figure 8C. Similarly, correlation

analysis between RBX2 expression and MSI was also performed
Frontiers in Immunology 09
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(Figure 9C). In HNSC, KIRC, LIHC, PRAD, READ, SKCM,

STAD, THCA and UCEC, RBX2 expression was positively

related to MSI, whereas the expression of RBX2 has a negative

relationship with GBM (Figure 9C).

To obtain a more comprehensive analysis of the relationship

between Ring finger family and immune components, we

applied the estimate algorithm to evaluate the stromal and

immune scores in 33 cancer types. RBX1/2 existed statistically

significance in stromal, immune, and estimate scores

(Supplementary Figures 4A-C). Besides, they had a

significantly positive or negative correlation with DNAss,

RNAss and tumor purity in pan-cancer (Supplementary

Figures 4D-F). These results suggested RBX1/2 may be

involved in different immune processes in various cancer types.
A

B

C

FIGURE 5

The CNV landscape of RBX1/2 in pan-cancer based on GSCA. (A) The deletion/amplification of heterozygous/homozygous CNV for RBX1/2 in
pan-cancer. (B) Correlation between CNV and RBX1/2 mRNA expression in various cancers. (C) The profile of survival between RBX1/2
associated gene set CNV groups in various cancer types. CNV, copy number variation; GSCA, Gene Set Cancer Analysis; Hete Amp,
Heterozygous Amplification; Homo Amp, Homozygous Amplification; Hete Del, Heterozygous Deletion; Homo Del, Homozygous Deletion; OS,
overall survival; PFS, progression-free survival; DSS, disease specific survival; DFI, disease-free interval.
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Discussion

Previous studies have systematically provided a

comprehensive overview on the alterations of SCF E3

ubiquitin ligases in the pathogenesis and development of

cancers (39, 40). RBX1/2 were overexpressed in a number of

primary cancer tissues, including carcinoma of lung, liver,

breast, colon, and renal. Sun Y et al. has demonstrated that

inactivation of either RBX1 or RBX2 inhibits carcinogenesis via

various mechanisms, including apoptosis and senescence (17,

41, 42). However, two other studies found that only RBX2

overexpression was correlated with the poor prognosis in lung
Frontiers in Immunology 10
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cancer (21); as well as high RBX1 expression was related to poor

survival only in KIRC patients and high RBX2 expression had a

close relation with poor prognosis in all three types of RCC (22,

43). At present, the comparison of Ring finger family in the same

cancer is rare. The underlying mechanisms by which they

contribute to different outcomes in cancer patients remains

largely unknown. Therefore, we focused on their differences in

mRNA level, protein level, pathological parameters, prognosis

and etc. by the pan-cancer analysis in this study Supplementary

Table 1. Our result showed that RBX1/2 reflected their

characteristics respectively in the observation indicators

mentioned, for example, RBX2 expression is more
A

B

FIGURE 6

The relationship between RBX1/2 expression and pan-cancer immune subtypes. (A) Correlation of RBX1 expression and immune subtypes in
BRCA, COAD, LIHC, LUAD, KIRC, STAD, UCEC and UVM. (B) Correlation of RBX2 expression and immune subtypes in BRCA, COAD, LIHC, LUAD,
KIRC, STAD, UCEC and UVM. P value less than 0.05 is considered as difference.
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differentially expressed than RBX1 in LUSC, which may be one

of the reasons that only RBX2 expression is associated with lung

cancer prognosis.

Accumulating evidence suggests that the E3s dysfunction

can contribute to adverse immune response (44–46). Previously,

several studies have observed that RBX1 can promote ubiquitin

degradation of HBx-induced PD-L1 protein in HCC cells (47).
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Meanwhile, RBX2-dependent neddylation played a significant

role in the regulation of T-cell responses (38). Thus, there is a

dire need for exploring the relationship of RBX1/2 expression

and immune components. Using bioinformatics methods, we

elucidated the immunological role of the Ring finger family

across cancers and provided in first time the gene expression and

genetic alteration of RBX1/2 in the regulation of different
A

B

FIGURE 7

Correlation of RBX1/2 expression with immune infiltration level in COAD, GBM, LIHC and LUAD. (A) RBX1 expression is related with the level of
immune infiltration in the above four cancers. (B) RBX2 expression is related with the level of immune infiltration in the above four cancers. P
value less than 0.05 is considered as difference.
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immune components including their association with PD-L1

expression. This result showed RBX1/2 may be attractive

biomarkers of immunotherapy efficacy.

We investigated and integrated information based on

bioinformatics and public databases, however, there were still

some limitations in the present study. First, whether the Ring

finger family is harmful or beneficial remains contradictory

because of some conflicting findings from different databases.

Second, despite the finding that they were closely associated with

immune infiltration and prognosis, we were unable to determine
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whether these two molecules affected patient survival through

immune infiltration. Finally, whether differences in RBX-

proteins are a decisive factor in the stability of the SCF

complex in pan-cancer needs to be further clarified.

In summary, our results revealed that the important role of

Ring finger members in the SCF complex, and the expression

profile of RBX1/2 in pan-cancer. Moreover, strong correlations

between RBX1/2 and disease prognosis and immune

components were proved in the present study. Clinical

immune markers, such as PD-1, CTLA-4 and PD-L1, have
A

B C

FIGURE 8

The relationship between RBX1 and immune checkpoints, TMB and MSI based on TCGA database. (A) Heatmap illustrating the relationship
between RBX1 and known immune checkpoints. The top left triangle represents the P-value, and the bottom right triangle represents the
correlation coefficient. Correlation between RBX1 and TMB (B) and MSI (C). *P < 0.05, **P < 0.01, and ***P < 0.001.
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been confirmed to be closely associated with Ring finger family

in a variety of cancers. These findings may provide insights for

further investigation of the Ring finger family genes as potential

targets in pan-cancer.
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Glossary

RBX1/ROC1 ring box protein 1

RBX2/SAG/
RNF7

rign box protein 2

CUL1 cullin1

OS overall Survival

DFS disease Free Survival

DSS disease specific survival

RFS relapse free survival

DMFS distant Metastasis-Free Survival

PFS progression-Free-Survival

DFI disease free interval

CNV copy number variation

TMB tumor mutational burden

MSI microsatellite instability

ACC adrenocortical carcinoma

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DLBC lymphoid neoplasm diffuse large b-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

HNSC head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LAML acute myeloid leukemia

LGG brain lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

TGCT testicular germ cell tumors

THYM thymoma

THCA thyroid carcinoma

UCS uterine carcinosarcoma

UCEC uterine corpus endometrial carcinoma

UVM uveal melanoma
Frontiers in Imm
unology frontiersin.org16
227

https://doi.org/10.3389/fimmu.2022.968777
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Fu Wang,
Xi’an Jiaotong University, China

REVIEWED BY

Haitao Luo,
University of Jinan, China
Gao Ke,
Foshan Chancheng Central
Hospital, China

*CORRESPONDENCE

Hanwei Chen
docterwei@sina.com
Yuguang Li
lyg_py@126.com
Jianhao Li
18922238032@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 15 June 2022

ACCEPTED 22 July 2022
PUBLISHED 18 August 2022

CITATION

He J, Shen J, Luo W, Han Z, Xie F,
Pang T, Liao L, Guo Z, Li J, Li Y and
Chen H (2022) Research progress on
application of single-cell TCR/BCR
sequencing technology to the tumor
immune microenvironment,
autoimmune diseases, and
infectious diseases.
Front. Immunol. 13:969808.
doi: 10.3389/fimmu.2022.969808

COPYRIGHT

© 2022 He, Shen, Luo, Han, Xie, Pang,
Liao, Guo, Li, Li, and Chen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 18 August 2022

DOI 10.3389/fimmu.2022.969808
Research progress on
application of single-cell
TCR/BCR sequencing
technology to the tumor
immune microenvironment,
autoimmune diseases, and
infectious diseases

Jinhua He1†, Jian Shen1†, Wenfeng Luo1†, Zeping Han1†,
Fangmei Xie1, Ting Pang1, Liyin Liao1, Zhonghui Guo1,
Jianhao Li2*, Yuguang Li3* and Hanwei Chen1,4*

1Central Laboratory, Central Hospital of Panyu District, Guangzhou, China, 2Institute of
Cardiovascular Medicine, Central Hospital of Panyu District, Guangzhou, China, 3Administrative
Office, He Xian Memorial Hospital, Southern Medical University, Guangzhou, China, 4Medical
Imaging Institute of Panyu, Central Hospital of Panyu District, Guangzhou, China
Single-cell omics is the profiling of individual cells through sequencing and

other technologies including high-throughput analysis for single-cell

resolution, cell classification, and identification as well as time series

analyses. Unlike multicellular studies, single-cell omics overcomes the

problem of cellular heterogeneity. It provides new methods and perspectives

for in-depth analyses of the behavior and mechanism of individual cells in the

cell population and their relationship with the body, and plays an important role

in basic research and precision medicine. Single-cell sequencing technologies

mainly include single-cell transcriptome sequencing, single-cell assay for

transposase accessible chromatin with high-throughput sequencing, single-

cell immune profiling (single-cell T-cell receptor [TCR]/B-cell receptor [BCR]

sequencing), and single-cell transcriptomics. Single-cell TCR/BCR sequencing

can be used to obtain a large amount of single-cell gene expression and

immunomics data at one time, and combined with transcriptome sequencing

and TCR/BCR diversity data, can resolve immune cell heterogeneity. This paper

summarizes the progress in applying single-cell TCR/BCR sequencing

technology to the tumor immune microenvironment, autoimmune diseases,

infectious diseases, immunotherapy, and chronic inflammatory diseases, and

discusses its shortcomings and prospects for future application.

KEYWORDS

single-cell TCR/BCR sequencing, autoimmune diseases, infectious diseases, Chronic
inflammatory diseases, Tumor immune microenvironment
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Introduction

The immune repertoire (IR) refers to the sum of B and T

lymphocytes with functional diversity in an individual’s

circulatory system at any point in time (1). T and B cells

mediate the cellular and humoral immune responses of the

body, and recognize and bind antigens through T-cell receptors

(TCRs) and B-cell receptors (BCRs) on their respective surfaces to

clear pathogens or tumor cells in vivo (2). IR sequencing (IR-seq)

targets T and B lymphocytes. Multiplex PCR or 5’-rapid

amplification of cDNA (complementary Deoxyribonucleic acid)

ends was used to amplify the complementarity-determining

region (CDR) that determines the diversity of TCR or BCR,

combined with high-throughput sequencing technology, to

comprehensively assess the diversity of the immune system and

explore the relationship between the IR and disease (3). IR-seq

technology mainly includes single-cell TCR and BCR sequencing;

a schematic illustration is shown in Figure 1.

Single-cell TCR sequencing by high-throughput sequencing

technologies allows detection of the target after amplification

and recognition of surface T-cell antigen, analysis of its diversity,

and before and after T-cell antigen recognition, can reflect the

body’s physiological and pathological conditions by detecting

changes in T-cell mediated immune responses. Single-cell TCR

sequencing can be used to study the transcription and

interrelationships of different T-cell clones, thus revealing

deeper T-cell functional specificity (4). Single-cell TCR

sequencing detects the heavy and light BCR chains after

targeted amplification by high-throughput sequencing

technology, and comprehensively analyzes the rearranged base

sequences of the BCR gene and abundance of each sequence. It is

used to study the transcription and interrelationship of different

B-cell clones, suggesting a deeper level of B-cell functional

specificity, and thus explaining humoral immune response

tolerance and high-frequency mutations in B-cell response

recognition antigen-related abnormalities (5).

Single-cell TCR/BCR sequencing technology has the

technical advantages of high throughput, high resolution, and

comprehensive information, and has been comprehensively

applied research of the tumor immune microenvironment,

autoimmune diseases, infectious diseases, immunotherapy,

chronic inflammation, and other diseases.
Tumor immune microenvironment

Normal karyotype acute myeloid leukemia (NK-AML) is a

highly heterogeneous malignancy that exists in a complex

immune microenvironment. Understanding tumor-infiltrating T

cells is critical for advancing immunotherapy and improving

outcomes in patients with this disease. In one study, single-cell

sequencing was performed on bone marrow cells from 5 patients

with NK-AML (M4/M5) and 1 normal donor. The results showed
Frontiers in Immunology 02
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that mucosa-associated constant T cells (MAITs) were

preferentially enriched and likely to be clonally amplified in the

NK-AML patients, providing valuable insights into the immune

microenvironment of NK-AML (6). In another study, single-cell

sequencing was used to analyze 45,000 immune cells from 8 breast

cancer patients, as well as matched normal breast tissue, blood,

and lymph nodes. The results showed that there was a continuous

activation model in T cells and a macrophage polarization model

that did not conform to cancer. Understanding immune cell

phenotypes in the tumor microenvironment is of great

significance in revealing the mechanisms of cancer progression

and immunotherapy response (7). In patients with early-stage

breast cancer, the degree of tumor-infiltrating lymphocytes (TILs)

was associated with the response to chemotherapy and overall

survival. Eighteen patients with early-stage breast cancer were

treated preoperatively with cryoablation, single-dose anti-CTLA-4

(cytotoxic T lymphocyte-associated protein), or cryoablation plus

ipilimumab. Single-cell sequencing results showed that in basal

tumor tissue, T-cell density as measured by TCR sequencing was

associated with TIL degree score as measured by hematoxylin and

eosin (H&E) staining. This provides a new direction for further

research using TCR sequencing as a biomarker of T-cell response

to treatment and cry immunotherapy for early-stage breast cancer

(8). Severe immune-related adverse events (irAEs) occur in up to

60% of melanoma patients treated with immune checkpoint

inhibitors (ICIs). TCR sequencing has been used to examine the

T-cell repertoire in peripheral blood samples from melanoma
FIGURE 1

Schematic diagram of single-cell TCR/BCR sequencing technology.
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patients receiving antitumor therapy. The results showed that the

abundance of CD4 memory T cells is associated with the

development of severe irAEs; thus, the distribution of related

circulating T-cell characteristics induced by ICIs is of great

significance for improving clinical diagnosis and management

(9). In one study, single-cell RNA combined with TCR sequencing

was used to detect “tumor-matched” (TM) CD8+ T cells in the

blood of patients with melanoma, using TCR as a molecular

barcode. The results showed that TM cells showed higher

activation compared to mismatched T cells in the blood and

were less depleted than matched cells in the tumor, which has

great potential for monitoring anti-tumor CD8+ T cell responses

in the blood (10). The detection of TILs is the key to developing

immunotherapy and predicting its clinical response in cancer.

TCR sequencing analysis of 5,063 T cells isolated from the

peripheral blood, tumors, and nearby normal tissues of 6

patients with hepatocellular carcinoma (HCC) showed that

depleted CD8+ T cells and regulatory T cells (Tregs) were

preferentially enriched and clonally amplified in HCC. The

expression of layilin was upregulated in activated CD8+ T cells

and Tregs and inhibited CD8+ T-cell function in vitro (11). In

exhausted T cells and Tregs of liver cancer tissue, its TCRs are

reused. The proportion of T cells containing the same TCR is

higher in HCC tissues than in peripheral blood and normal

tissues, suggesting that clone amplification occurs in exhausted

T cells and Tregs in HCC tissues (12). CD4+ T cells have tumor-

specific states, and multiple cytotoxic CD4+ T cells have been

cloned and amplified. These CD4+ T cells kill autologous tumors

in a major histocompatibility complex (MHC) class II-dependent

manner and are inhibited by Tregs. In addition, the gene

expression profile of cytotoxic CD4+ T cells in tumor tissues is

associated with the clinical response of metastatic bladder cancer

patients treated with anti- programmed death-ligand 1 therapy

(13). The number of cytotoxic T cells and clonicity of the TCR are
Frontiers in Immunology 03
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decreased in patients with squamous cell carcinoma after organ

transplantation. Phenotypic function identification of T cells with

these TCRs can promote the personalized treatment of skin

squamous cell carcinoma with strong immunity (14). Tumor

cells from nasopharyngeal carcinoma (NPC) patients show a

high degree of intratumor and intertumor heterogeneity, and

are characterized by T-cell clones and extended distribution of

individual tumors, providing insights into the mechanisms by

which immune cells clear tumors and improving NPC targeting

and immunotherapy (15). CD8+ TILs and their TCR libraries

may be the basis of antitumor immune responses in different

hosts, which may have important implications for the

development of personalized immunotherapies for cancer (16).

T-cell large granular lymphocytic leukemia (T-LGLL) is a lymph

proliferative disease characterized by the clonal expansion of

terminal differentiation effector and memory cytotoxic T

lymphocytes (CTLs). Abnormalities in cell survival and

apoptotic gene programming and significant downregulation of

CD8+T cell apoptotic genes are prominent features of T-LGLL

cells (17). The studies on single-cell TCR/BCR sequencing

technology applied to tumors are summarized in Table 1.
Infectious diseases

A total of 41,718 CD3+ T cells have been identified in

tuberculosis pleural effusion (TPE), and no difference in

distribution has been observed in the CDR3 of CD4+ and CD8+

T cells. The hydrophobicity of CDR3 is changed in CD8+ T cells,

and T cell receptor beta variable 4-1 (TRBV4-1) is preferentially

expressed in TPE; the CD4+ T cell subpopulationmay be important

for protective immunity against tuberculosis (18). Previously, CD4+

T cells reactivated by cytomegalovirus (CMV) structural protein

pp65 were isolated from human peripheral blood with significant
TABLE 1 Summary of the application of single-cell TCR/BCR sequencing technology in tumor research.

Disease Technology Significance Reference

Acute myeloid leukemia scRNA-Seq+
scTCR-Seq

Reveal tumor immune microenvironment (6)

Breast Cancer scRNA-Seq+
scTCR-Seq

Reveal tumor immune microenvironment (7, 8)

Melanoma scTCRSeq+
scRNA-Seq

Provide clues for disease diagnosis and clinical management; monitor the ability of the blood to
respond to anti-tumor CD8 + T cells

(9, 10)

Liver Cancer scTCR-Seq Reveal tumor immune microenvironment (11, 12)

Bladder Cancer scTCR-Seq Predict clinical response to anti-PD-L1 therapy (13)

Squamous cell carcinoma scRNA-Seq+
scTCR-Seq

Facilitate personalized treatment of SCC (14)

Nasopharyngeal carcinoma scTCR-Seq Improve targeted therapy and immunotherapy for NPC (15)

Scale-cell carcinoma of head
and neck

scRNA-Seq+
scTCR-Seq

Guide personalized cancer immunotherapy (16)

large granular lymphocyte
leukemia T cells

scRNA-Seq+
scTCR-Seq

Reveal tumor immune microenvironmen (17)
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heterogeneity and potential function. Tregs were the largest

population of these reactivated cells. CD4+ CTL1 and CD4+

CTL2 cells reactivated by CMV were cloned and amplified; they

share a large TCR library. This study provides clues regarding the

function and interaction of CD4+ T-cell subsets during CMV

infection (19). The dynamics and diversity of T-cell immune

libraries in human immunodeficiency virus-negative

pneumocystis pneumonia remain unclear. Single-cell sequencing

in the lung tissues of mice infected with pneumocystis showed a

decrease in TCR diversity of CD4+ T cells and an increase in CD8+

T cell diversity in mice infected with pneumocystis, providing clues

to the mechanism of the host’s adaptive immune response to

pneumocystis (20). Different T cell clones have been amplified in

COVID-19 patients. Further analyses of the VJ gene(V-variable,J-

joining) mix have revealed that among COVID-19 patients, 6 VJ

pairs are significantly increased and 139 pairs are significantly

reduced. These results contribute to further elucidating the

mechanism of severe acute respiratory syndrome coronavirus 2

(SARS-COV-2)-induced immune responses (21). BCR diversity is

significantly reduced in COVID-19 patients, and the CDR3

sequence of the BCR heavy chain is similar to that of healthy

controls. Among all cloned BCRs, IgG isotypes have the most

frequent class-switching recombination events and the highest rate

of somatic super mutation, especially IgG3. This has important

implications for elucidating the immune response mechanism of

SARS-COV-2 infection (22). A characterization of peripheral blood

T and B cell variation in COVID-19 patients shows that humoral

immune response and T cell immune memory were positively

correlated with disease severity (23). Asymptomatic COVID-19

patients showed an increase in CD56briCD16- natural killer (NK)

cells and upregulation of interferon -g in effector CD4+, CD8+ T

cells and NK cells. They showed more robust TCR clone

amplification, especially in effector CD4+ T cells, but lacked

intense BCR clone amplification compared to moderate patients

(24). The germinal center (GC) B-cell subsets and organ specificity

of lymph nodes and spleen cells infected with influenza virus

continue to differ during the response process, and there is

significant clone overlap in GC-derived plasma cells. This

provides important clues to understanding the mechanisms of
Frontiers in Immunology 04
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immune responses against viruses (25). Cutaneous erythema

migrants (EM) is the first sign of a tick-borne infection called

Lyme disease. T cells and innate immune cells predominate in EM

lesions and promote the response. B-cell cloning and amplification

in the skin of EM patients and the expression of MHC class II genes

in EM-associated B cells are upregulated. This provides a direction

for revealing the mechanism of immune responses in borrelia

infection (26). The application of single-cell TCR/BCR sequencing

technology to infectious disease research is summarized in Table 2.
Autoimmune diseases

T helper type 1 (Th1) and Th17 cells activated in the peripheral

blood of patients with primary Sjogren’s syndrome (pSS) express

TCRb variables (TRBV) 3-1/connector (J) 1-2 (CLFLSMSACVW)

and TRBV20-1/J1-1 (SVGSTAIPP * T). TCRa variable 8-2/J5

(VVSDTVLETAGE) is expressed by the Th1 cells of pSS patients,

and a CDR3a-specific motif (LSTD * E) was found in Th1/Th17

cells. This provides clues to elucidating the pathogenesis of pSS

(27). CD8+ and CD4+ T cells are activated in the peripheral blood

of patients with adenosine deaminase 2 deficiency, and T cells

show significant cell-cell interaction with monocytes, which

promote the upregulation of signal transducer and activator of

transcription 1 (STAT1) expression in T cells (28). Immune cells, T

cells, and B cells play an important role in the pathogenesis of

systemic lupus erythematous (SLE). Sixteen immune cell types are

present in the peripheral blood of SLE patients, and TCR and BCR

types are increased, providing new approaches for the diagnosis

and treatment of SLE (29). Orbital disease, the most serious

manifestation of Graves’ hyperthyroidism (GH), is an

autoimmune-mediated inflammatory disease with typically a low

therapeutic effect. The CD4+ CTL population in the peripheral

blood of patients with GH has clonal amplification. Their strong

cytotoxic response to auto antigens and orbital localization are

potentially associated with disease recurrence (30). Somatic

mutations in clonally amplified CD8+ lymphocyte populations

in patients with rheumatoid arthritis (RA) and unique TCRb
characteristics have been detected in patients with invasive
TABLE 2 Summary of the application of single-cell TCR/BCR sequencing technology in infectious diseases.

Disease Technology Significance Reference

Tuberculosis scTCR-seq+sc-RNA seq Involve in protective immunity (18)

Cytomegalovirus scTCR-seq+sc-RNA seq Elucidate the function and interaction of CD4 + T cells (19)

Pneumocystis
Pneumonia

scTCR-seq+sc-RNA seq Reveal the mechanisms of host adaptive immune responses to pneumocystis (20)

COVID-19 scTCR-seq+sc-RNA seq ;scBCR-
Seq ;
scTCR-Seq+ scBCR-Seq)

Involve in T-cell mediated viral clearance;Reveal the immune response mechanism of viral
infection

(21–24)

Borrelia infection scBCR-seq+sc-RNA seq Reveal the immune response mechanism of viral infection (25)

Lyme disease scBCR-seq+sc-RNA seq Reveal the immune response mechanism of borrelia Infection (26)
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destructive RA, who express high levels of tumor necrosis factor

superfamily member 14 cytokines. The specific characterization of

TCRb in CD8+ T lymphocytes may help improve treatment

regimens for patients with drug-resistant RA (31). In

autoimmune hepatitis, the presence of autoantibodies against

soluble liver antigen (SLA) is associated with reduced overall

survival, but the associated auto reactive CD4 T cells have not

been characterized. SLA-specific CD4T cells have been tracked in

peripheral blood by single-cell sequencing. The results showed

that: autoreactive SLA-specific CD4 T cells have memory PD-1

+CXCR5-CCR6-CD27+ phenotype, and autoreactive TCR clones

mainly exist in memory PD-1+CXCR5-CD4 T cells and induce B-

cell differentiation through interleukin 21 (32). The application of

single-cell TCR/BCR sequencing technology to autoimmune

diseases is summarized in Table 3.
Chronic inflammatory diseases

Although various pro- and anti-inflammatory T-cell subsets

have been observed in human atherosclerotic plaques, the main

question of T-cell immunity remains unanswered. T-cell

transcriptome and TCR maps of three important tissues

associated with atherosclerosis have been provided by single step-

cell sequencing. This approach is expected to address major

questions about atherosclerosis autoimmunity (33). Single-cell

sequencing of pancreatic immune cells isolated from hereditary

and idiopathic chronic pancreatitis (CP) patients undergoing total

pancreatectomy has revealed reduced T-cell clonicity in hereditary

CP, and C-C motif chemokine receptor 6 (CCR6) ligand (CCL20)

expression is significantly upregulated in monocytes of hereditary

CP. The CCR6-CCL20 signaling pathway may be used as a

potential therapeutic target for human inherited CP (34). The

detection of TCR+ macrophages, proliferative macrophages, and

natural killer dendritic cells in peritoneal fluid of endometriosis by

single-cell sequencing suggests that immune dysfunction occurs in

the peritoneal fluid of endometriosis and provides a valuable tool

for the future development of immunotherapy (35).

A new fibrotic subpopulation of CD8 T (CCL5 +, CCL4 +) and

CD4 T (MT-CO1 +) cells infiltrate the fibrotic liver, characterized

by the abnormal activation or inactivation and a marked decline in
Frontiers in Immunology 05
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TCR clones, along with the reduced use of VJ and VDJ fragments.

The pattern and dynamics of these individual immune cells in liver

fibrosis contribute to elucidating the protective mechanism of TCR

in the chronic liver injury response (36). The TCRa chain is

significantly enriched in the blood of patients with Crohn’s

disease (CD), particularly in CD8+ T cell populations, whereas

the potential effects of Crohn’s associated invariant T-cell

subpopulations on CD remains to be elucidated (37). A total of

1650 glutamic acid decarboxylase 65-kilodalton isoform (GAD65)-

specific CD4(+) T cells were isolated and 1003 different TCRs were

identified in the peripheral blood of 6 patients and 10 patients with

type 1 diabetes mellitus who were positive for islet autoantibodies.

The TRBV5.1 gene was most highly expressed in the GAD65 557I

tetramer (+) cells, and these findings provide strong support for

revealing the pathogenesis of type 1 diabetes (38). Mutations in the

transcriptional regulator STAT3 lead to neonatal type 1 diabetes.

Paired single-cell TCR and RNA sequencing has shown that STAT3

gain of function (GOF) drives significant proliferation of terminal

depletion-resistant effector CD8+ cells. A single-cell assay for

transposase accessible chromatin with high-throughput

sequencing showed that these effector T cells are epigenetic and

have different chromatin structure induced by STAT3-GOF, CD8

+T cells react with known antigen islet-specific glucose-6-

phosphatase catalytic subunit-related protein, STAT3 mutations

contribute to type 1 diabetes through deficiency of CD8+ T cell

tolerance (39). A large number of CD8+ T cells continued to

progress from central memory to terminal effect in the peripheral

blood of patients with Parkinson’s disease (PD), and cytotoxic CD4

+ T cells (CD4 CTLS) were significantly amplified from Th1 cells,

providing valuable insights and rich resources for understanding

adaptive immune responses in PD patients (40). Another single-cell

sequencing showed that the memory B cells of PD patients were

significantly increased and the naive B cells were significantly

decreased. The memory B cell population upregulated the

expression of MHC II genes (HLA-DRB5, HLA-DQA2, and

HLA-DPB1) and transcription factor activator protein 1, and the

antigen presentation ability of B cells of PD patients was enhanced.

The results provide new insights into humoral immune responses

in the pathogenesis of PD (41). The studies on the application of

single-cell TCR/BCR sequencing technology to chronic

inflammatory diseases are summarized in Table 4.
TABLE 3 Summary of studies on the application of single-cell TCR/BCR sequencing technology in autoimmune diseases.

Disease Technology Significance Reference

Primary Sjögren's syndrome scTCR-seq Reveal pathogenesis (27)

Adenosine deaminase 2 scRNA-seq+scTCR-seq Reveal pathogenesis (28)

Systemic lupus erythema scTCR-seq+scBCR-seq Provide a new approach for diagnosis and treatment of SLE (29)

Graves' hyperthyroidism (GH) scRNA-seq+scTCR-Seq Provide potential therapeutic targets (30)

Rheumatoid arthritis scRNA-seq+scTCR-Seq Develop improved protocols for resistance therapy in patients (31)

Autoimmune hepatitis scTCR-seq Reveal pathogenesis (32)
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Discussion

Immune library sequencing (single-cell TCR/BCR

sequencing) can solve the following problems: identify the

sequence composition and diversity of the immune repertoire;

explore gene expression and discover new biomarkers; and

analyze clonotype composition within/between samples (e.g.,

proliferative cloning, clonotype overlap between cell types,

clonotype diversity) and clonotype composition between

samples (e.g., clonotype overlap between different samples of the

same organism). Single-cell immunosequencing can

simultaneously detect thousands of cells in a single experiment,

and the 5’-end mRNA expression profile as well as TCR and BCR

information can be obtained simultaneously in a sample.

Combined with gene expression profiles and V(D)J data, factors

influencing immune responses in complex tissue samples are

analyzed. However, single-cell TCR/BCR sequencing technology

also has the following shortcomings. 1) Stringent sample

requirements: the initial number of cells in a single sample

should be 105 to 106, and the number of living cells should be

more than 80%, and it is recommended to be more than 90%. 2)

At present, the proportion of T cells or B cells in tissue samples is

not very large. If they are not separated from tissues, the TCR or

BCR data will be less abundant.

The development of single-cell sequencing technology has

promoted the development and maturity of immunobank

sequencing technology. The increasing amount of immunobank

data requires efficient analysis technology to realize the rapid and

accurate analysis of high-throughput data so that cell

heterogeneity in complex immune systems can be explored in a

more in-depth and detailed manner. In addition, immunomics

research can promote the development of cancer immunotherapy.

Exploring early cancer screening from immunomics data is of

great significance for cancer treatment, and the richness of the
Frontiers in Immunology 06
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immune library between groups and individuals can directly

reflect the body’s immune system. Generally, the more subtypes

of TCR/BCR, the stronger the organism’s ability to identify

pathogens, and the less susceptible it is to diseases. However,

beyond a certain limit, it is also prone to cause autoimmune

diseases. In addition, the body’s immune library is not invariable

and its diversity is constantly changing with age, environment,

drug use, diseases, and other factors. Therefore, the application of

immunobank sequencing technology in clinical diagnosis and

treatment is helpful for immune monitoring between groups or

individuals, exploring the relationship between related diseases

(e.g., tumor, disease infection, treatment, and autoimmune

diseases) and immune responses, monitoring the effect of

immunotherapy, and studying the molecular mechanisms of

disease onset and progression.
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TABLE 4 Summary of studies on the application of single-cell TCR/
BCR sequencing technology in chronic diseases.

Disease Technology Significance Reference

Atherosclerosis scRNA-seq
+scTCR-seq

Reveal the mechanism of
immune response

(33)

Chronic
pancreatitis

scTCR-seq Reveal the mechanism of
immune response

(34)

Endometriosis scRNA-seq
+scTCR-seq

Reveal the mechanism of
immune response

(35)

Hepatic
fibrosis

scTCR-seq Reveal the mechanism of
immune response

(36)

Crohn's
disease (CD)

scRNA-seq+
scTCR-seq

Reveal the mechanism of
immune response

(37)

Type 1
diabetes

scRNA-seq+
scTCR-seq

Reveal the mechanism of
immune response

(38, 39)

Parkinson's
disease

scRNA-seq+
scBCR-seq

Reveal the mechanism of
immune response

(40, 41)
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Glossary

NK-AML normal karyotype acute myelogenous leukemia

snRNA-seq single-cell transcriptome sequencing

scRNA-seq single-cell RNA-sequencing

scTCR-seq single-cell TCR/BCR sequencing

scBCR-seq single-cell BCR sequencing

snRNA-seq single-nucleus RNA sequencing

IR immune repertoire

IR-SEQ Immune repertoire sequencing

BCR B-cell receptor

TCR T-cell receptor

CDR complementary determining region

MAIT mucosal-associated invariant T cell

TIL tumor-infiltrating lymphocyte

ICI immune checkpoint inhibitor;

irAE immune-related adverse event

HNSCC head and neck squamous cell carcinoma

NPC nasopharyngeal carcinoma

TPE tuberculous pleural effusion

HIV human immunodeficiency virus

PCP pneumocystis pneumonia

EM erythema migrans

pSS primary Sjögren’s syndrome

RA rheumatoid arthritis

SP-RA seropositive rheumatoid arthritis

SN-RA seronegative rheumatoid arthritis

WES whole exome sequencing

AIH autoimmune hepatitis

SLA anti-soluble liver antigen

CP chronic pancreatitis

CD Crohn’s disease

T1D type 1 diabetes

GOF gain-offunction;

PD Parkinson’s disease

HLA-DRB5 human leukocyte antigen-DRB5

HLA-DQA2 human leukocyte antigen-DQA2

AP-1 HLA-DPB1 transcription factor activating protein

cDNA complementary Deoxyribonucleic acid
Frontiers in Immunology
 frontiersin.org08
235

https://doi.org/10.3389/fimmu.2022.969808
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Fu Wang,
Xi'an Jiaotong University, China

REVIEWED BY

Yajun Liu,
Xiangya Hospital, Central South
University, China
Wei Liu,
Guangzhou Red Cross Hospital, China
Dong Tang,
Northern Jiangsu People's Hospital
(NJPH), China

*CORRESPONDENCE

Jianquan Zhang
zjq197015@163.com
Zhi Li
lizhi2019@taihehospital.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 18 July 2022
ACCEPTED 02 August 2022

PUBLISHED 19 August 2022

CITATION

Li Z, Zhang H, Wang X, Wang Q, Xue J,
Shi Y, Wang M, Wang G and Zhang J
(2022) Identification of cuproptosis-
related subtypes, characterization of
tumor microenvironment infiltration,
and development of a prognosis
model in breast cancer.
Front. Immunol. 13:996836.
doi: 10.3389/fimmu.2022.996836

COPYRIGHT

© 2022 Li, Zhang, Wang, Wang, Xue,
Shi, Wang, Wang and Zhang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 19 August 2022

DOI 10.3389/fimmu.2022.996836
Identification of cuproptosis-
related subtypes,
characterization of tumor
microenvironment infiltration,
and development of a prognosis
model in breast cancer

Zhi Li1,2*†, Hua Zhang1†, Xixi Wang1†, Qun Wang1, Jiapeng Xue1,
Yun Shi1, Minghua Wang1, Geng Wang1 and Jianquan Zhang3*

1Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China,
2Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of
Medicine, Shiyan, China, 3Department of General Surgery, Affiliated Haikou Hospital of Xiangya
Medical College, Central South Univesity, Haikou, China
Breast cancer (BC) is now the most frequent and lethal cancer among women.

Cuproptosis is a newly identified programmed cell death process that has been

connected to tumor therapeutic sensitivity, patient outcomes, and the genesis

of cancer. Cuproptosis-related genes (CRGs) are involved in breast cancer,

although their roles and potential mechanisms are still unclear. First, we

examined the effect of gene mutations and copy number changes on overall

survival in 1168 breast cancer samples. Breast cancer patients were split into

two molecular categories as determined by the variation in CRG based on

clinicopathological traits, overall survival, and cell-infiltrating traits in tumor

microenvironments. In addition, we created and validated a CRG score to

calculate breast cancer patients' OS. Finally, we created a comprehensive

nomogram for the clinical use of the CRG score. Patients whose CRG scores

were low showed increased odds of developing OS, a larger mutation load, and

immunological activation than those with high CRG scores. The CRG score, the

cancer stem cell index, and the responsiveness to chemotherapy or targeted

therapies were also shown to be statistically significantly correlated. Our

thorough examination of CRGs in breast cancer patients demonstrated that

they may be useful predictors of prognosis, clinical characteristics, and tumor

microenvironment. These findings provide fresh insight into CRGs in breast

cancer and might inspire brand-new approaches to both diagnosing and

treating patients there.
Abbreviations: BC, Breast cancer; CRGs, cuproptosis-related genes; TCGA, the cancer genome atlas;

DEGs, differentially expressed genes; GSVA, gene set variation analysis; GEO, the gene expression

omnibus; TMB, tumor mutation burden; OS, overall survival; CSC, cancer stem cell; TME, tumor

microenvironment; ROC, receiver operating characteristic; TIICs, tumor-infiltrating immune cells.
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Introduction

There is a rapidly increasing incidence rate of breast cancer

in women, which ranks first in terms of incidence and second in

terms of mortality. The latest epidemiological statistics indicate

that breast cancer accounts for approximately 30% of all new

tumors in women (1, 2). With the continuous development of

new targets and drugs for the treatment of breast cancer and the

success of clinical trials involving new treatment protocols, the

treatment and prognosis of breast cancer have advanced greatly

(3–5). However, patients with advanced or high-risk conditions

continue to have poor treatment outcomes and prognoses (6, 7).

Early detection and rapid treatment would be very beneficial for

patients with breast cancer, as they would increase their

prognosis (8). In order to detect, diagnose, and treat breast

cancer early, it is necessary to identify markers of the disease that

are clinically very sensitive. Additionally, it is important to create

more potent prognostic models.

Cuproptosis, a recently identified kind of programmed cell

death, initiates an uncommon method of cell death, that is essential

for several biological functions, such as mitochondrial metabolism

(9). According to many studies, high copper levels in the blood and

tissues of cancer patients may be a sign of a bad prognosis (10, 11).

As a catalytic cofactor or structural component for cuproenzymes,

copper is an essential metal ion in the majority of aerobic organisms

and participates in a number of crucial biological processes (12).

Tetrathiomolybdate, a copper ionophores and copper chelators

used in anticancer therapy, has been linked to enhanced survival

in advanced breast cancer (13–15). Previous studies have

demonstrated that the serum copper level can potentially predict

the prognosis of patients with BC (16). The discovery of many

cuproptosis-related genes may provide fresh perspectives on

treatment approaches and the prognosis of breast cancer patients.

Recent studies have indicated that cuproptosis may play a

role in the occurrence, development and prognosis of a wide

variety of cancers, suggesting that it could be used as a potential

biological target in the diagnosis or treatment of these diseases

(17–19). Until now, there have been no studies examining the

role of cuproptosis in breast cancer and its tumor

microenvironment; therefore, our study is the first to

investigate the relationship between cuproptosis and breast

cancer and its microenvironment. Using the algorithms

CIBERSORT and ESTIMATE, the expression landscape of

CRGs has been r igorous ly asses sed and deta i l ed
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immunological profiles have been produced. First, based on

the levels of CRGs expression, we divided 1168 patients with

breast cancer into two groups based on their molecular

characteristics. The patients were divided into four gene

subtypes based on the differentially expressed genes found for

the two subtypes of cuproptosis. In the end, we created the CRG

score method to forecast patients' outcomes by successfully

predicting their overall survival from breast cancer. In

conclusion, this study revealed that cuproptosis may serve as a

new target for the diagnosis and (or) treatment of breast cancer,

and that it thus provides a new research direction and/or idea

and/or idea for the diagnosis and (or) treatment of

breast cancer.
Materials and methods

Collections of data

Based on data from The Cancer Genome Atlas (https://

portal.gdc.cancer.gov/), information on RNA-sequencing raw

data of 1110 cancerous breast samples as well as 112 normal

human breast samples that included therapeutically

information, somatic mutation data and CNV data files, was

obtained. It was necessary to download processed gene

expression datasets, clinical samples collected from breast

cancer patients (n=58), as well as normal breast tissue (n=4)

from the Gene Expression Omnibus profile database (https://

www.ncbi.nlm.nih.gov/geo/) (ID: GSE61304). These raw data

were first standardized to fragments per kilobase million

expression levels prior to comparison and figuring out the

expression of CRGs. After that, CRG expression was

determined using the limma program (20). We integrated the

data once the data cleaning procedure was finished to get them

ready for analysis. The study that followed did not include

patients for whom there was inadequate data on their survival.
Analysis of CRGs using
consensus clustering

19 CRGs made up the signature that we were able to collect

from earlier publications (9, 21–25), the list of genes is in Table

S1. We were able to classify individuals into discrete molecular
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clusters based on their CRG expression using the

ConsensusClusterPlus R program (26). Through the use of

unsupervised clustering, this was done. The clinical usefulness

of CRGs in breast cancer was investigated using the Kaplan-

Meier approach in a Kaplan-Meier study. We used the survival

and survminer packages in R to examine the curves of survival as

well as display the results. After that, the ggplot2 software was

used to do a principal component analysis. The two subtypes'

biological processes were maintained by using the Gene Set

Variation Analysis tool (27). Malignant Tumour tissues

employing expression (28) and CIBERSORT (29) were also

utilized to represent the percentage of immune and stromal cells

in patients with breast cancer. The extent to which each immune

cell within each sample carried an enrichment score was also

assessed using an analysis of gene set enrichment on a single

sample (30).
Correlations between the subtypes
and clinical features, and
functional annotations

We associated the two cuproptosis-related subtypes with the

primary clinical and pathological parameters of breast

cancer patients, including their age, T phase, and N phase, as

well as their prognosis, as part of our inquiry into the possible

clinical functions of the two cuproptosis-related subtypes.

Additionally, Kaplan-Meier survival analysis technique was

utilized to look at differences in overall survival that were

verified amongst the various subtypes. We discovered the

differentially expressed genes between the cuproptosis-related

subgroup using the limma R program. These genes required to

possess an adjusted p-value < 0.05 and a fold change > 1.5. To

clarify the pathways that were considerably enriched, gene

ontology enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes pathway enrichment analysis were also

conducted. To further explore the hidden roles among the

DEGs, the data were displayed using the ClusterProfiler

program (31).
Creating and confirming the
predictive CRG score

By computing the overall value of risk, the value of CRG

was established in order to identify the cuproptosis patterns in

specific patients. For a more thorough analysis, we utilized

unsupervised consensus clustering to separate the breast

cancer patients into four different subtype groups

(cuproptosis-related gene subtype A-D). The train sets were

then utilized to generate a CRG score for prognosis. A
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percentage of 1:1 was applied to all patient datasets in order

to divide them into train and test sets. The glmnet package in R

was used to perform least-squares regressions and selection

operator regressions in order to minimize the possibility of

overfitting the model (32). For the purposes of predicting the

OS of the patients in the training set, a multivariate Cox

regression with proportional hazards analysis was also

utilized. Both the train set and the test set were split into

groups of high-risk and low-risk based on their risk ratings. In

each set, Kaplan-Meier analyses of survival and ROC curves

were conducted.
Clinical correlations and CRG-related
prognostic model subgroup analyses

The relationships between the CRG score and the clinically

significant parameters, including age, T and N stage, were

examined using chi-square tests. On both the train and test

sets, univariable and multivariable analyses were conducted to

see if the CRG score was influenced by any other easily accessible

clinicopathological characteristics. Age, tumor grade, T and N

stage were also taken into account in subgroup studies to see

whether the CRG score still had the same predictive value it did

in our model earlier.
Creation and verification of a nomogram

A nomogram was created using the rms program to predict

overall survival based on clinically significant characteristics and

the CRG score. Each clinicopathologically significant

characteristic was given a score using the nomogram model,

and the overall score was obtained by summing all the

individual scores. By contrasting the area under the time-

dependent ROC curves of survival rates after one, three, and

five years, the nomogram's accuracy in predicting survival rates

was also validated. Additionally, model calibration was performed

to compare the predicted likelihood of survival outcomes across

the 1-, 3-, and 5-year periods with the actual survival occurrences.
Immune state and CSC index in high-risk
and low-risk populations compared

To calculate the total number of tumor-infiltrating immune

cells and subgroups of immune cells in each sample, we utilized

the CIBERSORT method for comparison of 23 immune cells

infiltrating the tumors between the high-risk and low-risk

groups. This was done to assess how many immune cells

altogether had invaded the tumor. The gene groups connected
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with 23 levels of immune cell infiltration were also found using

the CRG score. Additionally, we looked at the connections

between the CRG risk score and the cancer stem cell.
Analysis of drug susceptibility
to mutations

Depending on whether a sample was deemed high-risk

or low-risk, its tumor mutation burden was assessed for

each. Additionally, we used the maftools program to do a

somatic variant analysis on patients with breast cancer in

order to look at and analyse the somatic mutation data (33).

Using the pRRophetic software, we calculated the semi-

inhibitory concentrations (IC50) of frequently prescribed

medications in breast cancer patients depending on their

risk levels (34).
Analyses of statistics

The R-based statistical analysis was conducted with a

significance threshold of p 0.05 (version 4.0.2).
Results

19 CRGs in breast cancer: Expression,
genetic variants, and prognostic values

On the TCGA dataset, 1110 breast cancer patients'

expression levels of 19 cuproptosis-related genes were

examined, along with 112 normal human breast tissues

(Figure 1A). In the meanwhile, gene mutation analyses

revealed that 55 out of the 976 samples (5.64%) had CRGs

mutations, with ATP7A having the greatest gene mutation

rates (Figure 1B). The majority of CRGs were accumulated on

copy number loss or deletion, according to an examination of

copy number variations (Figure 1C), and all 19 CRGs had

frequent copy number alterations (Figure 1D). Additionally,

it was discovered via research of the impact of gene

expression patterns on overall survival in breast cancer that

those expressing high levels of ATP7A, DBT, DLAT, DLD,

GLS, PDHA1, and SLC31A1 had a bad prognosis. A higher

level of ATP7B, LIPT1, and NLRP3 expression is linked to

improved OS (Figure 1E–N, and Table S2). The findings

suggested that CNV alterations could modify the way CRGs

are expressed. Additionally, a relationship between CRG

expression levels and breast cancer prognostic variables was

discovered, pointing to a potential involvement for CRGs

in breast cancer. The biomarkers might be used as therapeutic

targets or prediction biomarkers for breast cancer.
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Subtypes of cuproptosis are identified
in breast cancer

The correlation network picture showed the 19 CRGs' strong

association with one another (Figure 2A). The cohort was

subdivided into two groups, group A (n = 534) and group B

(n = 605), based on a consensus cluster analysis of the

1168 breast cancer samples, which showed that a cluster of

k = 2 had the largest intragroup and lowest intergroup

differences (Figure 2B, and Figure S1). Differences in the

transcription patterns of the two subtypes of cuproptosis were

found using PCA (Figure 2C). Subtype B has a better prognosis

than subtype A, according to Kaplan-Meier survival calculations

(p = 0.001; Figure 2D). A heatmap was created as a consequence

of the relationship between features of clinical significance and

patterns of CRG expression (Figure 2E). The bulk of CRGs

expressed themselves more strongly in subtype A, whereas late-

phase breast cancer was represented in subtype B.
Analyses of TME infiltration and
functional enrichment in
distinct subtypes

We used gene set variation analysis enrichment analysis to

look at the two subtypes' possible effects on biological behavior

(Figure 3A). Compared to subtype B, subtype A had an

enrichment in the pathways linked to immunological

activation. According to a GSVA enrichment study, subtype A

is considerably enriched in metabolic-activated pathways, such

as the folate utilization of one carbon pool, lysine degradation,

the citrate cycle, RNAmetabolism, arachidonic acid metabolism,

and N-glycan biosynthesis. In each breast cancer sample,

we used the CIBERSORT method to assess the associations

between two subtypes as well as the 23 other subtypes of

immune cells in order to learn more about how CRGs work in

the tumor microenvironment. According to our research, there

are significant variations between the two subtypes in the

quantity of immune cells that infiltrate (Figure 3B). As

compared to subtype B, CD4 T cells, type 2 T helper cells,

regulation T cells, gamma delta T cells, immature dendritic cells,

and immature B cells were found to be more prevalent in

subtype A. Subtype A, on the other hand, exhibited

considerably reduced levels of neutrophil, eosinophil, mast cell,

and CD56 dim natural killer cell infiltration. Then, we did a

functional enrichment analysis to look into the two cuproptosis

subtypes' possible biological roles after using the limma

algorithm to identify 591 DEGs linked to them (Figure S2 and

Table S3). It was discovered that CRGs were mainly engaged in

membrane protein targeting, membrane protein localization

establishment, and pathway analysis using GO and

KEGG (Figures 3C, D, and Figure S3).
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Gene subtypes are identified using DEGs

Using a consensus clustering technique, 1139 breast

cancer patients were categorized into four molecular genetic

categories based on prognostic genes. Subtypes A (n = 350), B

(n = 502), C (n = 165), and D (n = 122) were found when k = 4

indicated that the breast cancer instances may be separated into

four subclasses (Figure 4A and Figure S4). Additionally, the

relationship between the clinical traits of breast cancer patients

and the gene subtypes was investigated (Figure 4B). The genetic

subtype D patients had the lowest OS, while patients with genetic

cluster C had the greatest OS, according to Kaplan-Meier curves

(p < 0.001; Figure 4C). The four cuproptosis gene subtypes'

expression of CRGs varied greatly, as expected by the

cuproptosis patterns (Figure 4D).
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Creating and confirming the
predictive CRG score

Based on DEGs related to subtypes, a LASSO-Cox regression

model was developed to provide a predictive CRG score for each

patient. Figure 5A illustrates the proportion of patients among

the two CRG score groups, the two cuproptosis subtypes, and the

four gene subtypes. There was a statistically significant variation

in CRG scores across cuproptosis subtypes. Subtype B had a

much higher CRG score than subtype A. Figure 5B displays the

risk score distributions for the two CRG subtypes. The highest

CRG scores were for subtype D, while the lowest were for

subtype C (Figure 5C).

Then, using R's caret package, patients were randomly

assigned to training groups (n = 570) as well as testing groups
A B
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FIGURE 1

The analysis of 19 CRGs' expression and association in the TCGA cohort. (A) The expression of the 19 CRGs in BC tissues and healthy breast
tissues (*p < 0.05; ***p < 0.001). (B) Data on the frequency of CRG mutations for 976 BC patients. (C) The sites of CNV variation in CRGs on the
23 chromosomes. (D) The distributions of CNV gain, loss, and non-CNV among CRGs. (E–N) The association between 10 CRGs and overall
survival in British Columbia.
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(n = 569) at a ratio of 1:1 (Tables S4, S5). Using LASSO and

multivariate Cox analysis, 22 OS-related genes were selected

using the least partial likelihood deviation from 591 cuproptosis

subtype-related prognostic DEGs (Figures 5D, E, and Table S6).

Based on a Cox regression analysis involving several variables,

Akaike information criteria value of 22 OS-associated genes was

utilized to identify six genes (PGK1, RPL14, PRDX1, PSME1,

MAL2, and SURF4) (Table S7). These findings led to the

following formula being chosen as the risk score formula: The

risk score is calculated as follows: (0.00375* PGK1 expression) +

(-0.00930*RPL14 expression) + (0.00278*PRDX1 expression) +

(-0.00668*PSME1 expression) + (0.00147*MAL2 expression)

+ (0.00672*SURF4 expression). 13 out of 17 hallmark genes

showed a significant variation in their expression of genes

between high-risk individuals and low-risk individuals

(Figure 5F). Based on their risk ratings, each theme was split

into high- and low-risk patient groups, and the median scores

were calculated for the training and test sets. According to their

values of risk, patients were split into two groups: those at low

risk and those at high risk (Figure 6). In terms of survival rates

and circumstances, there were significant differences among the

two groups based on Kaplan-Meier curves. Patient survival rates

and the distribution of CRG scores were analyzed independently

for the train and test sets.
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Creating a nomogram to
forecast survival

Using the data gathered, we created a nomogram using the

rms program to forecast the life expectancy of breast

cancer patients at the lifetime of 1, 3, and 5 (Figure 7A, and

Table S8). Each patient's total point values were determined

based on prognostic characteristics such as their age, level of risk

(low risk was indicated by a "low CRG score" and high risk

was indicated by a "high CRG score"), as well as the T and N

stage of their ailment. The harshness of the prognosis is directly

correlated with the patient's overall score. The calibration plots

showed that the nomogram performed better than an ideal

model would have (Figure 7B). Additionally, ROC analysis

indicated that the nomogram performed very well in terms of

prediction (Figures 7C–E).
Relationship of TME and Mutation
burden with CRG score

The CIBERSORT algorithm was used to assess the

relationship between the CRG score (Figure S5) and the

number of immune cells. However, the CRG score was
A B

D E

C

FIGURE 2

Biological and clinicopathological characteristics of CRG subtypes. (A) The interactions between CRGs in BC (the red and blue strings denote
positive and negative correlation, respectively; the intensity of the correlation is indicated by the color shades). (B) The consensus matrix's
heatmap of two clusters (k = 2). (C) A considerable transcriptome divergence between the two subtypes is seen by PCA analysis. (D) Subtype-
specific Kaplan-Meier OS curves. (E) CRG expression levels and clinicopathological traits vary across subtypes.
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negatively correlated with naive B cells, resting dendritic cells,

resting mast cells, monocytes, activated NK cells, plasma cells,

CD8 + T cells, and follicular helper T cells. A correlation was

found between the CRG score and activated memory CD4 + T

cells, M0 macrophages, M2 macrophages, activated mast cells,

and resting NK cells (Figure 8A). Additionally, our research

looked at the association between six genes and the amount of

immune cells. According to our study, the six genes affect the

bulk of immune cells (Figure 8B, and Table S9).

The TMB study revealed a significant association between

anticipated TMB level and cuproptosis gene subtypes (R = 0.28,

P < 0.001; Figure 8C). To give further support, we looked at the

variations in somatic mutation distribution across the cohort's

two CRG score groups. The top 10 most changed genes in each

of the two groups were PIK3CA, TP53, TTN, CDH1, GATA3,

MUC16, MAP3K1, HMCN1, and FLG. The most often mutated

genes in patients with a high CRG score are TP53 (46%) and

PIK3CA (28%), while PIK3CA (41%) is the most frequently

mutated gene in the low-risk category (Figures 8D, E).
Drug susceptibility testing and CSC index

Additionally, it was shown that there was a link between the

CRG score and the CSC index that was positive (R = 0.22, P <
Frontiers in Immunology 07
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0.001), suggesting that cells from breast cancer with higher cell

retention gene scores demonstrated more stem cell features and

less differentiation (Figure 8F). Sensitivity analysis was done on a

few medications presently being used to treat breast cancer

among the two groups. For patients with high CRG scores, it

was found that the IC50 values of drugs including paclitaxel,

vinblastine, bleomycin, AUY922, ATRA, and AZD6244, among

others, were considerably higher. It is evident from these results

that CRGs are essential for the sensitivity of drugs

(Figures 9A–F).
Discussion

Breast cancer is a potentially deadly illness that places a

heavy burden on people worldwide (1–3). It is vital to first

identify people who are more likely to get the illness, and then

find measures to lower that risk, in order to decrease the

prevalence of breast cancer (35, 36). If more study is done on

innovative processes and treatments, a higher proportion of

patients will be cured (37). We are aware of very little research

that have looked at potential connections between CRGs

and breast cancer in the past. Our research showed that when

compared to normal tissues, breast cancer tissues expressed the

majority of CRGs at varying levels. Furthermore, cuproptosis
A
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FIGURE 3

Cuproptosis subtypes linked to TME invasion. (A) GSVA of two cuproptosis subtype-related cellular pathways (Red means activated and blue
means inhibited). (B) Correlations between immune cell infiltration levels in the two subtypes associated with cuproptosis. (C, D) DEG
enrichment studies across two cuproptosis-related subgroups using GO and KEGG. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4

DEGs are used to identify gene subtypes. (A) Heatmap of the consensus matrix defining four clusters ( k = 4). (B) Differences in
clinicopathologic characteristics among the four gene subtypes. (C) The four gene subtypes' Kaplan-Meier OS curves. (D) Variations in the
expression of ten CRGs across four gene subtypes. **p < 0.01, ***p < 0.001.
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FIGURE 5

The CRG score was created in the TCGA and GSE61304 cohorts. (A) The subtype distributions among groups, CRG scores and survival
outcomes. (B) Variations in CRG scores among cuproptosis subtypes. (C) Variations in PRG scores among different gene subtypes. (D) CRG
regression using LASSO. (E) Cross-validation of LASSO regression parameter selection. (F) CRG score differences in ten CRGs. *p < 0.05, ***p <
0.001.
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FIGURE 6

The patient survival status and CRG score distribution vary between the train and test sets. (A, C, E) The patient survival status and CRG score
distribution in the train set. (B, D, F) The patient survival status and CRG score distribution in the test set.
A
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FIGURE 7

Creating and evaluating a nomogram. (A) The nomogram used to calculate the survival rates of 1-, 3-, and 5-years for patients with BC. (B) Calibration
curve for nomograms. (C–E) ROC curves for the train set and test set, respectively, for forecasting 1-, 3-, and 5-year OS in the cohorts. *p < 0.05, ***p
< 0.001.
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may have prognostic or predictive value in patients with breast

cancer in accordance with the level of expression of these genes

in these individuals.

Several studies have connected copper to human cancer

tumor cell development, proliferation, and carcinogenesis (21–

25, 38–41). However, additional investigation is needed to

pinpoint the specific pathways, which include tumor initiator
Frontiers in Immunology 10
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cells, growth, and metastatic spread, and to demonstrate causal

linkages between copper and human cancer. It has not yet been

completely determined how important these effects and immune

infiltration characteristics caused by several CRGs are. Our

research showed that both genetic and transcriptional

alterations occurred in CRGs in breast cancer. On the basis of

CRGs, our study identified two distinct molecular subtypes.
A
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FIGURE 8

Comprehensive analysis of the CRG scores in BC. (A) Correlations between immune cell types and CRG score. (B) The six genes from the
proposed model are correlated with the number of immune cells. (C) CRG score and TMB spearman correlation analysis. (D, E) The somatic
mutation features waterfall plot determined by high and low CRG scores. One patient was represented by each column. The correct number
represented each gene's frequency of mutation, and the upper barplot displayed TMB. The proportion of each variant type was displayed in the
right barplot. (F) Associates between the CSC index and the CRG score.
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Patients with subtype A had more severe clinical characteristics

and shorter OS compared to those with subtype B. Individuals

with high expression of ATP7A, DBT, DLAT, DLD, GLS,

PDHA1, and SLC31A1 have a bad prognosis, while those with

high expression of ATP7B, LIPT1 and NLRP3 have a favorable

prognosis. The effect of gene expression patterns on overall

survival in breast cancer was also studied. Additionally, we

contrasted variations in the traits and immunologically-related

biochemical pathways of the two TME subtypes. As a result of

the activation of CD4 T cells, eosinophils, gamma delta T cells,

regulatory T cells, mast cells, active dendritic cells, neutrophils,

type 2 T helper cells, CD56 dim natural killer cells, immature

dendritic cells, and immature B cells, the immunological

activation of the breast cancer subtypes was also substantial.

Then, four gene subtypes were determined using the DEGs

between the two cuproptosis subtypes. In addition, we

developed the prognostic CRG score and demonstrated its

tendency for prediction. In comparison with patients with

low-risk CRG values and those with high-risk CRG values,

there were significant variations in overall survival, clinical

traits, mutations, TME, CSC index, and medication resistance.

Finally, to improve performance and make the CRG score

simpler to use, we developed a nomogram that was derived

from patient characteristics and the CRG score. The prognostic

model may encourage beneficial understandings of the

molecular basis of breast cancer as well as fresh approaches to

cancer treatment.

Recent studies have revealed that cuproptosis plays an

important role in human tumor. Bian Z, et al. examined the
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genetic alterations of cuproptosis-associated genes in clear cell

renal cell carcinoma (17). Han J, et al. investigated the prognostic

role of cuproptosis-related long non-coding RNAs in soft tissue

sarcoma and its correlation with the tumor microenvironment

(18). According to Zhang Z, et al., cuproptosis-related genes are

useful for clinical prediction of prognosis and treatment

guidance in hepatocellular carcinoma (42). The relationship

be tween cup rop to s i s and b r e a s t c anc e r and i t s

microenvironment has not previously been studied; thus, our

study serves as the first to examine this relationship. Our study

shows that copper death-related genes are differentially

expressed in breast cancer and are associated with OS in

patients with breast cancer, which may assist in predicting the

prognosis for breast cancer patients. Copper has been shown to

play an important role in tumor development and can be used to

predict the prognosis and treatment of tumors (13–16). Patients

with different cuproptosis-related0 subtypes exhibit different

characteristics and tumor microenvironment, and patients in

high and low risk groups differ in their sensitivity to treatment.

Consequently, we speculate that different treatment approaches

for different subtypes of patients may produce better outcomes,

however, this hypothesis requires further validation in vivo and

in vitro.

As is well known, the tumor microenvironment is made up

of both the tumor cells and the cells that surround them, such as

lymphocytes, tumor infiltrating immune cells, and the tumor

vasculature (41–43). There is strong evidence to back up the idea

that TME is essential for tumor formation, progression, and

therapy resistance (44–46). In the present investigation, we
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FIGURE 9

Relationships between the CRG score and susceptibility to chemotherapy or targeted therapies for BC. (A) paclitaxel. (B) Vinblastine. (C)
Bleomycin. (D) AUY922. (E) ATRA. (F) AZD6244.
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found that the TME features as well as the abundances of 23

TIICs were substantially varied across the two distinct molecular

subtypes and the various CRG scores. This result suggests that

CRGs are essential to the growth of breast cancer. When TIICs

are found in tumor tissues, breast cancer patients have a better

prognosis. Activated CD4 T cells, type 2 T helper cells, gamma

delta T cells, regulatory T cells, immature dendritic cells,

immature B cells, and activated dendritic cells were more

prevalent in Type A subtypes than Type B subtypes, according

to the findings of our study. It was discovered that subtype B had

much reduced numbers of eosinophils, mast cells, neutrophils,

and CD56 dim natural killer cells infiltration. Given the success

of immunotherapy in breast cancer, research on the tumor

microenvironment and immune cell infiltration can help

discover new directions and mechanisms of immunotherapy

for breast cancer.

This study has the following contributions. First of all,

this research is the first of its kind to identify subtypes

associated with cuproptosis and create a predictive model

based on CRGs in breast cancer. Because cuproptosis differs

from other recognized methods of cell death, it may provide

new therapeutic possibilities for treating cancer (47, 48).

Second, a variety of different techniques and databases were

employed. As a means of improving the reliability of our

findings, we also defined subtypes associated with cuproptosis

and created a predictive model for use in screening and

testing processes.

There are several restrictions on our research. First, the

studies solely used data from public sources; additional

validations using more accurate clinical data are required.

Additionally, it was not feasible to analyze data for several

critical clinical factors (surgery, chemoradiotherapy, and

radiation therapy), which would have had an impact on the

immune response and drug susceptibility prognosis. Since the

prognostic signature was created and verified using data from

publicly available sources, more experimental investigations as

well as extensive prospective studies are required to corroborate

our results.
Conclusion

In this study, we systematically analyzed the role of

cuproptosis-related genes in breast cancer prognosis and

correlation with tumor microenvironment and clinical

features, and constructed a better prognostic prediction model.

We also explored the effectiveness of CRGs as biomarkers of

response to therapy. In conclusion, our study reveals the clinical

importance of CRGs, which provides a valuable basis for further
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studies on the diagnosis or personalized treatment of breast

cancer patients.
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Background: Iron-sulfur cluster assembly 1 (ISCA1) has a significant effect on

respiratory complexes and energy metabolism. Although there is some

evidence that ISCA1 gene expression impacts energy metabolism and

consequently has a role in tumorigenesis and cancer metastasis in different

types of malignancies, no systematic pan-cancer study of the ISCA1 has been

conducted. As a result, we sought to investigate ISCA1’s predictive value in 33

cancer types as well as its possible immunological function.

Methods: We included the pan-cancer expression profile dataset and clinical

data from the public database. Firstly, the single-sample Gene Set Enrichment

Analysis (ssGSEa) approach was employed for analyzing the immune link in

pan-cancer, while the limma package was utilized for analyzing the differential

expression in cancer species. Subsequently, ciberport, MCP-counter, TIMER2,

quanTIseq, and xCELL were employed for analyzing bladder cancer (BLCA)’s

immune infiltration. Least absolute shrinkage and selection operator (Lasso)

were employed for choosing the best gene to develop the immune risk scoring

model.

Results: ISCA1 gene expression was positively related to four immune

signatures (chemokine, immunostimulator, MHC, and receptor) in BLCA.

Samples of BLCA were sorted into two groups by the best cut-off of ISCA1

expression degree. The groupwith a high level of ISCA1 expression had a higher

risk, suggesting that the ISCA1 gene was a risk factor in BLCA, and its high

expression resulted in a poorer prognosis. Additionally, it was noted that ISCA1

was positively linked with these immune checkpoints. Moreover, there was a

considerable positive link between ISCA1 and different immune properties in

subgroups with different immune checkpoint inhibiting responses. Finally, an

immune risk scoring model was made and it showed a better score in

comparison to that of TIDE.

Conclusion: ISCA1 can be a prognostic marker for a variety of cancers,

particularly BLCA. Its high level of expression has a deleterious impact on the
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250

https://www.frontiersin.org/articles/10.3389/fimmu.2022.975503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.975503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.975503/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.975503&domain=pdf&date_stamp=2022-08-22
mailto:qwer_214@163.com
https://doi.org/10.3389/fimmu.2022.975503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.975503
https://www.frontiersin.org/journals/immunology


Zhou et al. 10.3389/fimmu.2022.975503

Frontiers in Immunology
prognosis of BLCA patients. This strongly shows that ISCA1 is a significant

prognostic factor for BLCA and that it could be used as a new prognostic

detection target and treatment approach.
KEYWORDS

pan-cancer, ISCA1, BLCA, GSEA, immune microenvironment, prognostic analysis
Introduction

Cancer is the primary cause of mortality and a major setback

to improving the quality of life all over the globe. There is no

ultimate treatment for it as of the present day (1). Recently,

cancer immunotherapy, particularly immune checkpoint

blocking therapy has become a prominent cancer treatment

approach (2). New immunotherapy targets can be found

through pan-cancer expression analysis of genes and

examination of their linkage with clinical prognosis and the

associated signal pathways, thanks to the ongoing development

and improvement of public databases like The Cancer Genome

Atlas (TCGA) (3).

Mitochondria have become important pharmacological

targets due to their essential role in cellular growth and

apoptosis (4). Mitochondria in tumor tissues can transform

metabolic phenotypes to cope with the high energy demand

and macromolecule synthesis (5, 6). Additionally, mitochondria

can interact with the tumor microenvironment, and signals from

fibroblasts related to cancer have an impact on them (7). ISCA1

variant has been linked to mitochondrial malfunction (8),

mainly because ISCA1 regulates the expression of essential

proteins in the mitochondrial respiratory chain complex,

having a significant impact on it as well as energy metabolism.

ISCA1 is an evolutionarily conserved type A ISC protein

involved in Fe-S synthesis. Knockdown investigations in HeLa

cells of two type A proteins, ISCA1 and ISCA2, reveal that these

two proteins may have a function in the increased synthesis of

mitochondrial Fe4S4 in humans (9). Using recombinant human

ISCA1 and ISCA2, recent in vitro biochemical experiments have

confirmed cluster transfer and protein-protein interaction

between human glutaredoxin GLRX5 and ISCA1 or ISCA2 (10).

Although, some research has been done on the role of ISCA1

in malignancies. Only relevant research has revealed that

Integrin Subunit Beta 3 (ITGB3) affects energy metabolism

through the expression of the ISCA1 gene, which has a role in

breast cancer bone metastases (11). As a result, the possible role

of ISCA1 in a range of malignancies has to be investigated in

detail. The expression level of ISCA1 in different forms of cancer

and its connection with prognosis were studied using two

databases: TCGA and Gene Expression Omnibus (GEO). It
02
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also discussed the association between ISCA1 expression and

immunity in 33 tumors. Following that, it was discovered that

bladder cancer (BLCA) had the strongest link to immunity. The

researchers next looked into the possible links between ISCA1

and mutation analysis, DNA methylation, tumor mutational

burden (TMB), immunological infiltration, and clinical

response. In addition, the biological function of ISCA1 in

malignancies was investigated using protein-protein

interaction (PPI) analyses between immune-linked differential

genes and ISCA1. Finally, the immunological risk score (IRS)

model was developed, and its result was superior to the TIDE

result. Finally, our findings indicated that ISCA1 could be a

predictive factor for bladder cancer (BLCA). ISCA1 may alter

tumor-infiltrating immune cells, which could be majorly

involved in tumor immunity. This research could help

researchers be t t e r grasp ISCA1 ’s invo lvement in

tumor immunotherapy.
Methods

Data source and pretreatment

The RNA sequencing (RNA-seq) expression profile data,

somatic mutation data, and survival data regarding pan-cancer

(33 species) were taken from the database of UCSC Xena

(https://xenabrowser.net/). The format of RNA-seq data was

changed from Fragments Per Kilobase Million (FPKM) to the

format of Transcripts per million (TPM), and then we did a log2

conversion. Among them, analysis and processing of the

downloaded somatic mutation data were done by mutect.

Finally, the copy number variations (CNV) data processed by

the gistic algorithm was also provided by the UCSC Xena

database (http://xena.ucsc.edu/), while the methylation data

was taken from the LinkedOmics database (http://

linkedomics.org).

The BLCA GEO queue was retrieved from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/), which has extensive

survival data, such as GSE31684, GSE48075, GSE13507,

GSE32894, GSE48277, and GSE69795. The BLCA samples

were kept.
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Afterward, we also downloaded three cohorts linked with

immunotherapy, GSE78220 (melanoma), GSE135222 (NSCLC),

and GSE91061 (melanoma). Following the knowledge sharing

3.0 License Agreement, the complete expression data and

comprehensive clinical data of the IMvigor210 queue (BLCA

immunotherapy-related queue) came from http://research-pub.

Gene.com/imvigor210corebiologies/.
Analysis of tumor immune
microenvironment and
immune infiltration

Single sample gene set enrichment analysis
Single sample gene set enrichment analysis (ssGSEA) (12)

was proposed for the first time in 2009 and was made for a single

sample that could not be utilized for GSEA. The R package

GSVA can be used to implement it. At present, ssGSVA is

frequently utilized for assessing the extent of tumor immune

cell infiltration.

Estimate

Moreover, we utilized estimate (13) for evaluating the tumor

immune microenvironment scores of samples, and then a

comparison of their differential distribution in different

subtypes was done. Following the expression data, estimate

provided scholars with tumor purity scores, the stromal cells’

level, and the immune cell infiltration level in tumor tissue.

Ciberport

Deep learning algorithms such as convolution and

deconvolution are commonly known. Each sample is treated

as a mixture of numerous immune cells in this procedure. The

link between the components and expression of each immune

cell and the final combination is fit using linear regression. The

expression properties of each immune cell were retrieved using a

deconvolution technique. The method of calculating immune

cell infiltration known as CIBERPORT (14) is widely utilized.

For estimating the abundance of immune cells, it employs the

technique of linear support vector regression to deconvolute the

expression matrix of immune cell subtypes.

Tumor immune estimation resource
The Tumor Immune Estimation Resource (timer) is one of

the procedures for deconvolution of cell mixtures following the

expression characteristics (15). Timer2 is one of the most widely

utilized approaches for immune infiltration analysis in

bioinformatics. MCP-counter (Microenvironment Cell

Populations-counter) (16) is an R tool that uses normalized

transcriptome data to quantify the absolute abundance of eight

immune cells and two stromal cells in diverse tissues. The score

can be used to demonstrate the degree of infiltration in the
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immunological milieu, but the number of cells cannot be

compared. ESTIMATE can’t assess particular immune cell

infiltration; it can only assess immune cell purity, tumor cell

abundance, and stromal cell abundance.

QuanTIseq
The QuanTIseq (17) was utilized for quantifying both the

tumor immune status according to the human RNA-seq data as

well as the proportion of ten distinct types of immune cells along

with other non-character ized ce l l s in the sample

by deconvolution.

Xcell
Xcell (18) is an ssGSEA-based procedure with the ability to

do cell type enrichment analysis according to gene expression

data of 64 types of immune and stromal cells. Since the Xcell

employs expression level ranking rather than the actual value,

normalization has no effect, although the input data requires a

normalization format. As a result, the immune infiltration of

BLCA was analyzed using CIBERPORT, MCP-counter,

TIMER2, quanTIseq, and Xcell, and the connection between

the expression of ISCA1 and their scores were measured.
GSEA and annotation of differentially
expressed genes

The analysis difference between subtypes was done using the

limma package (19), and differentially expressed genes were

chosen through the | log2 (Fold Change) | >1 and False

Discovery Rate (FDR) <0.05.

We enriched the differentially expressed genes among

subtypes and then carried out an analysis using Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) through the WebGestaltR package (version

0.4.2) (20), and the chosen gene set was “c2 cp. kegg. v7.0.

symbols. Gmt”, which had the KEGG channel. The GSEA input

file consisted of the expression profile data. The threshold values

of enriched pathways were p<0.05 and FDR < 0.25. Likewise, the

GO function enrichment analysis of differentially expressed

genes was done using the R software package WebGestaltR

(threshold value was set as P < 0.05).
Univariate and multivariate cox analysis

The R-package survminer (https://cran.r-project.org/

package=survminer) was employed to get the best cutoff of

genes from various datasets, and the samples were sorted into

high and low expression groups following the best cutoff, and

afterward, we drew the KM curve. We randomly collected the

BLCA cancer samples from the TCGA dataset using the ratio
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train:test = 7:3. Univariate analysis was done in the training data

set. The R software package glmnet (21) was utilized for

establishing the Lasso expression model (COX). Based on the

model created in this study, the most suitable genes were chosen

using single factor Cox regression, and we obtained 21 genes

when the value of minimum lambda=0.04090851, which were

employed for multivariate analysis. StepAIC approach was

utilized for reducing gene number. The stepwise regression

used the Akaike information criterion (AIC) (22), which took

into account the model’s statistical fit and the number of

parameters used for fitting. The stepAIC procedure in the

MASS package started from the most complex model and

successively eliminated a variable to lower the AIC. The

smaller the value, the better the model, which suggested that

the model had a sufficient fit with fewer parameters. 11 genes

were obtained at the end according to this procedure.
TIDE analysis of immunotherapy effect

Through a comprehensive study of hundreds of various

tumor expression profiles, the Tumor Immune Dysfunction and

Exclusion (TIDE) (http://TIDE.dfci.harvard.edu/) (23) analysis

can uncover biomarkers that predict the therapeutic response of

immune checkpoint inhibitors/medicines. The TIDE score

obtained from TIDE analysis can be used to determine the

sensitivity of immunological checkpoints.
Tumor mutation burden

TMB is a quantifiable immune-response biomarker that

reflects the number of mutations in tumor cells. TMB scores

were calculated using a Perl script and corrected by dividing by

the total length of exons.
ssGSEA

Base on genes from previous research (24) and ssGSEA

analysis was used to analyze these genes to define T cell

inflamed score.
Statistical analysis

The difference in clinicopathological features among the three

subtypes was investigated using the Chi-square test. The

expression levels of three subtypes were determined using

ANOVA. The difference in the two groups was investigated

using the T-test. For correlation analysis, the Pearson

correlation coefficient was used. R (version 4.0.2) was used for
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statistical analyses. Statistical significance was defined as a P-value

of < 0.05.
Results

Immune correlation of ISCA1 gene in
pan-cancer

We discovered four types of genes in the literature including

MHC, chemokine, immune-stimulator, and receptor (25). The

Spearman correlation between these genes and the ISCA1 was

measured in pan-cancer. The link between these four gene types

with ISCA1 was varied in various types of cancer. It was mostly

positive in uveal melanoma (UVM), BLCA, kidney papillary cell

carcinoma (KIRP), etc. while thyroid carcinoma (THCA), testicular

germ cell tumors (TGCT), etc. were mostly linked negatively

(Figure 1A). Moreover, the link between CTLA4, PDCD1, CD86,

CD274, and ISCA1 in various cancer types was measured. The

outcomes revealed that these four genes were substantially positively

linked with ISCA1 in BLCA (Figures 1B–E). Furthermore, ssGSEA

was employed for evaluating the scores of 28 immune cell scores in

various cancer types, and then their link with ISCA1 was measured.

The outcomes of this analysis suggested that there was a

considerable positive link between the expression of ISCA1 and

20 immune scores in BLCA (Figure 1F).

Moreover, the ISCA1 gene expression in pan-cancer was

observed (Figure 2). The outcomes indicated that: among the 24

tumors with para-cancerous samples, the expression of the ISCA1

gene in 15 cancer species was considerably varied in comparison to

that in para-cancerous samples. Among them, the expression of the

ISCA1 gene was lowered in tumor samples of 11 cancer species,

including breast invasive carcinoma (BRCA), BLCA, cervical

squamous cell carcinoma (CSCC), glioblastoma multiform (GBM),

kidney chromophobe (KICH), endocervical adenocarcinoma

(CESC), kidney renal clear cell carcinoma (KIRC), KIRP, THCA,

endometrial carcinoma (UCEC), lung adenocarcinoma (LUAD),

rectum adenocarcinoma (READ), etc. Moreover, the expression of

cholangiocarcinoma (CHOL), head and neck squamous cell

carcinoma (HNSC), liver cancer (LIHC), and stomach cancer

(STAD) were enhanced in tumor samples of four cancer species.
SNV, CNV, and methylation analysis
in BLCA

Based on the above analysis of pan-cancer, the ISCA1 gene

had a considerable positive link with four types of genes in

BLCA: immune-stimulator, MHC, chemokine, and receptor. In

BLCA, the ISCA1 gene was positively linked with CTLA4,

PDCD1, CD86, CD274, and immune score. Using the

difference analysis, it was discovered that the expression of the
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ISCA1 gene in BLCA tumor samples was decreased in

comparison to that in adjacent samples. Furthermore, the

survival analysis highlighted that samples were divided into

the high ISCA1 expression group and low ISCA1 expression

group., so we were focused on the role of ISCA1 in BLCA.

In herein, we used the surv_cutpoint function of the SurvMiner

package to find the best cutoff for grouping. BLCA samples were

categorized into two groups (Figure 3A) as per the best cutoff of

ISCA1 expression value. The group with high ISCA1 expression

showed a poor prognosis, suggesting that ISCA1 is a risk factor in

BLCA. Afterward, we mapped 10 genes with the highest mutation

frequencies in the high and low expression groups. The outcomes

revealed that TTN, synb1, TP53, RB1, kmt2d, arid1a, and other

genes in the low expression group had lower mutation frequencies

(Figure 3B). However, no major variation was observed in the TMB

of high and low expression groups of ISCA1 (Figure 3C). We

observed that there was a major difference in the expression of

ISCA1 with CNV amplification and deletion and the normal copy
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number, and the expression of ISCA1 with CNV amplification was

greatly enhanced, while that with CNV deletion was greatly reduced

(p < 0.0001, Figure 3D). Meanwhile, no major link was seen

between the methylation degree and the expression of ISCA1

(Figure 3E). Also, using limma analysis, 1672 genes, included

1505 upregulated genes and 167 downregulated genes, were

screened between high ISCA1 group and low ISCA1 group

(Figure S1A). KEGG pathways enrichments analysis showed that

1505 genes were enriched in 10 KEGG pathways, such as, PI3K-Akt

signaling pathway, cell cycle (Figure S1B), while 167 genes were not

enriched into the KEGG pathway.
Comparative analysis of the immune
status of ISCA1 groups in BLCA

In the ISCA1 expression group, the differential expression of

chemokine, immune-stimulator, MHC, and receptor genes was

investigated (Figures 4A–E). The expression was higher in the
A B
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C

FIGURE 1

Immune correlation analysis of ISCA1 gene in pan-cancer. (A) The link between ISCA1 and immunomodulators (chemokines, receptors, MHC,
and immune stimulants). (B–E) The links between ISCA1 and four immune checkpoints (PDCD1, CTLA4, CD274, and LAG3), which represent the
type of cancer, was examined. The Y-axis indicated Pearson correlation and the X-axis indicated -log10 (P-value). (F) Spearman correlation
analysis was used to measure the link between the expression of the ISCA1 gene in 33 different types of cancer and 28 tumor-related immune
cells. The color represents the correlation coefficient. An asterisk indicates a statistically significant P-value calculated using Spearman
correlation analysis. (* stands for p<0.05).
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high expression group, and most of the four different types of

genes had substantial variations.

The ISCA1 high expression group had a high immune score,

and the distribution differences of 28 immune cell scores in the
Frontiers in Immunology 06
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ISCA1 group were examined, revealing that 21 had major

variations (Figure 5A). The immune infiltration of BLCA was

next investigated, and a link was observed between ISCA1

expression and immune infiltration score. The marker genes of
A B

D EC

FIGURE 3

SNV, CNV, and methylation analysis in BLCA. (A): In BLCA, the KM curve showed that patients in high ISCA1 group had worse survival outcome
compare to low ISCA1 group, both of which were borderline significant; (B): The mutation distribution of the top 10 genes with the highest
frequency of mutations in the high ISCA1 expression group and low ISCA1 expression group; (C): The distribution of TMB in high ISCA1
expression groups and low ISCA1 expression group was compared; (D): The gene expression difference of ISCA1 in ISCA1 gene amplification
group; (E): Correlation analysis between gene ISCA1 expression and methylation (**** represents p<0.0001, ns represents p > 0.05).
FIGURE 2

The expression of the ISCA1 gene in pan-cancer is varied from that in adjacent cancer. Blue represents significantly low expression in tumor,
and red represents significantly high expression in tumor (* represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents
p < 0.0001, ns represents p > 0.05).
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five cell types were studied: CD8 T cells, dendritic cells,

macrophages, NK cells, and Th1 cells. In the ISCA1 high

expression group, the majority of the genes were highly

expressed (Figure 5B). The link between ISCA1 and

immunological checkpoints was also measured. Based on the

outcomes, ISCA1 and these immunological checkpoints had a

substantial positive link (Figure 5C).
ISCA1 prediction of clinical response and
excessive progression of immune
checkpoint blockade in BLCA

The link between ISCA1 expression value and pan-cancer T

cell inflamed score was measured, and the outcomes indicated a

major positive link (Figure 6A). Moreover, the link between

ISCA1 and different immune properties (immune checkpoint,

expression of immunomodulator and TIIC effector genes, and

characteristics linked with immunotherapy) in subgroups with

varied immune checkpoint blockade (ICB) responses were

analyzed (Figure 6B). The outcomes suggested that ISCA1 had

a major positive link with them.
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By comparing the scores of BLCA tumors and immune-

related pathways, it was discovered that there were major

variations in related immune pathways in the high ISCA1

group and the low ISCA1 group of BLCA tumors, the

correlation between ISCA1 expression and Neuroendocrine

differentiation pathway is positive in low ISCA1 group

(Figure 6C). For example, the Neuroendocrine_ differentiation

pathway score was higher in the high ISCA1 group, whereas the

score was lower in the low ISCA1 group. ARID1A, RB1, ERBB2,

FANCC, and other genes that could be linked to radiotherapy and

chemotherapy were compared. It was observed that the mutation

frequencies in the high and low ISCA1 groups were different

(Figure 6D). ARID1A, RB1, ERBB2, ERCC2, and FANCC

mutation frequencies were greater in high ISCA1 groups, for

instance, missense mutation of ERCC2 was 5% in the high ISCA1

group and 4% in the low ISCA1 group. In high and low ISCA1

expression groups, the differences in three categories (EGFR

network, immune inhibit oncogenic pathways, and

radiotherapy predicted pathways) were compared (Figure 6E).

The high ISCA1 group was mostly positively correlated in the

EGFR network in the EGFR_ligands pathway, while the low

ISCA1 group was mostly negatively linked.
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FIGURE 4

Comparative analysis of the immune status of ISCA1 group in BLCA. (A–D): The expression differences of different types of genes (chemokines,
receptors, MHC, and immunostimulants) grouped by ISCA1 in BLCA; (E) Heatmap of differences in the expression of different types of genes
(chemokines, receptors, MHC, and immunostimulants) grouped by ISCA1 in BLCA (* represents p < 0.05, ** represents p < 0.01, *** represents
p < 0.001, **** represents p < 0.0001, ns represents p > 0.05).
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Identification of immune-related
differential genes and PPI analysis

A total of 575 up-regulated genes and 100 down-regulated

genes were obtained by grouping the up-regulated and down-

regulated genes of the BLCA sample species ISCA1, StromalScore,

and ImmuneScore, respectively (Figures 7A, B). The GO and

KEGG function enrichment of differential genes was then

analyzed using WebGestaltR. Genes were discovered to be closely

linked to cancer and immune pathways such as myeloid leukocyte

migration, leukocyte migration, angiogenesis, Th1 and Th2 cell

differentiation, and so on (Figures 7C–F).

Using the string website, PPI found and analyzed a total of 675

differential genes. Following that, Cytoscape was used to visualize

the data and the MCODE plug-in was utilized to identify

significant clusters. There were three gene clusters with more
Frontiers in Immunology 08
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than ten genes each (Mcode1, Mcode2, and Mcode3 respectively).

The genes MRC1, CXCL11, CCL3, CCL4, CSF1, and FN1 were all

found in Mcode1 (Figure 8A). Then, to determine their functions,

WebGestaltR was utilized to do a GO and KEGG function

enrichment analysis (Figures 8B–E). The findings revealed that

the Mcode1 module was linked to immunological pathways such

as the Toll-like receptor signaling pathway and the interaction

between cytokine and cytokine receptors.
Construction of BLCA cancer immune
risk score model

After the above analysis, 675 we identified the differential

genes linked with immunity, and then 172 genes linked with

prognosis were provided by univariate analysis (p < 0.05).
A

B C

FIGURE 5

Distribution difference of immune cell score in ISCA1 group. (A) Differences in immune cell score between high ISCA1 group and low ISCA1
group. (B) Differences in effector genes of five TIICs (cd8+t cells, NK cells, macrophages, Th1 cells, and dendritic cells) related immune cells
between the high ISCA1 group and low ISCA1 group. (C) Correlation between ISCA1 and immune checkpoints. Color and value represent
Spearman correlation coefficient. (X represents p>0.05) (* represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents
p < 0.0001, ns represents p > 0.05).
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Afterward, Lasso was employed for selecting the most suited

gene for developing the IRS model. Based on the minimum

lambda = 0.04090851, we obtained 21 genes (Figure 9A). These

genes were used for the multivariate analysis. To further decrease

gene number, the stepAIC approach was employed. Finally, we

got 11 genes (Figure 9B), and the risk coefficients of linked genes

were obtained. The risk scores of each sample in the training and

validation datasets were measured, and the best cutoff score was

used to categorize them into high and low-risk groups, with their

KM curves and ROC curves demonstrated separately. In the
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training set, the AUC value for the 1-year survival rate was 0.81,

the AUC value for the 3-year survival rate was 0.75, and the

AUC value for the 5-year survival rate was 0.77, whereas in

the test set, the AUC value for the 1-year survival rate was 0.75,

the AUC value for the 3-year survival rate was 0.72, and the

AUC value for the 5-year survival rate was 0.64. (Figures 9C, D).

A greater survival rate (p < 0.0001) was observed in the low-risk

group in both the training and validation sets. In addition, all

TCGA datasets, GSE13507 datasets, and GSE32894 datasets

were used to validate our IRS model (Figure 9E–G). The
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FIGURE 6

The immune characteristic analysis of ISCA. (A, B) Correlation between ISCA1 and pan-cancer T cell inflammation score, and correlation
between individual genes contained in T cell inflammation characteristics. The score of T cell inflammation was positively correlated with the
clinical response to cancer immunotherapy. (C) Correlation between ISCA1 and molecular subtypes and BLCA characteristics using seven
different algorithms. (D) Mutation spectrum of neoadjuvant chemotherapy-related genes in low ISCA1 group and high ISCA1 group. (E)
Correlation between ISCA1 and enrichment scores of several therapeutic features such as targeted therapy and radiotherapy. *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001, ns>0.05.
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aforesaid datasets’ BLCA tumor samples could also be sorted

into high- and low-risk groups with differing prognoses (p <

0.0001), with the low-risk group having a greater rate of survival.
Performance comparison between IRS
and TIDE

The immunotherapy datasets IMvigor210, GSE91061,

GSE78220, and GSE135222 were chosen to predict, evaluate,

and compare the efficacy scores of immune therapy. Our

approach was used to calculate IRS in these data, and TIDE

was utilized to evaluate the effect of immunotherapy, after which

the predictive effect of IRS and TIDE on treatment response was

evaluated. The immunotherapy samples were separated into

high and low-scoring groups following the best IRS and TIDE

cut-off scores. Our IRS score was higher than the TIDE score,

according to the results (Figure 10).
Discussion

Research has suggested that the ISCA1 gene is downregulated

in 11 types of cancer and upregulated in 4 cancer types.

Specifically, the expression of ISCA1 in BLCA was positively

linked with the immune score. Therefore, BLCA is the major
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type of cancer for follow-up analysis and research. BLCA is a

highly malignant tumor in the urinary tract. In 2018, there were

nearly 549000 new cases and 200000 deaths, ranking the 10th (1).

Non-muscle invasive bladder cancer (NMIBC) and muscle-

invasive bladder cancer (MIBC) are the two main subtypes of

heterogeneous carcinoma (MIBC). The main component of

BLCA in NMIBC. It is prone to recur, despite the fact that it is

not lethal (26). To prevent recurrence and progression,

chemotherapeutic medicines and the BCG vaccine are

administered intrathecally (27). Tumor immunology has been

the subject of increasing research recently. Many immune

checkpoint inhibitors that have been discovered and

demonstrated to produce strong and long-lasting responses in

cancer patients (28–30). This is consistent with the findings of this

study, demonstrating its validity. CTLA4, PDCD1, CD86, and

CD274 had strong positive correlations with ISCA1 in BLCA.

Based on the clinical trials of immune checkpoint inhibitors,

the in situ infiltration of TME immune cells is now considered

important for the prognosis prediction of different cancer types

and observation of how they react to immunotherapy (31, 32).

As a result, the overall status of TME immune cell infiltration

was thoroughly examined by evaluating the distribution

difference of 28 immune cell scores in BLCA in the ISCA1

group. The results revealed that the ISCA1 group had

significantly distinct immune cells, with the group with high

ISCA1 expression having a higher immunological score.
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FIGURE 7

Immune-related differential gene analysis. (A) The intersection of up-regulated genes in ISCA1, StromalScore, and ImmuneScore. (B) Intersection
of down-regulated genes in ISCA1, StromalScore, and ImmuneScore. (C–F) GO and KEGG enrichment analysis of differentially expressed genes
in ISCA1, StromalScore, and ImmuneScore.
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Furthermore, because macrophages are immunosuppressive

cells, most of their hallmark genes were significantly expressed

in the ISCA1 high expression group. The CD8+T and natural

k i l l e r c e l l s ’ ac t i v a t i on was suppre s s ed by the s e

immunosuppressive cells (33). Immunosuppressive cells
Frontiers in Immunology 11
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respond to changes in other immune cells and play a key role

in the tumor immunological microenvironment. Therefore, we

concluded that the poor prognosis of high expression of ISCA1

can be l inked to th i s tumor immunosuppress ive

microenvironment. Moreover, CTLA-4, PD-1/PD-L1, and
frontiersin.org
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FIGURE 8

Module function analysis. (A) PPI analysis diagram of module Mcode1 (the larger the circle is, the darker the color is, the greater the score of
mcodes representing genes is, and the more important the genes are). (B–E) GO and KEGG functional enrichment analysis of the gene of
module Mcode1.
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other immune checkpoints also functioned as rheostats in

regulating the immune response by preventing the initiation

and immune monitoring of protective immune cells (34, 35). We

observed that the expression of immune checkpoints was greatly

enhanced in the high expression group of ISCA1, which suggests

that ISCA1 might be helpful in predicting the effect of immune

checkpoint inhibitor therapy. ISCA1 was found to be useful in

immunotherapy response prediction in the TCGA-BLCA cohort

using the IRS model and TIDE algorithm. All of this suggested

that ISCA1 was a useful biomarker for the immunotherapy

response prediction.

However, even if the data from various databases were studied

and integrated, the current report still has certain limitations.

First, while bioinformatics analysis supplied us with some useful

information on ISCA1’s role in cancer, we still needed in vitro or
Frontiers in Immunology 12
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in vivo biology experiments to confirm our findings and boost

therapeutic use. More research on the mechanism of ISCA1’s

function at the molecular and cellular levels would be beneficial.

Second, although post-translational modification was important

in controlling intracellular signal transduction and regulatory

factor activity, no post-translational modification information

for ISCA1 was found in these databases. Furthermore, whereas

ISCA1 expression was linked to both immunological and clinical

survival in human cancer, it was unclear whether ISCA1 affected

clinical survival via the immune pathway.

Finally, the first pan-cancer investigation of ISCA1 indicated

that the factor was differently expressed between tumor and normal

tissues, as well as a link between ISCA1 expression and BLCA

clinical outcome. Our outcomes show that the level of ISCA1

expression influences prognosis. Further research into the
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FIGURE 9

Construction of IRS model of BLCA. (A) Lasso coefficient distribution of 40 prognostic RNAs in the GEO training cohort. According to the
logarithm (l) sequence plotting coefficient profile. (B) Multifactor results of genes in the final IRS model; (C) KM and ROC analysis of IRS
model on GEO training dataset. (D) KM and ROC analysis of IRS model on GEO validation dataset. (E) KM and ROC analysis of IRS model on
all GEO datasets. (F) KM and ROC analysis of IRS model on all TCGA datasets. (G) KM and ROC analysis of IRS model on all ICGC datasets.
*P<0.05, **P<0.01.
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involvement of ISCA1 in each cancer is required. ISCA1 expression

in BLCA is also linked to the invasion of different immune cells.

These outcomes may help in clarifying the role of ISCA1 in

tumorigenesis and development, particularly in BLCA, and give a

reference for more accurate and tailored immunotherapy in

the future.
Conclusion

Overall, our outcomes indicated that ISCA1 is involved in the

progression of pan-cancer, particularly in BLCA. In BLCA,

the high expression of ISCA1 predicted a worse prognosis, and

the immune scores of some immune cells indicated a major

positive link with them. Finally, an IRS model was developed,

and the ISCA1-related low-risk group had a higher survival rate.

In conclusion, the possibility of ISCA1 as a biomarker for

predicting pan-cancer was evaluated comprehensively, and its
Frontiers in Immunology 13
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value in BLCA was determined, which expanded our vision in

immunotherapy and can provide a useful evaluation system for

clinical application.
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FIGURE 10

Comparison and analysis of IRS and TIDE. (A) IRS survival curve and ROC curve of IMvigor210 dataset. (B) TIDE survival curve and ROC curve of
IMvigor210 dataset. (C) ROC curve of IRS and TIDE on immunotherapy effect in imvigor210 dataset. (D) IRS survival curve and ROC curve of
GSE91061 dataset. (E) TIDE survival curve and ROC curve of GSE91061 dataset. (F) ROC curve of IRS and TIDE on immunotherapy effect in
GSE91061 dataset. (G) IRS survival curve and ROC curve of GSE78220 dataset. (H) TIDE survival curve and ROC curve of GSE78220 dataset. (I)
ROC curve of IRS and TIDE on immunotherapy effect in GSE78220 dataset. (J) IRS survival curve and ROC curve of GSE135222 dataset. (K) TIDE
survival curve and ROC curve of GSE135222 dataset. (L) ROC curve of IRS and TIDE for immunotherapy effect in GSE135222 dataset.
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Tumor infiltration pattern (INF) and tumor origin site were reported to significantly

affect the prognosis of gastric cancer (GC), while the immune status under these

contexts is not clear. In this study, we correlated the density and phenotype of

tumor-infiltrating lymphocytes (TILs) with INF and the tumor origin site to reflect

the biological behavior of tumors from a new perspective and also determined

their effects on overall survival (OS) and other related clinicopathological features

in archival samples of 147 gastric cancers with 10-year follow-up data. We found

that the INFc growth pattern (an invasive growth without a distinct border) of GC

lacked immune cell infiltration, particularly the cytotoxic T cells and their activated

form. It is also significantly associated with an unfavorable prognosis (P < 0.001)

and proximal site (P = 0.001), positive lymph nodemetastasis (P = 0.002), and later

tumor–node–metastasis stage (P < 0.001). Moreover, the density and sub-type of

TILs infiltration were significantly different in disparate differentiated areas for the

tumor tissue with INFb. Compared with distal gastric cancer, proximal gastric

cancers were prone to grow in an INFc pattern (P = 0.001) and infiltrated with

fewer TILs, experiencing a shorter survival time (P = 0.013). Multivariate analysis

showed that only the INF and the density of TILs were demonstrated to be the

independent prognostic factors of OS for the GC. We concluded that GC with an

aggressive growth pattern arising from proximal sites always had a weak immune

response and resulted in a poor prognosis. The interaction between themand their

synergistic or antagonistic effects in the development of tumors need to be further

studied. This study opens up a new perspective for research on the biological

behavior of the tumor.

KEYWORDS

tumor infiltration pattern, tumor-infiltrating lymphocytes, tumor origin site, gastric
adenocarcinoma, immune status
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Introduction

Gastric cancer (GC) is one of the most common cancers

worldwide for both male and female individuals (1). Many

clinicopathological elements were reported to influence the

patients’ survival, such as tumor–node–metastasis (TNM) stage,

histopathological type, and genetic factors (2, 3). Even The Cancer

Genome Atlas project has also involved GC classification by

displaying four sub-types, i.e., tumors positive for Epstein–Barr

virus, microsatellite unstable tumors, genomic stable tumors, and

tumors with chromosomal instability, which have corresponding

molecular profiles and are aimed at potential targeted therapies (4).

The tumor originating sites and growth patterns as essential

pathological parameters in gastric cancer and also their clinical

significance have been often described (5, 6). Tumor infiltration

patterns (INFs) were classified into three according to the

Japanese Classification of Gastric Carcinoma: INFa, INFb, and

INFc. The INFa group exhibits expanding growth and a distinct

border with the surrounding tissue and INFc is described as

displaying infiltrating growth and an indistinct border with the

surrounding tissue, while INFb falls between INFa and INFc (7).

Their features were shown to be valuable in predicting the

prognosis and recurrence pattern in advanced GC (6) and so

were the primary sites of GC, for instance, the primary GC arising

in the upper third of the stomach, including the cardia or

gastroesophageal junction, usually addressed as proximal gastric

cancer (PGC), was reported to be associated with a worse

prognosis compared with distal cancers (DGC) originating from

the rest of the stomach (8). Moreover, the incidence of

adenocarcinoma at the antrum or distal stomach has decreased,

whereas that of the proximal type has increased in most developed

countries (9, 10). There are discrepancies between PGC and DGC

in terms of biological behaviors and etiologic factors. PGC shows

demographic and pathological features typical of Barrett’s-related

esophageal adenocarcinoma and is not associated with severe

forms of gastritis characterized by atrophy and/or intestinal

metaplasia and/or a Helicobacter pylori infection, which was

proven to be a key factor in adenocarcinomas of the distal

stomach (11–13). For the anatomical structure of PGC, the

serosa is partially developed, and it is prone to be diagnosed at

a more advanced stage, indicating an unfavorable prognosis (14).

It can be concluded that PGC possesses a more aggressive

biological behavior more frequently associated with deeper

gastric wall infiltration, lymph node involvement, and lymphatic

vessel invasion (15). It has been noted that a GC with a different

INF is reflected by its aggressive abilities. The INFc growth pattern

exhibited more aggressive and more budding tumor cells, but not

the INFa pattern, and the budded tumor cells harbored some

stemness properties and epithelial–mesenchymal transition

phenotypes (16).

Up to now, few studies focused on the contact of the tumor

originating site and INF, both of which were specifically behavioral
Frontiers in Immunology 02
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characteristics of GC and affect the patients’ prognosis.

Furthermore, nearly no study has involved local immunity state

with tumor originating site and INF.Nevertheless, wewonder if the

histological heterogeneity of GC in INF and tumor arising sites

could be more informative relative to the local immune status, i.e.,

GC with different INF and primary sites could underlie the

privileged immunobiological behavior of the tumor cells and is of

great importance to understand the influence of the tumor

microenvironment on cancer development and evolution. It has

been well documented that the presence of tumor-infiltrating

lymphocytes (TILs) correlated to the patients’ outcomes (17, 18).

Specifically, the prognosis of tumor patients could be predicated on

the type, density, and location of immune cell infiltration, as the

different sub-types of TILs could affect the behavior of the tumor,

inhibitingorpromotingneoplastic progression (19, 20). Itwouldbe

reasonable to deem that the primary sites of GC and different INFs

could create a particular immunemicroenvironment and influence

a patient’s outcome. Therefore, we performed a study of 147

patients with gastric adenocarcinoma with complete 10-year

follow-up data to evaluate the association of the tumor with

different cancer arising sites and INF and then analyzed their

corresponding immune status, which may contribute to the

clinical diagnosis and treatment of gastric cancers as well as

explain the biological behaviors of tumor cells comprehensively.
Materials and methods

Patients and specimens

A total of 147 primary gastric cancer patients with complete 10-

year follow-up data (116male and 31 female patients;mean age, 62.3

years) between 2001 to 2003 at the Department of Pathology of First

Affiliated Hospital of Xi’an Jiaotong University were recruited. The

patients underwent a curative total or subtotal gastric resection along

with regional lymphatic dissection, without distantmetastasis in any

patient upon preoperative examination. The data collected for

analysis included age, gender, Lauren classification, TNM stage,

histological differentiation, tumor location, tumor size, and lymph

node involvement of the patients. The detailed information is

presented in Table 1 of our previous study (21). All specimens

were fixed in 10% buffered formalin and embedded in paraffin wax.

The maximal invasive margin was selected and sliced into 4-mm
sections to conduct hematoxylin and eosin (H&E) and

immunohistochemistry (IHC) staining. Five serial sections of each

paraffin-embedded tumor block were cut—one for H&E to inspect

the INF and four for IHC to detect the TILs.

Classification of tumor location

According to the criteria of the Japanese Gastric Cancer

Association (7), the tumor location was divided into two groups,
frontiersin.org
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i.e., proximal gastric cancer (PGC) and distal gastric cancer

(DGC), by reviewing the clinicopathological data. PGC was

considered when the tumor arose in the upper third of the

stomach, including the cardia or gastroesophageal junction,

which is up to the crossing line between the left gastric artery

and the end of the left gastroepiploic artery. The tumors below

this crossing line were considered DGC.
Assessment of tumor infiltrating pattern

The INF types were determined by observing sections stained

with H&E, strictly according to the Japanese Classification of

Gastric Carcinoma (7). The tumor growth pattern was classified

as INFa (expansive growth having a distinct border with the

surrounding tissues), INFb (intermediate type between INFa and
Frontiers in Immunology 03
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INFc), and INFc (infiltrative growth having no distinct border with

the surrounding tissues) (Figure 1A). Two expert pathologists

reviewed the sections to confirm the diagnosis.
Assessment of differentiation differences
in the same section

According to the differentiation of tumor cells in different

regions of the sectioned tissue of INFb, the tumor tissue was

divided into well-differentiated and poorly differentiated regions.

Well-differentiated areas are those where the tumor cells were

characterized by cohesive cells which form gland-like structures.

Poorly differentiated areas are those where tumor cells infiltrate

the stroma as a single cell or small cell cluster, leading to a

population of non-cohesive, scattered tumor cells.
TABLE 1 Association of INF with clinicopathologic parameters.

Clinicopathologic parameters No. of cases (%) INFc INFa+b c2 value

Tumor arising site

Proximal 38 (27.9) 24 14 0.001

Distal 109 (72.1) 35 74

Age (years)

≤60 79 (53.7) 26 53 0.329

>60 68 (46.3) 33 35

Gender

Female 31 (21.1) 18 13 0.022

Male 116 (78.9) 41 75

Tumor size (cm)

≤4 cm 86 (58.5) 37 49 0.231

>4 cm 61 (41.5) 22 39

Lymph nodes involvement

Negative 62 (42.2) 16 46 0.002

Positive 85 (57.8) 43 42

No,of positive Lymph nodes

≤5 108 (73.5) 33 75 < 0.001

>5 39 (26.5) 26 13

TNM stage

IA-IB 39 (26.5) 5 34 < 0.001

IIA-IIB 40 (27.2) 15 25

IIIA-IIIC 68 (46.3) 39 29

IV 0 (0) 0 0

Grade

G1 3 (2.0) 1 2 0.958

G2 58 (39.5) 22 36

G3 70 (47.6) 29 41

G4 16 (10.9) 7 9

Lauren classification

Intestinal type (IT) 86 (58.5) 26 60 8.703

Diffuse type (DT) 35 (23.8) 18 17

Mixed type (MT) 26 (17.7) 15 11
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Immunohistochemistry

Immunohistochemical staining was carried out using the

streptavidin–biotin–peroxidase method. The mouse monoclonal

primary antibodies usedwere anti-humanCD8 (DakoCytomation,

Glostrup, Denmark; 1:100 dilution), anti-human granzyme B

(Novocastra, Newcastle, UK; 1:100), anti-human OX40

(Novocastra; 1:30), and anti-human Foxp3 (Abcam, Cambridge,

UK; 1:50) to identify the lymphocyte immunophenotype. Normal

lymph node tissue was used for positive controls. Sections were

deparaffinized in xylene and rehydrated in a graded series of

ethanol. Endogenous peroxidase activity was blocked by 10-min

incubationwith 3%hydrogen peroxide inmethanol. After washing

in TBST, antigen retrieval was done by heat-induced epitope

retrieval methods for 1 min and 30 s in citric buffer (pH 6.0),

then saturated with 10% normal goat serum for15 min, and then

incubated with a primary antibody at 4°C overnight. Subsequently,

sections were incubated with Dako EnVision (DakoCyomation,

Denmark) for30minat roomtemperature.Color developmentwas

visualized with freshly prepared diaminobenzidine (DAB)–

chromogen for 5 min. The slides were counterstained with

hematoxylin and mounted on coverslips. For the sake of showing

a clear image of TILs and INF on one slide nomatter at high or low

magnification, we stained the CD8+TILs and tumor cells in one

slide with the double-IHC staining. Similar to the IHC, after

detecting the CD8+T cells by DAB, another incubation was

performed with anti-CK (AE1 + AE3; Abcam, Cambridge, UK;
Frontiers in Immunology 04
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prediluted) for 2 h at room temperature, followed by an application

of 5-bromo-4-chloro-3-indolyl phosphate for 10 min and

counterstaining with nuclear fast red for 3 min. The tumor cells

were stained purple–blue, and the CD8+T cells were

colored brown.
Evaluation of positive TILs

The counting of positive TILs was performed by the classical

point counting method as described by Anderson (22). A 100-

point ocular grid was used at ×400 magnification under a

microscope (Olympus Optical Co., Ltd., Tokyo, Japan).

Excluding the influence of subjective factors, the immune cell

was observed in 10 fields with the most abundant positive cell

distribution for each tissue sample bypassing the lymph follicle

and the normal tissue on the slides. As for the limited fields of

the well-differentiated and poorly differentiated areas in one

slide with INFb, only five fields with the most abundant positive

cells were selected. The counted fields only included cancer cell

nests and surrounding tissue stroma, within the tumor tissue.

The number of positive TILs was counted twice for each slide,

and the mean value was calculated for each case as the final

count. The cases were divided into TIL-high and TIL-low groups

according to the sub-type of the TIL median for further analysis

with the INF and tumor site.
A

B C

FIGURE 1

(A) Representative patterns of the three types of tumor infiltrating growth (INF) pattern of INFa, INFb, and INFc (×100) in the H&E staining slides.
(B, C) Corresponding Kaplan–Meier survival curves for proximal gastric cancer (PGC) and distal gastric cancer as well as the different types of
INF, respectively. The tumor from the PGC (P = 0.013) and infiltrating with INFc (P < 0.001) suffered a shorter overall survival. The degree of
difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.
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Statistical analysis

SPSS 13.0 for Windows (SPSS, Chicago, IL, USA) was used

for the statistical analysis. The distribution difference of the four

sub-types of TIL according to the INF and tumor location as well

as different regions of differentiation was analyzed by one-way

ANOVA and independent-samples T-test, respectively.

Correlations of the INF and TILs and tumor location, as well

as other clinicopathological variables, were determined by the

chi-square test. The Kaplan–Meier method was used to estimate

overall survival, and survival was analyzed by the log-rank test

based on INF, TILs, and tumor location. Univariate and

multivariate analyses of the three factors and of the

clinicopathological features were performed using the Cox

proportional hazard regression model. P <0.05 was regarded

as significant in all of the analyses.
Results

The relationship of INF and tumor
origin site and their association
with pathological parameters in
gastric adenocarcinoma

The results of the correlation analysis showed that INF and

tumor origin site were statistically correlated to each other (P =

0.001).Moreover, 63.16% (24/38) cases of tumors originating from

the proximal site are growing with INFc pattern, and 67.89% (74/

109) cases of tumors arising from the distal site are infiltrating with

INFa or INFa pattern. It indicated that PGC tends to grow in a

malignant infiltrative pattern (INFc), whereas DGC tends to grow

in a relatively benign infiltrating pattern (INFa + INFb) (Table 1).

For the relationship between INF and other pathological

parameters, female patients are more prone to appear INFc (P =

0.022). Tumor from the proximal site was significantly related to

tumorswith INFc (P=0.001) presence of lymphnodemetastasis (P

= 0.002), and a higher number of positive lymph nodes were more

frequent in patients with INFc tumors than in those with INFa/b

tumors (P < 0.001). Additionally, tumors with INFc were

significantly related to a later TNM stage (P < 0.001) and a mixed

type of Lauren classification (P = 0.013). There was no significant

difference in tumor differentiation and patients’ age between INFa/

b and with INFc (Table 1).

The comparisons on the relationships of age, gender, tumor

size, number of positive lymph nodes, and Lauren classification

between PGC and DGC showed no statistical difference, while a

larger tumor size (P = 0.072), a higher number of positive lymph

nodes (P = 0.095), and Lauren classification (P = 0.087) tend to

be associated with the tumor location. PGC was statistically

associated with a later TNM stage (P < 0.001) and positive lymph

node metastasis (P = 0.007) (Table 2).
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The prognostic effect of INF and tumor
origin site on GC patients

Log-rank test showed that GC in the proximal site experienced

a much shorter survival time (P = 0.013; Figure 1B). Moreover, the

prognosis of the patients with INFc tumor was significantly worse

than that with INFa or INFb in all cases (P < 0.001; Figure 1C).

Univariate and multivariate analyses revealed that INFc was an

independent risk prognostic factor of the OS of GC patients

(Table 3). Additionally, INFc (HR = 3.079, P < 0.001), positive

lymphnodemetastasis (HR=3.883,P=0.004), and diffused typeof

Lauren classification (HR = 2.647, P = 0.006) were found to be

independent risk prognostic factors for GC patients. Only a higher

number ofTILs (HR=0.515,P= 0.019)was found to be a favorable

prognostic factor for GC patients (Table 3).
The immune status in gastric tumor
originating from different sites and its
prognostic value

After clarifying the relationship between INF and tumor

origin site, we further analyzed the immune status of GC tissues

with different INF and originating sites to better understand their

current impact on GC patients’ prognosis. The CD8+ T cells

possess an anti-tumor effect. The Foxp3+ regulatory cells (Tregs),

playing a critical role in immune tolerance and deficiency of anti-

tumor immunity, were often used as a negative antitumor

parameter. Therefore, the subset of TILs in our study contained

CD8+ cytotoxic T cell and Foxp3+ Treg, supplemented with their

activated form (GrB+T and OX40+T). In this cohort, 38 cases were

adenocarcinomas of PGC, and 109 cases were in the distal stomach.

Overall, the lymphocyte infiltrates in PGC tissue were relatively less

than those in the distal site of GC tissue, although without statistical

significance. Compared with DGC, the total number of TILs (P =

0.033) and the GrB+T (P = 0.003) cell infiltrates were significantly

attenuated in PGC (Figure 2A), and the number of CD8+T and

OX40+T cells were with an obvious tendency to be infiltrated less in

the PGC group (PGC vs. DGC: CD8+T, 12.447 ± 4.941 vs. 14.294 ±

5.267, P = 0.061; OX40+T, 5.658 ± 2.581 vs. 6.844 ± 3.567, P =

0.062). The infiltration of regulatory T cells (Foxp3+T) was not

significantly different between the two groups. Additionally, CD8+T

cells possess a numerical advantage in both DGC (P < 0.001) and

PGC among the investigated sub-types of immune cells, although

without statistical significance in PGC. The number of Foxp3+T

was also quantitatively superior to OX40+ (P < 0.001) and GrB+T

(P < 0.001) cells in DGC and PGC (Figure 2B).We further analyzed

the relative percentages of activated immune cell populations (GrB

+/CD8+ and OX40+/FOXP3+) in the tumor tissue from the

different originating sites. The results showed that the functional

Foxp3+T cell percentage was significantly higher in PGC compared
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with that in DGC (P = 0.009), and there was no statistical

significance between PGC and DGC for the percentages of the

activated immune type of CD8+T cells (Figure 2C).
The immune status in the gastric tumor
of different INFs

There were 46 patients in INFa, 42 in INFb, and 59 in INFc

who were among these 147 GC samples. The TILs in different INF

exhibited a significant and uneven distribution (Figure 3A). In

general, the number of total immune cell infiltrates was less in

INFc than that in INFa (P < 0.001) or INFb (P = 0.001) pattern,

whereas there was no significant difference between INFa and

INFb for the number of total TILs. When the subsets of TILs were

taken into consideration, the number of CD8+T (Figure 3B), GrB

+T, and OX40+T cells did not show a significant difference

between the cases of INFa and INFb patterns, but their

infiltration in the cases of INFc was significantly less than those
Frontiers in Immunology 06
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in the cases of INFa (CD8+T, P < 0.002; GrB+T, P = 0.001; and

OX40+T, P = 0.001) and INFb (CD8+T, P = 0.011; GrB+T, P <

0.001; and OX40+T, P = 0.009) patterns. The infiltration of

effector Th cells (OX40+) in cancer tissue with INFa tended to

be more than that in INFc (INFa vs. INFc: 6.304 ± 2.615 vs. 5.220

± 3.519, P = 0.083), but there was no significant difference in its

distribution between INFa and INFb. As for the regulatory T cell

infiltration, there was no significant difference among the three

infiltrating patterns. Additionally, the number of CD8+T cells

occupied a quantitatively dominant position (P = 0.001) in the

INFa cases, but not in the INFb and INFc cases. The infiltration of

CD8+T cells was significantly higher than the OX40+ (P < 0.001)

and GrB+T cells (P < 0.001) but without advantages on Foxp3+T

cells in INFc cases (Figure 3C). Moreover, the relative percentages

of activated immune cell populations for the CD8+T cells (GrB

+/CD8+) were significantly higher in the INFb group compared

with the INFc group (P = 0.02), while OX40+/FOXP3+ did not

show any statistical significance among the three INF

groups (Figure 3D).
TABLE 2 Association of originating site of GC with clinicopathologic parameters.

clinicopathologic parameters No. of cases (%) Proximal GC Distal GC c2 value

Age (years)

≤60 79 (53.7) 21 59 0.325

>60 68 (46.3) 18 50

Sex

Female 31 (21.1) 6 25 0.352

Male 116 (78.9) 32 84

Tumor size (cm)

≤4 cm 86 (58.5) 24 62 0.072

>4 cm 61 (41.5) 14 47

Lymph nodes involvement

Negative 62 (42.2) 9 53 0.007

Positive 85 (57.8) 29 56

No, of positive Lymph nodes

≤5 108 (73.5) 24 84

>5 39 (26.5) 14 25 0.095

TNM stage

IA-IB 39 (26.5) 4 35 < 0.001

IIA-IIB 40 (27.2) 6 34

IIIA-IIIC 68 (46.3) 28 40

IV 0 (0) 0 0

Pathological grade

G1 3 (2.0) 0 3 0.609

G2 58 (39.5) 17 41

G3 70 (47.6) 18 52

G4 16 (10.9) 3 13

Lauren classification

Intestinal type (IT) 86 (58.5) 28 58 0.087

Diffuse type (DT) 35 (23.8) 6 29

Mixed type (MT) 26 (17.7) 4 22
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The TILs infiltration difference in GC
tissue with differentiation differences

In gastric cancer sections of 42 cases with an infiltration

pattern of INFb, there were distinct differentiation differences

formed by tumor cells with different differentiation grades, which

can be classified into well-differentiated and poorly differentiated

areas (Figure 4A). We further analyzed the infiltration difference

of the investigated sub-types of TILs in areas with different

differentiation grades in the cancer tissues of INFb. The results

showed that the number of Foxp3+ (P < 0.001), OX40+ (P =

0.001) and CD8+ T (P = 0.008) lymphocytes in poorly
Frontiers in Immunology 07
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differentiated areas was significantly higher than that in the well-

differentiated areas of the tumor, respectively (Figures 4B, C).

Moreover, the dominance order of the four types in the well-

differentiated areaswas as follows:CD8+>Foxp3+>GrB+>OX40

+T lymphocytes, while in the poorly differentiated areas, this was as

follows: Foxp3+ > CD8+ > OX40+ > GrB+ T lymphocytes

(Figure 4D), although not all sub-types are significantly different

from each other. These results indicated that tumor cells with

different differentiation grades have various abilities to recruit

different sub-types of lymphocytes, resulting in the discrepancy of

the type and number of recruited lymphocytes despite being under

the same immunological background.
TABLE 3 Univariate and multivariate analyses of prognostic factors for survival of gastric cancer patients.

Variables Categories Univariable analysis Multivariable analysis
HR (95%CI) P HR (95%CI) P

INF INFc vs INFa+b 4.288 (2.593, 7.092) <0.001 3.079 (1.683, 5.632 ) 0.009

Age (years) >60 vs ≤60 2.150 (1.266, 3.711) 0.008 1.484 (0.706, 3.119) 0.297

Gender Male vs female 1.286 (0.689, 2.400) 0.430 1.328 (0.555, 5.136) 0.631

Tumor size (cm) >4 vs ≤4 1.860 (1.152, 3.005) 0.011 2.519 (0.921, 4.464) 0.202

Tumor originating site PGC vs DGC 1.858 (1.127, 3.064) 0.015 1.331 (0.755, 2.348) 0.323

Lymphnode metastasis Positive vs negative 7.870 (3.884, 15.945) <0.001 3.883 (1.545, 9.761) 0.004

No,of positive positive
lymph nodes

>5 vs ≤5 4.243 (2.608, 6.904) <0.001 0.902 (0.437, 1.862) 0.781

TNM stage IIA-IIB vs IA-IB 4.453 (1.488, 13.322) 0.013 1.546 (0.426, 5.609) 0.508

IIIA-IIIC vs IA-IB 12.023 (4.321, 33.458) 0.002 2.305 (0.622, 8.542) 0.211

Tumor grade G2 vs G1 0.00 (0.000, 2.2E26) 0.969 0.000 (0.000, +∞) 0.978

G3 vs G1 0.607 (0.290, 1.271) 0.185 1.713 (0.697, 4.215) 0.241

G4 vs G1 0.823 (0.406, 1.667) 0.588 1.458 (0.677, 3.140) 0.335

Lauren classification Diffuse type vs Intestinal type(IT) 2.196 (1.283, 3.762) 0.004 2.647 (1.327, 5.279) 0.006

Mixed type vs IT 1.573 (0.825, 3.000) 0.169 1.460 (0.697, 3.061) 0.316

Density of TILs High vs low 0.404 (0.244, 0.671) <0.001 0.515 (0.296, 0.897) 0.019
frontiersi
HR: Hazard ratio, CI: Confidence interval, PGC: Proximal gastric cancer, DGC: Distal gastric cancer, INF: tumor infiltrating pattern.
A B C

FIGURE 2

(A, B) Graphs showing the four sub-types of tumor-infiltrating lymphocytes (TILs) distribution in proximal gastric cancer (PGC) and distal gastric cancer
(DGC). The total number of TILs (P = 0.033) and the GrB+T (P = 0.003) cell infiltrates were significantly attenuated in PGC (A). The CD8+T cells possess
a numerical advantage in DGC (P < 0.001) as for the investigated sub-type of immune cells. The number of Foxp3+T cells was also quantitatively
superior to OX40+T (P < 0.001) and GrB+T (P < 0.001) cells in DGC and PGC (B).The functional Treg cell (OX40+/FOXP3+) percentage was significantly
higher in the PGC compared with that in DGC (P = 0.009) (C). The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.
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Discussion

In the process of tumor development, the biological behavior

is affected by many factors; the tumor–host immune response

constitutes the most important part, which dynamically affects

tumor progression (23). This study firstly investigated the

relationship between the TILs and tumor INF as well as the

tumor origin site in GC. TILs are the major effectors

encountering malignancy in the frontier; functional

phenotypes of lymphocytes have profoundly facilitated the

exploration of TILs subsets in situ. Various combinations of

the TILs subpopulation detection panels have been reported. An

international consortium was initiated with the support of the

Society for Immunotherapy of Cancer to assess the prognostic

value of total tumor-infiltrating T cell counts and cytotoxic

tumor-infi ltrating T cell counts with the consensus

immunoscore assay in patients with stages I–III colon cancer,

and the densities of CD3+ and cytotoxic CD8+ T cells in the

tumor and the invasive margin were quantified by digital

pathology (24). Foxp3+ regulatory cells (Tregs), playing a

critical role in immune tolerance and deficiency of anti-tumor

immunity, were often used as negative antitumor parameters

(25, 26). Therefore, the panel of TILs subset in our study
Frontiers in Immunology 08
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contained CD8+ cytotoxic T cell and Foxp3+ Treg,

supplemented with activated CTLs (GrB+ T cell) and primed

CD4+ T cells (OX40+ T cell, inducing cytokine production and

maintaining a normal immune response).

Due to the special location and structures of the PGC, it

displays the clinicopathological characteristics of both

esophageal and gastric malignancies, as the esophagogastric

junction was a very special transitional area from the

squamous epithelium to the glandular epithelium, which is

rather different from the typical glandular epithelium of the

distal stomach. Different epithelial ingredients with different

tumorigenesis might lead to discrepant characteristics for PGC

and DGC. In line with the many results of previous research (8,

15, 27), our small sample data also indicated that PGC has more

vicious biological behaviors and predicted unfavorable

outcomes. In a large sample study, PGC showed a significantly

higher incidence of undifferentiated cell types than DGC, and in

Lauren’s classifications, PGC showed a higher proportion of

diffuse-type cells, whereas DGC exhibited more intestinal-type

cells, which was consistent with our study (15). A new finding in

our investigation was that PGC frequently has an aggressive

infiltration pattern and less number of TILs, especially for the

activated anti-tumor cytotoxic lymphocytes (GrB+T). This
A

B D

C

FIGURE 3

(A, C)Graphs showing the four sub-types of tumor-infiltrating lymphocyte distribution in cancer tissues with different types of tumor infiltration pattern (INF). The
number of total immune cell infiltrates was less in INFc than that in INFa (P < 0.001) or INFb (P=0.001) (A). The number of CD8+T cells occupied a quantitatively
dominant position (P=0.001) in the INFa cases (C). Representative double-immunohistochemistry staining for the tumor cells (purple–blue) and CD8+T cells
(brown, yellow arrow) in gastric cancer tissuewith different types of INF, and the lower pictures (×400) are the corresponding enlargement of the local area (red,
rectangular) for the upper pictures (×100) (B). The relative percentage of activated immune cell populations for CD8+ (GrB+/CD8+) is significantly higher in the
INFb group comparedwith that in INFc (P=0.02) (D). The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.
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malignant growth pattern and unfavorable immune

microenvironment might inevitably lead to a stronger growth

advantage. The predominance of obesity, tobacco abuse, and

gastroesophageal reflux disease were reported to be associated

with the occurrence of PGC (28–30), which are different from

those of DGC, arguing for the different pathogenesis pathways in

PGC and DGC. Indeed it is indicated that cancers of the cardia

are more frequently associated with deeper gastric wall

infiltration, lymph node involvement, and lymphatic vessel

invasion (31), of which it is hypothesized that PGC may

possess an aggressive biological behavior as the tumor with

INFc type grows, all of which may be related to the differences

in the pathophysiology of PGC and DGC, while the specific

relationship and the mechanism between them need to be

further studied.

Additionally, we found tumors with INFc that were associated

with a reduced number of CD8+, GrB+T cells, and the whole TILs
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infiltration. Tumors in proximal sites of the stomach are prone to

growingwith an infiltrative pattern and infiltrating a fewer number

of TILs. Despite that, except for the GrB+ T cell, the other three

types ofTILs and the total number ofTILswere observed tohaveno

statistical differences, but the trends of TILs distribution are

obviously shown. It may be attributed to the small size of the

tumor in the proximal site, as only 38 cases were PGC among the

147 cases in our study.Anyway, our analytical perspective canopen

up a new study trace for relative follow-up research. Although INF

can be easily determined by routineH&E staining, it has not gained

widespread attraction indiagnostic pathology. In the present study,

we focused on the correlation between the subsets of TILs and the

INF type as well as the association of tumor sites in GC. Tumors

with INFc often have a smaller number of TILs compared with

INFa or INFb, especially for cytotoxic T cells (CD8+) and activated

cytotoxic T cells (GrB+), which are crucial components of

antitumor immunity. The current paradigm in tumor immunity
A

B
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FIGURE 4

(A) The H&E staining result shows that there are significant differentiation differences regions in gastric cancer (GC) tissue with INFb growth
pattern. The latter two pictures (×400) are local magnifications of the a and b (green rectangular) regions in the first picture (×100). (B) Double-
immunohistochemistry staining representative image for CD8+T cells’ (brown) distribution in GC tissue with INFb. The latter two pictures (×200)
are their corresponding enlargement of the local area (red rectangular) for the first pictures (×100) and represent the well and poorly
differentiated region, respectively. (C, D) Graphs showing the four sub-types of tumor-infiltrating lymphocyte distributed differently according to
the cancer cell differentiation in GC tissues with INFb. The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.
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suggests that a large number of activated CD8+ effector T cells

should be able to attack the tumor cells (32, 33). Moreover, it has

been reported that Treg cells can exert an immunosuppressive

function so as to limit an effective anti-tumor immune response

(26). However, we did not find any significant relation between

Foxp3+T cells as well as OX40+T cells and the tumor growth

patterns in our study. Additionally, we also compared the immune

status between INFa and INFb, while no statistical difference was

observed between them, from which it might be concluded that

INFa and INFb have a similar immune state. It could also

reasonably explain why the investigators always put INFa and

INFb into one group and compare themwith INFc, but they never

give any explanation in their reports.Thereby,wealsoput INFaand

INFb in one group in the subsequent analysis. Similar results were

obtained.Comparedwith the INFa and INFbgroups, the INFc type

was significantly associatedwith a shorter overall survival time, and

it was strikingly associated with female patients, bigger tumor size,

proximal tumor location, and positive lymph node metastasis—a

higher number of positive lymphnodes, amuch later TNMstage as

well as adiffuse typeof Lauren classificationare suggestiveof amore

aggressive nature. GCwith INFc plus a weak immune defensemay

bemore likely to allow cancer cells to penetrate through the gastric

wall and be shed into the surrounding tissue.

Interestingly, tumors in proximal sites were strongly

associated with the growth pattern of INFc type. Meanwhile,

INFc and the total number of TILs were identified as

independent predictive factors for the prognosis of GC in our

study. Moreover, in the tumor tissue with INFb, both well-

differentiated and poorly differentiated areas exist in the same

tissue section, and we found that the density and the sub-type of

TILs infiltration were distributed significantly different in

disparate differentiated areas, suggesting that tumor cells with

different differentiation grades have distinct immunogenicity,

resulting in a discrepancy in the type and number of recruited

lymphocytes, and could form its special TME under the same

immunological background. Despite that, the immune infiltrates

are found to be heterogeneous between tumor types and

patients, and their effect on prognosis varies in different

cancers (34). Our findings reveal a certain relationship

between INF and tumor originating site as well as TILs. As the

local interactions between the TILs and tumor cells are complex,

the specific mechanism and the other relationship remained to

be studied in a follow-up work.
Conclusions

Our study found that GC with an aggressive growth pattern

(INFc) originating from the proximal sites (PGC) was always

associated with a weak immune response and resulted in a poor

prognosis. It opens up a new perspective for research on the

biological behavior of the tumor. However, the interaction
Frontiers in Immunology 10
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between them and their synergistic or antagonistic effects in

the development of tumors need to be further studied.
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Colorectal cancer (CRC) has a high incidence rate and poor prognosis, and the

available treatment approaches have limited therapeutic benefits. Therefore,

understanding the underlying mechanisms of occurrence and development is

part icular ly crucial . Increasing attent ion has been paid to the

pathophysiological role of cancer-associated fibroblasts (CAFs) in the

heterogeneous tumour microenvironment. CAFs play a crucial role in

tumorigenesis, tumour progression and treatment response. However,

routine tissue sequencing cannot adequately reflect the heterogeneity of

tumours. In this study, single-cell sequencing was used to examine the

fibroblast population in CRC. After cluster analysis, the fibroblast population

was divided into four subgroups. The distribution and role of these four

subgroups in CRC were found to be different. Based on differential gene

expression and lasso regression analysis of the main marker genes in these

subgroups, four representative genes were obtained, namely, TCF7L1, FLNA,

GPX3 and MMP11. Patients with CRC were divided into the low- and high-risk

groups using the prognostic risk model established based on the expression of

these four genes. The prognosis of patients in different risk groups varied

significantly; patients with low-risk scores had a greater response to PDL1

inhibitors, significant clinical benefits and significantly prolonged overall

survival. These effects may be attributed to inhibition of the function of T

cells in the immune microenvironment and promotion of the function of

tumour-associated macrophages.

KEYWORDS

cancer-associated fibroblasts, colorectal cancer, prognostic risk model, single-cell
sequencing, TCF7L1, FLNA, GPX3, MMP11
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Introduction

As the third most common malignancy, colorectal cancer

(CRC) causes more than 8% of all deaths worldwide each year (1,

2). Routine treatment of CRC includes surgery, radiotherapy and

chemotherapy, which are invasive and may have a greater

impact on the quality of life of patients (3). After

comprehensive treatment, the 5-year survival rate of patients

with early-stage CRC is 90%; however, treatment options for

patients with advanced-stage CRC who are ineligible for surgery

are limited (4). Immunotherapy may be beneficial for patients

with advanced-stage CRC. Because of its strong anti-tumour

activity, immunotherapy is used for treating several solid

tumours, including melanoma, kidney cancer, non-small cell

lung cancer and prostate cancer (5). In addition to targeted and

anti-vascular therapies, immunotherapeutic strategies have

gradually improved. PD-1/L1 and CTLA-4 are the main

immunotherapeutic agents; however, their clinical efficacy

remains unclear. Studies have shown that only patients with

CRC with defective mismatch repair (dMMR) or high

microsatellite instability (MSI-H) are eligible for checkpoint

inhibition and may benefit from it (6, 7). Therefore, dMMR/

MSI-H is considered a predictive biomarker for the application

and efficacy of immunosuppressants (8). However, the efficacy of

dMMR/MSI-H is only 30–40% (9), which considerably limits the

application of immune checkpoint inhibitors for the treatment

of colon cancer. Therefore, understanding the underlying

mechanisms of the occurrence and development of CRC is

necessary to screen for more effective predictors and improve

the currently available treatment approaches.

In addition to the role of tumour cells, the tumour

microenvironment (TME) is another major auxiliary factor in

the onset and growth of tumours. Several studies have associated

TME with the occurrence and growth of tumours, survival and

clinical treatment sensitivity (10, 11). TME has an extremely

complex system comprising stromal cells, tumour cells, various

cytokines and an extracellular matrix (ECM) (12). Fibroblasts

are the main cellular component of the matrix and are called

cancer-associated fibroblasts (CAFs). They interact with cancer

cells (13, 14) and are significantly associated with the prognosis

of tumours (15). A recent study has demonstrated that CAFs

play a significant role in various tumours. For example, matrix

SOX2 upregulation promotes tumorigenesis by producing CAFs

expressing SFRP1/2 (16), and Wnt-induced phenotypic

transformation of CAFs inhibits EMT in CRC (17). However,

most studies have focused only on the involvement of tumour

cells in fibroblast remodelling or the effects of fibroblasts on

tumour cells, and systematic analysis of tumours and TME

including the whole fibroblast population is lacking.

In this study, we identified fibroblast subsets based on

single-cell sequencing analysis and identified hub genes

significantly related to fibroblasts by differential analysis,
Frontiers in Immunology 02
276
correlation analysis, univariate cox analysis and lasso cox

analysis. Further, we analysed the roles of hub genes in

tumors from various aspects by studying the mutations and

immunity of these genes. Finally, we constructed a multi-gene

signature and confirmed its role in predicting patient outcomes

and immunotherapy predictions.
Materials and methods

Extraction and preprocessing of
scRNA data

The read count expression profile data of 16 cancer

tissues and 7 adjacent tissues were extracted from the

single-cell sequencing dataset GSE200997 from the NCBI

database Gene Expression Omnibus (GEO). First, the single-

cell data were filtered by ensuring that each gene was

expressed in at least three cells, and at least 250 genes

were expressed per cell. The PercentageFeatureSet function

was used to determine the proportion of mitochondria and

rRNA and ensure that <3000 genes are expressed per cell

and the Unique molecular identifier (UMI) of each cell is at

least >100.

The data were standardised through log-normalisation, and

highly variable genes were identified using the FindVariableFeatures

function (variance-stabilising transformation was used to identify

variable characteristics). Subsequently, the ScaleData function was

used to scale all genes, and Principal components analysis (PCA)

was used for dimensionality reduction to identify anchor points

(dim = 40). The FindNeighbors and FindClusters functions

(resolution = 0.2) were used to cluster the cells, and the

RunTSNE function was used to reduce t-SNE dimensionality to

screen for fibroblasts.
Extraction and preprocessing of the
cancer genome atlas data

The clinical phenotype data of CRC were downloaded from

TCGA database, and samples lacking data on survival time and

survival status were removed. Samples were further filtered to

ensure that the survival time in each sample was >0 days. In

addition, the gene expression profile data were downloaded from

TCGA database, and 431 tumour samples and 41 para-

cancerous samples were selected for further analysis.

The copy number variation (CNV) of CRC samples were

downloaded from TCGA database and integrated using the

GISTIC2 software.

The single nucleotide variants (SNVs) data of TCGA-COAD

cohort were downloaded from TCGA database and integrated

using the Mutect2 software.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.988246
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao and Chen 10.3389/fimmu.2022.988246
Extraction and preprocessing of
GEO data

The GSE17536 and GSE17537 datasets were downloaded

from GEO, and the probe IDs were converted to gene symbols

according to the annotation files. A probe ID that corresponded

to multiple genes was deleted, and the expression of several

probes for a gene was averaged. Normal tissue samples were

removed, and only tumour samples were retained. In addition,

samples without clinical follow-up and OS data were removed to

ensure that the survival time of all patients was >0 days. A total

of 177 tumour samples and 21,655 genes were obtained from the

GSE17536 dataset, and 55 tumour samples and 21,655 genes

were obtained from the GSE17537 dataset.
Single-cell clustering
dimensionality reduction

The R language Seurat package was first used to filter the single-

cell data by setting each gene to be expressed in at least 3 cells, and

each cell expresses at least 250 genes, calculating the proportion of

mitochondria and rRNA through the PercentageFeatureSet

function, and ensuring that each cell The expressed genes are less

than 3000, and the UMI of each cell is at least greater than 100.

Then, we normalized the data of 23 samples separately by log-

normalization.The FindVariableFeatures function was used to find

highly variable genes [identify variable features based on variance

stabilizing transformation (“vst”)], then scaled all genes using the

ScaleData function, and perform PCA dimensionality reduction to

find anchors, we chose dim=40, pass The FindNeighbors and

FindClusters functions cluster the cells (set Resolution=0.2),

divided the subgroups, and used the RunTSNE function for

TSNE dimensionality reduction,
Annotation and further segmentation of
fibroblasts

The fibroblasts were screened with the four genes of ACTA2,

FAP, PDGFRB and NOTCH3, and then the fibroblasts were

extracted and clustered by the functions of FindNeighbors and

FindClusters (setting Resolution=0.2), and the fibroblasts were

further divided into 4 groups subpopulations and re-TSNE

dimens iona l i ty reduct ion of fibrob las ts us ing the

RunTSNE function.
Identification of marker genes

The FindAllMarkers function of the Seurat package was used

to identify marker genes of fibroblasts by LogFC=0.5,
Frontiers in Immunology 03
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Minpct=0.35 (minimum expression ratio of differential genes)

and identified marker genes with a corrected p<0.05.
Functional annotation of subgroups

KEGG enrichment analysis was performed on marker genes

of fibroblast subpopulations using the compareCluster function

of the clusterProfiler package in R language, and screening was

performed with pvalue Cutoff=0.05.
Identification of malignant and non-
malignant cells

Four fibroblast subpopulations were analyzed using the R

language copykat package to differentiate between tumor cells/

malignant cells and normal cells/non-malignant cells in each

sample by changes in the cnv of the cells.

Copykat’s statistical workflow combines Bayesian methods

with hierarchical clustering to calculate genomic copy number

profiles of individual cells and to define clonal substructures

from high-throughput 3’ scRNA-seq data. The workflow takes a

gene expression matrix of Unique Molecular Identifier (UMI)

counts as input to the calculation. Analysis begins with rows of

gene annotations, ordered by their genomic coordinates.

Freeman-Tukey transformation (FTT) was performed to

stabilize variance, followed by polynomial dynamic linear

modeling (DLM) to smooth out outliers in single-cell UMI

counts. A subset of diploid cells with high confidence was then

examined to infer baseline copy number values for normal 2N

cells. To do this, we pooled individual cells into several small

hierarchical clusters and estimated the variance of each cluster

using a Gaussian mixture model (GMM). By following strict

classification criteria, the cluster with the smallest estimated

variance was defined as “confident diploid cells”. Potential

misclassification can occur when the data have only a few

normal cells, or when tumor cells have near-diploid genomes

and limited CNA events. In this context, Copykat provides a

“GMM-defined” model to identify diploid normal cells one by

one, where a mixture of three Gaussian models of gene

expression in a single cell is assumed to represent genomic

gain, loss, and neutral states. A single cell is defined as a

“confident diploid cell” when the genes in the neutral state

account for at least 99% of the expressed genes.
Tumour-related pathways.

As reported in a previous study, the 10 pathways related to

tumours and genes associated with these pathways are shown in

Supplementary Table 1. The scores of each cell for the 10
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pathways were calculated via Single-sample GSEA (ssGSEA).

The proportion of malignant and non-malignant cells and the

MSI status in fibroblast subpopulations were compared via the

chi-square test, and the scores of different fibroblast

subpopulations associated with the 10 tumour-related

pathways were compared via the Wilcoxon test.
Potential regulatory pathways of
key genes

Using h.all.v7.5.1.symbols.gmt as a background, the

enrichment scores of patients in TCGA cohort for each

pathway were calculated using the GSVA package in R.

Subsequently, the correlation between gene expression and

pathway enrichment scores was analysed using the

Hmisc package.
Construction of a risk model for
predicting the response to PD-L1
inhibitor immunotherapy

The PD-L1 cohort (IMvigor210) was used to assess the

relationship between risk scores and immunotherapy. The

effects of PD-L1 inhibitors were different among 348 patients

in the IMvigor210 cohort, which were characterised by stable

disease (SD), progressive disease (PD), partial response (PR) and

complete response (CR). In addition, differences between

immunotherapy and chemotherapy were analysed in the

IMvigor210 cohort. The risk model was used to evaluate the

possible clinical outcomes of immunotherapy using the TIDE

(http://tide.dfci.harvard.edu/) software. The likelihood of

immune escape increased with increasing TIDE prediction

scores, indicating that immunotherapy is less likely to

benefit patients.
Statistical analyses

The Shapiro–Wilk test was used to compare the normality of

variables between two groups. The unpaired Student’s t-test was

used to determine the statistical significance of differences

between normally distributed variables, and the Mann–

Whitney U test was used to analyse non-normally distributed

variables. The Kruskal–Wallis test and one-way ANOVA were

employed as non-parametric and parametric methods,

respectively, for comparing more than two groups. Spearman

and distance correlation analyses were used to examine the

correlation. The Kaplan–Meier method was used to compute

survival rates, and the log-rank test was used to assess the

significance of variations in survival curves.
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Results

Identification of fibroblasts from scRNA-
seq data

A total of 49,698 cells were obtained after filtering single-cell

sequencing data. The PercentageFeatureSet function was used to

calculate the proportion of mitochondria and rRNA, and 48,755

cells were obtained. As shown in Figure S1A, a significant

correlation was observed between the number of UMI and

mRNA but not between the number of UMI/mRNA and the

content of mitochondrial genes. A violin diagram created before

and after QC analysis is shown in Figures S1B, C.

Furthermore, the data of 23 samples were standardised via log-

normalisation. A total of 16 subgroups were obtained, and the

RunTSNE function was used to reduce t-SNE dimensionality.

Fibroblasts were screened based on the expression of ACTA2,

FAP, PDGFRB and NOTCH3. Because these four genes were

mainly expressed by cells in subgroup 9, the cells were defined as

fibroblasts (Figures S2A, B) and extracted for cluster analysis. These

fibroblasts were further divided into four subgroups, and the

RunTSNE function was used to reduce t-SNE dimensionality.

The t-SNE map of the four fibroblast subpopulations and marker

gene expression is shown in Figures S2C, D.

Figure 1A shows the t-SNE diagram of 23 samples, Figure 1B

shows the t-SNE diagram of different tissues (cancer and

adjacent tissues), Figure 1C shows the t-SNE diagram of the

MSI status and Figure 1D shows the t-SNE diagram of fibroblast

subsets after cluster analysis. The number of cells in each sample

before and after data filtration is shown in Table 1.

The marker genes of the four subpopulations were identified

using the FindAllMarkers function (logfc = 0.5 [difference

multiple], Minpct = 0.35 [minimum expression ratio of

different genes] and corrected p-value < 0.05). The expression

of the top five marker genes with the most prominent

contribution was analysed in each subgroup (Figure 1E).

Furthermore, the proportion of the four fibroblast

subpopulations was analysed in each sample (Figure 1F), and

the clusterprofiler package in R was used for KEGG enrichment

analysis of marker genes in each subgroup (Figure 1G).

The copykat package in R was used to screen for tumour/

malignant cells and normal/non-malignant cells in each sample

based on CNVs (to ensure that normal cells were not included).

A total of 297 cancer cells (malignant cells) and 491 normal cells

(non-malignant cells) were eventually identified (Figure 1H).
Expression of fibroblasts in tumour-
related pathways

Genes involved in 10 important pathways associated with

tumorigenesis and development were extracted from previous
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studies. Figure 2A shows the enrichment of fibroblasts in the 10

tumour-related pathways. In addition, the proportion of

malignant and non-malignant cells and the MSI status in the

fibroblast subpopulations were compared (Figures 2B, C), and

the scores of different fibroblasts in the 10 pathways were

compared (Figures 2D–G).
Identification of key genes in fibroblasts

A total of 1424 upregulated and 1245 downregulated genes

were identified in TCGA dataset using the limma package (FDR <

0.05 and |log2 (fold change)| > 1). Figure 3A shows a volcano map

of differential analysis.

Based on the results of single-cell sequencing analysis, the

scores of the CAF subgroups in TCGA dataset were calculated

using ssGSEA to screen for marker genes in each subgroup. The

results revealed that the scores of the CAF_0 subgroup were

higher in cancer tissues, whereas those of CAF_1, CAF_2 and

CAF_3 subgroups were higher in paracancerous tissues

(Figure 3B). Subsequently, the survminer package was used to

select optimal truncation based on the total survival time, and the

scores of the four fibroblast subgroups were divided into the high-

and low-score groups. The KM curve revealed that the high-score

group of the four subgroups had a poor prognosis (Figures 3C–F).
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Furthermore, the Hmisc package was used to examine the

correlation between 2669 DEGs associated with tumorigenesis

and development and the scores of the four CAF subgroups. A

total of 248 key genes significantly associated with the four

fibroblast subpopulations were identified (p < 0.001; cor > 0.7)

and subjected to univariate cox analysis using the coxph function

of the survival package. The results revealed 36 genes with a high

prognostic impact, which were considered prognostic risk

factors (p < 0.01) (Figure 4A).

These 36 key genes were further filtered using lasso

regression to decrease the number of genes used for

constructing a risk model. Lasso regression is a compression

estimation technique. By creating a penalty function, which

causes certain coefficients to be compressed and some

coefficients to be set to zero, lasso regression helps to create a

more refined model. Therefore, lasso regression retains the

benefit of subset contraction and is a biased estimation for

analysing data with complex collinearity. It selects variables

during parameter estimation and improves the method of

dealing with multicollinearity in regression analysis. In this

study, the R software package glmnet was used to perform

lasso–Cox regression. The change in each independent variable

was assessed (Figure 4B), and the number of independent

variable coefficients tending to 0 was found to gradually

increase with the increase in lambda. The risk model was
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FIGURE 1

(A) t-SNE diagram of 23 samples; (B) Distribution of t-SNE in cancer and adjacent tissues; (C) t-SNE distribution diagram of MSI status; (D) t-SNE
map of four fibroblast subpopulations after cluster analysis; (E) Dot map of the expression of the top five marker genes in the subpopulations;
(F) The proportion and cell number of subpopulations in cancer and adjacent tissues; (G) KEGG enrichment analysis of the four fibroblast
subpopulations; (H) Distribution of t-SNE in malignant and non-malignant cells predicted using the copykat package.
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constructed using 10-fold cross-validation, and the confidence

interval of each lambda was evaluated (Figure 4C).

The performance of the model was optimal at a lambda of

0.0251. The four genes obtained based on this value were

selected as target genes for further analysis, and multivariate

cox analysis revealed that the genes were prognostic risk

factors (Figure 4D).
Mutation analysis of key genes

The SNVs of the four genes were examined in TCGA

dataset, and FLNA was found to have the highest mutation

frequency (Figure 5A). Subsequently, we examined the

collinearity and mutual exclusiveness of these four and the top

10 genes with most mutations in CRC and found that the

mutations of these four genes did not exhibit significant

collinearity (Figure 5B). Furthermore, the CNVs of the four

genes were analysed, and only a few samples were found to have

copy number amplification/deletion (Figure 5C).

The molecular characteristics of TCGA-COAD cohort were

obtained from previous pan-cancer studies. Correlation analysis

revealed that MMP11 and TCF7L1 were significantly positively

correlated with aneuploidy scores, homologous recombination

defects and the fraction altered (Figure 5D).
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Potential regulatory pathways of
key genes

The enrichment scores of each pathway in TCGA cohort were

calculated using the gsva package in R, and Pearson correlation

analysis between the expression of the four genes and the pathway

enrichment scores was performed using theHmisc package in R. A

total of 22 significantly related pathwayswere identified (|cor| > 0.4

and p < 0.001). Figure 6A shows a heat map of the relationship

between the 4 genes and 22 pathways. Figure 6B shows a heat map

of the enrichment scores of 22 pathways.
Relationship between key genes
and immunity

The immune scores of each sample in TCGA dataset were

evaluatedusing theESTIMATEalgorithmandwere found tohave a

significant positive correlationwith the four genes (Figure 7A). The

samples were divided into the high- and low-expression groups

based on the median expression level of the four genes, and

significant differences in immune scores were observed between

the high- and low-expression groups (Figure 7B).

The CIBERSORT method was used to determine the

immune cell scores of samples in TCGA dataset. Correlation

analysis revealed that the expression of the four genes was

significantly negatively correlated with T cell scores but was

significantly positively correlated with macrophage-related

scores (Figure 7C). The samples were divided into the high-

and low-expression groups based on the median expression level

of the four genes, and significant differences in some immune

cel l scores between the high- and low-express ion

groups (Figure 7D).
Construction of a risk model based on
key genes

The results of multivariate Cox analysis are shown in

Figure 4D. The risk scores of samples were calculated using

the following formula: RiskScore = S bi × Expi, where i refers to

the expression levels of the four key genes, and b is the

multivariate Cox regression coefficient of the corresponding

genes. The final formula for calculating risk scores based on

the 4-gene signature is as follows:

RiskScore = 0:173 * FLNA + 0:079 * MMP11

+ 0:146 * TCF7L1 + 0:082 * GPX3

TCGA cohort was used as the training dataset to determine the

risk score of each sample. ROC analysis was performed to examine

the efficiency of the riskmodel in predicting prognosis at 1–5 years

using theRsoftwarepackage timeROC(Figure8A).TheAUCvalue
TABLE 1 Counting of cell counts before and after sample filtration.

Samples raw_count clean_count Percentage (%)

B_cac10 2823 2823 100

B_cac11 4644 4611 99.29

B_cac14 4764 4722 99.12

B_cac15 1034 1030 99.61

B_cac4 2666 2652 99.47

B_cac6 717 712 99.3

B_cac7 1565 1554 99.3

T_cac1 1692 1586 93.74

T_cac10 697 690 99

T_cac11 2865 2761 96.37

T_cac12 4038 4018 99.5

T_cac13 2642 2642 100

T_cac14 4071 4020 98.75

T_cac15 3675 3651 99.35

T_cac16 1381 1243 90.01

T_cac2 1674 1649 98.51

T_cac3 1183 1093 92.39

T_cac4 1584 1575 99.43

T_cac5 169 169 100

T_cac6 1690 1643 97.22

T_cac7 1494 1480 99.06

T_cac8 990 903 91.21

T_cac9 1640 1528 93.17
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for predicting prognosis at 4 and 5 years was 0.7. In addition, z-

scoreswere evaluated for risk scores, and sampleswith risk scores of

>0 were included in the high-risk group, whereas those with risk

scores of <0were included in the low-risk group. Subsequently, KM

curves were plotted, and significant differences were observed

between the two groups (p < 0.0001) (Figure 8B).

The GSE17536 dataset was used to verify the robustness of the

model using the abovementioned method. A risk model was

constructed, and its efficiency in predicting prognosis at 1–5 years

was analysed using the R software package timeROC (Figure 8C).

The AUC value for predicting prognosis at 1 year was 0.7. In

addition, z-scores were evaluated for risk scores, and samples with

riskscoresof>0were included in thehigh-riskgroup,whereas those

with risk scores of <0 were included in the low-risk group.

Subsequently, KM curves were plotted, and significant differences

were observed between the two groups (p < 0.05) (Figure 8D).
Frontiers in Immunology 07
281
The GSE17537 dataset was analysed using the same method.

As shown in Figures 8E, F, the AUC value for predicting

prognosis at 1–4 years was >0.7, and substantial differences

were observed between the high- and low-risk groups.
Combination of risk scores and
clinicopathological features to improve
survival prediction

Multivariate and univariate Cox regression analyses of the

risk score and clinicopathological features showed that the risk

score was the most significant prognostic factor (Figures 9A, B).

A nomogram integrating the risk scores and other

clinicopathological parameters was constructed for

quantifying the risk assessment and survival probability of
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C

FIGURE 2

(A) Heat map of the scores of 10 tumour-related pathways enriched in CAFs; (B) Comparison of CAF subpopulations in malignant and non-
malignant cells; (C) Comparison of CAF subpopulations in terms of MSI status; (D) Comparison of the scores of 10 tumour-related pathways
between malignant and non-malignant cells in the CAF_0 subgroup; (E) Comparison of the scores of 10 tumour-related pathways between
malignant and non-malignant cells in the CAF_1 subgroup; (F) Comparison of the scores of 10 tumour-related pathways between malignant
and non-malignant cells in the CAF_2 subgroup; (G) Comparison of the scores of 10 tumour-related pathways between malignant and non-
malignant cells in the CAF_3 subgroup; (Wilcoxon test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). ns, no significant.
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patients with CRC (Figure 9C). The risk score had the most

influence on survival rate prediction. The predictive accuracy of

the risk model was further assessed using a calibration curve

(Figure 9D). The calibration curve plotted for predicting

prognosis at 1, 3 and 5 years and the standard curve yielded

similar results, indicating the good predictive performance of the

nomogram. Additionally, decision curve analysis was performed

to assess the reliability of the model, and the benefits of the

nomogram and risk score were found to be considerably greater

than those of the extreme curve. The performance of the

nomogram and risk score in predicting survival was superior

to that of other clinicopathological features (Figures 9E, F).
Prediction of the response to
PD-L1 inhibitor immunotherapy
via the risk model

The capability of the risk score to predict the response of

patients to ICB therapy was assessed to study its association with

immunotherapy. The results showed that patients with low risk

scores had significant clinical benefits and prolonged OS in the

anti-PD-L1 cohort (IMvigor210 cohort) (Figure 10C, p < 0.05).

PD-L1 inhibitors had different effects among 348 patients in the

IMvigor210 cohort, which were characterised by progressive
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disease (PD), stable disease (SD), partial response (PR) and

complete response (CR). The risk scores of patients with SD/PD

were higher than that of patients with other types of reactions

(Figure 10A). Additionally, patients with low-risk scores

experienced considerably superior treatment outcomes

(Figure 10B). In addition, differences in survival among

patients with different CRC stages in the IMvigor210 samples

were analysed. The results revealed that stage I+II samples

showed substantial survival differences (Figure 10D); however,

stage III+IV samples did not show significant survival

differences (Figure 10E).

Furthermore, differences in immunotherapy and

chemotherapy responses were analysed among patients in the

IMvigor210 cohort. The risk model was used to assess the

potential clinical impacts of immunotherapy using the TIDE

(http://tide.dfci.harvard.edu/) software. The likelihood of

immune escape increased with increasing TIDE prediction

scores, indicating that patients were less likely to benefit from

immunotherapy. With regard to immunotherapy, the risk and

TIDE scores of patients unresponsive to immunotherapy were

found to be higher, which also showed that the high-risk group

was less likely to benefit from immunotherapy (Figures 10F, G).

In addition, Pearson correlation analysis revealed a strong

pos i t i v e cor re l a t ion be tween the TIDE and r i sk

scores (Figure 10H).
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FIGURE 3

(A) Volcano map of differential gene expression between cancer and adjacent tissues in TCGA dataset; (B) The scores of the four fibroblast
subgroups were compared between cancer and adjacent tissues (Wilcoxon test); (C) KM curve of the high- and low-score groups in the CAF_0
subgroup; (D) KM curve of the high- and low-score groups in the CAF_1 subgroup; (E) KM curve of the high- and low-score groups in the
CAF_2 subgroup; (F) KM curve of the high- and low-score groups in the CAF_3 subgroup. **P < 0.01, ****P < 0.0001.
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Discussion

The proliferation of connective tissue is one of the key

hallmarks of tumours, and the components involved in

proliferation include fibroblasts, macrophages, immune cells

and dense ECM (18). Fibroblasts are the main cell type in

ECM, which are called CAFs. Recently, a consensus statement

was issued, which stated that cancer cells with slender

morphology; a lack of mutations and negative markers of

epithelial cells, endothelial cells and leukocytes may be

considered CAFs (19). The characteristic markers of CAFs are

a-SMA and fibroblast-activating protein (FAP), and the

expression of fibroblast-specific protein 1 (FSP1), platelet-

derived growth factor receptor (PDGFR)-a/b and vimentin is

high in CAFs. These proteins are transcribed from ACTA2, FAP,

PDGFRB and NOTCH3 genes, respectively. Because

morphological features are subjective and not conducive to

quantification, we used ACTA2, FAP, PDGFRB and NOTCH3
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genes as markers to screen for CAFs in CRC samples via single-

cell sequencing. Compared with single-cell sequencing

technology, the traditional transcriptome sequencing

technology (bulk RNA-seq) is based on tissue samples (cell

population), which reflects the average expression level of

genes in the cell population. However, several studies have

indicated that CAF is heterogeneous, and certain CAF

subtypes stimulate tumour growth, whereas some inhibit it.

For instance, in a study by Costa et al., CAF subgroup 1

created an immunosuppressive microenvironment by

suppressing CD4+CD25+ T cells in breast cancer (20). Su

et al. (21) reported that the new subset, CD10+GPR77+ CAFs,

can facilitate the formation of tumours in patients with breast

and lung cancers. Therefore, conventional sequencing

technology cannot reflect the role of CAFs in tumours. In this

study, cells in subgroup 9 mainly expressed ACTA2, FAP,

PDGFRB and NOTCH3 and were, therefore, defined as

fibroblasts. The fibroblasts of subgroup 9 were extracted,
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FIGURE 4

(A) A total of 248 candidate DEGs were identified; (B) The locus of each independent variable changing with lambda; (C) Confidence interval
under lambda; (D) Multivariate Cox regression analysis (coefficient of prognosis-related genes).
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FIGURE 5

(A) Waterfall diagram of SNVs in the 4 key genes; (B) Collinearity and mutual exclusion analysis of the 4 key genes and 10 genes with the most
mutations in CRC; (C) CNVs in the 4 key genes; (D) Heat map of the correlation between the 4 key genes and aneuploidy scores, homologous
recombination defects, fraction altered, number of segments and non-silent mutation rates.
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FIGURE 6

(A) Heat map of the correlation between genes and pathways; (B) Heat map of the enrichment scores of key pathways. *P< 0.05, **P < 0.01,
***P < 0.001.
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subjected to cluster analysis and further divided into four

subgroups. KEGG enrichment analysis of marker genes in

each subgroup revealed that the genes were mainly enriched in

pathways associated with ‘ECM’ and ‘focal adhesion’, which play

an important role in tumours. However, this finding does not

indicate that the four CAF subgroups play the same role

in tumours.

Consistent with previous studies, this study revealed that the

four CAF subpopulations may play different or contradictory

roles in tumours. The distribution of malignant and non-

malignant cells among the CAF subpopulations was

significantly different. In the CAF_0 subpopulation, the

proportion of malignant cells was higher, and that of cells with

MSI-H was lower. However, in the other three subpopulations,

the proportion of malignant cells was lower, and that of cells

with MSI-H was higher. Furthermore, single-cell sequencing was

used to screen for marker genes in the CAF subgroups, and the

scores of the subgroups in TCGA dataset were calculated via

ssGSEA. The results showed that the scores of the CAF_0

subgroup were higher in cancer tissues, and those of CAF_1,

CAF_2 and CAF_3 subgroups were higher in adjacent tissues,

which was consistent with the previous results, that is, the

proportion of malignant tumour cells was higher in the in
Frontiers in Immunology 11
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CAF_0 subgroup and lower in the other three subgroups.

However, no significant differences in prognosis were observed

among the four subgroups, and subgroups with high gene

expression had a better prognosis. This finding indicates that

CAFs in the same subgroup have some heterogeneity and hence

cannot adequately predict the survival of patients in

different subgroups.

Several studies have shown that CAFs promote tumour

progression in various ways, such as by remodelling ECM (22,

23), interfering with drug delivery (24), producing collagen in

ECM and regulating the hardness of the tumour matrix (25).

CAFs can secrete chemokines (26, 27) and cytokines (28),

leading to lymphatic angiogenesis (29), so as to promote the

endocrine function of cancer cells. In addition, they change the

immune cell environment by recruiting immunosuppressive

cells and inhibiting the activity of immune effector cells (30).

In this study, the role of different CAF subtypes in tumorigenesis

and development of CRC was examined, and the scores of 10

tumour-related pathways in 4 CAF subtypes were compared

between malignant and non-malignant cells. The PI3K pathway

was found to be highly expressed in malignant cells. Studies have

shown that the PI3K pathway promotes tumour progression.

The EphA2–PI3K signal can simulate angiogenesis induced by
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FIGURE 7

(A) Heat map of the correlation between key genes and immune scores predicted using the ESTIMATE algorithm; (B) Comparison of immune
scores in the high- and low-expression groups (Wilcoxon test); (C) Heat map of the correlation between key genes and immune cell scores
predicted using the CIBERSORT algorithm; (D) Comparison of the scores of 22 immune cells between the high- and low-expression groups
(Wilcoxon test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). ns, no significant.
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CAFs in gastric cancer cells (31). CAF-derived HGF promotes

cell proliferation and drug resistance by upregulating the c-Met/

PI3K/Akt and GRP78 signalling pathways in ovarian cancer cells

(32). The results of this study are consistent with those of

previous studies, suggesting that CAFs promote tumour

progression through the PI3K pathway.

To decrease the heterogeneity among subgroups, the marker

genes of different CAF subgroups were used to classify CAFs.

After differential expression analysis, four genes were selected

via lasso regression analysis, namely, TCF7L1, FLNA, GPX3 and

MMP11. TCF7L1 is a member of the TCF/lymphoid enhancer

(LEF) family of transcription factors, which is involved in

maintaining stem cell pluripotency (33) and skin epithelial

tissue homeostasis (34). Studies have shown that ectopic

TCF7L1 expression impairs the growth and invasion of highly

metastatic breast cancer cells (35). In addition, overexpression of

TCF7L1 can induce the growth of colorectal tumour cells (36).

FLNA, the most abundant and widely distributed member of the

filamin family, is a non-muscle actin filament cross-linked

protein (37). Some studies have shown that FLNA is

associated with multiple functional non-cytoskeletal proteins

and participates in several related pathways regulating cell

migration and adhesion (38). FLNA acts as a pro-oncoprotein
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in various human malignancies, including metastatic melanoma

and hepatocellular carcinoma (39, 40). However, the expression

of FLNA is decreased in breast cancer, which is negatively

correlated with lymph node metastasis. FLNA knockout can

promote cell migration and invasion (41). In CRC, FLNA

promotes chemotherapy resistance by inducing epithelial–

mesenchymal transformation and the Smad2 signalling

pathway (42). Therefore, the controversial role of FLNA in

human malignant tumours has been reported in several

studies. GPX3 is a tumour suppressor gene and the main

antioxidant enzyme in plasma. It plays an important role in

scavenging hydrogen peroxide and other oxygen free radicals

and protecting cells from oxidative stress-induced damage (43–

45). As an important member of the MMP family, MMP11

regulates a series of physiological processes and signalling

events, manipulates some bioactive molecules on the cell

surface, changes the biological behaviour of cells and plays an

important role in TME (46, 47). In addition, studies have shown

that MMP is closely related to tumorigenesis. The most

important MMP is MMP11, which is overexpressed in

tumours and participates in the proliferation and malignant

development of tumour cells (48, 49). However, according to

previous studies, CAFs can also degrade ECM by releasing
A

B D

E

F

C

FIGURE 8

(A) ROC curve of the risk model constructed based on 4 genes in TCGA dataset; (B) KM curve of the risk model constructed based on 4 genes
in TCGA dataset; (C) ROC curve of the risk model constructed based on 4 genes in the GSE17536 dataset; (D) KM curve of the risk model
constructed based on 4 genes in the GSE17536 dataset; (E) ROC curve of the risk model constructed based on 4 genes in the GSE17537
dataset; (F) KM curve of the risk model constructed based on 4 genes in the GSE17537 dataset.
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MMPs and synthesising new matrix proteins to provide

structural support for tumour invasion and angiogenesis (50,

51). Therefore, MMP11 can be used for the evaluation

of prognosis.

The four genes identified via lasso regression were subjected

to enrichment analysis, and 22 significantly related pathways

were identified including those associated with ‘angiogenesis’,

‘apical junction’, ‘apoptosis’ and ‘IL2–STAT5’. The four key

genes were used to establish a prognostic risk model, which

had good stability and accuracy in predicting prognosis in both

training and validation sets. The prognosis of patients in the

high-risk group was worse. To quantify the risk assessment and

survival probability of patients, the risk score was combined with

other clinicopathological features, and it was found that the risk

score adequately predicted clinicopathological features,

especially the M stage, indicating that patients with high risk

scores may be more predisposed to distant metastasis. In

addition, to examine the relationship between the risk score

and immunotherapy, the ability of risk score to predict the

response of patients to ICB therapy was examined. Patients with

low risk scores had significant clinical benefits and significantly

prolonged OS in the anti-PD-L1 cohort. Furthermore, mutation

analysis of the four genes in TCGA cohort revealed that FLNA

had the highest mutation frequency, and there was no significant

collinearity among the mutations of the four genes. Moreover,
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only a few samples had copy number amplification/deletion.

Because the mutation frequency of the four genes is not

significant, their role may be directly realised through their

expression levels.

Furthermore, the correlation between the prognostic risk

model and infiltrating immune cells was analysed, and a

significant positive correlation was observed between the four

genes and immune scores, indicating that high gene expression

increased the abundance of infiltrating immune cells in ECM.

Moreover, these four genes had a significant negative correlation

with T cell-related scores. Therefore, CAFs labelled by these

genes can promote tumour progression by inhibiting T-cell

function. This result is consistent with that of previous studies.

CAFs can induce immune evasion of cancer cells (52, 53) and

restrict the recruitment of immune effector cells (such as CD8+

T cells) to tumour tissues by secreting different chemokines (54).

In this study, a significant positive correlation was observed

between the four genes and the score of macrophages, which is

consistent with the finding of a previously reported study,

indicating that CAF can induce M2 polarisation (55). These

results suggest that the interaction between stromal cells and

immune-related cells in TME promotes tumour progression.

However, this study has certain limitations. First, the results

of single-cell sequencing were not verified in actual clinical

samples. The screened key genes lack basic in vivo and in vitro
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FIGURE 9

(A, B) Univariate and multivariate Cox analyses of the risk score and clinicopathological features; (C) Nomogram model; (D) Calibration curve of
the nomogram (1, 3 and 5 years); (E) Decision curve of the nomogram; (F) Compared with other clinicopathological features, the nomogram
exhibited a superior capacity for survival prediction.
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experimental verification, and the prognostic model should be

verified in actual clinical samples, which is our next research

direction. In addition, there are some contradictory and

unexplained results. For example, the distribution of different

CAF subpopulations among malignant and normal cells is

different; however, the prognosis among these populations was

not different. Whether their distribution in malignant cells also

plays an important role warrants further investigation

and verification.

In conclusion, the fibroblast population screened via single-cell

sequencing in CRC was divided into four subpopulations through

cluster analysis. The distribution and role of these four

subpopulations are different in CRC. In addition, by analysing the

differential expression of the main marker genes in these

subpopulations, four representative genes were identified via lasso

regression, namely, TCF7L1, FLNA, GPX3 and MMP11. Using the

prognostic risk model constructed based on the expression of these

four genes, patients with CRC were divided into the high- and low-

risk groups. Patients with low risk scores had significant clinical

benefits from immunotherapy and had significantly prolonged OS,

which may be attributed to inhibition of T-cell function in the

immune microenvironment and promotion of the function of

tumour-associated macrophages.
Frontiers in Immunology 14
288
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.

Author contributions

JZ performed the study and wrote the paper. YC edited and

proofread the paper. All authors contributed to the article and

approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
A B D

E F G H

C

FIGURE 10

(A) Differences in immunotherapy responses and risk scores in the IMvigor210 cohort; (B) Immunotherapy response among different risk groups
in the IMvigor210 cohort; (C) Prognostic differences between different risk groups in the IMvigor210 cohort; (D) Prognostic differences between
different risk groups of patients with early-stage CRC in the IMvigor210 cohort; (E) Prognostic differences between different risk groups of
patients with middle- and late-stage CRC in the IMvigor210 cohort; (F) Differences in immunotherapy response and different risk scores in the
IMvigor210 cohort were analysed using the TIDE software; (G) Differences in TIDE scores and immunotherapy responses in the IMvigor210
cohort; (H) Correlation analysis between the risk and TIDE scores in the IMvigor210 cohort. *P< 0.05, **P < 0.01, ****P < 0.0001.
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SUPPLEMENTARY FIGURE 1

(A) Correlation between mitochondrial genes and UMI/mRNA quantity as
well as between UMI and mRNA quantity; (B) Correlation among the

mRNA/UMI/mitochondrial content/rRNA content of samples before
filtration; (C) Correlation among the mRNA/UMI/mitochondrial content/

rRNA content of samples after filtration; (D) Dimensionality reduction and
identification of anchor points via PCA.

SUPPLEMENTARY FIGURE 2

(A) Distribution of subpopulations of all cells after cluster analysis; (B) t-
SNE map of marker gene expression in fibroblasts; (C) Distribution of

fibroblast subgroups after re-clustering; (D) t-SNE map of marker gene
expression in four small fibroblast subpopulations.
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A robust CD8+ T cell-related
classifier for predicting the
prognosis and efficacy of
immunotherapy in stage III
lung adenocarcinoma

Jinteng Feng1†, Longwen Xu1†, Shirong Zhang1†, Luying Geng1,
Tian Zhang1, Yang Yu1, Rui Yuan1, Yusheng He1, Zhuhui Nan1,
Min Lin2,3 and Hui Guo1,2,4*

1Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University,
Xi’an, China, 2Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University,
Xi’an, China, 3Key Laboratory of Biomedical Information Engineering, School of Life Science and
Technology, Xi’an Jiaotong University, Ministry of Education of China (MOE), Xi’an, China, 4Key
Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of
Education of China (MOE), Xi’an, China
Patients with stage III lung adenocarcinoma (LUAD) have significant survival

heterogeneity, meanwhile, CD8+ T cell has a remarkable function in

immunotherapy. Therefore, developing novel biomarkers based on CD8+ T

cell can help evaluate the prognosis and guide the strategy of immunotherapy

for patients with stage III LUAD. Thus, we abstracted twelve datasets from

multiple online databases and grouped the stage III LUAD patients into training

and validation sets. We then used WGCNA and CIBERSORT, while univariate

Cox analysis, LASSO analysis, and multivariate Cox analysis were performed.

Subsequently, a novel CD8+ T cell-related classifier including HDFRP3, ARIH1,

SMAD2, and UPB1 was developed, which could divide stage III LUAD patients

into high- and low-risk groups with distinct survival probability in multiple

cohorts (all P < 0.05). Moreover, a robust nomogram including the traditional

clinical parameters and risk signature was constructed, and t-ROC, C-index,

and calibration curves confirmed its powerful predictive capacity. Besides, we

detected the difference in immune cell subpopulations and evaluated the

potential benefits of immunotherapy between the two risk subsets. Finally,

we verified the correlation between the gene expression and CD8+ T cells

included in the model by immunohistochemistry and validated the validity of

themodel in a real-world cohort. Overall, we constructed a robust CD8+ T cell-

related risk model originally which could predict the survival rates in stage III

LUAD. What’s more, this model suggested that patients in the high-risk group

could benefit from immunotherapy, which has significant implications for

accurately predicting the effect of immunotherapy and evaluating the

prognosis for patients with stage III LUAD.
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Introduction

Lung cancer has become the first reason of all cancer-

associated deaths worldwide, also in China, which accounts

for near ly one mi l l ion deaths each year (1) , and

approximately 85% cases are Non-small cell lung cancer

(NSCLC) (2). What’s more, lung adenocarcinoma (LUAD)

represents the most common pathological subtype in NSCLC,

for which not been found specific risk factors (3). Besides,

statistics show that almost 30% of NSCLC patients are

diagnosed with locoregionally or locally advanced disease,

which is stage III (4). Although there has shaped a

comprehensive therapy pattern including surgery ,

chemotherapy, radiotherapy, targeted therapy, and

immunotherapy in recent years, the survival rate is not

satisfactory especially for locally advanced LUAD (5),

despite the absence of metastases. According to the tumor,

node, metastasis (TNM) staging (8th edition), stage III is

subclassified into stage IIIA, IIIB, and IIIC (6). For this

heterogeneous group which presents a wide spectrum of

clinical features including multiple statuses of lymph nodes

metastasis, their 5-year overall survival (OS) rates are totally

different (7). Hence, precisely distinguishing and predicting

the prognosis of each subtype of stage III LUAD patients

would help to formulate accurate treatment and improve the

survival rate.

Immunotherapy has recently shown great efficacy for

patients with stage III unresectable NSCLC, especially for

those trapped in the lack of targetable mutations, who could

not benefit from targeted therapy such as tyrosine kinase

inhibitors (TKIs) (8, 9). As the most iconic treatment of

immunotherapy, immune checkpoint blockades (ICBs) have

established a solid position and could be chosen as the first-

line treatment (10). Among them, monoclonal antibodies

against programmed death 1(PD-1) and its ligand (PD-L1)

are the most widely used ICBs in locally advanced LUAD at

present, which has shown obvious survival benefits

compared to traditional chemotherapy (11). Nonetheless,

only canonica l b iomarkers l ike PD-L1 and tumor

mutational burden (TMB) are used in clinical practice,
Abbreviations: NSCLC, non–small-cell lung cancer; LUAD, lung

adenocarcinoma; OS, overall survival; PD-1, programmed death 1; PD-L1,

programmed death-ligand 1; ICBs, immune checkpoint blockades; TME,

tumor microenvironment; WGCNA, weighted correlation network analysis;

GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; KM,

Kaplan-Meier; ROC, receiver operating characteristic; C-index, concordance

index; t-ROC, time-dependent ROC; TIDE, tumor immune dysfunction and

exclusion; TIICs, tumor-infiltrating immune cells; DCs, dendritic cells; Tregs,

regulatory T cells; BOR, best overall response; ICGs, immune checkpoint

genes; ORR, overall response rate; CR, complete response; PR, partial

response; SD, stable disease; PD, progressive disease.
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which also has their own limitations (12). Therefore, the

significance of identifying novel immune-related biomarkers

is highlighted, which may help to select those patients who

are most likely to benefit from ICBs.

As the indispensable part of cancer, the tumor

microenvironment (TME) is essential nature in cancer

progression. Alternatively, a variety of immune cell types

within TME drive a fundamental environment that could

respond to immunotherapy (13). Particularly, among all

immune cell types, the CD8+ T cell is the most important

conductor in the cancer-immunity cycle and its activation

and infiltration play a crucial role in immunotherapy (14).

However, some co-inhibitory molecules or receptors in the

TME causing T cell exhaustion might impair their potential

to fight cancer cells (15). Therefore, how to find out and

confirming the biomarkers correlated to CD8+ T cell become

necessary. In recent years, some works have revealed how a

single intrinsic gene of LUAD cells influences CD8+ T cells

in TME. For instance, knockdown of GBE1 could increase

recruitment of CD8+ T lymphocytes (16), TP53-deficient

LUAD cells promoted CD8+ T cells exhaustion (17), and

high expression of MSH2 correlated with increased CD8+ T

cel ls infi l tration (18), whereas, these genes cannot

demonstrate the whole signature and predict the various

prognosis of LUAD patients. Besides, based on immune-

related genes, researchers have established a few prognostic

models to make predictions for the survival risk (19, 20).

Nevertheless, we need to exploit a novel model containing

multiple biomarkers about the heterogenous locally

advanced LUAD based on as many databases as possible,

which is comprehensive enough to reach a satisfying

prognostic value and predict the immunotherapy response.

Based on the rapid development of bioinformatics, in this

study, we aim to establish a reliable CD8+ T cell-related

signature to estimate the prognostic stratification and the

effect of immunotherapy in locally advanced LUAD. First, we

integrated datasets about stage III LUAD, which were from

multiple online databases. To identify the hub CD8+ T cell-

related biomarkers, we then used weighted gene co-

expression network analysis (WGCNA). Subsequently, we

developed a novel CD8+ T cell-related classifier and

constructed a robust nomogram to predict survival

probability. Besides, the predictive performance was further

validated in the multiple test sets. Moreover, we detected the

difference in immune cell subpopulations and evaluated the

potential benefits of immunotherapy between the two risk

subsets. Finally, the valuation of this model was verified in a

real-world cohort in evaluating immunotherapy efficacy.

Taken together, it was expected that this CD8+ T cell-

related model could contribute to predicting survival rates

and accurately working out therapeutic strategies for locally

advanced LUAD patients.
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Materials and methods

Study population, gene expression data,
and processing

The gene expression profiles and clinical parameters of

primary LUAD patients from 12 public cohorts were

retrospectively analyzed, including 11 microarray datasets

from the Gene Expression Omnibus (GEO) and Array-

Express, and 1 RNA-Seq expression profile from The

Cancer Genome Atlas (TCGA). Only patients who meet the

following two criteria were included: i) detailed TNM staging

information includes stage IIIA and IIIB according to the 7th

edition of TNM classification of malignant tumors; ii) OS

information includes follow-up time and survival status. The

Combat algorithm was used to eliminate the batch effects.

Then, the whole set was divided into training and internal

validation cohorts in a ratio of 1:1 using stratified random

sampling by caret R package. Another series from TCGA was

used as the external validation cohort. The studies obtained

from each of the databases are summarized together with

series ID in Supplementary Table S1.
Evaluation of tumor-infiltrating
immune cells

We performed CIBERSORTx (https://cibersortx.stanford.

edu/) to investigate the levels of 22 TIICs using the mRNA

expression data of the training cohort. This online tool

utilizes a deconvolution method to impute gene expression

profiles and estimate the type and fractions of immune cells.
Establishing the co-expression network

We used the R package “WGCNA” (21) to construct a

weight co-expression network with the 7922 gene expression

values in the training cohort. The levels of 22 immune-

infiltrating cells were used as sample traits. When the index

of scale-free topologies was set as 0.90, a scaleless network

was successfully built with an optimal soft threshold power (b
= 5). Next, we divided genes with similar expression patterns

into the same module (minimum size = 50) using the

“dynamic tree cutting” algorithm. In addition, to select the

remarkable modules, Pearson’s test was used to evaluate the

relationship between the module eigengenes and the level of

the 22 types of immune cells. At last, the “CD8+ T cells”

subtype was chosen and further study on the CD8+ T cell-

related module was conducted.
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Pathway and process enrichment
analysis

To determine the function of genes in the identified hub

module, we employed the web tool “Metascape” (http://

metascape.org) for pathway and process enrichment analysis

(22). The tool displays the first 20 enriched terms as a bar graph.

To further explore the relationship between these terms, terms

with similarities greater than 0.3 are connected by edges and

presented as a network graph.
Construction and validation of the risk
model based on CD8+ T cell-related
genes

Univariate Cox regression analysis was performed to

estimate the hazard proportions for genes of the highest

correlation with CD8+ T cells (yellow module). Then, to

further screen the prognosis of CD8+ T cell-related genes with

the best predictive performance, the “glmnet” R package (23)

was used to perform the LASSO regression analysis with ten-fold

cross-validation. Next, based on the AIC (Akaike information

criterion) value on the prognosis CD8+ T cell-related genes, the

bi-directional stepwise multivariate Cox regression was used for

choosing the ones that minimize the AIC to obtain the best

model fit. A prognostic CD8+ T cell-related risk score model of

stage III LUAD patients was then established based on

combining the multiplication of the multivariate Cox

regression coefficient by its corresponding normalized mRNA

expression value. The risk score= ∑(the multivariate Cox

coefficient of CD8+ T cell-related genes × matching

normalized expression level of these genes). We computed risk

scores of each stage III LUAD patient and then divided them

into high- and low-risk subsets according to the cutoff value of

28.401 determined via receiver operating characteristic (ROC)

curve analysis using the R package “survminer”. Next, the

Kaplan-Meier (KM) curve was performed to estimate the

disparity in OS between low- and high-risk subsets by log-

rank test. The prognostic ability of the CD8+ T cell-related

classifier was explored with an analysis of the concordance index

(C-index) and ROC curve. Then, we also used similar methods

to verify the prognostic performance of the classifier constructed

by the training cohort in the internal validation, external

validation, and pooled validation cohorts.

Furthermore, based on univariate Cox regression and

multivariate Cox regression analyses, we further confirmed

whether the predictive performance of the CD8+ T cell-related

classifier could be an independent prognostic factor compared

with other clinic factors for stage III LUAD patients in multiple
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cohorts. At last, risk score and three traditional clinical factors

were used to generate the nomogram by using “rms,” “foreign,”

and “survival” R packages. C-index, time-dependent ROC (t-

ROC) curve and calibration plots of the nomogram for 1-, 3-,

and 5-year OS plots were applied to elucidate the accuracy of

actual observed rates with the predicted survival probability. The

“timeROC” R package was utilized to perform the t-

ROC analyses.
Prediction for response to
immunotherapy or chemo-agents

Tumor immune dysfunction and exclusion (TIDE)

algorithms (24) and subclass mapping (25) were used to

predict clinical response to immune checkpoints between the

two risk subsets in the TCGA dataset, also named the external

validation set. The chemotherapy response was predicted by

employing the R package “pRRophetic version 0.5” to compute

the half-maximal inhibitory concentration (IC50) of four

common chemo-agents (cisplatin, gemcitabine, paclitaxel, and

docetaxel) in the training set (26, 27). The comparison of IC50 of

these agents between groups was performed using Wilcoxon

rank-sum test.
Efficacy evaluation of immunotherapy
and immunohistochemical verification
for a real-world cohort

Clinicopathological features and samples of stage III NSCLC

patients were collected from January 2019 to December 2021

who received immunotherapy. After the screening by exclusion

criteria, twenty-eight patients were enrolled as a validation

cohort from real-world for analysis (Supplementary Figure S1;

Supplementary Table S2). For the evaluation of the

immunotherapy efficacy, we used the Best overall response

(BOR), which was defined as the best response during

immunotherapy and was accessed according to RECIST1.1

(28). What’s more, all patients were followed up until May

2022, and this study was approved by the Research Ethics

Committees of the First Affiliated Hospital of Xi ’an

Jiaotong University.

The Immunohistochemistry (IHC) was performed with a

three-step method. After the dewaxing and hydrating, the tissue

sections were boiled in autoclaved citric acid buffer (pH 6.0) for

20 min for antigen retrieval, and the peroxidase activity

was quenched with 3% hydrogen peroxide for 15 min to avoid

non-specific staining. Then, the sections were blocked for 15min

followed by incubation overnight with CD8 antibody (Invitrogen,

PA5-88265 at 1/100 dilution), anti-UPB1 antibody (Abcam,

ab157195 at 1/100 dilution), HDGFRP3 antibody (proteintech,

12380-1-AP at 1/50 dilution), SMAD2 antibody (proteintech,
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12570-1-AP at 1/500 dilution), or ARIH1 antibody (Santa, sc-

390763 at 1/50 dilution) at 4°C. After that step, the sections were

incubated with the secondary antibody at 37°C for 20 min.

Subsequently, This step was followed by incubating with

Horseradish Peroxidase for 20 min, and staining with 3,3-

diaminobenzidine. At last, the sections were dehydrated and

sealed after re-dyeing with hematoxylin. The IHC assays were

performed by integral optical density (IOD) using Image J (29).
Statistical analysis

Software R (version 4.1.0) and GraphPad Prism (version

8.0.0) were applied to all data analyses. The Wilcoxon test and

chi-square test were performed to assess the relationship

between the risk score and clinical features. Survival analysis

was utilized by the KM log-rank test. In the results of the

CIBERSORT method, samples with P < 0.05 were retained for

the next analysis. Two-tailed P < 0.05 was considered

statistical significance.
Results

Gene expression profile database
selection according to
enrollment criteria

The study workflow design was depicted in Figure 1. As

mentioned above, 12 series (288 LUAD patients in total) were

selected. To combine these datasets, a combat method was first

performed to eliminate batch effects, and the results before and

after the batch correction were displayed by PCA plots,

respectively (Supplementary Figure S2). Consequently, a

merged cohort was integrated. To improve the precision and

accuracy of the prognostic model, the 288 samples from the

merged cohort were divided into training (n = 144) and internal

validation (n = 144) sets in a ratio of 1:1 using stratified random

sampling. Besides, the 74 patients from TCGA were employed as

the external validation set, and a pooled set integrating the

training, internal validation, and external validation sets

was constructed.
Identification of hub modules by
WGCNA and enrichment analysis

To identify key modules correlated with CD8+ T cells, the

mRNA gene expression profiles for 144 LUAD samples from the

training cohort were extracted. Subsequently, for these LUAD

samples, the different cell subtypes’ abundance was calculated by

the CIBERSORT algorithm, in which seven subtypes of T cell

fractions were defined as trait data for WGCNA analysis. Next,
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to construct the gene co-expression network of LUAD, the

expression profiles of the 7921 genes were utilized. To ensure

the network was scale-free, b = 5 (scale-free R2 = 0.9) was

selected (Supplementary Figures S3A, B). Besides, the samples of

the training cohort were clustered by the average linkage and

Pearson’s correlation values. Finally, a total of 18 modules were

constructed by building a hierarchical clustering tree, where the

gene set was independent as the tree branch. (Supplementary

Figure S3C).

According to the criteria of the hybrid dynamic tree cut,

we got that the yellow module was significantly associated

with T cells, such as CD8+ T cells (R2 = 0.25, P = 0.002)

(Supplementary Figure S4A). To elucidate the potential

function and mechanism of CD8+ T cells, we picked the

yellow module as a hub module. Additionally, we got that

these genes from the hub yellow module were mainly

enriched in ubiquitin protein ligase binding, SMAD

binding, and lymphocyte activation after GO and KEGG

enrichment analysis (Supplementary Figures S4B, C).
Establishment of the prognostic CD8+ T
cell risk score in the training set

There were 805 hub genes within the yellow module

selected for further analysis. After univariate Cox regression

analysis on these hub genes, 88 significantly prognosis-

associated CD8+ T cell-related genes were identified in the
Frontiers in Immunology 05
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training cohort. Then these significant genes entered LASSO

COX regression analyses (Figures 2A, B) and multivariate

Cox proportional risk regression analysis (Figure 2C). Based

on these analyses, the prognostic CD8+ risk model was

constructed including the four most potential prognosis-

related genes (HDFRP3, ARIH1, SMAD2, and UPB1). The

risk score = (1.078 × expression level of HDGFRP3+2.041 ×

expression level of ARIH1+3.079 × expression level of

SMAD2-1.704 × expression level of UPB1) (Figure 2D).

Subsequently, all LUAD patients in the training cohort were

then separated into low- and high-risk groups according to

the cutoff value (28.401) (Figure 3C). KM survival analysis

showed that patients in the high-risk group were associated

with a relatively poor OS than those in the low-risk group

(log-rank P = 3.984e-09, Figure 3A), while the heatmap and

survival plot showed four prognostic expression profiles and

survival status between two risk groups (Figures 3D, E).

Besides, univariate Cox regression analysis and multivariate

Cox regression analysis demonstrated that the risk score

could independently predict OS after adjusting for various

clinicopathologic parameters in the training cohort (Table 1).

Moreover, ROC analysis of 5-year OS was applied to examine

the predictive capacity of the CD8+ risk model, thus we got

the 5-year AUC of risk model was 0.709, which was markedly

higher than that of age (AUC = 0.548), gender (AUC = 0.506),

and stage (AUC = 0.407), indicating that it had a more robust

prediction of clinical outcome than the other clinical

parameters (Figure 3B).
FIGURE 1

The workflow of the study design.
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Testing the signature in the internal
validation set, external validation set, and
the pooled set

The internal validation dataset, the external validation

dataset, and the pooled dataset were used to predict OS and

demonstrate the predictive capacity of the risk model. The risk

score in each LUAD stage III patient from the internal validation

cohort was calculated based on the formula. Then, we divided

the internal validation cohort into a high-risk group (n = 50) and

a low-risk group (n = 94) depending on the optimal risk cutoff

value in the training cohort (Figure 4C). KM analysis indicated

that patients in the high-risk group had a poorer prognosis

compared to those in the low-risk group (log-rank P = 2.251e-

04, Figure 4A). The expression profile of these four genes within

our signature and survival status between two risk groups was

visualized in Figures 4D, E. Moreover, The ROC curves for 5-

year overall survival indicated that the risk score has the best

predictive capacity of OS (AUC = 0.649) among the clinical

parameters (Figure 4B).
Frontiers in Immunology 06
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We next demonstrated the prognostic predictive capacity of

the CD8+ T cell-related classifier in the external validation

dataset. The optimal risk cutoff value in the training cohort

was adopted to separate the external dataset into a high-risk

group (n = 21) and a low-risk group (n = 53) (Figure 5C). KM

analysis also revealed that high-risk patients had a poorer

prognosis than those in the low-risk group (log-rank P value =

4.027e-04, Figure 5A). Besides, Figures 5D, E showed the

expression profiles of these four genes and the survival status

between the two risk groups. The ROC curves for 5-year OS also

revealed that the risk score has the best predictive power of OS

(AUC = 0.654) than the other tradit ional cl inical

parameters (Figure 5B).

Last, we further demonstrated the prognostic predictive

capacity of the CD8+ T cell-related classifier in the pooled

validation dataset using the same methods. The external

dataset was separated into a high-risk group (n = 116) and a

low-risk group (n = 246) (Figure 6C). KM analysis still revealed

that high-risk patients had a poorer prognosis than those in the

low-risk group (log-rank P value = 4.965e-13, Figure 6A), while
B

C D

A

FIGURE 2

Construction of CD8+ T cell-related genes signature. (A) Ten-fold cross-validation with minimum criteria for tuning parameter selection (l) in
the LASSO model. (B) LASSO coefficients profiled the CD8+ T cell-related genes. (C) Multivariable Cox regression analysis of these CD8+ T cell-
related genes adopted in the signature. (D) The coefficient of these CD8+ T cell-related genes using multivariable Cox regression analysis.
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D
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E

FIGURE 3

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the training validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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the expression profile of these four genes within our classifier

and survival status between two risk groups were visualized in

Figures 6D, E. What’s more, the ROC curves for 5-year OS also

revealed the same result that the risk score has the best predictive

power of OS (AUC = 0.665) (Figure 6B). Besides, univariate and

multivariate analysis still indicated that the classifier was

significantly associated with OS after adjustment for clinical

parameters in these validation sets (Table 1). Together, these

findings suggested the CD8+ T cell-related classifier performed

well in predicting the prognosis of stage III LUAD patients.
The relationship between the classifier
built with CD8+ T cell-related genes and
clinicopathological parameters

To better understand the clinical impact of the CD8+ T cell-

related classifier in stage III LUAD patients, we analyzed the

association of the signature with clinical variables in the training

set. There was no significant association between the CD8+ T

cell-related signature and TNM stage, gender, and age, apart

from survival status (Figure 7A). What’s more, we further

analyzed the comparison of risk scores in different subsets

grouped by age, gender, TNM stage, and survival status. The

risk scores were significantly different only in survival status

subgroups, but not in age, stage, and gender subgroups

(Figures 7B–E).
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We next validate the prognostic ability of our CD8+ T cell-

re lated class ifier in different subsets c lustered by

clinicopathological variables. In the training set, patients with

high-risk scores were inclined to have decreased survival rates, in

the age, gender, and TNM stage subsets (Supplementary Figures

S5A-F, P < 0.005). Similar significant findings were revealed in

the internal test set and the pooled test set, except in subsets of

age less than 65-year and female in the internal test set

(Supplementary Figures S5G–L, S6, P < 0.05). As for the

external test set, we also observed that the risk scores were

significantly associated with unfavorable clinical outcomes in the

age, gender, patients with positive node metastasis, T3+4, and

TNM stage subsets (Supplementary Figure S7, P < 0.05). These

findings suggested that our CD8+ T cell-related classifier has a

promising clinical application for selecting high-risk patients.
Constructing a prognostic nomogram

By integrating the CD8+ T cell-related classifier and three

clinicopathological features shared in the training dataset and

the other validation datasets, we developed a prognostic

nomogram to predict the 1-, 3-, and 5- year OS probability

of LUAD patients in the training dataset (Figure 8A). The

AUC points of the nomogram for 1-, 3-, and 5-year survival

predictions were 0.719, 0.629, and 0.737, respectively

(Figure 8B). The C-index indicated that the nomogram had
TABLE 1 Cox regression analysis in each set.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Training set (n = 144)

Age (<65/≥65) 1.160 (0.745-1.804) 0.511 1.190 (0.758-1.888) 0.449

Gender (female/male) 1.332 (0.853-2.080) 0.208 1.108 (0.701-1.749) 0.661

Stage (IIIA/IIIB) 0.780(0.461-1.319) 0.354 1.224 (0.697-2.150) 0.482

Risk score (low/high) 3.828 (2.390- 6.132) 2.359E-08 4.017 (2.422- 6.663) 7.154E-08

Internal Validation set (n = 144)

Age (<65/≥65) 1.010 (0.761-1.341) 0.945 1.193 (0.852-1.671) 0.304

Gender (female/male) 1.226 (0.814-1.845) 0.329 1.322 (0.868-2.012) 0.193

Stage (IIIA/IIIB) 0.829 (0.513-1.339) 0.443 0.781 (0.451-1.353) 0.379

Risk score (low/high) 1.184 (1.083-1.295) 0.000209 1.197 (1.090-1.313) 0.000156

external Validation set (n = 74)

Age (<65/≥65) 1.412 (0.738-2.701) 0.297 1.014 (0.503-2.044) 0.969

Gender (female/male) 1.270 (0.679-2.372) 0.454 1.157 (0.599-2.233) 0.663

Stage (IIIA/IIIB) 0.972 (0.805-2.786) 0.946 0.728 (0.274-1.928) 0.522

Risk score (low/high) 3.210 (1.670-6.171) 0.000471 3.406 (1.719-6.747) 0.000442

pooled set (n = 362)

Age (<65/≥65) 1.290 (0.975-1.707) 0.075 1.358 (1.023-1.804) 0.034

Gender (female/male) 1.288 (0.976- 1.701) 0.074 1.225 (0.925-1.623) 0.157

Stage (IIIA/IIIB) 0.832 (0.584- 1.186) 0.310 1.016 (0.707-1.461) 0.930

Risk score (low/high) 2.783 (2.085- 3.714) 3.648E-12 2.858 (2.125-3.843) 3.668E-12
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FIGURE 4

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the internal validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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FIGURE 5

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the external validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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FIGURE 6

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the pooled validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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the highest predictive accuracy of survival than the other

clinicopathological parameters (Figure 8C). In addition, the

calibration curves also confirmed a good consistency between

predicted and observed scores in terms of probabilities of 1-,

3-, and 5-year OS (Figure 8D). Similar results of calibration

curves of nomogram were also found in the internal, external,

and pooled validation datasets (Figures 8E–G). Together,

those findings indicated that our nomogram was suitable

for clinical practice.
Frontiers in Immunology 12
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Estimation of TIICs

Since CD8+ T cell-related classifier had closely and

intrinsically connected with immune cells, which have a

profound impact on predicting clinical outcomes and

treatment efficacy, we further examined the difference and

relationship of these immune cells with risk groups. The

comparison of 22 immune cells between risk groups was

displayed in a radar plot (Figure 9A). The results revealed
B C

D E

A

FIGURE 7

The correlation between the CD8+ T cell-related signature and clinical variables. (A) The heatmap revealed the association of the CD8+ T cell-
related signature and the clinical variables (age, gender, stage and survival status) in the training set. (B–E) The box plots displayed the
relationship between risk score and clinical features.
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that the abundance of CD8+ T cells was remarkably higher in

the low-risk group compared with those in the high-risk

group (P = 0.049). We also found the fractions of other

immune cells, including Dendritic cells (DCs) resting, and

Tregs were significantly increased in low-risk patients (P =

0.038, P = 0.028), whereas the expression levels of Eosinophils

and T cells CD4 memory activated were obviously higher in

the high-risk group (P = 0.004, P = 0.050) (Supplementary

Figures S8A–E).
Prediction for efficacy of immunotherapy
and chemo-agents

We also found the gene expressions of multiple immune

checkpoint genes (ICGs), including CTLA-4, LAG3, PDCD1,

CD96, CD244, and CSF1R, etc. were significantly increased in

the h i gh - r i s k g roup , wh i ch cou ld be p romi s ing

immunotherapy targets (Figure 9B). To predict the response
Frontiers in Immunology 13
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to immunotherapy, the TIDE algorithm was performed

within different risk subsets. The result indicated that the

TIDE score in the high-risk group was significantly lower

than the low-risk group (Figure 9C), suggesting the patients

w i th in h igh- r i sk subse t s cou ld benefi t f rom the

immunotherapy. A similar result was observed in the

submap algorithm. The high-risk subset showed a higher

probability of response to PD-1 blockades (Nominal P =

0.028) (Figure 9D).

Chemotherapy is another common therapy for stage III

LUAD, while a higher IC50 value indicates resistance to the

drug, otherwise, it is sensitive to the drug. The results showed

that the IC50 values of cisplatin and gemcitabine decreased

significantly in the high-risk subset; The IC50 values of

docetaxel and paclitaxel had a decreased trend in the high-risk

subset, although there was no significant difference

(Supplementary Figures S9A–D); Overall, these findings

suggested that the stage III LUAD patients from the high-risk

subset would benefit from immunotherapy and chemotherapy.
B

C

D E F G

A

FIGURE 8

A nomogram was constructed to predict the OS. (A) A nomogram for predicting 1-, 3- and 5-year OS with risk levels and three clinical variables.
(B) 1-, 3- and 5-year ROC curves of the nomogram for OS predictions. (C) The C index of the nomogram, risk signature and other clinical
variables. Calibration plots of the nomogram for predicting probabilities of 1-year, 3-year, and 5-year OS of stage III LUAD patients in the
training dataset (D), the internal validation dataset (E), the external validation dataset (F), and the pooled validation dataset (G).
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FIGURE 9

Comparison of the fractions of immune cells, expression of immune checkpoint genes, and immunotherapy benefits between risk subsets.
(A) The radar plot revealed the 22 immune cell subpopulations between different risk groups; (B) The gene expression levels of immune
checkpoint genes between risk groups; (C) Different benefits from the immunotherapy between risk subsets were predicted by the TIDE
algorithm; (D) The submap algorithm indicated the probability of response to ICBs. **P < 0.01; ***P < 0.001.
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FIGURE 10

Verification of gene expression including in the model and its validity in real-world cohorts. (A) Representative microphotographs of gene
staining included in the model and the correlation between these genes and CD8 in stage III LUAD. (B) The recent therapeutic effect of
immunotherapy between risk groups; (C) KM curves for OS between risk groups.
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Validation of the gene expression
including in the classifier and evaluating
the efficacy of immunotherapy in a real-
world cohort

To verify the consistency of the model across cohorts and its

validity for clinical application, a real-world cohort was constructed.

28 patients were enrolled in the cohorts, immunohistochemical

detection showed that the expression of ARIH, and SMAD2 had a

negative correlation with CD8 in LUAD tissues (r = -0.6282, P =

0.0003; r = -0.7263, P < 0.0001), while the expression of UPB1 had a

positive correlation with CD8 (r = 0.6961, P < 0.0001), which were

consistent with the results obtained based on open databases

(Figure 10A, Supplementary Figure S10). For the expression of

HDFRP3, unfortunately, we only got a negative trend with CD8 (r =

-0.2559), but without significant statistical significance, probably

due to the small sample size. To further validate whether the model

could well predict the efficacy of immunotherapy for stage III

LUAD patients in the real world, we calculated the risk score based

on the gene-positive staining IOD/Area obtained in

immunohistochemistry analysis and subsequently divided these

patients into high- and low-risk groups. After the Chi-square test,

all the clinicopathological factors were well balanced between the

two groups (P > 0.05) (Supplementary Table S2). Furthermore, we

evaluated the effectiveness of immunotherapy for each patient

objectively. In the high-risk group, 2 of 19 patients reached CR

during treatment, 10 patients achieved PR, 6 patients reached SD,

and 1 patient reached PD, while 1 of 9 patients reached CR, 1

patient achieved PR, 6 patients achieved SD, and 1 patient achieved

PD in the low-risk groups (Figure 10B). The overall response rate

(ORR) was significantly higher in the high-risk group (63.16% vs

22.22%, P = 0.043) (Supplementary Table S3). However, probably

due to the short follow-up time and the small number of cases, we

did not observe a survival difference between the two groups

(Figure 10C). Overall, we confirmed the validity of the model in a

real-world cohort and its clinical applicability.
Discussion

The heterogeneity of stage III LUAD is not only reflected in the

wide range of tumor size (T1-T4), the degree of local tumor

invasion, and the involvement of ipsilateral or contralateral

mediastinal lymph nodes (N0-N3) (3), but also in the diverse

tumor molecular mutations in the histopathological type of

LUAD. Thus, the 5-year survival rates are generally poor and

have a varying range from 12% to 36% in the pathological stage

(30), however, some clinical trials still cannot explain the exact

reasons (31). Consequently, just the commonly used prognostic

indicators, such as tumor stage and patient’s general condition, are

not well appropriate for this group of patients. Besides, the ICBs

such as durvalumab have shown good survival benefits in stage III
Frontiers in Immunology 16
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NSCLC (8), but due to the obvious heterogeneity in immune

features (32), the PD-L1 expression, as well as TMB, are not good

predictors of immunotherapy efficacy, which is different from their

application in stage IV of NSCLC (7). Because of significant role of

CD8+ T cell in anti-cancer immunotherapy, hence, finding new

biomarkers and constructing a CD8+ T cell-related classifier to

predict the prognosis and effect of immunotherapy have a

significant meaning for patients with stage III LUAD.

Therefore, in this study, we extracted all RNA level profiles of

these locally advanced LUAD patients from the GEO, Array

Express, and TCGA database and divided these patients into the

training, internal validation, external validation, and pooled

validation cohorts firstly. Then we constructed the gene co-

expression network through identified a significant yellow module

as a hub module that exhibited great relevance to CD8+ T cells by

CIBERSORT and WGCNA analysis. Next, through univariate Cox

analysis, lasso analysis, and multivariate Cox analysis, a CD8+ T

cell-related signature including HDFRP3, ARIH1, SMAD2, and

UPB1 was constructed. It was gratifying that this model could

divide locally advanced LUAD patients into low- and high-risk

groups with distinct overall survival in multiple cohorts (all P <

0.05). What’s more, in comparisons of the age, gender, and stage,

the area under the ROC curve of the model was always the largest.

Moreover, to make this model better applicable in the clinic, a

nomogram including the traditional clinical parameters and risk

signature was constructed. The ROC, C-index, and calibration

curves validated its robust predictive capacity very well.

Meanwhile, KM analysis revealed a significant difference in the

subgroup analyses’ survival between the two risk subsets, especially

in different TNM stages, suggesting the robust clinical application of

our CD8+ T cell-related classifier. Finally, we confirmed that the

high-risk group might benefit from immunotherapy or

chemotherapy, and verified the valuation of this model in a real-

world cohort, which further clarified the value of the model in

predicting efficacy.

Specifically, as the protective factor included in this model, the

most important function of UPBEAT1 (UPB1) is that it could

directly regulate the expression of a set of peroxidases which

modulates the balance of reactive oxygen species (ROS) (33).

Besides, for cancer patients, UPB1 was screened as a prognostic

circulating biomarker or signature for patients with hepatocellular

carcinoma (34, 35), similar to clear renal cell carcinoma (36). In

addition, for the treatment of specific tumors, especially the 5-

fluorouracil treatment of colorectal cancer, some researchers

explored the role of UPB1 in the 5-fluorouracil pathway or

fluoropyrimidine-related high toxicity (37, 38). What’s more, we

not only introduced UPB1 in the clinical prognostic analysis of

LUAD for the first time but also found the expression of UPB1 was

correlated with CD8+ T cells. In the follow-up mechanism

exploration, whether UPB1 affects CD8+ T cells in LUAD by

regulating the expression of ROS is a direction worth studying.

In contrast to the protective factor UPB1, we included three

risk genes in the model, namely SMAD2, ARIH1, and
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HDGFRP3. Among them, the most important and valuable

biomarker was SMAD2. As a transcription factor member of

the SMADs family, SMAD2 is activated by receptors such as

TGF-b mediated phosphorylation, which plays a critical role in

transmitting the TGF-b superfamily from the cell surface to the

nucleus in turn (39). TGF-b/SMAD signaling is considered to

culminate in the suppression of tumor-specific cellular

immunity, which performs functions in a variety of cells. For

CD8+ T cell, Gunderson et al. found that TGF-b increased the

binding of Smad2 and reduced CXCR3 expression in CD8+ T

cells, thereby limiting their trafficking into tumors (40). Li et al.

reported that Icaritin reduced CD8+ T cell chemotaxis by

inhibiting the CXCL10/CXCR3 axis and suppressing the TGF-

b/Smad2 signaling pathway in COPD (41). Furthermore, Park

et al. found that TGF-b1 mediated SMAD3 to enhance PD-1

expression on antigen-specific T cells resulting in T cell

suppression (42). However, the specific mechanism by which

SMAD2 affects CD8+ T cells in LUAD remains unclear. Besides,

SMAD2 phosphorylation was observed after activation in the

Treg, which could produce the bioactive form of TGF-b (43). For
cancer cells, Vimentin consequently led to metastasis and

immune escape through the expression of PD-L1 in LUAD by

triggering the TGF-b/SMAD2 signaling (44). In addition,

ARIH1 (or HHARI) known as a ubiquitin-protein ligase,

contributed to EMT induction and breast cancer progression

(45, 46). However, Wu et al. found that the overexpression of

ARIH1 could suppress tumor growth and promote cytotoxic T

cell activation by inducing PD-L1 degradation (47). Also, a few

reports indicated that high expression of HDGFRP3 (or HRP-3)

promoted hepatocellular carcinomas and identified it was

associated with metastasis in breast cancer (48, 49). In

summary, the four genes included in the model have not yet

been reported to be associated with CD8+ T cells in LUAD,

which means that these biomarkers are important innovations

for antitumor immunotherapy research.

Moreover, the results of GO and KEGG enrichment analysis

demonstrated a meaningful finding that these genes picked from

the hub yellow module were critically enriched in ubiquitin

protein ligase binding, SMAD binding, and lymphocyte

activation. It was gratifying that an E3 ubiquitin ligase such as

ARIH1 could promote anti-tumor immunity via PD-L1

degradation, thereby affecting T cell activation, which has been

mentioned above (47). This finding also strongly supports the

value of such a CD8+ T cell-based predictive model proposed in

this study in predicting the efficacy of immunotherapy. As for

the SMAD2 normally coupled with SMAD3 mentioned above,

its functions were mainly embodied through the key signaling

axis containing transcription factor Forkhead box protein P1

(Foxp1) and TGF-b in the tumor immune microenvironment.

For instance, Foxp1 interacted with Smad2/3 and suppressed the

tumor-reactive T cells’ response to TGF-b in advanced tumors

(50). Hence, the regulation of TGF-b/SMAD signaling function

is important for developing new immunotherapeutic strategies
Frontiers in Immunology 17
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by restoring the immunosuppressive TME to active status (51).

For example, using the genetic method to modify antigen-

specific T cells by interfering with TGF-b signaling would

significantly enhance tumor treatment efficacy (52).

Mesenchymal stem cells secreted TGF-b induced the

differentiation of Treg cells via SMAD2 as so to inhibit

colorectal cancer (53). A similar function was also reflected in

the inhibition of IL-2 which was regarded as a key cytokine for T

cell proliferation and activation (54). These findings also support

the potential application of the model in assessing the prognosis

of immunotherapy. Furthermore, it is worth further exploring

whether the other genes involved in the model are associated

with the phenotype of lymphocytes, especially CD8+ T cells.

The critical role of TME is beyond doubt in tumor initiation

and development. Although studies have facilitated the

identification of the important functions of different immune

cell subtypes within TME, the CD8+ T cell is the central focus in

engaging adaptive immunity for cancer control according to the

cancer-immunity cycle (14, 55). Moreover, the number and

functionality of CD8+ T cells after activation are prerequisites

for the efficacy of immunotherapy in patients with lung cancer

(56). Given our classifier constructed from CD8+ T cell-related

genes, the risk score of the CD8+ T cell-related classifier was

consistent with the expectation and negatively related to the

abundance of CD8+ T cells, while patients within the high-risk

group were associated with poor survival status. Besides, we also

found other subclasses, such as resting DCs, and regulatory T

cells (Tregs), were obviously decreased in the high-risk group.

Owing to the unique capacity in initiation and regulation of T

cell responses, DCs have been extensively explored as tools for

immunotherapy, therefore it was convinced that a decrease in

DCs is associated with poor prognosis (57, 58). Nevertheless,

high-risk patients possessed a higher fraction of activated

memory CD4+ T cells and eosinophils. Particularly, the count

and percentage of eosinophils significantly increased in NSCLC

patients treated with ICBs, and metastasis-entrained eosinophils

could enhance lymphocyte-mediated antitumor immunity,

which might somehow explain the reason why high-risk group

patients could benefit from immunotherapy (59, 60). Besides,

the higher expression of immune checkpoint genes in the high-

risk group also could indicate the benefits of immunotherapy

(61). Overall, such a risk score of CD8+ T cell-related classifier

was significantly correlated with multiple immune cell subtypes,

which provided important hints for revealing the interaction

between immune cells and tumor cells in the TME, as well as

between different immune cell subtypes.

In recent years, based on the fact that immunotherapy has

benefited some patients with locally advanced or advanced

NSCLC and with the rapid development of bioinformatics,

more researchers turned their attention to discovering some

models that integrated multi-factors to better predict the survival

rates and evaluate the benefits of immunotherapy. Several

studies have proposed immune prognostic models involving
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multiple genes that could evaluate the prognosis of patients with

LUAD, however, they did not specify which types of immune

cells these genes were associated with, nor did they separately

analyze the patients with locally advanced LUAD (62–64).

Besides, Xie et al. developed a nomogram for LUAD patients

based on immune scores and concluded high score was related to

better OS, but immunotherapy was not involved and external

data verification was needed (65). Zhang et al. established a

CD8+ T cell-associated gene signature, which could help assess

prognostic risk and immunotherapy response in LUAD patients.

However, they did not validate the signature with real-world

samples (66). Moreover, some researchers demonstrated the

tumor immune microenvironment by analyzing the targeted

RNA-Seq of immune-related genes, which had prognostic value

for locally advanced LUAD (67). Unfortunately, the effective

value was limited by the small sample size from a single

institution. Thus, these models have a few limitations and

insufficient predictive power for locally advanced LUAD.

Although we have constructed a risk model and a

nomogram based on this, which has good predictive efficacy

in survival rates and potential application in the prediction of

immunotherapy or chemotherapy efficacy in locally advanced

LUAD. Nevertheless, there are also some limitations of this

study. First, to incorporate more data into our research, we

have selected as many data sets as possible in the GEO

database, although they contained several different platforms.

Thus, such a fusion of multiple data might increase the

possibility of over-correction in the data processing. In

addition, we have only repeatedly verified the effectiveness of

the model through different open cohorts. Although we

validated the model in a real-world cohort, we did not obtain

particularly significant differences due to, for example, the

small number of cases. Overall, further experimental

validations are needed to determine whether these genes

included in the model are involved in the progression of

locally advanced LUAD and how they affect the phenotypes

of CD8+ T cells.

In summary, based on the multiple cohorts, we have

constructed a prediction model correlated to CD8+ T cell and

the nomogram in patients with locally advanced LUAD.

Furthermore, the overwhelming impression of our study was

the better effectiveness and accuracy of the model in predicting

survival rates and immunotherapy efficacy by designing multiple

validation cohorts from open or real-world databases. Hence,

based on CD8+ T cell-related genes in the model, if the

mechanism of the relationship between the level of risk factors

and the CD8+ T cell phenotypes could be explored, then such a

model will be better applied to predict the prognosis of locally

advanced LUAD patients on immunotherapy and enable

patients to benefit from treatments.
Frontiers in Immunology 18
308
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by the Research Ethics Committees of the First

Affiliated Hospital of Xi’an Jiaotong University. The patients/

participants provided their written informed consent to

participate in this study.
Author contributions

(I) Conception and design: JF, HG. (II) Administrative

support: HG. (III) Provision of study materials: JF, LX, SZ.

(IV) Collection and assembly of data: JF, SZ. (V) Data analysis

and interpretation: JF, LX. (VI) Experimental validation: JF, TZ,

YY. (VII) Manuscript writing: All authors. (VIII) Final approval

of manuscript: All authors.
Funding

This work was supported by Interdisciplinary Training

Program for Doctoral Candidate of Xi’an Jiaotong University

(IDT1919), Guangdong Association of Clinical Trials (GACT)/

Chinese Thoracic Oncology Group (CTONG) and Guangdong

Provincial Key Lab of Translational Medicine in Lung Cancer

(Grant No.2017B030314120), Natural Science Foundation of

Shaanxi Province (No.2019JM-559), and Xi’an Jiaotong

University Free Exploration and Innovation Program (Student

Category) (No.sxzy022021011).
Acknowledgments

All authors would like to express our sincere thanks for

sharing the online databases.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.993187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2022.993187
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.993187/full#supplementary-material

SUPPLEMENTARY FIGURE 1

The selection process for inclusion of patients as the real-world cohort.

SUPPLEMENTARY FIGURE 2

The before and after batch corrections were displayed by PCA plots.

SUPPLEMENTARY FIGURE 3

WGCNA for construction and validation of the hub module. (A) Scale-free
fit with the soft threshold power from 1-20 (x-axis) and the corresponding
signed R2 (y-axis); (B) Mean connectivity analysis for 1-20 soft threshold

power; (C) CD8+ T cell-related genes were grouped into different
modules marked with various colors via hierarchical clustering tree.

SUPPLEMENTARY FIGURE 4

The feature notes of hub modules. (A) The heatmap exhibited the

correlations of modules with T cells infiltration; (B) The top 20 enriched
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terms were shown as a bar chart; (C) The network was constructed for
these enriched terms.
SUPPLEMENTARY FIGURE 5

KM curves for OS indicated prognostic power of the CD8+ T cell-related
signature in various subsets of the training cohort and the internal test set.

(A) age < 65; (B) age ≥ 65; (C) Female; (D)Male; (E) stage IIIA; (F) stage IIIB;
(G–L) for the internal test set was similar to (A-F) for the training cohort.

SUPPLEMENTARY FIGURE 6

KM curves for OS indicated prognostic power of the CD8+ T cell-related

signature in the pooled test set. (A) age < 65; (B) age ≥ 65; (C) Female; (D)
Male; (E) stage IIIA; (F) stage IIIB.

SUPPLEMENTARY FIGURE 7

KM curves for OS indicated prognostic power of the CD8+ T cell-related

signature in the external test set. (A) age < 65; (B) age ≥ 65; (C) Female; (D)
Male; (E)Negative nodes; (F) Positive nodes; (G) stage T1+T2; (H) stage T3
+T4; (I) stage IIIA; (J) stage IIIB.

SUPPLEMENTARY FIGURE 8

Quantitative differences of immune cell subtypes between risk groups. (A)
Resting dendritic cells; (B) CD8+ T cells; (C) Tregs; (D) Eosinophils; (E)
Activated memory CD4+ T cells.

SUPPLEMENTARY FIGURE 9

Chemotherapy benefits stratified by different risk subsets. (A–D) IC50

plots of chemo-agents between the two subsets. (A) Cisplatin; (B)
Docetaxel; (C) Gemcitabine; (D) Paclitaxel.

SUPPLEMENTARY FIGURE 10

Correlation of genes included in the model with the Tumor-Infiltrating

Immune Cells.
References
1. Cao, M, Li, H, Sun, D, and Chen, W. Cancer burden of major cancers in
China: A need for sustainable actions. Cancer Commun (Lond) (2020) 40:205–10.
doi: 10.1002/cac2.12025

2. Herbst, RS, Heymach, JV, and Lippman, SM. Lung cancer. N Engl J Med
(2008) 359:1367–80. doi: 10.1056/NEJMra0802714

3. Thai, AA, Solomon, BJ, Sequist, LV, Gainor, JF, and Heist, RS. Lung cancer.
Lancet (2021) 398:535–54. doi: 10.1016/s0140-6736(21)00312-3

4. Jazieh, AR, Zeitouni, M, Alghamdi, M, Alrujaib, M, Lotfi, S, Abu Daff, S, et al.
Management guidelines for stage III non-small cell lung cancer. Crit Rev Oncol
Hematol (2021) 157:103144. doi: 10.1016/j.critrevonc.2020.103144

5. Miller, KD, Nogueira, L, Mariotto, AB, Rowland, JH, Yabroff, KR, Alfano,
CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin
(2019) 69:363–85. doi: 10.3322/caac.21565

6. Detterbeck, FC, Boffa, DJ, Kim, AW, and Tanoue, LT. The eighth edition lung
cancer stage classification. Chest (2017) 151:193–203. doi: 10.1016/
j.chest.2016.10.010

7. Huber, RM, De Ruysscher, D, Hoffmann, H, Reu, S, and Tufman, A.
Interdisciplinary multimodality management of stage III nonsmall cell lung
cancer. Eur Respir Rev (2019) 28:190024. doi: 10.1183/16000617.0024-2019

8. Antonia, SJ, Villegas, A, Daniel, D, Vicente, D, Murakami, S, Hui, R, et al.
Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N
Engl J Med (2018) 379:2342–50. doi: 10.1056/NEJMoa1809697
9. Melosky, B, Juergens, R, Mcleod, D, Leighl, N, Brade, A, Card, PB, et al.
Immune checkpoint-inhibitors and chemoradiation in stage III unresectable non-
small cell lung cancer. Lung Cancer (2019) 134:259–67. doi: 10.1016/
j.lungcan.2019.05.027

10. Proto, C, Ferrara, R, Signorelli, D, Lo Russo, G, Galli, G, Imbimbo, M, et al.
Choosing wisely first line immunotherapy in non-small cell lung cancer (NSCLC):
what to add and what to leave out. Cancer Treat Rev (2019) 75:39–51. doi: 10.1016/
j.ctrv.2019.03.004

11. Borghaei, H, Paz-Ares, L, Horn, L, Spigel, DR, Steins, M, Ready, NE, et al.
Nivolumab versus docetaxel in advanced nonsquamous non-Small-Cell lung
cancer. N Engl J Med (2015) 373:1627–39. doi: 10.1056/NEJMoa1507643

12. Duchemann, B, Remon, J, Naigeon, M, Cassard, L, Jouniaux, JM, Boselli, L, et al.
Current and future biomarkers for outcomes with immunotherapy in non-small cell
lung cancer. Transl Lung Cancer Res (2021) 10:2937–54. doi: 10.21037/tlcr-20-839

13. Pitt, JM, Marabelle, A, Eggermont, A, Soria, JC, Kroemer, G, and Zitvogel, L.
Targeting the tumor microenvironment: removing obstruction to anticancer
immune responses and immunotherapy. Ann Oncol (2016) 27:1482–92.
doi: 10.1093/annonc/mdw168

14. Chen, DS, and Mellman, I. Oncology meets immunology: the cancer-
immunity cycle. Immunity (2013) 39:1–10. doi: 10.1016/j.immuni.2013.07.012

15. Chihara, N, Madi, A, Kondo, T, Zhang, H, Acharya, N, Singer, M, et al.
Induction and transcriptional regulation of the co-inhibitory gene module in T
cells. Nature (2018) 558:454–9. doi: 10.1038/s41586-018-0206-z
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.993187/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.993187/full#supplementary-material
https://doi.org/10.1002/cac2.12025
https://doi.org/10.1056/NEJMra0802714
https://doi.org/10.1016/s0140-6736(21)00312-3
https://doi.org/10.1016/j.critrevonc.2020.103144
https://doi.org/10.3322/caac.21565
https://doi.org/10.1016/j.chest.2016.10.010
https://doi.org/10.1016/j.chest.2016.10.010
https://doi.org/10.1183/16000617.0024-2019
https://doi.org/10.1056/NEJMoa1809697
https://doi.org/10.1016/j.lungcan.2019.05.027
https://doi.org/10.1016/j.lungcan.2019.05.027
https://doi.org/10.1016/j.ctrv.2019.03.004
https://doi.org/10.1016/j.ctrv.2019.03.004
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.21037/tlcr-20-839
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1038/s41586-018-0206-z
https://doi.org/10.3389/fimmu.2022.993187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2022.993187
16. Li, L, Yang, L, Cheng, S, Fan, Z, Shen, Z, Xue, W, et al. Lung
adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity. Mol
Cancer (2019) 18:108. doi: 10.1186/s12943-019-1027-x

17. Tan, X, Shi, L, Banerjee, P, Liu, X, Guo, HF, Yu, J, et al. A protumorigenic
secretory pathway activated by p53 deficiency in lung adenocarcinoma. J Clin
Invest (2021) 131:e137186. doi: 10.1172/JCI137186

18. Jia, M, Yao, L, Yang, Q, and Chi, T. Association of MSH2 expression with
tumor mutational burden and the immune microenvironment in lung
adenocarcinoma. Front Oncol (2020) 10:168. doi: 10.3389/fonc.2020.00168

19. Guo, D, Wang, M, Shen, Z, and Zhu, J. A new immune signature for survival
prediction and immune checkpoint molecules in lung adenocarcinoma. J Transl
Med (2020) 18:123. doi: 10.1186/s12967-020-02286-z

20. Ren, J, Yang, Y, Li, C, Xie, L, Hu, R, Qin, X, et al. A novel prognostic model
of early-stage lung adenocarcinoma integrating methylation and immune
biomarkers. Front Genet (2020) 11:634634. doi: 10.3389/fgene.2020.634634

21. Langfelder, P, and Horvath, S. WGCNA: an r package for weighted
correlation network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-
9-559

22. Zhou, Y, Zhou, B, Pache, L, Chang, M, Khodabakhshi, AH, Tanaseichuk, O,
et al. Metascape provides a biologist-oriented resource for the analysis of systems-
level datasets. Nat Commun (2019) 10:1523. doi: 10.1038/s41467-019-09234-6

23. Friedman, J, Hastie, T, and Tibshirani, R. Regularization paths for
generalized linear models via coordinate descent. J Stat Softw (2010) 33:1–22.
doi: 10.18637/jss.v033.i01

24. Jiang, P, Gu, S, Pan, D, Fu, J, Sahu, A, Hu, X, et al. Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat Med
(2018) 24:1550–8. doi: 10.1038/s41591-018-0136-1

25. Hoshida, Y, Brunet, JP, Tamayo, P, Golub, TR, and Mesirov, JP. Subclass
mapping: identifying common subtypes in independent disease data sets. PloS One
(2007) 2:e1195. doi: 10.1371/journal.pone.0001195

26. Geeleher, P, Cox, N, and Huang, RS. pRRophetic: an r package for
prediction of clinical chemotherapeutic response from tumor gene expression
levels. PloS One (2014) 9:e107468. doi: 10.1371/journal.pone.0107468

27. Geeleher, P, Cox, NJ, and Huang, RS. Clinical drug response can be
predicted using baseline gene expression levels and in vitro drug sensitivity in
cell lines. Genome Biol (2014) 15:R47. doi: 10.1186/gb-2014-15-3-r47

28. Eisenhauer, EA, Therasse, P, Bogaerts, J, Schwartz, LH, Sargent, D, Ford, R,
et al. New response evaluation criteria in solid tumours: revised RECIST guideline
(version 1.1). Eur J Cancer (2009) 45:228–47. doi: 10.1016/j.ejca.2008.10.026

29. Zhang, S, Xu, L, Feng, J, Tan, D, Zhu, Y, Hou, J, et al. ASF1B is a promising
prognostic biomarker and correlates with immunotherapy efficacy in hepatocellular
carcinoma. Front Genet (2022) 13:842351. doi: 10.3389/fgene.2022.842351

30. Goldstraw, P, Chansky, K, Crowley, J, Rami-Porta, R, Asamura, H,
Eberhardt, WE, et al. The IASLC lung cancer staging project: Proposals for
revision of the TNM stage groupings in the forthcoming (Eighth) edition of the
TNM classification for lung cancer. J Thorac Oncol (2016) 11:39–51. doi: 10.1016/
j.jtho.2015.09.009

31. Senan, S, Brade, A, Wang, LH, Vansteenkiste, J, Dakhil, S, Biesma, B, et al.
PROCLAIM: Randomized phase III trial of pemetrexed-cisplatin or etoposide-
cisplatin plus thoracic radiation therapy followed by consolidation chemotherapy
in locally advanced nonsquamous non-Small-Cell lung cancer. J Clin Oncol (2016)
34:953–62. doi: 10.1200/JCO.2015.64.8824

32. Meng, X, Gao, Y, Yang, L, Jing, H, Teng, F, Huang, Z, et al. Immune
microenvironment differences between squamous and non-squamous non-small-
cell lung cancer and their influence on the prognosis. Clin Lung Cancer (2019)
20:48–58. doi: 10.1016/j.cllc.2018.09.012

33. Tsukagoshi, H, Busch, W, and Benfey, PN. Transcriptional regulation of
ROS controls transition from proliferation to differentiation in the root. Cell (2010)
143:606–16. doi: 10.1016/j.cell.2010.10.020

34. Awan, FM, Naz, A, Obaid, A, Ali, A, Ahmad, J, Anjum, S, et al.
Identification of circulating biomarker candidates for hepatocellular carcinoma
(HCC): An integrated prioritization approach. PloS One (2015) 10:e0138913.
doi: 10.1371/journal.pone.0138913

35. Li, B, Feng, W, Luo, O, Xu, T, Cao, Y, Wu, H, et al. Development and
validation of a three-gene prognostic signature for patients with hepatocellular
carcinoma. Sci Rep (2017) 7:5517. doi: 10.1038/s41598-017-04811-5

36. Zhang, C, Wang, F, Guo, F, Ye, C, Yang, Y, Huang, Y, et al. A 13-gene risk
score system and a nomogram survival model for predicting the prognosis of clear
cell renal cell carcinoma. Urol Oncol (2020) 38:74 e71–11. doi: 10.1016/
j.urolonc.2019.12.022

37. Kunicka, T, Prochazka, P, Krus, I, Bendova, P, Protivova, M, Susova, S, et al.
Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma. BMC
Cancer (2016) 16:795. doi: 10.1186/s12885-016-2826-8
Frontiers in Immunology 20
310
38. Yokoi, K, Nakajima, Y, Matsuoka, H, Shinkai, Y, Ishihara, T, Maeda, Y,
et al. Impact of DPYD, DPYS, and UPB1 gene variations on severe drug-
related toxicity in patients with cancer. Cancer Sci (2020) 111:3359–66.
doi: 10.1111/cas.14553

39. Ten Dijke, P, and Hill, CS. New insights into TGF-beta-Smad signalling.
Trends Biochem Sci (2004) 29:265–73. doi: 10.1016/j.tibs.2004.03.008

40. Gunderson, AJ, Yamazaki, T, Mccarty, K, Fox, N, Phillips, M, Alice, A, et al.
TGFbeta suppresses CD8(+) T cell expression of CXCR3 and tumor trafficking.Nat
Commun (2020) 11:1749. doi: 10.1038/s41467-020-15404-8

41. Li, Q, Sun, J, Cao, Y, Liu, B, Zhao, Z, Hu, L, et al. Icaritin inhibited cigarette
smoke extract-induced CD8(+) T cell chemotaxis enhancement by targeting the
CXCL10/CXCR3 axis and TGF-beta/Smad2 signaling. Phytomedicine (2022)
96:153907. doi: 10.1016/j.phymed.2021.153907

42. Park, BV, Freeman, ZT, Ghasemzadeh, A, Chattergoon, MA,
Rutebemberwa, A, Steigner, J, et al. TGFbeta1-mediated SMAD3 enhances PD-1
expression on antigen-specific T cells in cancer. Cancer Discov (2016) 6:1366–81.
doi: 10.1158/2159-8290.CD-15-1347

43. Stockis, J, Fink, W, Francois, V, Connerotte, T, De Smet, C, Knoops, L, et al.
Comparison of stable human treg and Th clones by transcriptional profiling. Eur J
Immunol (2009) 39:869–82. doi: 10.1002/eji.200838807

44. Jang, HR, Shin, SB, Kim, CH, Won, JY, Xu, R, Kim, DE, et al. PLK1/
vimentin signaling facilitates immune escape by recruiting Smad2/3 to PD-L1
promoter in metastatic lung adenocarcinoma. Cell Death Differ (2021) 28:2745–64.
doi: 10.1038/s41418-021-00781-4

45. Yuan, L, Lv, Z, Atkison, JH, and Olsen, SK. Structural insights into the
mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat
Commun (2017) 8:211. doi: 10.1038/s41467-017-00272-6

46. Howley, BV, Mohanty, B, Dalton, A, Grelet, S, Karam, J, Dincman, T, et al.
The ubiquitin E3 ligase ARIH1 regulates hnRNP E1 protein stability, EMT and
breast cancer progression. Oncogene (2022) 41:1679–90. doi: 10.1038/s41388-022-
02199-9

47. Wu, Y, Zhang, C, Liu, X, He, Z, Shan, B, Zeng, Q, et al. ARIH1 signaling
promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation.
Nat Commun (2021) 12:2346. doi: 10.1038/s41467-021-22467-8

48. Xiao, Q, Qu, K, Wang, C, Kong, Y, Liu, C, Jiang, D, et al. HDGF-related
pro te in -3 i s requ i r ed fo r anchorage - independent surv iva l and
chemoresistance in hepatocellular carcinomas. Gut (2013) 62:440–51.
doi: 10.1136/gutjnl-2011-300781

49. Li, W, Liu, J, Zhang, B, Bie, Q, Qian, H, and Xu, W. Transcriptome analysis
reveals key genes and pathways associated with metastasis in breast cancer. Onco
Targets Ther (2020) 13:323–35. doi: 10.2147/OTT.S226770

50. Stephen, TL, Rutkowski, MR, Allegrezza, MJ, Perales-Puchalt, A, Tesone,
AJ, Svoronos, N, et al. Transforming growth factor beta-mediated suppression of
antitumor T cells requires FoxP1 transcription factor expression. Immunity (2014)
41:427–39. doi: 10.1016/j.immuni.2014.08.012

51. Kondo, Y, Suzuki, S, Takahara, T, Ono, S, Goto, M, Miyabe, S, et al.
Improving function of cytotoxic T-lymphocytes by transforming growth factor-
beta inhibitor in oral squamous cell carcinoma. Cancer Sci (2021) 112:4037–49.
doi: 10.1111/cas.15081

52. Zhang, L, Yu, Z, Muranski, P, Palmer, DC, Restifo, NP, Rosenberg, SA, et al.
Inhibition of TGF-beta signaling in genetically engineered tumor antigen-reactive
T cells significantly enhances tumor treatment efficacy. Gene Ther (2013) 20:575–
80. doi: 10.1038/gt.2012.75

53. Tang, RJ, Shen, SN, Zhao, XY, Nie, YZ, Xu, YJ, Ren, J, et al. Mesenchymal
stem cells-regulated treg cells suppress colitis-associated colorectal cancer. Stem
Cell Res Ther (2015) 6:71. doi: 10.1186/s13287-015-0055-8

54. Mckarns, SC, Schwartz, RH, and Kaminski, NE. Smad3 is essential for TGF-
beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-
induced proliferation. J Immunol (2004) 172:4275–84. doi: 10.4049/
jimmunol.172.7.4275

55. Hu, M, and Huang, L. Strategies targeting tumor immune and stromal
microenvironment and their clinical relevance. Adv Drug Delivery Rev (2022)
183:114137. doi: 10.1016/j.addr.2022.114137

56. Aerts, JG, and Hegmans, JP. Tumor-specific cytotoxic T cells are crucial for
efficacy of immunomodulatory antibodies in patients with lung cancer. Cancer Res
(2013) 73:2381–8. doi: 10.1158/0008-5472.CAN-12-3932

57. Mayoux, M, Roller, A, Pulko, V, Sammicheli, S, Chen, S, Sum, E, et al.
Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci
Transl Med (2020) 12:eaav7431. doi: 10.1126/scitranslmed.aav7431

58. Stevens, D, Ingels, J, Van Lint, S, Vandekerckhove, B, and Vermaelen, K.
Dendritic cell-based immunotherapy in lung cancer. Front Immunol (2020)
11:620374. doi: 10.3389/fimmu.2020.620374
frontiersin.org

https://doi.org/10.1186/s12943-019-1027-x
https://doi.org/10.1172/JCI137186
https://doi.org/10.3389/fonc.2020.00168
https://doi.org/10.1186/s12967-020-02286-z
https://doi.org/10.3389/fgene.2020.634634
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1371/journal.pone.0001195
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.3389/fgene.2022.842351
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1200/JCO.2015.64.8824
https://doi.org/10.1016/j.cllc.2018.09.012
https://doi.org/10.1016/j.cell.2010.10.020
https://doi.org/10.1371/journal.pone.0138913
https://doi.org/10.1038/s41598-017-04811-5
https://doi.org/10.1016/j.urolonc.2019.12.022
https://doi.org/10.1016/j.urolonc.2019.12.022
https://doi.org/10.1186/s12885-016-2826-8
https://doi.org/10.1111/cas.14553
https://doi.org/10.1016/j.tibs.2004.03.008
https://doi.org/10.1038/s41467-020-15404-8
https://doi.org/10.1016/j.phymed.2021.153907
https://doi.org/10.1158/2159-8290.CD-15-1347
https://doi.org/10.1002/eji.200838807
https://doi.org/10.1038/s41418-021-00781-4
https://doi.org/10.1038/s41467-017-00272-6
https://doi.org/10.1038/s41388-022-02199-9
https://doi.org/10.1038/s41388-022-02199-9
https://doi.org/10.1038/s41467-021-22467-8
https://doi.org/10.1136/gutjnl-2011-300781
https://doi.org/10.2147/OTT.S226770
https://doi.org/10.1016/j.immuni.2014.08.012
https://doi.org/10.1111/cas.15081
https://doi.org/10.1038/gt.2012.75
https://doi.org/10.1186/s13287-015-0055-8
https://doi.org/10.4049/jimmunol.172.7.4275
https://doi.org/10.4049/jimmunol.172.7.4275
https://doi.org/10.1016/j.addr.2022.114137
https://doi.org/10.1158/0008-5472.CAN-12-3932
https://doi.org/10.1126/scitranslmed.aav7431
https://doi.org/10.3389/fimmu.2020.620374
https://doi.org/10.3389/fimmu.2022.993187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2022.993187
59. Grisaru-Tal, S, Dulberg, S, Beck, L, Zhang, C, Itan, M, Hediyeh-Zadeh, S,
et al. Metastasis-entrained eosinophils enhance lymphocyte-mediated antitumor
immunity. Cancer Res (2021) 81:5555–71. doi: 10.1158/0008-5472.CAN-21-0839

60. Okauchi, S, Shiozawa, T, Miyazaki, K, Nishino, K, Sasatani, Y, Ohara, G,
et al. Association between peripheral eosinophils and clinical outcomes in patients
with non-small cell lung cancer treated with immune checkpoint inhibitors. Pol
Arch Intern Med (2021) 131:152–60. doi: 10.20452/pamw.15776

61. Hu, FF, Liu, CJ, Liu, LL, Zhang, Q, and Guo, AY. Expression profile of
immune checkpoint genes and their roles in predicting immunotherapy response.
Brief Bioinform (2021) 22:bbaa176. doi: 10.1093/bib/bbaa176

62. Luo, C, Lei, M, Zhang, Y, Zhang, Q, Li, L, Lian, J, et al. Systematic
construction and validation of an immune prognostic model for lung
adenocarcinoma. J Cell Mol Med (2020) 24:1233–44. doi: 10.1111/jcmm.14719

63. Yang, T, Hao, L, Cui, R, Liu, H, Chen, J, An, J, et al. Identification of an
immune prognostic 11-gene signature for lung adenocarcinoma. PeerJ (2021) 9:
e10749. doi: 10.7717/peerj.10749
Frontiers in Immunology 21
311
64. Zhao, H, Zhang, X, Guo, L, Shi, S, and Lu, C. A robust seven-gene signature
associated with tumor microenvironment to predict survival outcomes of patients
with stage III-IV lung adenocarcinoma. Front Genet (2021) 12:684281.
doi: 10.3389/fgene.2021.684281

65. Xie, H, Zhang, JF, and Li, Q. Development of a prognostic nomogram for
patients with lung adenocarcinoma in the stages I, II, and III based on immune
scores. Int J Gen Med (2021) 14:8677–88. doi: 10.2147/IJGM.S337934

66. Zhang, M, Ma, J, Guo, Q, Ding, S, Wang, Y, and Pu, H. CD8(+) T cell-
associated gene signature correlates with prognosis risk and immunotherapy
response in patients with lung adenocarcinoma. Front Immunol (2022)
13:806877. doi: 10.3389/fimmu.2022.806877

67. Chen, Y, Chen, H, Mao, B, Zhou, Y, Shi, X, Tang, L, et al.
Transcriptional characterization of the tumor immune microenvironment
and its prognostic value for locally advanced lung adenocarcinoma in a
Chinese population. Cancer Manag Res (2019) 11:9165–73. doi: 10.2147/
CMAR.S209571
frontiersin.org

https://doi.org/10.1158/0008-5472.CAN-21-0839
https://doi.org/10.20452/pamw.15776
https://doi.org/10.1093/bib/bbaa176
https://doi.org/10.1111/jcmm.14719
https://doi.org/10.7717/peerj.10749
https://doi.org/10.3389/fgene.2021.684281
https://doi.org/10.2147/IJGM.S337934
https://doi.org/10.3389/fimmu.2022.806877
https://doi.org/10.2147/CMAR.S209571
https://doi.org/10.2147/CMAR.S209571
https://doi.org/10.3389/fimmu.2022.993187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jinghua Pan,
Jinan University, China

REVIEWED BY

Ming Zheng,
LMU Munich, Germany
Dandan Yuan,
The Second Affiliated Hospital of
Harbin Medical University, China

*CORRESPONDENCE

Kun Wang
wangkun@gdph.org.cn
Jian Shi
jshiwkls@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 30 June 2022

ACCEPTED 08 August 2022
PUBLISHED 31 August 2022

CITATION

Pan WJ, Song K, Zhang YL, Yang CQ,
Zhang Y, Ji F, Zhang JS, Shi J and
Wang K (2022) The molecular
subtypes of triple negative breast
cancer were defined and a ligand-
receptor pair score model was
constructed by comprehensive
analysis of ligand-receptor pairs.
Front. Immunol. 13:982486.
doi: 10.3389/fimmu.2022.982486

COPYRIGHT

© 2022 Pan, Song, Zhang, Yang, Zhang,
Ji, Zhang, Shi and Wang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 31 August 2022

DOI 10.3389/fimmu.2022.982486
The molecular subtypes of triple
negative breast cancer were
defined and a ligand-receptor
pair score model was
constructed by comprehensive
analysis of ligand-receptor pairs

Weijun Pan1,2†, Kai Song3,4†, Yunli Zhang3,4†, Ciqiu Yang2,
Yi Zhang2, Fei Ji2, Junsheng Zhang2, Jian Shi3,4*

and Kun Wang1,2*

1The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,
2Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, China, 3Department of Pathology, Nanfang
Hospital, Southern Medical University, Guangzhou, China, 4Department of Pathology, School of
Basic Medical Science, Southern Medical University, Guangzhou, China
Background: Intercellular communication mediated by ligand-receptor

interactions in tumor microenvironment (TME) has a profound impact on

tumor progression. This study aimed to explore the molecular subtypes

mediated by ligand-receptor (LR) pairs in triple negative breast cancer

(TNBC), identify the most important LR pairs to construct a prognostic risk

model, and study their effect on TNBC immunotherapy.

Methods: LR pairs subclasses of TNBC were categorized by consensus

clustering based on LR Pairs in METABRIC dataset. Least absolute shrinkage

and selection operator (LASSO) Cox regression and stepwise Akaike

information criterion (stepAIC) were conducted to build a LR pairs score

model. The relationship between LR pairs score and immune cell infiltration,

stromal score and immune score associated with TME was analyzed, and the

prediction of drug therapy and immunotherapy efficacy by LR pairs score was

evaluated.

Results: According to the expression pattern of 145 TNBC prognostic LR pairs,

the samples were divided into three subclasses with different survival

outcomes, copy number variation (CNV), TME immune cell infiltration,

stromal score and immune score. The LR pairs score model constructed in

the METABRIC dataset was composed of four LR pairs, and its predictive

significance for TNBC prognosis was verified in GSE58812 and GSE21653

cohorts. In addition, LR pairs score was negatively correlated with several

immune pathways regulating immunity and immune score, and related to the

sensitivity of anti-neoplastic drugs and the effect of anti-PD-L1 therapy.
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Conclusion: Our study confirmed the impact of LR pairs on the molecular

heterogeneity of TNBC, characterized three LR pairs subtypes with different

survival outcomes and TME patterns, and proposed a LR pairs score system

with predictive significance for TNBC prognosis and anti-PD-L1 therapeutic

effect, which provides a potential evaluation scheme for TNBC management.
KEYWORDS

triple negative breast cancer, ligand-receptor pairs, tumor microenvironment, drug
susceptibility, immunotherapy
Introduction

Breast cancer has become the most frequently diagnosed female

cancer, accounting for 11.7% of all cancer cases (1). According to

the expression of molecular markers of estrogen or progesterone

receptors and human epidermal growth factor receptor 2 (HER2),

breast cancers are divided into three major subtypes, including

hormone receptor positive/HER2 negative subtype (70%), HER2

positive subtype (15%-20%) and triple-negative subtype (tumors

lacking all 3 standard molecular markers,15%) (2). Among all three

breast cancer subtypes, triple negative breast cancer (TNBC) is the

most invasive subtype with the worst prognosis (3). In recent years,

a thesis has been put forward that dependent on various clinical,

pathological, and genetic factors, triple-negative breast cancer is a

separate, heterogenic subtype of breast cancer, (4). Multi-omics

profiling studies have provided novel insights into the biological

heterogeneity of TNBC, evolutionizing the classification of these

tumors into distinct molecular subtypes based on recurrent genetic

aberrations, transcriptional patterns, and tumor microenvironment

features (5). Here, molecular typing together with the prediction of

the prognosis of the gene profile may help to promote the study of

personalized treatment.

Tumor is a heterogeneous mixture of cancer cells and non-

cancer cells. Communication between these cells within the

tumor is the key to tumor progression (6). Communication

between these cells is achieved by ligands produced by a cell

(proteins, peptides, fatty acids, steroids, gases and other low

molecular weight compounds) that are either secreted by cells or

present on the cell surface and therefore acts as receptors either

on or inside the target cells (7). It is reported that most cells

express from tens to hundreds of ligands and receptors, forming

a highly connected signal network through multiple ligand-

receptor pairs (8). The biological importance and availability

of receptors and their corresponding ligands have designated

them as particularly useful clinical targets for cancer (9).

Therefore, there are broad prospects for the research of ligand-

receptor pairs in the field of molecular oncology.

In this study, we analyzed 2293 LR pairs in TNBC. The

molecular subtypes of the samples were subdivided by screening
02
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LR pairs significantly related to the TNBC prognosis for

exploring the heterogeneity of the subtypes defined in relation

to copy number variation, tumor immune components and

biological pathways. A LR pair score model was constructed

by least absolute shrinkage and selection operator (LASSO) COX

regression to study its correlation with TNBC prognosis, tumor

microenvironment (TME) and clinical treatment response.
Materials and methods

TNBC data resources

cBio Cancer Genomics Portal (cBioPortal) is an open-access

resource for exploring, visualizing, and analyzing multidimensional

cancer genomics and clinical data (10). The METABRIC dataset

was downloaded from cBioPortal (http://cbioportal.org/) and

screened for availability. Genomic variation data of 318 TNBC

samples and themotif table spectrum of 298 samples were obtained.

Microarray data of 107 and 83 TNBC samples from GSE58812 and

GSE21653 datasets of Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) database were collected.
Acquisition and screening of ligand
receptor pairs

Ligand–receptor (LR) pairs containing 2293 interactions

were downloaded from li terature-curated database

connectomeDB2020. If the sum of gene expression in each

pair of LR was equal to or greater than the median of the sum

of LR gene expression in all patients, a patient was defined as

having a high expression. Otherwise, the patient was defined as

having a low expression. The “survival” package in R was used to

analyze the correlation between each pair of LR and the survival

of TNBC patients in each cohort. The statistical significance was

analyzed by the Peto and Peto modification of Gehan-Wilcoxon

test, and the exponential coefficient of Cox regression model was

develop to calculate the risk ratio (HR). The “sump” function in
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the “metap” package was employed to integrate the P values of

the three cohorts using Edgington’s method, and multiple test

corrections based on Storey Method were performed by the

“qValue” package. LR pairs with Storey’s q-value < 0.2 and HR >

1 (or HR < 1) was considered to be related to the prognosis

of TNBC.
Establishment of LR subtypes using
consensus clustering

Clusters were classified using “ConsensusClusterPlus” based

on the expression of TNBC prognosis related LR pairs. The K-

means algorithm and “1-Pearson correlation” were specified,

and each sample was divided into up to k groups by the

clustering algorithm. Each of the bootstraps involved 80% of

the samples with 500 repeats. The heat map of consensus

clustering was generated by R packet “pheatmap”. The number

of clusters was decided by Consensus cumulative distribution

function (CDF) plot and delta area plot, and the standard was

that the consistency within the cluster was high, the coefficient of

variation was low and the area under the CDF curve would not

increase significantly.
Analysis of mutations and copy number
variation among subtypes

Genomic data types integrated by cBioPortal include

somatic mutations, copy number alterations, gene expression

and DNA methylation (11). The study directly inquired and

downloaded the somatic mutations and copy number alterations

data from cBioPortal, and analyzed them according to the

procedures used in the study by Gao et al. (12). The

“maftools” software package was used to visualize mutation

data. The differences of CNV genes with significant gain and

loss subtypes were compared employing chi-square test.
Functional enrichment analysis

Hallmark Gene sets were retrieved and downloaded from the

Molecular Signatures Database (MSigDB) (13). The GSEA

analysis of LR clusters was carried out using GSEA software

program, and the most significantly enriched signaling pathways

were selected derived from normalized enrichment scores

(NES), the standard was false discovery rate (FDR) of <0.05.
Analysis of immunity

Immune score and stromal score were calculated in R

package “ESTIMATE” (14) by using expression signatures to
Frontiers in Immunology 03
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infer the ratio of matrix to immune cells in tumor samples. A

higher score pointed to a higher content in TME. The infiltration

degree of 22 immune cells in TNBC was quantified by

CIBERSORT algorithm (15).
Construction of risk model based on
LR pairs

Important genes were screened from LR pairs related to

prognosis to construct a risk model. First of all, the prognosis-

related LR pairs was analyzed by LASSO penalty Cox regression

analysis, which eliminated unimportant LR pairs through

reducing the weight of the model parameters. The rest of the

LR pairs was filtered through the stepAIC strategy in MASS

package. Genes with the lowest stepAIC value were used to build

LR pairs score model. The coefficient of each gene was obtained

by multivariate Cox regression analysis.
The significance of LR pairs score model
in predicting clinical treatment response

The relationship between LR pairs score and gene expression

level in immune checkpoints was determined by Wilcoxon test,

and a box diagram was generated for visualization. Tumor

Immune Dysfunction and Exclusion (TIDE) (16) predicted the

immune checkpoint blockade (ICB) treatment response of the

samples through simulating the accurate gene signature of two

immune escape mechanisms. We downloaded drug sensitivity

data for approximately 1000 cancer cell lines from Genomics of

Cancer Drug Sensitivity (GDSC) (http://www.cancerrxgene.org)

(17), which is the largest public resource for information on drug

sensitivity in cancer cells and molecular markers of drug

response. We analyzed breast cell line, including a total of 50

cell lines treated with 190 drugs.Regarding the area-under-curve

(AUC) values of the anti-tumor drugs in cancer cell lines as the

drug response index, we used Spearman correlation analysis to

calculate the correlation between drug sensitivity and LR.score,

and the adjusted FDRs were calculated using the Benjamin and

Hochberg method. The correlations with | Rs | > 0.2 and FDR <

0.05 were considered as statistically significant ones.

Additionally, the half-maximal inhibitory concentration (IC50)

values of the recommended antineoplastic drugs Paclitaxel,

Veliparib, Olaparib and Talazoparib for TNBC treatment in

different LR pairs score groups were compared using

pRRophetic package in R.
Statistical analysis

The statistical data of this study were analyzed by R 4.0.2

software. The Kaplan-Meier survival curve and receiver
frontiersin.org
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operating characteristic (ROC) curves were visualized by the

“survminer” package and “timeROC”, respectively. LR score and

clinical parameters were included in Cox proportional hazard

regression to determine independent factors for predicting the

prognosis of TNBC. And the p value cutoff was set to 0.05.
Results

Screening of LR pairs related
to prognosis

Outline of the process for this study was shown in Figure 1A.

To screen the LR pairs related to the prognosis of TNBC,

survival analysis of LR pairs was performed on METABRIC,
Frontiers in Immunology 04
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GSE58812 and GSE21653. The prognostic significance p-values

of the LR pairs resulted from the three cohorts were combined,

subjected to meta-analysis, the “sump” function in the “metap”

package was employed to integrate the P values of the three

queuecohorts through using Edgington’s method, and multiple

test corrections based on Storey Method were performed by the

“qValue” package. and were subsequently adjusted for multiple

testing. A total of 145 LR pairs related to prognosis of TNBC

were screened, of which 44 were poor-prognosis LR pairs and

101 were good-prognosis LR pairs (Figure 1B). For all the LR

pairs related to prognosis of TNBC, we also present the

interaction network diagram of them. (Figure 1C) and

incorporated them into KEGG for pathway further enrichment

analysis. Viral protein interaction with cytokine and cytokine

receptor, cytokine−cytokine receptor interaction, cell adhesion
A B

D

C

FIGURE 1

Screening of LR pairs related to prognosis. (A) Outline of the process for this study. (B) Prognostic volcano maps of 145 LR pairs. (C) The
interactive network diagram of 145 LR pairs. (D) 10 most highly enriched KEGG pathways of 145 LR pairs.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982486
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2022.982486
molecules (CAMs), chemokine signaling pathway, intestinal

immune network for IgA production, rheumatoid arthritis,

proteoglycans in cancer, malaria, neuroactive ligand−receptor

interaction and hematopoietic cell lineage were the 10 most

highly enriched pathways of 145 LR pairs (Figure 1D).
Recognition of three TNBC subtypes
based on LR pairs

We examined whether the TNBC samples can be clustered

into subtypes based on the diversity among their expression

pattern of the prognosis-related LR pairs. Hence, the significant

prognosis-related LR pairs were included as the pattern for

clustering, in which the expression abundance of each LR pair

was represented by the expression sum of the ligand and receptor

genes. In the METARIC cohort, 298 TNBC samples were

clustered by ConsensusClusterPlus. And in optimization of the

number of clusters, k, the curves of the cumulative distribution

function (CDF) suggested that k=3 yielded a stable clustering

result (Figures 2A, B) and was therefore chosen as the final option

(Figure 2C). Further analysis of the prognostic characteristics
Frontiers in Immunology 05
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showed significant distinction in prognosis among the three

subtypes. The overall survival (OS) of C1 was the most

unfavorable, the OS of C3 was the longest of the three subtypes,

and the OS of C2 was between the two subtypes (Figure 2D).

Additionally, we applied the same molecular subtyping method

on the TNBC patient cohort of GSE58812 and GSE21653, three

molecular subtypes were also formed, and significant and similar

difference in prognosis among the three subtypes in survival

analysis were observed (Figures 2E, F).
Clinical characteristics and genomic
alteration of the LR pairs-based
molecular subtypes

Different clinical features and genomic mutations may also

be influencing factors for different prognostic outcomes. We

analyzed the clinical characteristics of each subtype in the three

TNBC data sets. But no significant correlation was found

between the molecular subtypes and clinical variables in

METARIC database, such as tumor stage, age and gender.

And we noticed significant variation in the distribution of the
A B

D E F

C

FIGURE 2

Recognition of three TNBC subtypes based on LR pairs. (A) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (B) Delta
area curve of consensus clustering for samples in METARIC. (C) Heatmap of sample clustering at consensus k = 3. (D) Kaplan-Meier analysis of
OS among three subtypes in METARIC dataset. (E) The Kaplan-Meier curve of OS of three molecular subtypes formed in GSE58812 data set.
(F) Differences of three subtypes in GSE21653 dataset on OS.
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widely accepted 5 intrinsic molecular subtypes of breast cancer

(Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-

low) among the three LR pairs-based subtypes, in which the

claudin-low subtype samples accounted for a large proportion of

the C3 subtype, and the basal subtype samples accounted for a

large proportion of the C1 subtype. There was also a significant

difference in mortality between C1 and C3. More than 60% of C1

samples were dead, and more than 55% of C3 samples survived

(Figure 3A). In the GSE58812 cohort, the age distribution of C1

and C3 had the opposite trend. More than half of the samples in

C1 were aged 60 years or older, and more than 75% of the
Frontiers in Immunology 06
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samples were aged under 60. There were also statistically

significant differences in survival status among the three

subtypes (Figure 3B), but there was no significant difference in

age distribution among the three subtypes in GSE21653 data set.

However, the proportion of survival patients in C1 and C3 was

very different, and a high proportion of survival samples were in

C3 (Figure 3C). The top 10 genes with the greatest variation

among the subtypes were displayed as a waterfall plot, and top 10

CNV deletion genes and CNV amplification gens in this

heatmap revealed the relatively high mutation rate and

mutation diversity in C1 and C2 (Figure 3D).
A
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FIGURE 3

Clinical characteristics and Genomic alteration of the LR pairs-based molecular subtypes. (A) The distribution proportion of stage, grade, age,
PAM50+claudin-low molecular subtypes and survival status in each subtype of METARIC database. (B) The distribution proportion of age and
survival status of each subtype in the GSE588123 cohort. (C) The distribution of age and survival status among the three subtypes in GSE21653
data sets. (D) Waterfall map of somatic mutation and CNV in three subtypes of METARIC database in we had assigned, chi-square test. A symbol
"*" indicates ANOVA p < 0.05.
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Functional analysis among the LR pairs-
based molecular subtypes

To explore the molecular-biological differences between LR

pairs-based three molecular subtypes, GSEA was carried out in

three TNBC datasets studied. For the GSEA ofMETARIC database,

it was found that compared with C3, 14 pathways in C1 had

significantly increased activity, which were largely cell cycle-related

signaling pathways such as MYC targets, E2F targets, G2M

checkpoint and cancer-related pathways such as glycolysis,

hypoxia, etc. And the activity of 11 pathway decreased

significantly, which were mainly immune-related pathways such

as complement, inflammatory response, interferon alpha response,

allograft rejection, interferon gamma response, etc. (Figure 4A). In

C1 versus C3 of three TNBC datasets, glycolysis, hypoxia and

estrogen response early were significantly up-regulated, while 10

pathways, including apoptosis, TNFA signaling via NF k B and

complement, were significantly down-regulated (Figure 4B). The

activity of various pathways was also compared between C1 and C2

and between C2 and C3 subtypes in the METABRIC cohort, and 6
Frontiers in Immunology 07
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pathways, including glycolysis, hypoxia, epithelial-mesenchymal

transition, MYC targets, myogenesis, estrogen response early and

late, were activated in each LR pairs-based molecular subtype

(Figures 4C, D).
Immune cell infiltration and immune
score among the LR pairs-based
molecular subtypes

After running CIBERSORT, we acquired 22 immune cell

estimated proportion of three LR pairs-based molecular subtypes

in three TNBC cohorts. Kruskal-Wallis test showed that most of

immune cells (16 cells in total) with estimated proportion difference

among the three LR pairs-based molecular subtypes were in the

METABRIC cohort, including naive B cells, memory B cells, CD8 T

cells, naive CD4 T cells, activated CD4 memory T cells, delta

gamma T cells, resting and activated NK cells, M0 macrophages,

M1 macrophages, M2 macrophages, resting dendritic cells,

activated dendritic cells, resting and activated mast cells,
A B

D
C

FIGURE 4

Functional analysis among the LR pairs-based molecular subtypes. (A) Bubble chart showing results of the GSEA comparing the C1 with the
C3 subtype in METABRIC cohort. (B) Bubble chart showing results of the GSEA comparing the C1 with the C3 subtype in the three cohorts.
(C) Heatmap of the normalized enrichment scores (NES) of the GSEA comparing C1 versus C2, C1 versus C3, and C2 versus C3, and the vertical
axis represents the different comparison, while the honrizontal axis represents names of the pathways. (D) Radar plot showing pathways
coherently activated in C1 versus C2 and C2 versus C3 in the METABRIC database.
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neutrophils (Figure 5A). Naive B cells, naive CD4 T cells, activated

CD4 memory T cells, delta gamma T cells, activated NK cells, M0

macrophages, M1 macrophages, M2 macrophages and activated

mast cells had significant differences in estimated proportion

among LR pairs-based molecular subtypes of all the three TNBC

cohorts (Figures 5C, E). The stromal score, immune score and

ESTIMATE score calculated by ESTIMATE algorithm were

compared among subtypes by Kruskal-Wallis test. The immune

score showed significant differences among the three molecular

subtypes in each cohort, with p values all <0.01. The immune score/

ESTIMATE score among the three molecular subtypes in each

cohort also showed highly significant differences, with p values all

<0.0001. And in whichever of the three scores, C3 was always

> C2 > C1 (Figures 5B, D, F).
Construction and evaluation of LR pairs
score model

To select the LR pairs the most suitable for predicting the

prognosis of TNBC, LASSO COX regression analysis was

performed on 145 LR pairs in the METABRIC dataset, and 6
Frontiers in Immunology 08
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LR pairs were screened in the process of 10-fold cross-validation,

as they presented non-zero coefficients in the fitted LASSO COX

regression models (Figure S1A). Four LR pairs (CXCL9->CCR3,

GPI-> AMFR, IL18->IL18R1, and PLG->F2RL1), which had both

the statistical fit of the model and the number of parameters used

to fit into account, were finally selected by stepwise multifactor

regression analysis. The coefficients corresponding to these

predictors in the resulted COX regression model were listed in

Figure S1B. Based on the 4 LR pairs, an LR-pairs score model, LR-

pairs score, was constructed to quantitatively analyze the LR-pairs

patterns of TNBC samples. We found that the LR score of the C1

subtype was significantly higher than those of the subtypes C2 and

C3 in METABRIC, GSE58812 and GSE21653 cohorts

(Figures 6A, D, G). To analyze the clinical correlation of LR

pairs, the TNBC samples of each cohort were divided into two

groups according to LR pairs score. Patients with low LR scores in

the METABRIC cohort showed a significantly favorable survival

outcome (Figure 6B). The area under curve (AUC) of the time-

dependent ROC curves of LR pairs score were 0.72, 0.63, 0.65, and

0.66 at 1, 3, 5, and 10 years, respectively (Figure 6C). The reliability

of LR pairs score was further verified using 107 samples from

GSE58812 and 83 samples from GSE21653. In both verification
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FIGURE 5

Immune cell infiltration and immune score among the LR pairs-based molecular subtypes. (A) The estimated proportion of 22 immune cells
among the LR pairs-based molecular subtypes in METABRIC (A), GSE58812 (C), GSE21653 (E) cohort. The comparison of stromal score and
immune score and ESTIMATE score among three LR pairs-based molecular subtypes in METABRIC (B), GSE58812 (D) and GSE21653 (F) cohorts
calculated by ESTIMATE. P value is calculated by Kruskal-Wallis test, the asterisks represented the statistical p value, ns(no significance), p > 0.05,
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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sets, the samples with high LR pairs score showed higher mortality

and shorter survival time (Figures 6E, H). The AUC values of the

LR pairs score model in the GSE58812 validation set were 0.72,

0.75, 0.67 at 3, 5, 10 years, respectively (Figure 6F). The LR pairs

score model had the optimal performance on another verification

cohort GSE21653, with AUC corresponding to 1, 3, and 5 years of

survival of 0.90, 0.87, and 0.78, respectively (Figure 6I). Also,

Univariate Cox regression model analysis in METABRIC showed

that stage and age and LR pairs score were significantly correlated

with the prognosis of TNBC (Figure 6J). These prognostic factors

were included in the multivariate Cox regression model, and it

was found that they could be regarded as independent prognostic

factors of TNBC (Figure 6K).
Correlation between LR pairs score and
immune composition and immune-
related pathways

To find out the most relevant pathway to LR pairs score, R

package “GSVA”was used to obtain single sample GSEA (ssGSEA)

score of samples in METABRIC with different functions, and 30

pathways significantly related to LR pairs score were obtained by

Pearson correlation analysis. Among them, 2 pathways were

positively correlated with LR pairs score, while 28 pathways were

negatively correlated with LR pairs score. As ssGSEA scores of

immune-related pathways, such as chemokine signaling pathway,

antigen processing and presentation, natural killer cell mediated

cytoxicity, toll like receptor signaling pathway, natural killer cell

mediated cytotoxicity and T cell receptor signaling pathway, were

significantly negatively correlated with LR pairs score (Figure 7A),

we further analyzed the relationship between LR pairs score and

tumor immune components. Half of the 22 kinds of immune cells

were significantly different between high LR pairs score and low LR

pairs score samples (Figure 7B). We also find high-and low-LR

pairs score groups have obvious gap in ESTIMATE and immune

scores, and this gap is statistically for all three scores (Figure 7C).

Furthermore, the Pearson correlation analysis between LR pairs

score and immune cells showed that LR pairs score was

significantly negatively correlated with CD8 T cells, activated

CD4 memory T cells and macrophages, but positively correlated

with M0 macrophages and M2 macrophages (Figure 7D). These

results indicated the association between LR pairs score and

tumor immunity.
Evaluation of the significance of LR pairs
score model in the prediction of clinical
treatment response

In view of the above association between LR pairs score and

tumor immunity, we further analyzed the association between
Frontiers in Immunology 09
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LR pairs score and immune checkpoint genes. In terms of

expression, 18 of the 19 immune checkpoints showed

differences between the two LR pairs score groups, and the

high LR pairs score group had a greater response (Figure 8A).

The high-LR-pairs-score group also showed significantly up-

regulated T cell exclusion score and significantly down-regulated

T cell dysfunction score in comparison with low-LR-pairs-score

group, while TIDE score showed no significant difference

between the two groups (Figure 8B). The ability of LR pairs

score to predict the response to immune checkpoint inhibitors

(ICI) treatment was examined in the immunotherapy cohort

IMvigor210 (anti-PDL1). Compared with the samples of

complete response (CR) and partial response (PR), the

samples of stable disease (SD) and progressive disease (PD)

had significantly higher LR pairs score (Figure 8C). The samples

treated with anti-PD-L1 were divided into low LR pairs score

group and high LR pairs score group. In the IMvigor210 cohort,

the prognosis of samples with high LR pairs score was still

significantly worse than those samples with low LR pairs score

(Figure 8D). The proportion of patients with low LR pairs scores

who responded actively to anti-PD-L1 treatment was

s ignificant ly more than those with high LR pairs

scores (Figure 8E).

The GDSC database stores treatment response data of a wide

range of anti-cancer drugs, and gene expression profiles of a

large collection of cancer cell lines. Through Spearman

correlation analyses of the GDSC data, we found that LR pairs

score was significantly correlated to treatment responses of 29

drugs as represented by area-under-curve (AUC) of the drug

sensitivity curve. And 28 of the correlation pairs were positive,

suggesting that a high LR pairs score in tumor was related to

its resistance to these drugs (Figure 9A). Besides, the

estimated IC50 values of Paclitaxel, Veliparib, Olaparib and

Talazoparib in the two LR pairs score groups were compared.

It was found that the IC50 values of the four drugs in the low

LR pairs score group were significantly lower than those in

the high LR pairs score group, indicating that the low LR pairs

score group may be more sensitive to the treatment of the four

drugs (Figure 9B).
Discussion

In the progression of cancer, cancer cell-stromal cell

crosstalk is orchestrated by a plethora of ligand-receptor

interactions to generate a TME that favors tumor growth

(18). Intercellular communication through LR pairs in the

tumor microenvironment underlie the poor prognosis of

multiple cancers, such as pancreatic ductal adenocarcinoma

(19) and colorectal cancer (20). Increasing discoveries of

receptors and ligands and their interactions has encouraged
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FIGURE 6

Construction and evaluation of LR pairs score model. (A) The box chart of LR pairs scores in three LR pair-based subtypes in the METABRIC
cohort, Kruskal-Wallis test. (B) Kaplan–Meier estimates comparing OS of samples with distinct LR pairs score in the METABRIC cohort, Log rank
test. (C) The time-dependent ROC curves showing the prognosis-predicting capacity of LR pairs score in the METABRIC cohort. (D): The box
chart showing LR pairs scores in different LR pair-based subtypes in the GSE58812 cohort, Kruskal-Wallis test. (E) Kaplan–Meier analysis of the
LR pairs score model in the GSE5881cohort, Log rank test. (F) The time-dependent ROC curves showing the prognosis-predicting value of LR
pairs score model in the GSE58812 cohort. (G). The box chart of LR scores in different LR pair-based subtypes in the GSE21653 cohort, Kruskal-
Wallis test. (H) Kaplan–Meier estimates comparing OS of samples with distinct LR pairs score in the GSE21653 cohort, Log rank test. (I) The ROC
curves showing the prognosis-predicting capacity of LR score in the GSE21653 cohort. (J, K) The forest plots showing the coefficients and their
confidence interval of the univariate and multivariate COX regression which included the factors of LR pairs score, patient age, stage, grade, and
patient outcomes in the METABRIC. The asterisks represented the statistical p value, ns(no significance) ****p < 0.0001.
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the integration of the available information on ligand-receptor

interactions from many databases to facilitate research (21).

ConnectomeDB2020 is a database that integrates 2293 pairs of

LR interactions. In this study, we analyzed 2293 LR pairs in the

database for TNBC.

Firstly, through TNBC survival analysis on 2293 LR pairs,

145 LR pairs significantly related to the prognosis of TNBC were

screened. According to the expression of the 145 LR pairs, three

LR pairs subclasses of TNBC were obtained employing

unsupervised clustering. Among the three LR pairs subtypes,

C1 had the worst prognosis, and the proportion of basal-like

subtypede, the most aggressive breast cancer subtype (22), was

higher in C1 than in the other two groups, and the highest

proportion of deaths among the corresponding clinical features.

Furthermore, C1 showed the lowest anti-tumor immune

response, such as lower tumor infiltrating lymphocytes (naive

B cell, CD 8 T cell, naive CD4 T cell) (23) and stromal score and

immune score, and these might be the causes of poor prognosis

of subtype C1.

In addition to subtyping TNBC based on 145 LR pairs, Lasso

regression and Cox analysis were performed on 145 pairs of LR

pairs, and 4 pairs of LR pairs were selected to construct an LR

pairs score model. Its prognostic significance was confirmed in
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both TCGA and two GEO datasets. Compared with the samples

with low LR pairs score, the samples with high LR pairs score

showed significantly shorter survival time. According to

previously published reports, Chemokine signaling pathway

promotes the antitumor response of the immune system by

recruiting immune cells (24). Antigen processing and

presentation play a key role in antitumor immunity as the

initiation of adaptive immune response (25). The strength of T

cell receptor signaling pathway is a key determinant of T cell-

mediated antitumor response (26). Natural killer cell mediated

cytoxicity is an important effector mechanism of immune system

against cancer (27). Activation of the toll like receptor signaling

pathway can be used to enhance immune responses against

malignant cells (28). In this study, LR pairs score was not only

significantly negatively correlated with chemokine signaling

pathway, antigen processing and presentation, T cell receptor

signaling pathway, natural killer cell mediated cytoxicity, toll like

receptor signaling pathway, natural killer cell mediated

cytotoxicity (29) and T cell receptor signaling pathway (30)

that mediate antitumor immunity, but also with stromal score

and immune score and the infiltration of CD8 T cells, activated

CD4 memory T cells and macrophages. Additionally, there was

no significant difference in TIDE scores between high and low
A

B

DC

FIGURE 7

Correlation between LR pairs score and immune composition and immune-related pathways. (A) Pearson correlation analyses results between
ssGSEA scores of KEGG pathways and LR score in METABRIC with |r|>0.4. (B) The box chart showing the relative abundance of the 22 immune
cells in high- and low-LR pairs score groups in METABRIC cohort, Wilcoxon test. (C) The box chart showing ESTIMATE immune scores of high- and
low-LR pairs score groups in METABRIC cohort, Wilcoxon test. (D) Pearson correlation analysis of LR pairs score and immune cell components. The
asterisks represented the statistical p value, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns(no significance).
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LR pairs scores, and immune escape may not have a significant

effect on LR pairs scores. Considering all these results together,

we suggested that TNBC samples with high LR pairs score

maight not have strong antitumor immunity.

It is reported that different ligands expressed by cancer cells

bind to cell surface receptors on immune cells, trigger inhibitory

pathways (such as PD-1/PD-L1) and promote immune cells

immune tolerance (31). The ability of 4-LR pairs score to predict

the response to immune checkpoint inhibitors (ICI) treatment

was examined in the anti-PDL1 cohort. We detected that LR

pairs score in patients with disease complete response or partial

response was significantly lower than that in patients with stable

disease or progressive disease. And the clinical benefit from anti-
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PD-L1 treatment in the low LR pairs score group was

significantly greater than that in the high LR pairs score

group, which supported the validity of LR pairs score model in

predicting anti-PD-L1 treatment.

Researchers have found that some molecular targeted anti-

neoplastic drugs can prevent immunotherapy resistance in cancer.

Combining these anti-neoplastic drugs with ICI immunotherapy,

it can greatly improve the prognosis of patients rather than

applying a single drug therapy (32). In this study, 29 pairs of LR

pairs score and drug sensitivity were determined in GDSC

database by Spearman correlation analysis, of which 28 pairs of

drug sensitivity curves showed a significant positive correlation

between AUC and LR pairs score. This indicated that they showed
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FIGURE 8

Evaluation of the relationship between LR pairs score model and ICI treatment. (A) The association between LR pairs score and gene expression
of immune checkpoints, Wilcoxon test. (B) The correlation between LR pairs score model and exclusion score, dysfunction score and TIDE
score predicted by TIDE method, Wilcoxon test. (C) LR pairs score statistical difference between complete response (CR)/partial response (PR)
group and stable disease (PD)/progressive disease (PD) group in IMvigor210 cohort. (D) The survival curve of different LR pairs score groups in
the IMvigor210 cohort. (E) Response to anti-PD-L1 treatment in patients with different LR pairs score in the IMvigor210 cohort, Log rank test.
The asterisks represented the statistical p value, ns(no significance) **p < 0.01, ***p < 0.001, ****p < 0.0001.
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drug resistance related to LR pairs score, and only Wnt-C59

showed sensitivity related to LR pairs score.
Conclusion

In conclusion, according to the expression profile of LR

pairs, TNBC was divided into three LR pairs subtypes, which

were considerably different in prognosis, CNV, tumor

infiltrating immune cells and immune score. In addition, four
Frontiers in Immunology 13
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LR pairs were selected to construct a risk model, which could

potentially predict the response of patients to targeted therapy,

chemotherapy and immunotherapy.
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FIGURE 9

The relationship between LR pairs score and drug sensitivity. (A) The correlation between LR pairs score and AUC of drug-sensitive curve, Spearman
correlation analysis. (B) The violin plot dispalys the differences in the estimated IC50 values of Paclitaxel, Veliparib, Olaparib, Talazoparib between
distinct LR pairs score groups, wilcoxon test. The asterisks represented the statistical p value, ***p < 0.001, ****p<0.0001.
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Identifying key mutations
of radioresponsive genes
in esophageal squamous
cell carcinoma
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Background: Radiotherapy plays an important effect on the standard therapy of

esophageal squamous cell carcinoma (ESCC). However, the efficacy of the

therapy is limited and a few patients do not achieve satisfactory treatment

results due to the existence of radiation resistance. Therefore, it is necessary to

identify the potential predictive biomarkers and treatment targets for ESCC.

Methods: We performed the whole-exome sequencing to determine the

germline and somatic mutations in ESCC. Functional enrichment and

pathway-based protein-protein interaction analyses were used to ascertain

potential regulatory networks. Cell survival and cell death after treatment with

radiotherapy were determined by CCK-8 and LDH release assays in ESCC cells.

The correlations of NOTCH1 and tumor immune infiltration were also analyzed

in ESCC.

Results: Our results showed that 344 somatic and 65 germline differentially

mutated genes were detected to be radiosensitivity-related loci. The tumor

mutational burdens (TMB) or microsatellite instability (MSI) were not

significantly correlated with the response to radiotherapy in ESCC patients.

Pathway-based protein-protein interaction analyses implied several hub genes

with most nodes (such as PIK3CA, NOTCH1, STAT3 and KDR). The in vitro

studies showed that the knockdown of NOTCH1 inhibited cell survival and

rendered more cell death after the treatment with radiotherapy in ESCC cells,

while NOTCH1 overexpression had the opposite effects. Moreover, NOTCH1,

frequently up-regulated in ESCC, was negatively correlated with activated B

cell and immature dendritic cell in ESCC. High expression of NOTCH1 was

accompanied with the low levels of some immunotherapy-related cells,

including CD8(+) T cells and NK cells.
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Conclusions: These results indicate the differences of the germline mutations

and somatic mutations between the radiosensitive and radioresistence groups

in ESCC and imply that NOTCH1 plays important roles in regulating the

radiosensitivity of ESCC. The findings might provide the biomarkers and

potential treatment targets for improving the sensitivity to radiotherapy

in ESCC.
KEYWORDS

ESCC, radiotherapy, NOTCH1, survival, immune
Introduction

Esophageal carcinoma (EsC), which is characterized by poor

prognosis, high mortality rate and distinct epidemiologic

pattern, is one of the most prevalent malignant tumors in the

world. According to the statistical data from World Cancer

Research Fund in 2018, EsC is the seventh most common cancer

in men and the 13th in women (1). There are two main types of

EsC. Esophageal adenocarcinoma is developed at the junction of

the esophagus and stomach. Esophageal squamous cell

carcinoma (ESCC), which occurs in the upper part of the

esophagus, is the major subtype and accounts for the vast

majority of cases (2). ESCC usually remains asymptomatic

until extensive local, regional, or distant spread has occurred

and ranks the sixth leading cause of cancer-related death (1).

Surgical resect ion combined with the neoadjuvant

chemoradiotherapy is considered as the standard treatment for

ESCC. However, some patients have to only receive radical

chemoradiotherapy because they do not meet the surgical

indication. Although the chance of cure with radio-therapy is

quite low, a significant portion of patients will receive palliation

(3). Therefore, radiotherapy plays an important effect on the

comprehensive treatment for ESCC.

Resistance is still considered as the major cause of radiation

treatment failure for ESCC patients (4). Due to the existence of

inherent or acquired radiation resistance, some patients failed to

achieve enormous therapeutic effects, resulting in the metastasis

or high recurrent rate, and ultimately death. Therefore, it is

necessary to identify the critical factors involved in regulating

the sensitivity of radiotherapy for ESCC, which will help to

improve its efficiency. It is reported that the noncoding RNA

NORAD induced by radiation facilitates radiotherapy resistance

via the EEPD1/ATR/Chk1 pathway in ESCC (5). The sensitivity

to concurrent chemoradiotherapy was increased by STAT3b by

promoting cellular necroptosis in ESCC (6). Inhibition of

carbonic anhydrase IX alters hypoxic tumor micro-

environment and increases the efficacy of radiotherapy in

ESCC (7). Nevertheless, the molecular mechanisms of
02
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radioresistance in ESCC have not been fully elucidated and

still need to be further determined.

In the present study, whole-exome sequencing was utilized

to identify mutations predicting benefits from radiation therapy

in ESCC patients. We examined the germline and somatic

mutations in ESCC and found several critical mutations of

candidate genes potentially associated with the response to

radiotherapy. Our study also showed that NOTCH1, which

was mutated in the radiosensitive group, negatively regulated

the response to radiotherapy in ESCC cells. The results provide

some potential predictive biomarkers and therapy targets for

improving the efficiency of radiotherapy in ESCC.
Materials and methods

Tissue and blood samples

We collected the formalin-fixed paraffin-embedded tumor

tissues and their paired normal blood DNA from six Chinese

ESCC patients. Tumor cell purity was assessed in hematoxylin

and eosin (H&E) sections. At least 5 slices of 10 mm of thickness

were cut from the paraffin block and tumor regions were scraped

according to the assessment of tumor enriched area. For these six

patients, all of them had received radical surgery to make sure

none tumor tissues left pathologically. After surgery, all patients

were received intensity-modulated radiation therapy (IMRT).

The clinicopathologic characteristics of ESCC patients were

provided in Table 1. According to the responses to

radiotherapy, the ESCC patients were divided into the

sensitive group (group S) and radioresistant group (group NS).

Group NS indicated that no response to radiotherapy was

achieved in ESCC patients, while the sensitive group (group S)

meant that complete response to radiotherapy was achieved. All

patients agreed and signed informed consent before recruitment

to the study, and the ethical committee of Ren Ji Hospital,

Shanghai Jiao Tong University School of Medicine has approved

the studies.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001173
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.1001173
Sequencing analysis

Whole-exome sequencing was performed by Precisiongenes

Technology, Inc. following a protocol including genomic DNA

extraction, DNA library construction, exome capture by

SureSelect Clinical Research Exome V2 Capture Kits (Agilent,

SantaClara, California, United States) and paired-end 150bp

sequencing on Illumina NovaSeq 6000 (Illumina Inc). Tumor

and normal library pairs were sequenced on a single flow cell.

And germline-only samples were run on the other flow cell.

Whole length of probe Clinical Research Exome V2 is 67.3Mb.

Raw fastq data achieved from Illumina were firstly checked

quality control, removed adapters and low-quality reads with

FASTP (8). Secondly, Burrows Wheller aligner (BWA) MEM

algorithm was applied to align high-quality clean data onto the

hg19 reference genome (GCA_000001405.1) with default

options. Thirdly, Samtools was used to convert the SAM file

into BAM (9). Fourthly, Picard Toolkit (https://github.com/

broadinstitute/picard) was carried out to sort mapped reads

according chromosome coordinate, mark PCR duplicates and fix

paired-end information in BAM files.

For germline mutations, single-nucleotide polymorphisms

(SNPs), small insertions and deletions (INDELs) were

discovered and filtered following the Genome Analysis Toolkit

(GATK, ht tps : / / so f tware .broad ins t i tu te .o rg /ga tk / )

recommendations of DNAseq best practice guidelines (https://

gatk.broadinstitute.org/hc/en-us/articles/360035535932-

Germline-short-variant-discovery-SNPs-Indels-) (10).

For tumor somatic mutations, candidate single-nucleotide

variants (SNVs) and INDELs were called by Mutect2. Then, an

estimate of the fraction of reads due to cross-sample

contamination for each tumor sample and an estimate of the

allelic copy number segmentation of each tumor sample were

emitted by Get Pileup Summaries and Calculate Contamination.

Finally, somatic mutations were filtered by Filter Mutect

Calls. Notably, Mutect2, Get Pileup Summaries, Calculate

Contamination and Filter Mutect Calls are components of

GATK. And the process mentioned above was referred to
Frontiers in Immunology 03
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website (https://gatk.broadinstitute.org/hc/en-us/articles/

360035894731-Somatic-short-variant-discovery-SNVs-Indels-).
Identification of differentially
mutated genes

65 germline differentially mutated genes and 344 somatic

differentially mutated genes were filtered from all mutation

genes following the criteria that any one of the mutated genes

was not in both the radiation-resistant group and the radiation-

sensitive group at the same time.
Tumor mutation burden and
microsatellite instability

Tumor mutation burden (TMB) is defined as the number of

somatic SNVs, and INDELs per megabase of genome examined

(mut/Mb) (Analysis of 100,000 human cancer genomes reveals the

landscape of tumor mutational burden). All SNVs and INDELs in

the captured region of targeted genes, including synonymous

mutations, are initially counted before filtering as described below.

Synonymous mutations are counted in order to reduce sampling

noise. While synonymous mutations are not likely to be directly

involved in creating immunogenicity, their presence is a signal of

mutational processes that will also have resulted in nonsynonymous

mutations and neoantigens elsewhere in the genome.

The form of genomic instability associated with defective

DNA mismatch repair in tumors is to be called microsatellite

instability (MSI). An algorithm for the detection of somatic

microsatellite changes using paired tumor-normal sequence data

was applied to all tumors, yielding a quantitative score by

MSIsensor (11). Tumors deemed to have inadequate tumor

content or quality (<200 ×median exon coverage, <10% median

exonic variant allele frequency, or no mutations with ≤20% tumor

content on pathologic review) were flagged, and their MSIsensor

scores were excluded from the primary analysis.
TABLE 1 Clinicopathologic characteristics of ESCC patients who received radiotherapy.

NS1 NS2 NS3 S1 S2 S3

Age 57 77 57 60 67 52

Gender Male Male Male Male Male Male

Histology ESCC ESCC ESCC ESCC ESCC ESCC

TNM IIIA IIIA IIB IIIA IIIA IIB

Dose (Gy) 50 50 50 50 50 46

Radio-sensitive No No No Yes Yes Yes

Relapse Yes Yes Yes No No No

Overall Survival (months) 13.83 27.00 15.77 51.20 68.20 47.40

Status Die Die Die survive survive survive
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Cell culture, transfection and
CCK-8 assay

We got the ESCC cell lines (KYSE-150 and TE-1) from the

cell bank of the Chinese Academy of Sciences (Shanghai, China).

Cells were cultured in RPMI 1640 (Hyclone, United States)

supplemented with 10% fetal bovine serum (FBS, Gibco, United

States) and 1% penicillin/streptomycin under a 5% CO2

atmosphere at 37°C. The lentiviruses containing the cDNA

encoding NOTCH1 or NOTCH1 shRNA were purchased from

Genechem (Shanghai, China) and used to infect the ESCC cells

in the presence of 6 mg/ml polybrene (sigma). Cell Counting Kit-

8 (CCK-8, CK04, Dojindo, Japan) was utilized to assess cell

viability and proliferation. Briefly, 3×103 cells per well were

seeded in 96 well microplates. At indicated time points, 10 µL of

CCK-8 solution was added to each well and incubated for 2

hours at 37°C. Then, we measured the absorbance values at 450

nm by using the microplate reader.
Real-time PCR and LDH release assay

Real-time PCR (qPCR) was performed as described previously

(12). The primers for NOTCH1 were listed as follows: Forward: 5’-

GAGGCGTGGCAGACTATGC-3’, Reverse: 5’- CTTGTA

CTCCGTCAGCGTGA-3’. An LDH Cytotoxicity Assay kit for

LDH release (catalog no. C0017) was purchased from Beyotime

(Shanghai, China) and the experiments were performed according

to the manufacturer’s instructions.
Statistical analysis

Using the cluster Profiler package (13), Gene ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were performed with

significantly genes. Correlation was evaluated by statistical R/

Bioconductor packages. The Student’s t-test and Fisher’s exact

test were utilized to estimate the significance of differences

between groups. The values were represented with the mean ±

standard error of the mean (SEM) from at least three

independent experiments. The P value of 0.05 or less was

considered statistically significant.
Results

Identification of somatic mutations
in ESCC

According to the response to radiation therapy, ESCC

patients were divided into two groups, radio-sensitive and
Frontiers in Immunology 04
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radio-resistant groups. The detailed clinical information was

listed in table 1. We performed the whole exome sequencing by

utilizing their tumor tissues and paired blood samples. After read

quality control, mapping and alignment to the hg19 reference

genome, a total of 1,829 somatic variations (median, 209.5;

range, 89–807; SD, 271.3) were identified in six patients

(Figure 1A). The exonic (44.07%) and intronic (37.07%)

region accounted for the majority of variation location

(Figure 1B). The predominant nucleotide changes were C>T

and T>C (Figure 1C). We analyzed somatic mutation profiles to

unravel the mechanism in the radio sensitivity of ESCC

(Figure 1D). The result indicated that signature Age has high

weight in all six ESCC patients. And the insensitive group was

enriched in signature AID/APOBEC cytidine deaminases

(COSMIC Signatures version 3.2).
TMB, Intra-tumor Heterogeneity and MSI
Comparisons between Radio-resistant
and sensitive Groups

It is known to all that there are closely linkages between

tumor mutational burdens (TMB) or microsatellite instability

(MSI) and the immunotherapy response in the treatment of

cancers. Therefore, we analyzed whether TMB, MSI and Intra-

tumor Heterogeneity were related with the response to

radiotherapy in ESCC. As shown in Table 2, the value of TMB

ranged from 1.22 to 11.65. Although the correlation coefficient is

0.55, there was no significant difference between the two groups

(p=0.26). Moreover, MSI was calculated to estimate the

differences as well. A correlation coefficient of 0.29 (p=0.58)

between two groups indicates no significant association of MSI

with the response to radiotherapy in ESCC patients. To

determine the correlation between radiosensitivity and

clonality, we further analyzed the purity and copy number

alterations in this study. The results showed that the

correlation coefficients were -0.02 (P=0.97) and 0.18 (P=0.74),

respectively. There was no obvious association between

radiosensitivity and clonality in ESCC. In addition, we also

studied whether age and tumor stage influenced the response

to radiotherapy. The results showed that no significant

differences were acquired, indicating that age and tumor stage

are not critical factors in the radioresistence of ESCC.
Functional analysis of somatic
differentially mutated genes

According to the criterions mentioned in the methods, 344

differentially mutated genes were filtered from all somatic

mutation genes. By referring to the COSMIC cancer gene

census, 33 mutated genes were retained and presented in

Figure 2A. GO and KEGG enrichment analysis were
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performed on these mutated genes to further explore their

functions and effects. As displayed in Figure 2B, biological

process terms showed that the mutated genes mainly

participated in histone modification, transmembrane transport,

and several classic signal transduction processes of cancer in

response to DNA damage. Additionally, these genes were

expressed in cellular components such as cell-cell junction,

cell-substrate junction, and collagen−containing extracellular

matrix, which was associated with migrations and invasions.

Enriched molecular function terms showed the similar results,

including cell adhesion molecule binding and methyltransferase

activity. The top 30 significantly enriched KEGG pathways
Frontiers in Immunology 05
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mainly included cell cycle, MAPK, VEGF, NOTCH, and

mTOR signaling pathways, whose activation or inactivation is

closely correlated with cell survival, proliferation and the

progression of cancer (Figure 2C).

Furthermore, we also performed the protein-protein

interaction (PPI) network by utilizing the differentially

mutated genes. As shown in Figure 3A, several hub genes with

most nodes, such as PIK3CA, NOTCH1, STAT3 and KDR, were

identified. Combined with the relative pathways, a pathway-

based protein interaction was presented in Figure 3B. The

mediators and pathways involved in the network were likely

related with affecting the radiosensitivity in ESCC.
TABLE 2 Difference of TMB, MSI, and purity between radio-sensitive and radio-resistant groups.

Type NS1 NS2 NS3 S1 S2 S3 Correlation P.value

TMB 5.69 1.74 2.02 4.06 11.65 1.22 0.55 0.26

MSI (%) 22.98 28.22 9.3 22.47 24.17 17.13 0.29 0.58

Purity 0.39 0.48 0.31 0.79 0.24 0.17 -0.02 0.97

Ploidy 2.40 1.66 1.35 1.88 2.17 1.59 0.18 0.74

Age 57 77 57 60 67 52 0.10 0.85

Stage 3 3 2 3 3 2 0.20 0.70
fronti
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FIGURE 1

Identification of somatic mutations profiles in ESCC. (A) The number of SNVs and InDels was acquired in each sample. (B) The statistics of
variation location in the genome in ESCC. (C) The distribution of somatic mutation type in ESCC patients. (D) The mutation signature
distribution based on COSMIC signature database. Group S means the radiosensitive group and group NS means the radioresistant group.
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Identification of germline mutations
in ESCC

Meantime, we also examined the genetic differences between

the radio-sensitive and radio-resistant groups, 65 germline

differentially mutated genes were found. In Figure 4A, mutation

frequency was shown in blocks of different shade. Compared with

the radio-sensitive group, there were more mutated genes and

greater mutated rates in the radio-resistant group. After the analysis

of differences between groups, spearman correlation coefficients

were calculated to evaluate the within-group differences (Figure 4B).

Positive coefficients (≥0.7) revealed high positive correlation within

samples in the same group. To investigate functions of these

germline differentially mutated genes, KEGG and GO enrichment

analysis were performed. The results highlighted several pathways
Frontiers in Immunology 06
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correlated with DNA damage repair, such as Homologous

recombination, Mismatch repair and Base excision repair

(Figure 4C). GO enrichment analysis showed that the germline

differentially mutated genes were predominantly enriched in DNA

damage checkpoint, cell cycle checkpoint, basement membrane,

extracellular matrix component, and motor activity (Figure 4D).

The results imply that the germline mutations might be also

involved in regulating the radiosensitivity in ESCC.
NOTCH1 negatively regulates the
response to radiotherapy in ESCC

To determine the role of NOTCH1 (a hub gene of PPI in

somatic mutated genes) in the radiosensitivity of ESCC, we then
B

C

A

FIGURE 2

Functional analysis of somatic differentially mutated genes. (A) The oncoprint plot of 33 somatic mutations. (B, C) GO (B) and KEGG
(C) enrichment analysis were performed on the differential mutant genes. Group S means the radiosensitive group and group NS means the
radioresistant group.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001173
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.1001173
B

A

FIGURE 3

The protein-protein interaction network in ESCC. (A, B) The protein-protein interaction network (A) by utilizing the differentially mutated genes
and pathway-based protein interaction (B) were presented.
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knocked down its expression in ESCC cells (KYSE-150 and TE-

1) by shRNA and utilized qPCR to verify the knockdown

efficiency (Figure 5A). As shown in Figure 5B, results of cck-8

showed that treatment with ionizing radiation (IR, 4Gy) led to

the decrease of cell viability in ESCC cells. The inhibitory effects

of IR on cell growth were enhanced by the knockdown

of NOTCH1. Consistently, the knockdown of NOTCH1

facilitated IR-induced cell death as determined by LDH release

assay (Figure 5C). Furthermore, to demonstrate the physical

effects of NOTCH1 on regulating the radiosensitivity of ESCC,

we also overexpressed NOTCH1 in ESCC cells (Figure 5D). Our

result showed that the decrease of cell viability induced by IR was

attenuated by the overexpression of NOTCH1 (Figure 5E).

NOTCH1 overexpression significantly mitigated IR-induced

cell death in ESCC cells (Figure 5F). These results imply that

the response to radiotherapy is negatively regulated by NOTCH1

in ESCC.
Frontiers in Immunology 08
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High expression of NOTCH1 was
accompanied with the low levels of
some immunotherapy-related cells

It is widely accepted that the response of tumors to radiotherapy

is regulated by multifactorial. Not only intrinsic cellular

radioresistance but also tumor immune microenvironment plays

important roles in affecting the death of cancer cells after the

treatment with radiotherapy (14, 15). To determine whether

notch1 also has a regulatory effect on the immune

microenvironment in ESCC, we thus analyzed the correlation of

notch1 and tumor immune infiltration. As shown in Figure 6A, the

results showed that the expression of NOTCH1 was not always

consistent in different cancers compared with their normal tissues by

using the TIMER database. We found that NOTCH1 was frequently

up-regulated in some cancers including colon adenocarcinoma,

kidney renal clear cell carcinoma and esophageal carcinoma,
B C

D

A

FIGURE 4

Identification of germline mutations in ESCC. (A) Heatmap of 65 differentially mutated genes between radio-sensitive and radio-resistant groups.
(B) Spearman correlation coefficient analysis of ESCC samples. (C) Top 15 enriched KEGG pathway of differentially genes. (D) Significantly
enriched GO of differentially genes. P-value of all GO terms displayed in pictures is smaller than 0.01. Group S means the radiosensitive group
and group NS means the radioresistant group.
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whereas the expression of NOTCH1 was significantly down-

regulated in kidney renal papillary cell carcinoma and lung

adenocarcinoma. The analysis results of the UALCAN database

showed that the expression of NOTCH1 was significantly increased

in esophageal squamous cell carcinoma (Figure 6B). To identify the

prognosis values of NOTCH1 in ESCC, we then determined

whether NOTCH1 was associated with the clinical outcome by

utilizing the Kaplan-Meier Plotter (16). As shown in Figure 6C, D,

there were no significant differences on the overall survival (OS) and

recurrence free survival (RFS) between the high levels of NOTCH1

and the low levels of NOTCH1 in ESCC patients. Furthermore, we

also examined the differences of immune cell based on the

expression of NOTCH1 in ESCC. As shown in Figure 6E, the

immune score was significantly decreased in the group with high

NTOCH1 expression. Moreover, we found several immune cells,

including activated B cell, activated CD8 T cell, activated dendritic

cell, monocyte and CD56bright natural killer cell, were significantly

enriched in the group with low NTOCH1 expression in ESCC

(Figure 6F). To further explore the potential relationships between

NOTCH1 expression and immune cell type, we performed the

correlation analyses. Our results showed that the expression of

NOTCH1 was negatively correlated with activated B cell (r=-
Frontiers in Immunology 09
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0.2755, P=0.0175) and immature dendritic cell (r=-0.2409,

P=0.0387) (Figure 6G). In addition, it is widely accepted that

checkpoint inhibitors play important roles in the therapy of

cancer. We then examined the relationship between NOTCH1

and the four immune checkpoint molecules. However, no

significant relations were observed between NOTCH1 and the

four immune checkpoint molecules in ESCC (Figure 6H). The

results indicate that activated B cell and immature dendritic cell

likely participate in NOTCH1-regulated the sensitivity of

radiotherapy in ESCC.
Discussion

It is widely known that radiation therapy is an important

strategy for the treatment of cancers, especially in ESCC.

However, due to the existence of inherent or acquired

radiation resistance, the effect of radiotherapy is far from

meeting people’s expectations. Many patients with ESCC have

not been significantly improved after radiotherapy. Therefore, it

is necessary to determine the critical factors involved in affecting

the radiosensitivity of ESCC. In the present study, we identified
B
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FIGURE 5

The response to radiotherapy is negatively regulated by NOTCH1. (A) The knockdown efficiency was verified by real-time PCR in ESCC cells.
(B) Ionizing radiation (IR)-induced the decrease of cell viability was facilitated by the knockdown of NOTCH1. * indicates p < 0.05 compared
with shControl group, # indicates p < 0.05 compared with IR+shControl group. (C) The promotive effects of IR on LDH release were enhanced
by NOTCH1 knockdown. (D) Real-time PCR was utilized to determine the overexpression efficiency. (E) The decrease of cell viability induced by
IR was attenuated by the overexpression of NOTCH1. * indicates p < 0.05 compared with Vector group, # indicates p < 0.05 compared with
IR+Vector group. (F) IR-induced cell death was mitigated by NOTCH1 overexpression in ESCC cells. All data was represented as the mean ±
standard error of the mean (SEM) from at least three independent experiments. Vector and shControl were utilized as the internal reference to
calculated the relative values, respectively.
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some somatic and germline mutations of genes and constructed

the pathway-based protein interaction network by performing

the whole-exome sequencing, which were potentially associated

with the response to radiotherapy in ESCC. Moreover, in vitro

studies showed that the inhibitory effects of IR on cell survival
Frontiers in Immunology 10
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were negatively regulated by NOTCH1 in ESCC cells. The results

provide some potentially new treatment targets for improving

the sensitivity of radiation in ESCC.

One of the most important findings in this study is that some

somatic mutated genes potentially associated with the
B C D E
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A

FIGURE 6

NOTCH1 is correlated with a few immunotherapy-related cells. (A) Expression of NOTCH1 in different types of cancers and their normal tissues.
(B) NOTCH1 was significantly upregulated in esophageal cancer, especially in ESCC. C and D: There were no significant differences on the
overall survival (C) and recurrence free survival (D) between the high levels of NOTCH1 and the low levels of NOTCH1 in ESCC patients. (E) The
immune score was significantly decreased in the group with high NTOCH1 expression in ESCC. (F) Several immune cells, including activated B
cell, activated CD8 T cell, activated dendritic cell, and CD56bright natural killer cell, were significantly enriched in the group with low NTOCH1
expression in ESCC. (G) Expression of NOTCH1 was negatively correlated with activated B cell and immature dendritic cell. (H) There were no
significant relations between NOTCH1 and the four immune checkpoint molecules in ESCC. *P<0.05, **P<0.01, ***P<0.001, and ns, P>0.05
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radiosensitivity were identified in ESCC. The hub genes (such as

STAT3, PIK3CA and NOTCH1) in protein-protein interaction

network likely play important roles in the response to radiotherapy.

STAT3 as a signal transducer and transcription activator mediates

many cellular physiological processes, including cell proliferation,

survival, angiogenesis and inflammatory response. Accumulating

evidence has implicated that Stat3 plays an important role in

regulating the response to radiotherapy in ESCC. Previous studies

have shown that inhibition of the STAT3 signaling axis in ESCC

cells increases radiosensitivity by inducing apoptosis and enhancing

DNA damage after radiotherapy (17, 18). Besides, the epithelial–

mesenchymal transition induced by ionizing radiation and

radioresistance are attenuated by STAT3 inhibition in ESCC (19).

The conclusions are in accordance with our result that mutation of

STAT3 was acquired in the radiosensitive group in ESCC. PIK3CA

activates AKT1 by the stimulations of receptor tyrosine kinase

ligands such as EGF, insulin, IGF1, VEGFA and PDGF, leading to

activating signaling cascades involved in cell growth, survival,

proliferation, motility and morphology (20). It is reported that

hyper-activation of PI3K is frequently observed in ESCC tissues and

selective targeting PI3Ka has been considered as a promising

strategy for the ESCC therapy (21). DNA damage, G2/M arrest

and apoptosis induced by radiotherapy are facilitated by PI3Ka
inhibition in ESCC, the sensitivity to radiation is increased by

PI3Ka inhibitors in esophageal squamous cell carcinoma (22).

PIK3CA mutation is associated with a better disease-free survival

and overall survival in esophageal squamous cell carcinoma (23). It

is in accordance with our study that mutation of PIK3CA was

acquired in the radiosensitive group. NOTCH1 functions as a

receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2

(JAG2) and Delta-1 (DLL1) to regulate cell-fate determination and

deregulation of the Notch pathway participates in regulating the

initiation and progression of tumors (24, 25). It is reported that

inhibition of the notch1 transcriptional complex suppresses tumor

growth by targeting cancer stem cells in ESCC (24). NOTCH1-

induced stemness promotes the resistance to chemotherapy or

radiotherapy in head and neck squamous cell carcinomas cells

(26). Our results indicated that mutation of NOTCH1 was observed

in the radiosensitive group in ESCC, which was consistent with a

previous study (27). Moreover, we found that the knockdown of

NOTCH1 facilitated the inhibitory effects of IR on the growth of

ESCC cells, whereas IR-induced cell death was attenuated by the

overexpression of NOTCH1. The results indicate that NOTCH1

acts as a negative regulator of radiosensitivity in ESCC. However,

further studies are still needed to determine the regulatory

mechanisms of the somatic mutated genes related with affecting

the radiosensitivity in ESCC.

Accumulating evidence has shown that DNA damage repair

has a clear role in resistance of anti-cancer radio-/chemo-

therapies (28). Irradiation with sensitizer can cause potential

chemical lethal damage to cells, such as single-strand breaks

(SSBs), chemically altered base lesions, abasic sites, interstrand

crosslinks, intrastrand crosslinks, and most consequentially,
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double-strand breaks (DSBs) (29). Six major pathways for

DNA repair, including direct reversal, base excision repair,

mismatch repair, nucleotide excision repair, homologous

recombination and non-homologous end-joining, have been

identified (30). Congenital DNA repair deficiency can cause

the accumulation of DNA damages leading to cell death or

malignant transformation into tumor cells. In our study, we

found that several pathways correlated with DNA damage

repair, including homologous recombination, mismatch repair

and base excision repair, were addressed in the results of

analyzing germline mutations. Genes (such as ABRAXAS1 and

MBD4) had significantly different variant status between the

radio-resistant and the radio-sensitive groups. It is reported that

heterozygous germline mutations in ABRAXAS1 plays

important roles in mitigating DNA damage response and

inhibiting deregulated G2-M checkpoint control (31). SNP in

coding regions of MBD4 Glu346Lys has been identified as a

significant predictor for the risk of ESCC (32). Deficiency of

MBD4 inhibits the normal apoptotic response to gamma-

irradiation and DNA-damaging agents (33). Our results

showed that mutations of ABRAXAS1 and MBD4 were

frequently observed in the radio-resistant and the radio-

sensitive groups, respectively. The findings indicate that these

germline mutations likely also participate in regulating the

response to radiotherapy in ESCC.

Accumulating evidence has indicated that tumor immune

microenvironment plays important roles in affecting the death of

cancer cells (14). Several biological responses, DNA damage repair

and the changes in tumor inflammatory microenvironments, are

involved in the death of cancer cell induced by radiotherapy (15).

Radiotherapy, in addition to direct cytotoxic effect on tumor cells,

could reprogram the immune microenvironment of tumors by

regulating the release of inflammatorymediators and the infiltrating

immunostimulatory cells (34). Antitumor adaptive immunity could

be evoked by the treatment with radiation therapy (35). Moreover,

radiotherapy in combination with immunotherapy has been

performed in some clinical trials of cancers. The inhibitory effects

of radiotherapy on the growth, recurrence and metastasis of cancers

were significantly ameliorated by the blockade of immune

checkpoints in the experimental study and clinical observations

(36, 37). Previous studies have shown that Notch1 represses the

infiltration of CD8(+) cytotoxic T lymphocytes and NK cells and

inhibits the release of IFN-g in melanoma (38). Notch1 positively

regulates the immune suppressive cells and inhibits the recruitment

of functional CD8(+) T cells. Inhibition of NOTCH1 facilitated the

efficacy of immunotherapy in melanoma (39). It is reported that

Notch1 is correlated with immune infiltrates in gastric cancer (40).

Deleterious NOTCH Mutation leads to the increased transcription

of genes related to DNA damage response and immune activation

in NSCLC (41). Until now, the effects of NOTCH1 on tumor

immune microenvironment in ESCC remain largely unknown. In

the present study, we further examined the relationship between

NOTCH1 and immune cells type in ESCC. The results showed that
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001173
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.1001173
some immune cells, such as activated CD8 T cell, activated dendritic

cell, and CD56bright natural killer cell, were significantly decreased

in the group with high NTOCH1 expression in ESCC. Moreover,

activated B cell and immature dendritic cell were negatively

correlated with the expression of NOTCH1. However, there were

no significant relations between NOTCH1 and the four immune

checkpoint molecules. Although the results imply that

NTOCH1 likely participate in regulating the tumor immune

microenvironment in ESCC, its specific physiological roles and

the corresponding regulatory mechanisms were still needed to be

elaborated in further studies. Meanwhile, there are some limitations

in the research, which needs to be addressed in future experiments.

The sample size utilized for bioinformatics data analysis was small

and the roles of NOTCH1 in the response to radiotherapy were just

validated by in vitro study.We will further collect the ESCC samples

to determine the effects of the key genes (especially NOTCH1) on

radiosensitivity and tumor immune infiltration and perform in vivo

experiments to demonstrate the regulatory mechanisms of

NOTCH1 in ESCC.
Conclusions

In summary, the present study examined the differences of

the germline mutations and somatic mutations between the

radiosensitive and radioresistence groups in ESCC. We also

identified the critical mutations of candidate genes, which

were likely associated with the response to radiotherapy. The

findings might provide some potential biomarkers and candidate

targets for improving the efficiency of radiotherapy in ESCC.
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Background: Traditionally, patients with microsatellite stability (MSS)/

microsatellite instability-Low (MSI-L)/proficient mismatch repair (p-MMR)

metastatic colorectal cancer (mCRC) have had poor benefit from

immunotherapy. Therefore, how to enhance the response of immunotherapy

is still a challenge for MSS/MSI-L/p-MMR CRC patient.

Case presentation: We report a special case of a rectal cancer patient with

programmed death-ligand 1 (PD-L1) negative expression, MSI-L/p-MMR,

tumor mutational burden-low (TMB-L) and liver metastases, who partial

response (PR) to immunotherapy after systemic therapy failure including

chemotherapy, anti-angiogenesis therapy and stereotactic body radiation-

therapy (SBRT). The computed tomography (CT) results showed that among

three liver metastases had been reduction or disappearance after Tislelizumab

treatment for three times. Besides, the carcinoembryonic antigen (CEA) and

carbohydrate antigen 199 (CA199) decrease and maintained at a low level for 3

months. The progression-free survival (PFS) of patient has exceeded 3 months.

Conclusions: This case indicates that the patient with MSI-L/p-MMR mCRC

can respond to anti-PD-1 immunotherapy after systemic therapy. And the

SBRT (targeting liver metastases) may a method for increase-sensitivity of

immunotherapy in CRC patients with MSI-L/p-MMR.

KEYWORDS

advanced rectal cancer, liver metastasis, immunotherapy, MSS/MSI-L/p-MMR, SBRT
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Case presentation

A 49 years old man was admitted to our hospital on December

21, 2020 with the rectal cancer liver metastasis for more than 1

year. The CT results showed that a main metastatic lesion (3.4 ×

2.6 cm) in the left and caudate lobe of the liver, a metastatic nodule

(1.5 × 1.1 cm) in the hepatic portal and the localized common bile

duct compression (Figure 1). The puncture pathology biopsy of

liver metastases shows moderately differentiated tubular

adenocarcinoma of colorectal origin. And the next-generation

sequencing (NGS) result showed that the tumor with MSI-L

(11.11%), PD-L1 negative expression and TMB-L (8.2 Muts/

Mb). The serum biomarker showed CEA and CA199 at 17.68

ng/ml and 1109.89 u/ml, respectively, and normal levels of alpha-

fetoprotein (AFP). The patient received a radical surgery when

rectal cancer initial diagnosis in February 2018. The TNM stage

was T2N0M0. Follow-up observations found that tumor liver

metastases in July 2019, then, he has received six cycles of

conversion therapy (CapeOX + Bevacizumab) and nine cycles

of maintenance therapy (Capecitabine + Bevacizumab)

until disease progression on December 21, 2020.

After admission, the patient received the FOLFIRI combined

with Cetuximab treatment, And each liver metastatic lesions

received SBRT, the radiotherapy dose was 350 cGy/d with ten

times. From December 21, 2020 to May 27, 2021, the serum

biomarker showed a decrease in CEA and CA199 to 6.02 ng/ml

and 85.54 u/ml, respectively. And the CT results showed that the

metastatic lesion which in the left and caudate lobe of liver is

reduction, the hepatic portal nodule has disappeared and the

compressive bile duct has improvement. However, there’s a new

metastatic lesion (2.7 × 1.7cm) in liver S5 (Figure 2). Thus, the

curative effect was evaluated as progressive disease (PD) with a

PFS of 5 months. So, the SBRT was aimed at the new liver’s

lesion (S5) again in May 31, 2021, and the Regorafenib (third-

line therapy) is added for treatment. Similarly, the CT results

showed a new metastatic lesion (1.5 × 1.2cm) in liver S6 on

September 03, 2021 (Figure 3). And the serum biomarker
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showed elevated CA199 to 11613.09 u/ml, with CEA and AFP

at normal levels. Therefore, the curative effect was assessed as PD

with a PFS of 3 months.

So far, the disease continued to progress rapidly after using

first-, second- and third-line treatment. The patient was decided

to receive the first dose of anti-PD⁃1 drug (Tislelizumab) on

September 04, 2021 after obtaining the consent of the patient

and his family after. Surprisingly, after three cycles, the CT

results showed that the metastatic lesion which in the left and

caudate lobe and S5 of liver is reduction and the lesion of S6 has

disappeared (Figure 4). And the serum biomarker showed a

significantly decrease in CA199 from 11613.09 u/ml to 333.39 u/

ml. Therefore, the curative effect was assessed as PR with a PFS

of 3 months after the anti-PD⁃1 therapy. The change of serum

biomarker and timeline of treatment was shown in Figure 5.
Discussion

Worldwide, the CRC is one of the most common cancers

and the third leading cause of cancer-related deaths (1).

Especially, for mCRC patients, the 3-year survival rate is only

about 30%, while the survival of MSS/MSI-L/p-MMR patients is

even lower (2). The current primary treatment for unresectable

mCRC is systemic therapy (e.g., chemotherapy, radiation

therapy, targeted therapy, immunotherapy, and combinations

of them) (3). Today, immunotherapy has shown significant

efficacy in a variety of solid tumors, but appears to benefit

only 5% of mCRC patients (those with high microsatellite

instability (MSI-H)/defective mismatch repair (d-MMR)) (4).

Therefore, the application of immune-therapy in mCRC patients

(especially with MSS/MSI-L/p-MMR patients) remains full

of challenges.

Generally, the PD-L1 positivity expression, MSI-H/d-MMR

and tumor mutational burden-high (TMB-H) are considered as

predictors of effective immunotherapy (5). However, it has been

shown that the expression of PD-L1 is not the same in primary
FIGURE 1

The CT scan of the patient’s liver on Dec. 2020. The main metastatic lesion (3.4 × 2.6cm) in the left and caudate lobe of the liver (A), the
metastatic nodule (1.5 × 1.1cm) in the hepatic portal (B) and the localized common bile duct compression (C).
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and metastatic sites of colorectal cancer, and even the PD-L1

status does not correlate with both PFS and Overall survival (OS)

in some MSS/p-MMR CRC patients (6, 7). And the predictive

effects of TMB or MSI status may not be applicable to all solid

tumors (8). In addition, the status of PD-L1, TMB and MSI/

MMR may not be reliable predictors due to assay methods,

different cut-off value settings, etc. Interestingly, the patient is an

exception to the classical prediction: PD-L1 negative expression,

MSI-L/p-MMR and TMB-L, but with a partial response (PR) to

immunotherapy. Therefore, in order to benefit more patients

with MSS/MSI-L/p-MMR CRC from immunotherapy, it is

necessary to find the reasons for the failure of classical

predictors in this case and to reveal the possible factors.

More and more studies are exploring how to transform the

“cold” tumor of MSS into the “hot” tumor of MSI-H. One of the
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most important strategies is radiation therapy (RT) combined

with immunotherapy. Although, the radiofrequency ablation

(RFA) is considered to be the first treatment for unresectable

liver metastases, RFA has limitations for some lesions, such as its

size larger than 3 cm and adjacent to important vessels or bile

ducts (9). Besides, some studies has been shown that there is no

significant difference in OS between the SBRT or RFA treatment

for liver metastases. But, for the size larger than 2 cm tumors,

SBRT improves the freedom from local progression (FFLP)

more than RAF (10). Thus, as one of the important treatments

for liver metastases in CRC patients, RT (especially SBRT), may

have a better prospect. It has been shown that it can trigger type I

IFN response and activate anti-tumor T cells, through cGAS-

STING signaling pathway, and improve tumor immune

microenvironment, thus synergistically enhancing anti-tumor
FIGURE 3

Via CT to contrast the curative effect between the Sep 2021 and May 2021. The size of the metastatic lesion which in the left and caudate lobe
of liver is increase from 2.6 × 2.1cm to 3.3 × 2.6cm (A, D). The size of the metastatic lesion which in liver S5 is reduction from 2.7 × 1.7cm to
2.3 × 1.1cm (B, E). The new metastatic lesion (1.5 × 1.2cm) in liver S6 (C, F).
FIGURE 2

Via CT to contrast the curative effect between the May 2021 and Dec 2020. The size of the metastatic lesion which in the left and caudate lobe
of liver is reduction from 3.4 × 2.6cm to 2.6 × 2.1cm (A, E). The hepatic portal metastatic nodule has disappeared (B, F) and the compressive
bile duct has improvement (C, G). The new metastatic lesion (2.7 × 1.7cm) in liver S5 (D, H).
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effects (11, 12). RT is also an effective “immune booster”, and the

immunotherapy tolerance in multiple progressive MSS/p-MMR

CRC patients with liver metastases can be overcome even by the

local immunomodulatory therapy such as SBRT (13, 14). In

addition, Satoshi et al. showed that chemoradiotherapy

sequenced with nivolumab was effective in treating patients

with locally advanced rectal cancer with MSS (15). The study

(NCT02437071) by Segal et al (16) also indicated an objective

response in non-irradiated lesions after the application of RT
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combined with pembrolizumab in MSS/p-MMR CRC patients

(although the ORR was only 9%). Likewise, regorafenib and

others have similar effects. For example, a study (NCT03406871)

showed a significant effect of regorafenib in combination with

nivolumab in 24 MSS/p-MMR advanced CRC patients and the

overall objective response rate (ORR) reached 33%, but only two

patients with liver metastases (2/13) (17) Fakih et al (18)

demonstrated that regorafenib combined with nivolumab

achieved an ORR of 7.1% in 70 MSS mCRC patients.
A

B

FIGURE 5

The change of serum biomarker (A) and timeline of treatment (B). CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; PD,
disease progression; SBRT, stereotactic body radiation-therapy; PFS, progression-free survival.
FIGURE 4

Via CT to contrast the curative effect between the Nov 2021 and Sep 2021. The size of the metastatic lesion which in the left and caudate lobe
of liver is reduction from 3.3 × 2.6cm to 2.8 × 2.2cm (A, D). The size of the metastatic lesion which in liver S5 is reduction from 2.3 × 1.1cm to
2.0 × 0.9cm (B, E). The metastatic lesion in liver S6 has disappeared (C, F).
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However, the result also showed that none of the liver metastases

patients (0/47). Overall, some MSS/p-MMR advanced CRC

patients are effective for combination immunotherapy.

Although the exact mechanism is still unclear, based on the

current findings, RT combined with immunotherapy seems to

better promote the benefit of immunotherapy in MSS/p-MMR

CRC patients with liver metastases. So, this may explain why the

patient (with PD-L1 negative, MSS/p-MMR, TMB-L and liver

metastases only) responded well to immunotherapy after

systemic treatment failure. For our case, one of the most

important factors may be SBRT, but this also needs and

deserves more relevant studies to verify.

Conclusion

We report a novel case of PD-L1 negative expression,

MSI-L/p-MMR, TMB-L and with liver metastases rectal

cancer patient who obtained PR and the PFS has exceeded 3

months after immunotherapy. This case indicates that the

patient with MSI-L/p-MMR mCRC can respond to anti-PD-1

immunotherapy after systemic therapy. And the SBRT

(targeting liver metastases) may a method for increase-

sensitivity of immunotherapy in CRC patients with MSI-L/

p-MMR.
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FGFBP1 as a potential
biomarker predicting bacillus
Calmette–Guérin response
in bladder cancer

Fei Li1†, Henghui Zhang1†, Yu Wang1†, Zhihao Yao1,
Kunfeng Xie1, Qixin Mo1, Qin Fan2, Lina Hou3*,
Fan Deng4* and Wanlong Tan1*

1Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
2School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
3Department of Healthy Management, Nanfang Hospital, Southern Medical University,
Guangzhou, China, 4Department of Cell Biology, School of Basic Medical Science, Southern
Medical University, Guangzhou, China
Accurate prediction of Bacillus Calmette–Guérin (BCG) response is essential to

identify bladder cancer (BCa) patients most likely to respond sustainably, but no

molecular marker predicting BCG response is available in clinical routine.

Therefore, we first identified that fibroblast growth factor binding protein 1

(FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1

had a poor outcome for BCa patients in the E-MTAB-4321 and GSE19423

datasets. These different expression genes associated with FGFBP1 expression

are mainly involved in neutrophil activation, neutrophil-mediated immunity,

and tumor necrosis factor-mediated signal pathways in biological processes. A

significant positive correlation was observed between FGFBP1 expression and

regulatory T-cell (Treg) infiltration by the Spearman correlation test in the BCG

cohort (r = 0.177) and The Cancer Genome Atlas (TCGA) cohort (r = 0.176),

suggesting that FGFBP1 may influence the response of BCa patients to BCG

immunotherapy through immune escape. Though FGFBP1 expression was

positively correlated with the expressions of PD-L1, CTLA4, and PDCD1 in

TCGA cohort, a strong association between FGFBP1 and PD-L1 expression was

only detected in the BCG cohort (r = 0.750). Furthermore, elevated FGFBP1 was

observed in BCa cell lines and tissues in comparison to corresponding normal

controls by RT-qPCR, Western blotting, and immunohistochemical staining.

Increased FGFBP1 was further detected in the failures than in the responders by

immunohistochemical staining. Notably, FGFBP1 is positively associated with

PD-L1 expression in BCa patients with BCG treatment. To sum up, FGFBP1 in

BCa tissue could be identified as a promising biomarker for the accurate

prediction of BCG response in BCa.
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Introduction

Bladder cancer (BCa) is one of the most common malignancies

of theurinary tractworldwide, and it isprojected tocontinue to rise in

the next decade (1). At diagnosis, ~75% of bladder cancers are

confined to the mucosa [nonmuscle invasive disease (NMIBCa)].

Transurethral resection of the bladder tumor (TURBT) combined

with intravesical instillations is the mainstay therapy for those with

NMIBCa. However, more than 50% of these cases will recur after

resection and ~10% to ~20% will invade deeper layers (2).

International guidelines recommend a clinical–pathological

classification of NMIBC into low-, intermediate-, and high-risk

groups. Further treatments aiming to reduce the risk of recurrence

and/or progression into MIBC are warranted (3).

For many years, intravesical instillation of bacillus Calmette–

Guérin (BCG)has been the gold standard treatment for patientswith

intermediate- or high-risk diseases to reduce the risk of recurrence

and possibly progression (3–5). However, in approximately half of

NMIBCa patients, intravesical BCG treatment fails due to BCG

intolerance, BCG refractory to treatment, and BCG relapse (5). The

current guidelines recommend early radical cystectomywith urinary

diversion as a preferred option for those patients who would have a

negative impact on their quality of life (6). Although various clinical

and molecular biomarkers have been tested to help improve the

accurate prediction of BCG response, currently, no ideal molecular

biomarker predicting response to BCG therapy is available in clinical

routine (4).

To find and identify idealmolecular biomarkers that can predict

the response to BCG treatment in BCa, we identified that fibroblast

growth factor binding protein 1 (FGFBP1) was upregulated in

failures of BCG therapy, and the increased FGFBP1 had a poor

outcome for BCa patients based on bioinformatics. Furthermore,

FGFBP1 has been suggested to be involved in immune-related

functions and pathways. FGFBP1 is a secretory protein that can

specifically bind to fibroblast growth factors (FGFs) immobilized in

the extracellular matrix to promote its release (7, 8). It has been

receiving much more attention because of its considerable role in

enhancing the biological and biochemical activities of FGFs and

participating in the progression of several cancers (9–11). FGFBP1

was further demonstrated to be positive for PD-L1 expression inBCa

tissues with BCG treatment. Briefly, FGFBP1 could be identified as a

promising biomarker that may help to predict the prognosis of BCa

patients with intravesical BCG treatment.
Materials and methods

Acquisition and preprocessing
of datasets

Gene expression data and clinical information of BCa

samples were obtained from The Cancer Genome Atlas
Frontiers in Immunology 02
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Urothelial Bladder Carcinoma (TCGA-BLCA), the Gene

Express ion Omnibus (GSE19423, GSE163899, and

GSE176178), and the ArrayExpress (E-MTAB-4321) databases.

For each kilobase of an exon, we determined gene expression

using fragments per million reads mapped (FPKM) in all the

datasets. After effective normalization, the E-MTAB-4321,

GSE19423, GSE163899, and GSE176178 datasets were

subsequently integrated into the BCG cohort. All the patients

received transurethral resection of BCa plus adjuvant BCG

intravesical instillations. These patients were classified into

BCG responders and failures based on the response to BCG

therapy. BCG failures were defined as patients who had a

recurrence (any stage or grade) of BCa within follow-up, and

BCG responders had no recurrence during follow-up. The

detailed clinical information of patients in each dataset is

shown in Table 1.
Identification of prognosis-related genes

The different expression gene (DEGs) analysis between BCG

responders and failures in the E-MTAB-4321dataset was

performed with the “limma” package (12). A p < 0.05 and |

log2 (fold change)| ≥ 2.0 were regarded as significantly different.

Univariate Cox regression analysis was used to identify DEGs

with prognostic values. Kaplan–Meier survival curves were

plotted to determine the prognostic value of the genes and

compared by using the log-rank test. The receiver operating

characteristic (ROC) curve was used to evaluate the accuracy of

FGFBP1 for the prediction of BCG response.
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed in the

GSE19423 and E-MTAB-4321 datasets to gain insights into the

biological pathways of the high- and low-expression groups

stratified by FGFBP1 expression. A false discovery rate (FDR)

of <0.25 and an adjusted p < 0.05 were considered

statistically significant.
Gene ontology and Kyoto Encyclopedia
of Genes and Genomes pathway analysis
of DEGs

The functions of DEGs were annotated using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis and Gene Ontology (GO) analysis with the ‘‘Cluster

Profiler’’ package (13).
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Estimation of tumor-microenvironment
cell infiltration

The CIBERSORT algorithm was used to investigate the

relative abundance of different immune cell types (14). The

correlation between FGFBP1 and PD-L1 expression was

examined using the Spearman correlation coefficient.
Single-cell sequencing analysis

The Tumor Immunosingle Cell Centre (TISCH) database is

used to analyze the expression of FGFBP1 at a single-cell level (15).
Tissue specimens and cell line

Studies were done with the approval of the bioethics

committee of Nanfang Hospital (Guangzhou, China). All

subjects were informed and gave their written consent. All

tissue specimens were obtained from patients diagnosed with

BCa from the Chinese Han population at Nanfang Hospital from

January 2018 to April 2022. A total of 15 pairs of tumor-paired

tissues and normal adjacent tissues were obtained. Of these, 10

weremale cases and five were female cases, with ages ranging from

36 to 68 years old.

The human BC cell lines UM-UC-3, T24, and SW780 were

cultured in DMEM medium (Gibco, Carlsbad, CA, USA)

supplemented with 10% fetal bovine serum (Serana, Berlin,
Frontiers in Immunology 03
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Germany) and 1% penicillin/streptomycin at 37°C in a

humidified incubator and a 5% CO2 atmosphere. The cell lines

were authenticated by short tandem repeat (STR) profiling upon

receipt and were propagated for <6 months after resuscitation.
Real-time quantitative polymerase
chain reaction

Real-time quantitative polymerase chain reaction (RT-qPCR)

was performed as described in the previous study (16). The primer

sequences used in this study are presented in Supplementary

Table S1.
Western blotting

The methods were described in our previous study (16).

Briefly, rabbit monoclonal primary antibodies against human

FGBP1 (dilution 1:1,000; Proteintech, Chicago, IL, USA) and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (dilution

1:1,000; Proteintech, Chicago, IL, USA) were used in this assay.

The protein levels were normalized to those of GAPDH.
Immunohistochemical staining

There were 17 clinical BCa sections in immunohistochemistry,

including 10 responders and seven failures to BCG intravesical
TABLE 1 Clinical information of bladder cancer patients in BCG cohort.

Characteristics ALL (n = 208) E-MTAB-4321 (n = 88) GSE19423 (n = 48) GSE163899 (n = 32) GSE176178 (n = 40)

Age [years; no. of patients (%)]

≥65 126 (60.6) 53 (60.2) 28 (58.3) 19 (59.4) 26 (65)

<65 82 (39.4) 35 (30.8) 20 (41.7) 13 (40.6) 14 (35)

Gender [no. of patients (%)]

Male 166 (79.8) 70 (79.5) 37 (77.1) 28 (87.5) 31 (77.5)

Female 42 (20.2) 18 (20.5) 11 (22.9) 4 (12.5) 9 (22.5)

BCG [no. of patients (%)]

Responder 116 (55.8) 52 (59.1) 26 (54.2) 15 (42.9) 23 (57.5)

Failure 92 (44.2) 36 (40.9) 22 (45.8) 17 (57.1) 17 (42.5)

Stage [no. of patients (%)]

CIS 2 (0.9) 2 (2.3) 0 0 0

Ta 52 (25) 52 (59.1) 0 0 0

T1 122 (58.7) 34 (38.6) 48 0 40 (100)

NA 32 (15.4) 0 0 32 (100) 0

Grade [no. of patients (%)]

Low 93 (44.7) 40 (45.6) 28 (87.5) 25 (78.1) 0

High 75 (36.1) 48 (54.5) 20 (62.5) 7 (21.9) 0

NA 40 (19.2) 0 0 0 40 (100)
NA, not available.
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instillations. For immunohistochemical staining, the expressions of

FGFBP1 and PD-L1 in tissue were examined by an ultrasensitive

streptavidin-peroxidase (S-P) technique (Zhongshan Biotechnology

Co. Ltd, Beijing, China) with the standard protocol as previously

shown (17). Rabbit monoclonal primary antibodies against human

FGBP1 (dilution 1:400; Proteintech, Chicago, IL, USA) and PD-L1

(dilution 1:200; Abcam, USA) were employed. Polyperoxidase

rabbit IgG was used as the secondary antibody (Zhongshan

Biotechnology Co. Ltd, China.). Negative controls were processed

in an identical manner, with the primary antibody replaced by PBS.

An independent assessment of immunoreactivity was conducted by

two pathologists.
Statistical analysis

R software (version 4.2.0, MathSoft, USA) was used for

statistical analyses, and GraphPad Prism (version 9.0,

GraphPad Software, USA) was used for graphing and analysis.

Univariate Cox regression analysis was used to screen for genes

with prognostic values. Survival analysis was performed by using

the Kaplan–Meier method. Statistical analysis of RT-qPCR,

Western blotting, and immunohistochemical staining was

performed using two-tailed Student’s t-tests. p < 0.05 was

regarded as statistically significant.
Results

Elevated FGFBP1 may be associated with
the poor response to BCG treatment

DEGs analysis was performed on the E-MTAB-4321 dataset.

Of the detected DGEs, 80 were upregulated and 147 were

downregulated genes (Figure 1A). The prognostic values of

those DEGs were further calculated by using univariate Cox

regression analysis with p < 0.001 as the screening criterion.

Finally, 11 DEGs with prognostic values were found (Figure 1B).

When the median of individual gene expression values was used

as the cutoff points, patients in the E-MTAB-4321 and

GSE19423 datasets were divided into low- and high-expression

groups, respectively, to explore the relationship between gene

expression and over survival. Noticeably, only FGFBP1 was

significantly associated with patient prognosis in the E-MTAB-

4321 and GSE19423 datasets (p < 0.05). The expression of

FGFBP1 is negatively associated with the prognosis of BCa

patients (Figure 1C; Supplementary Figure S1A). In addition,

the role of elevated FGFBP1 expression in predicting the

response to BCG in BCa patients was further explored using

ROC curves. The results showed that elevated FGFBP1 may

exhibit the ability to predict the response to BCG in the E-

MTAB-4321 (AUC = 0.687) and GSE19423 (AUC = 0.614)

datasets (Figure 1D). Furthermore, the result was confirmed in
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the GSE163899 and GSE176178 datasets (Supplementary Figure

S1B). These findings suggested that elevated FGFBP1 may be

associated with the poor response to BCG treatment.
Potential biological functions of FGFBP1

In TCGA-BLCA dataset, the median value of FGFBP1

expression was used as a cutoff for DEG analysis with an

adjusted p < 0.01. As a result, 1,527 downregulated and 1,326

upregulated genes were found. The heatmap of those DEGs

demonstrated the top 20 up- and downregulated genes

(Figure 2A). GO and KEGG analyses were then performed on

the DEGs to determine their biological functions. These DEGs

associated with FGFBP1 expression were mainly involved in

neutrophil activation, neutrophil-mediated immunity, and

tumor necrosis factor-mediated signal pathways in biological

processes. Genes associated with molecular function involve

cell–cell linkage and focal adhesion. Among the cellular

components, the main enrichment was the binding of small

GTPases. KEGG analysis showed that DEGs were involved in 10

KEGG pathways, including the development of tumors, cellular

regulation, the AMPK signaling pathway, and the p53 signaling

pathway (Figure 2B). In addition, we performed a GSEA analysis

in the E-MTAB-4321 and GSE19423 datasets with the median

value of FGFBP1 expression as a cutoff. Both datasets were

significantly enriched in the cell cycle as well as mismatch repair,

suggesting a potential mechanism for FGFBP1 (Figure 2C).
FGFBP1 was associated with tumor
immune cell infiltration

To further explore the relationship between FGFBP1 and

the tumor immune microenvironment, the extent of immune

cell infiltration in each sample of the BCG cohort was

calculated using the CIBERSORT algorithm. The results

showed that resting CD4+ T cells had the highest level of

infiltration than other tumor immune cells in both BCG

responders and failures (Figure 3A). Notably, Tregs had a

significantly higher degree of infiltration in failures compared

with responders in the BCG cohort (p = 0.01) (Figure 3A).

Furthermore, there seems to be a potential correlation between

FGFBP1 and Tregs, as clarified by the weak correlation

coefficient (r = 0.177, p < 0.05) (Figure 3B). A similar result

was found in TCGA cohort (r = 0.176, p < 0.001) (Figure 3C).

There was a significant positive correlation between FGFBP1

and Foxp3 (r = 0.138, p = 0.005) (Figure 3D), which is a surface

marker of Tregs. The results also showed a significant negative

correlation between FGFBP1 expression and B-cell and CD4+

T-cell infiltration (p < 0.01) (Figure 3B). This indicated that

FGFBP1 may influence the response of BCa patients to BCG

intravesical instillations through immune escape.
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FIGURE 1

Elevated FGFBP1 may be associated with poor BCG response. (A) Volcano plot showed DEGs between BCG responders and failures in the E-
MTAB-4321dataset, with FGFBP1 significantly upregulated in failures (marked in red). (B) Univariate Cox analysis revealed 11 genes that were
associated with the prognosis of BCa in the E-MTAB-4321 dataset. (C) K-M survival curves indicated that elevated FGFBP1 expression was
significantly associated with poor prognosis in the E-MTAB-4321 and GSE19423 datasets. (D) The ROC curves suggested that FGFBP1 has the
ability to predict response to BCG treatment.
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FGFBP1 is positively associated
with PD-L1, as indicated by
bioinformatic analysis

The Spearman correlation coefficient was used to investigate

the correlation between FGFBP1 and immune checkpoints.

FGFBP1 expression was highly positively correlated with the

expression of PD-L1, CTLA4, PDCD1, PDCD1LG2, LAG3, and

HVACR2 in TCGA cohort (p < 0.01) (Figure 4A). Subsequently,

the findings were confirmed in TCGA cohort (Figure 4B) and

the BCG cohort (Figure 4C). Interestingly, a strong correlation

between FGFBP1 and PD-L1 expression was found in the BCG

cohort (r = 0.750, p < 0.001) (Figure 4C).
Increased FGFBP1 is verified in BCa

We investigated the expression of FGFBP1 at the single-cell

level in BCa using the TISCH database. FGFBP1 was found to be

expressed mainly in BCa epithelial cells (Figure 5A). The
Frontiers in Immunology 06
351
expression of FGFBP1 was significantly elevated in BCa cell

lines and BCa tissues in comparison to corresponding normal

controls, as measured by RT-qPCR and Western blotting

(Figures 5B–E). FGFBP1 protein was observed, apparently in

the cytoplasmic compartments of cancerous cells by

immunohistochemical staining (Figure 5F), which was

consistent with our Western blotting results.
FGFBP1 is positively correlated with
PD-L1, as demonstrated in BCa

Expression of FGFBP1 was further detected by

immunohistochemical staining in the BCG responders and

failures. The staining of FGFBP1 protein in the failures was

stronger than in the responders (Figures 6A, B). The

immunohistochemical staining scores of FGFBP1 in each BCa

tissue were calculated. The median score of FGFBP1 was 2.235,

and we divided the cohorts into FGFBP1 high- and low-

expression groups stratified by the median FGFBP1
B

C

A

FIGURE 2

Potential biological functions of FGFBP1. (A) The heatmap of DEGs was defined by FGFBP1 in TCGA dataset, p < 0.05. (B) GO and KEGG
analyses of DEG were performed in TCGA dataset. (C) GSEA analysis was conducted in high- and low-expression groups divided by the median
value of FGFBP1 expression in the E-MTAB-4321 and GSE19432 datasets.
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FIGURE 3

FGFBP1 was associated with tumor immune cell infiltration. (A) Violin plot of tumor immune cell infiltration showed that Tregs are significantly
more infiltrated in the failures than in the responders in the BCG cohort. (B) A significant positive association was observed between FGFBP1
expression and Treg infiltration in the BCG cohort. (C) FGFBP1 is positively correlated with Treg infiltration in TCGA cohort. (D) FGFBP1 is
positively correlated with FOXP3 expression in TCGA cohort. *p < 0.05; **p < 0.01; and ***p < 0.001.
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expression. The expression level of PD-L1 was significantly

higher (p < 0.001) when FGFBP1 was increased, implying that

FGFBP1 may play significant antitumor immunity functions in

failures (Figures 6C, D).
Discussion

NMIBC is characterized by a high probability of recurrence

and a risk of progression to muscle-invasive disease. NMIBC

management requires a proper local resection followed by a risk-

based treatment with intravesical agents (18). BCG intravesical

adjuvant therapy has been effectively used in the management of

intermediate- and high-risk NMIBC to prevent/delay tumor

recurrence and/or progression (19, 20). However, 30% of those

BCa patients would experience recurrence and progression into

a more aggressive disease state (21). Accurate prediction of BCG

response is essential to identify the patients most likely to

respond sustainably, but no molecular marker predicting BCG

response is available up to date.
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In this study, we initially identified that BCa patients with

higher FGFBP1 expression had a worse prognosis in the E-

MTAB-4321 and GSE19423 datasets. Furthermore, ROC curves

indicated that elevated FGFBP1 may exhibit the ability to predict

the response to BCG in the E-MTAB-4321 (AUC = 0.687) and

GSE19423 (AUC = 0.614) datasets. Moreover, the expression of

FGFBP1 is significantly elevated in failures compared with

responders to BCG treatment, as confirmed by Western

blotting and immunohistochemical staining. Briefly, FGFBP1

could predict the response to BCG for BCa patients. However,

the roles of higher FGFBP1 in failures have not been

studied extensively.

Although the mechanism concerning BCG action is still not

completely understood, one main explanation is that BCG

exposure to urothelium and bladder-resident macrophages

elicits an inflammatory and immune response against tumoral

cells (22–26). Moreover, an intrinsic or acquired immune

resistance would be the possible resistance mechanism to BCG

treatment. It is known that PD-L1 overexpressed in cancer cells

could let those cells evade the immune response, inducing T-cell
B C

A

FIGURE 4

FGFBP1 is positively associated with PD-L1 indicated by bioinformatic analysis. (A) FGFBP1 was positively correlated with PD-L1, CTLA4, PDCD1,
PDCD1LG2, LAG3, and HAVCR2. (B) FGFBP1 was positively associated with PD-L1 expression in TCGA cohort. (C) FGFBP1 was positively
associated with PD-L1 expression in the BCG cohort.
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FIGURE 5

Increased FGFBP1 is verified in BCa. (A) Expression of FGFBP1 at the single-cell level in BCa using the TISCH database. Each dot corresponds to a
single cell and is colored according to the cell cluster. The color density indicated the expression of FGFBP1. (B) FGFBP1 was verified in BCa cell
lines by RT-qPCR. (C) FGFBP1 was verified in BCa cell lines by Western blotting. (D) FGFBP1 was verified in BCa tissues by RT-qPCR. (E) FGFBP1 was
verified in BCa tissues by Western blotting. (F) Elevated FGFBP1 was observed in BCa tissues by immunohistochemistry staining. *p < 0.05; **p <
0.01; ***p < 0.001, **** p < 0.0001.
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anergy (24, 27, 28). Immunotherapy has become an increasingly

promising therapeutic method for advanced BCa, with PD-L1

inhibitors being able to halt immune evasion of cancer cells by

preventing PD-1 from binding to its ligand (28).

FGFBP1, belonging to the FGFBP family, is a secretory

protein that can specifically bind to FGFs immobilized in the

extracellular matrix and present them to their cognate receptors

(8). FGFBP1 is expressed in epithelial cells in the skin, eye, ileum,
Frontiers in Immunology 10
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and colon (8, 29–31), and plays an important role in

proli feration and differentiat ion during embryonic

development and wound healing (30, 32). Moreover, it was

also found to be upregulated in various cancers than its low

expression in normal adult tissues (30). Elevated FGFBP1

facilitates cancer growth and metastasis, which was

demonstrated to act as an angiogenic switch molecule in

cancer by enhancing FGF signaling including angiogenesis
B

C

D

A

FIGURE 6

FGFBP1 is positively correlated with PD-L1 demonstrated in BCa. (A) FGFBP1 is elevated in failure compared with responders in BCa by
immunohistochemical staining. (B) The immunohistochemical staining scores of FGFBP1 are higher in failures than responders in BCa. (C) The
expression level of PD-L1 was significantly higher when FGFBP1 was increased by immunohistochemical staining when the BCG cohorts were
divided into FGFBP1 high- and low-expression groups stratified by the median FGFBP1 expression. (D) The immunohistochemical staining
scores of PD-L1 are positively associated with FGFBP1. *p < 0.05; **p < 0.01..
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during cancer progression (33, 34). FGFBP1 was reported to be

regulated by different transcription factors, including b-catenin/
TCF4, C/EBP, and KLF5. Correspondingly, Wnt/b-catenin and

KLF5-induced tumorigenesis and metastasis are decreased after

FGFBP1 downregulation (7, 35, 36). However, the mechanisms

of elevated FGFBP1 in failures of BCG treatments in BCa

patients have not been known.

Chun et al. observed that a lower baseline infiltration level of

Treg predicted a better response to BCG treatment (37). In our

study, the CIBERSORT algorithm estimating immune cell

infiltration indicated that there was a higher degree of Treg

infiltration in failures compared to responders in the BCG

cohort (p = 0.01). Interestingly, the expression level of

FGFBP1 is positively correlated with Treg infiltration by the

Spearman correlation test, suggesting a potential mechanism of

action for FGFBP to BCG response in BCa patients.

Furthermore, a strong correlation was observed between

FGFBP1 and PD-L1 expression in the BCG cohort (r = 0.750,

p < 0.001). Unexpectedly, the expression levels of FGFBP1 and

PD-L1 were also found to be significantly higher in failures

compared with responders by Western blotting and

immunohistochemical staining analyses.

The mechanism underlying the higher FGFBP1 in failures of

BCG treatment should be further explored. One possible

explanation is that the increased FGFBP1 was positively

associated with PD-L1 in BCa cells, which may cause BCa

patients to evade the immune response when they receive

BCG treatment. Another possibility might be the important

role of FGFBP1 in tumor angiogenesis and cancer progression. A

better understanding of the novel mechanisms may yield new

knowledge for therapeutic purposes.

Several important strengths should be noted in our study.

We first observed that FGFBP1 is highly expressed in BCa tissues

in failures compared with responders to BCG treatment and that

high expression of FGFBP1 is associated with a poor outcome

for BCa patients based on the E-MTAB-4321 and GSE19423

datasets. Our bioinformatics also found that the DEGs identified

by FGFBP1 were enriched in immune-related functions and

pathways. Mechanistically, increased FGFBP1 may be positively

associated with the upregulation of PD-L1 in a dependent

manner in BCa patients with BCG treatment. Collectively, our

results provide a promising biomarker for predicting response to

BCG therapy in BCa patients.

Some limitations need to be taken into account when

FGFBP1 is used for screening responses to BCG therapy. A

limitation of the study is that FGFBP1 and PD-L1 were verified

in a small number of BCa patients with BCG intravesical

adjuvant therapy. The results require verification in larger

sample sets, including enough follow-up time and detailed

clinical information. Furthermore, increased FGFBP1 and PD-

L1 were found in the BCG failure cohort on the basis of

bioinformatics and experiments. The explanation may be the
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immune escape in failures caused by high expression of FGFBP1.

However, the roles of elevated FGFBP1 in failures are needed to

be further elaborated.

To sum up, the expression level of FGFBP1 is shown to be

significantly upregulated in failures compared with responders.

Our study thus indicates that FGFBP1 in BCa tissue may be a

potential molecular biomarker for the accurate prediction of

BCG response in BCa. Further research is warranted to

investigate its putative mechanistic roles in the pathogenesis of

BCa with intravesical BCG treatment.
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invasive bladder cancer: A review. Int J Urol (2018) 25:18–24. doi: 10.1111/iju.13410

20. Kamat AM, Lerner SP, O’Donnell M, Georgieva MV, Yang M, Inman BA,
et al. Evidence-based assessment of current and emerging bladder-sparing
therapies for non-muscle-invasive bladder cancer after bacillus calmette-guerin
therapy: A systematic review and meta-analysis. Eur Urol Oncol (2020) 3:318–40.
doi: 10.1016/j.euo.2020.02.006

21. Meng MV, Gschwend JE, Shore N, Grossfeld GD, Mostafid H, Black PC.
Emerging immunotherapy options for bacillus calmette-guérin unresponsive
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A specific immune signature for
predicting the prognosis of
glioma patients with IDH1-
mutation and guiding immune
checkpoint blockade therapy

Zhirui Zeng1,2†, Chujiao Hu3,4†, Wanyuan Ruan5†,
Jinjuan Zhang1,2†, Shan Lei1,2, Yushi Yang6, Pailan Peng5,7*,
Feng Pan8* and Tengxiang Chen1,2*

1Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment,
Guizhou Medical University, Guiyang, China, 2Department of Physiology, School of Basic Medicine,
Guizhou Medical University, Guiyang, China, 3State Key Laboratory of Functions and Applications of
Medicinal Plants, Guizhou Medical University, Guiyang, China, 4Guizhou Provincial Engineering
Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China,
5School of Clinical Medicine, Guizhou Medical University, Guiyang, China, 6Department of
Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China, 7Department of
Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China, 8Department
of Bone and Joint Surgery, Gui Zhou Orthopedic Hospital, Guiyang, China
Isocitrate dehydrogenase (IDH1) is frequently mutated in glioma tissues, and

this mutation mediates specific tumor-promoting mechanisms in glioma cells.

We aimed to identify specific immune biomarkers for IDH1-mutation (IDH1mt)

glioma. The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas

(CGGA) were used to obtain RNA sequencing data and clinical characteristics of

glioma tissues, while the stromal and immune scores of TCGA glioma tissues

were determined using the ESTIMATE algorithm. Differentially expressed genes

(DEGs), the protein–protein interaction(PPI) network, and least absolute

shrinkage and selection operator (LASSO) and Cox regression analyses were

used to select hub genes associated with stroma and immune scores and the

prognoses of patients and to construct the risk model. The practicability and

specificity of the risk model in both IDH1mt and IDH1-wildtype (wtIDH1)

gliomas in TCGA and CGGA were evaluated. Molecular mechanisms,

immunological characteristics and benefits of immune checkpoint blockade

therapy in glioma tissues with IDH1mt were analyzed using GSEA,

immunohistochemical staining, CIBERSORT, and T-cell dysfunction and

exclusion (TIDE) analysis. The overall survival rate for IDH1mt-glioma patients

with high stroma/immune scores was lower than that for those with low

stroma/immune scores. A total of 222 DEGs were identified in IDH1mt

glioma tissues with high stroma/immune scores. Among them, 72 genes had

interactions in the PPI network, while three genes, HLA-DQA2, HOXA3, and

SAA2, were selected as hub genes and used to construct risk models classifying

patients into high- and low-risk score groups, followed by LASSO and Cox

regression analyses. This risk model showed prognostic value in IDH1mt glioma
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in both TCGA and CCGA; nevertheless, the model was not suitable for wtIDH1

glioma. The riskmodel may act as an independent prognostic factor for IDH1mt

glioma. IDH1mt glioma tissues from patients with high-risk scores showed

more infiltration of M1 and CD8 T cells than those from patients with low-risk

scores. Moreover, TIDE analysis showed that immune checkpoint blockade

(ICB) therapy was highly beneficial for IDH1mt patients with high-risk scores.

The risk model showed specific potential to predict the prognosis of IDH1mt-

glioma patients, as well as guide ICB, contributing to the diagnosis and therapy

of IDH1mt-glioma patients.
KEYWORDS

immune, signature, glioma, IDH1 mutation, immune checkpoint blockade therapy
Introduction

Glioma is the most common cerebral tumor with a high

mortality rate (1). Several treatment approaches, including

surgery and radio-chemotherapy, do not produce optimal

results, and the average survival time of patients is less than 15

months (2, 3). Glioma is a highly heterogeneous tumor with

multiple genetic characteristics, including isocitrate

dehydrogenase (IDH1) mutation, 1p/19q-deficiency, and O-6-

methylguanine-DNA methyltransferase methylation (4).

Isocitrate dehydrogenase 1 is a key enzyme involved in the

tricarboxylic acid cycle. In the cytoplasm and mitochondria,

wild-type IDH1 (wtIDH1) oxidizes and decarboxylates isocitrate

to a-ketoglutarate (a-KG), which is involved in epigenetic

regulation and DNA repair in an a-KG-dependent manner (5,

6). A total of 70–80% of grade II and III gliomas and 80–90% of

grade IV gliomas (also called glioblastomas) possess IDH1

mutations (IDH1mt) (7). Compared with glioma cells with

wtIDH1, a hypermethylation phenotype, overactivated hypoxia

signaling, and disruption of collagen maturation were observed

in cells with IDH1mt (8). This difference emphasizes that

different therapeutic strategies should be implemented for

gliomas with wtIDH1 and IDH1mt mutations. The

identification of specific biomarkers for gliomas with IDH1mt

may contribute to this therapy.

Bioinformatics analysis using public databases, including

The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus, is a popular method for identifying tumor

biomarkers (9, 10). Various biomarkers and risk models for

gliomas have been identified through bioinformatic analysis. For

example, by performing bioinformatics analysis in TCGA, the

thioredoxin domain containing 11 was discovered to be

upregulated in glioma tissues, and its high expression indicates

a poor prognosis (11). An iron metabolism-related gene
02
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signature, constructed using a bioinformatics method,

demonstrates that the risk model had remarkable prognostic

value for gliomas (12). Similarly, by performing weighted gene

co-expression analysis, our previous study indicated that LIM

homeobox 5 and T-cell leukemia homeobox 1 are involved in the

recurrence of glioma (13). However, the feasibility of biomarkers

and risk models identified in previous studies for each subtype of

glioma is limited.

Our study aimed to construct a specific risk model for

predicting the prognosis of IDH1mt-glioma tissues and

investigate the internal immunological and molecular

mechanisms. Our risk model may provide insights into the

diagnosis and treatment of IDH1mt gliomas.
Materials and methods

Gene expression profile download
and preprocessing

The gene expression profiles of glioma patients and clinical

trait information were downloaded from TCGA (https://portal.

gdc.cancer.gov/) and the Chinese Glioma Genome Atlas

(CGGA; http://www.cgga.org.cn/), respectively. The original

gene expression profile was normalized and centralized, and

the probe names were annotated as gene names. Before analysis,

glioma patients without IDH1mt information and survival

information were excluded. As a result, 367 patients with

IDH1mt and 229 patients with wtIDH1 were obtained from

TCGA, while 167 patients with IDH1mt and 145 patients with

wtIDH1 were obtained from the CGGA. Immune and stromal

scores of IDH1mt glioma tissues in TCGA were measured using

the ESTIMATE algorithm.
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Differentially expressed genes analysis

The median immune and stromal scores of gliomas with

IDH1mt in TCGA were used to separate the high and low

groups. The EdgeR package was used to perform the

differentially expressed genes (DEGs) analysis, while the

threshold for considering significance was set as |logFC | ≥ 1

and adjusted P-value < 0.05. Analysis of the changes in all genes

in the high- and low-immune/stromal score groups was

visualized using volcano plots, while DEGs were visualized in

a heatmap.
Protein–protein interaction network

The primordial protein–protein interaction (PPI) network

was constructed using DEG information from the STRING

database (https://cn.string-db.org/). Cytoscape software was

used to adjust the primordial PPI network, and the isolated

genes were removed. Genes that had a relationship with others

were set as hub genes and were enrolled in further studies.
Enrichment analysis

The enriched GO terms of hub genes were analyzed using

the Database for Annotation, Visualization, and Integrated

Discovery (DAVID; https://david.ncifcrf.gov/). GO analysis

was conducted using three categories: biological processes

(BP), cellular components (CC), and molecular functions

(MF). The significance threshold was set at P < 0.05. The top

five terms are presented in a bubble diagram.
Construction and verification of an
immune signature

Before constructing an immune signature, we first analyzed

the hub genes associated with the survival of patients with

IDH1mt via univariate Cox regression analysis, and the

significance threshold was set at P < 0.05. The least absolute

shrinkage and selection operator (LASSO) was used to eliminate

genes that shared similar genetic information by adding

appropriate penalties (lambda). Utilizing the Akaike

information criterion, an optimal prognostic risk model was

built using a multivariate Cox regression analysis. The upper

limit of the risk score was set to 10. The feasibility of the risk

model in IDH1mt and wtIDH1 glioma patients in TCGA and

CGGA was checked using receiver operator characteristic curve

(ROC) analysis and Kaplan–Meier survival analysis. The ROC

cut-off was set as the area under the curve (AUC) ≥ 0.75 and P <
Frontiers in Immunology 03
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0.05, while the threshold in the Kaplan–Meier survival analysis

was set as P < 0.05.
Nomogram construction

Nomograms are constructed based on multifactor regression

analysis by integrating multiple predictors, and graduated line

segments are then used to draw on the same plane in a certain

proportion (14). In this study, a nomogram was created using

the “rms” package to simplify the prediction model using

independent clinical prognostic factors.
Gene set enrichment analysis

To explore the signaling pathways differentially activated in

high- and low-risk group IDH1mt-glioma patients in TCGA and

CGGA, we analyzed the change of genes and performed GSEA

analysis in R software with an adjusted P-value < 0.05.
Immune cell analysis

Using the “CIBERSORT” R package, we examined 22

immune cells infiltrating IDH1mt-glioma tissues in TCGA and

CGGA. Differentially infiltrated cells in the high- and low-risk-

score groups were analyzed using the unpaired t-test, with

significance set as P < 0.05.
Immunohistochemical analysis

In total, 54 glioma tissues with IDH1mt were collected from

the Affiliated Hospital of Guizhou Medical University with the

approval of the Human Ethics Committee of Guizhou Medical

University. None of the patients received any radio-

chemotherapy before the operation, and written informed

c o n s e n t w a s o b t a i n e d f r om a l l p a r t i c i p a n t s .

Immunohistochemistry (IHC) staining was performed as

described in our previous study (15). Primary antibodies used

were as follows: HLA-DQA2 (1:200; Cat No. 42-669, ProSci, Fort

Collins, CO, USA), HOXA3 (1:100; Cat No.ab230879, Abcam,

Cambridge, UK), SAA2 (1:500; Cat No. CAU25292; Biomatik,

Kitchener, Canada), CD8 (1:4000; Cat No. 66868-1-Ig;

Proteintech, Wuhan, China), and CD86 (1:250; Cat No.

ab220188, Abcam). The expression of target proteins was

assessed based on the product of the intensity of staining (0, 1

+, 2+, and 3+) and the percentage of positive cells, which was

scored as 0 (0%), 1 (1–2 5%), 2 (26–50%), 3 (51–75%), or 4

(76–100%).
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T-cell dysfunction and exclusion analysis

To predict the immune checkpoint blockade (ICB) therapy

response, the gene expression profile of glioma tissues with

IDH1mt was imported into the T-cell dysfunction and

exclusion (TIDE; http://tide.dfci.harvard.edu/) online

algorithm to obtain exclusion, dysregulation, and TIDE scores.

P < 0.05 was set as the threshold for determining the difference

between high- and low-risk-score groups using an unpaired

t-test.
Results

Landscape in high- and low-stromal/
immune-score group glioma patients
with IDH1mt in TCGA

Using the ESTIMATE algorithm, stromal and immune

scores were calculated in TCGA for patients with glioma and

IDH1mt. The detailed scores are shown in Supplementary

Table 1. The Kaplan–Meier survival analysis showed that

IDH1mt-glioma patients with high stromal (Figure 1A) and

immune scores (Figure 1B) exhibited shorter overall survival

rates than those with low stromal and immune scores (HR =

1.679 and HR = 2.367). We then determined the change in gene

expression profiles between the high- and low-stromal/immune

groups in IDH1mt-glioma tissues. A total of 242 genes were

upregulated in the high-stromal group IDH1mt-glioma tissues

compared with those in the low-stromal group IDH1mt-glioma

tissues, while 20 genes were downregulated (Figures 2A, B).

Similarly, 285 genes were upregulated in the high-immune

group IDH1mt-glioma tissues compared with those in the

low-immune group IDH1mt-glioma tissues, while 135 genes

were downregulated (Figures 2C, D). Through intersection

analysis, 209 upregulated (Figure 2E) and 13 downregulated
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overlapping genes (Figure 2F) were identified in the high-

s t romal- and high- immune-score-group IDH1mt-

glioma tissues.

We then constructed a PPI network and found 72 genes that

interacted with other genes (Figure 3A). These genes were set as

candidate hub genes associated with stromal and immune scores

in IDH1mt glioma. BP enrichment analysis demonstrated that

these candidate hub genes were enriched in “immune-response-

activating cell surface receptor signaling pathway”, “humoral

immune response”, “response to interferon-gamma”, “cellular

response to interferon gamma”, and “interferon-gamma-

mediated signaling” (Figure 3B). MF enrichment analysis

demonstrated that the candidate hub genes were enriched in

“receptor ligand activity”, “antigen binding”, “peptide antigen

binding”, “MHC class II receptor activity”, and “chemokine

receptor binding” (Figure 3C). Furthermore, the enriched CC

terms of candidate hub genes were “endocytic versicle

membrane”, “MHC protein complex”, “MHC class II protein

complex”, “luminal side of ER”, and “integral component of

membrane of ER” (Figure 3D).
Construction of immune signature for
glioma patients with IDH1mt

Next, we determined whether the expression of candidate

hub genes was associated with survival in patients with IDH1mt

gliomas. A univariate Cox regression analysis demonstrated that

among 72 candidate hub genes, 29 genes were linked to survival

in IDH1mt-glioma patients (Table 1). LASSO analysis was

performed to create a risk model that could predict the

survival of glioma patients with IDH1mt. Five more important

hub genes, including HLA-DQA2, HLA-DQB2, HOXA2,

HOXA3, and SAA2, were identified and used for further

analysis (Figures 4A, B). A multivariate Cox analysis also

indicated that HLA-DQA2 , HOXA3 , and SAA2 were
BA

FIGURE 1

Effects of stromal and immune scores on the survival of IDH1mt-glioma patients. (A) Kaplan–Meier survival analysis showing the survival rate in
high- and low-stromal-score-group IDH1mt-glioma patients. (B) Kaplan–Meier survival analysis showing the survival rate in high- and low-
immune-score-group IDH1mt-glioma patients.
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independent predictors of survival in glioma patients with

IDH1mt (Figure 4C). Therefore, the gene expression

information of HLA-DQA2, HOXA3, and SAA2 and the

survival information of glioma patients with IDH1mt in

TCGA were imported into R software to construct a risk

model. Using computer optimization, a risk model was

constructed with a risk score of 0.249 × HLA-DQA2

expression + 0.179 × HOXA3 expression + 0.227 ×

SAA2 expression.
Verification of applicability of risk model
in glioma patients with IDH1mt in TCGA
and CGGA

To verify the applicability of the risk model in glioma

patients with IDH1mt, glioma patients with IDH1mt in TCGA

(Figure 5A) and CGGA (Figure 5B) were divided into high- and

low-risk groups according to the median risk score obtained

from the TCGA cohort. The results indicated that IDH1mt

glioma patients in TCGA with high-risk scores had shorter

overall survival rates than those with low-risk scores

(Figure 5C). ROC analysis indicated that the AUC for

predicting the one- and three-year survival of IDH1mt-glioma

patients in TCGA were 0.845 and 0.821, respectively

(Figures 5D, E). Similarly, we found that IDH1mt-glioma

patients in CGGA with high-risk scores had shorter overall
Frontiers in Immunology 05
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survival rates than those with low-risk scores (Figure 5F), and

the AUC for predicting one- and three-year survival of IDH1mt-

glioma patients in CGGA were 0.794 and 0.764, respectively

(Figures 5G, H). Furthermore, we found that IDH1mt-glioma

patients in TCGA (Figure 5I) and CGGA (Figure 5J) with high-

risk scores exhibited a higher proportion of deaths. This

evidence indicates that the risk model has remarkable

diagnostic value for glioma patients with IDH1mt.
Exploration of applicability of risk model
in glioma patients with wtIDH1 in TCGA
and CGGA

Glioma patients with wtIDH1 in TCGA (Figure 6A) and

CGGA (Figure 6B) were divided into high- and low-risk groups

according to the median risk score. wtIDH1 glioma patients in

TCGA with high-risk scores had lower overall survival than

those with low-risk scores (Figure 6C). However, the AUC for

predicting the one- and three-year survival of wtIDH1 glioma

patients in TCGA were 0.644 and 0.682, respectively

(Figures 6D, E). Similarly, high-risk wtIDH1-glioma patients

in CGGA had shorter overall survival rates (Figure 6F), but the

AUCs of the risk model for predicting the one- and three-year

survival of wtIDH1 glioma patients in CGGA were 0.570 and

0.652, respectively (Figures 6G, H). Furthermore, the percentage

of deaths was not significantly different between wtIDH1 glioma
B C

D E F

A

FIGURE 2

Differentially expressed genes in high- and low-stromal/immune-score group IDH1mt-glioma tissues. (A) Volcano plot demonstrating the
differential expression of genes in high- and low-stromal group of IDH1mt-glioma tissues. (B) Heatmap plot showing DEGs between high- and
low-stromal group of IDH1mt-glioma tissues. (C) Volcano plot demonstrating the differential expression of genes in high- and low-immune
group of IDH1mt-glioma tissues. (D) Heatmap plot showing DEGs between high- and low-immune group of IDH1mt-glioma tissues.
(E) Overlapping upregulated genes between high-stromal and -immune group of IDH1mt-glioma tissues. (F) Overlapping downregulated genes
between high-stromal and -immune group of IDH1mt-glioma tissues.
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patients in the high- and low-risk groups in TCGA (Figure 6I)

and CGGA (Figure 6J). These results indicated that the risk

model constructed using HLA-DQA2, HOXA3, and SAA2 was

not suitable for predicting the survival of wtIDH1

glioma patients and may be specific for IDH1mt-

glioma patients.
Immune signature acts as independent
prognostic factor for glioma patients
with IDH1mt

We then performed a multivariate Cox regression analysis,

and the immune signature constructed using HLA-DQA2,

HOXA3, and SAA2 was found to act as an independent

prognostic factor for glioma patients with IDH1mt, with an

HR of 1.203 (Table 2). In addition, a nomogram was created

ba s ed on th e s i gna tu r e r i s k s co r e and c l i n i c a l

characteristics (Figure 7).
Exploration of pathways associated with
immune signature

Gene set enrichment analysis (GSEA) was used to determine

if defined pathways were enriched in high- and low-risk groups

of glioma patients with IDH1mt. IDH1mt-glioma tissues with
Frontiers in Immunology 06
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high risk in TCGA were positively associated with “M phase“

(NES=1.89, P<0.01) and “signaling by interleukins” (NES=2.24,

P<0.01; Figure 8A), while those with high risk in CGGA were

positively associated with “cell cycle mitotic” (NES=2.19,

P<0.01) and “neutrophil degranulation” (NES=2.17,

P<0.01; Figure 8B).
Immune characteristics of the
immune signature

According to previous studies (16, 17), infiltrating immune

cells play a critical role in the progression of IDH1mt glioma. We

determined the difference in infiltration of 22 immune cells

between the high- and low-risk groups of glioma tissues with

IDH1mt. The CIBERSORT R package was used to convert the

gene expression profile of glioma tissues with IDH1mt in TCGA

(Figure 9A) and CGGA (Figure 9B) to a proportion profile of

infiltrated immune cells. Compared with IDH1mt glioma tissues

with low-risk scores, those with high-risk scores in TCGA

exhibited a high proportion of naïve B cells, plasma cells, CD8

T cells, CD4 memory activated T cells, activated NK cells, M0

macrophages, and M1 macrophages, while the proportion of

resting NK cells and activated dendritic cells was reduced

(Figure 9C). In CGGA, IDH1mt-glioma tissues with high-risk

scores had higher memory B cells, CD8 T cells, M1

macrophages, M2 macrophages, and resting dendritic cells and
B

C D

A

FIGURE 3

Landscape of 222 overlapping DEGs. (A) PPI network was constructed using 222 overlapping DEGs, while isolated genes were removed. Genes
in PPI network were set as candidate hub genes. (B) Biological process (BP) analysis for candidate hub genes. (C) Molecular function (MF)
analysis for candidate hub genes. (D) Cellular component (CC) analysis for candidate hub genes.
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TABLE 1 The hazard rate of genes for glioma patients with IDH1mt.

ID HR HR.95L HR.95H pvalue

BATF 1.17470829 0.955519886 1.444176707 0.126474997

BCL2A1 1.07719203 0.903329599 1.284517483 0.407704967

CCL7 0.97309829 0.69982352 1.353084395 0.871200368

CCL8 1.04917291 0.926433995 1.18817293 0.449528605

CCR2 1.12311681 0.944634881 1.335321607 0.188534973

CCR5 1.22830925 1.020308646 1.478712945 0.029828985

CD163 1.1776415 1.031132277 1.344967592 0.01585487

CIITA 1.28208779 1.054369628 1.558987519 0.012752323

CLEC12A 1.16773723 0.987945732 1.380248118 0.069094998

CLEC5A 1.126091 0.982655187 1.290463802 0.087586721

CP 1.21627375 1.048854918 1.410416063 0.009562912

CXCL10 1.14573922 1.000603026 1.311927238 0.048989007

CXCL8 1.02105507 0.903983423 1.153288238 0.737363758

CXCL9 1.10750092 0.938818303 1.306491669 0.225850624

DKK1 0.99466229 0.8374469 1.181392011 0.951382525

DNAH8 1.01804052 0.808774932 1.28145231 0.878959919

F13A1 0.99685455 0.841916679 1.180305617 0.970841318

FCGBP 1.10629314 0.961207373 1.27327832 0.159028039

FCGR2A 1.41700439 1.136628579 1.766541396 0.001945538

FCGR3A 1.21004902 1.018480893 1.437649593 0.030142571

FGF3 1.20176804 0.756735262 1.908522706 0.436089198

FPR1 1.13504686 0.960628616 1.341133659 0.136724904

FPR2 1.17963747 0.993020217 1.401325519 0.060074354

GBP2 1.1632864 0.965164204 1.402077744 0.112342727

GBP5 1.3123034 1.091287426 1.57808125 0.003872657

GZMK 1.12873693 0.939006147 1.356803755 0.19714833

HAMP 1.07895365 0.939439217 1.239187127 0.282076153

HLA.DOA 1.24287069 1.044807964 1.478479885 0.014093502

HLA.DPA1 1.31348349 1.095910008 1.574252317 0.00316582

HLA.DPB1 1.28704422 1.069243207 1.549210518 0.007636075

HLA.DQA1 1.17474627 1.013513368 1.361628609 0.032502989

HLA.DQA2 1.28594457 1.146262918 1.442647596 1.81E-05

HLA.DQB1 1.11087796 0.947045636 1.303052149 0.196483662

HLA.DQB2 1.35395048 1.180491115 1.552897666 1.48E-05

HLA.DRA 1.2694638 1.065062313 1.513092999 0.007729404

HLA.DRB1 1.20054844 0.999966103 1.441365415 0.050042495

HLA.DRB5 1.11853935 0.947546333 1.320389541 0.185690004

HOXA2 1.32415251 1.161028243 1.5101957 2.84E-05

HOXA3 1.27018869 1.137417785 1.418457955 2.18E-05

HOXA4 1.33711113 1.161375341 1.539438726 5.32E-05

IBSP 1.09171415 0.975610656 1.221634661 0.126125388

IDO1 1.11442618 0.971509083 1.278367576 0.121819576

IGHV3.11 1.15002804 1.001887773 1.320072493 0.046947954

IGHV3.15 1.10670447 0.930408719 1.316405095 0.252122931

IGLL5 1.09127324 0.973389831 1.223433038 0.134250793

IL36B 1.45331441 1.121085057 1.883998699 0.00475667

IL6 1.02151333 0.901654664 1.157305041 0.73818588

INMT 0.98625239 0.824692471 1.179462421 0.879457272

(Continued)
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lower M0 and CD4 naïve T cells (Figure 9D). In conclusion, both

TCGA and CGGA indicated a higher proportion of CD8 T cells

and M1 macrophages in IDH1mt-glioma tissues with high risk

compared with that in those with low risk.
Detection of the expression of HLA-
DQA2, HOXA3, SAA2, CD8, and CD86 in
IDH1mt-glioma tissues

In total, 54 glioma tissues with IDH1mt from our research

group were divided into long- (survival ≥ 15 months) and short-

term groups (survival < 15 months). IHC was performed to

detect the expression of HLA-DQA2, HOXA3, and SAA2 in

glioma tissues, and high expression of HLA-DQA2, HOXA3, and

SAA2 was observed in glioma tissues in the short-term group

compared with that in the long-term group (Figures 10A, B).

Similarly, we detected the expression of the M1 biomarker CD86

and the CD8 T-cell biomarker CD8 in glioma tissues using IHC.

The expression of CD86 and CD8 increased in IDH1mt-glioma

tissues in the short-term survival group (Figure 10C). These

results suggest that M1 and CD8 T cells infiltrate more deeply

into IDH1mt-glioma tissues associated with a lower probability

of survival (Figure 10C). Furthermore, ROC analysis was
Frontiers in Immunology 08
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performed to determine the diagnostic value of HLA-DQA2,

HOXA3, and SAA2 in the survival of IDH1mt-glioma patients,

and all showed remarkable diagnostic value (AUC = 0.832,

0.896, and 0.857) (Figures 10D–F).
Glioma patients with IDH1mt in high-risk
group exhibited high responsiveness to
ICB therapy

The TIDE online algorithm was used to evaluate the

responsiveness of IDH1mt-positive glioma patients in the

high- and low-risk groups to ICB therapy. Lower exclusion

scores were observed in IDH1mt-glioma patients with high-

risk scores than in those with low-risk scores (Figure 11A), while

the dysregulation score was reduced (Figure 11B). Overall, the

TIDE score was significantly reduced in IDH1mt-glioma tissues

with high-risk scores compared with that in those with low-risk

scores (Figure 11C). Finally, the responder prediction results

indicated that glioma patients with IDH1mt in the high-risk

group exhibited high responsiveness to ICB therapy

(Figure 11D). Based on this evidence, this risk model may be

able to guide the clinical treatment of glioma patients

with IDH1mt.
TABLE 1 Continued

ID HR HR.95L HR.95H pvalue

ITK 1.13922357 0.943975874 1.374855413 0.174178403

KIR2DL4 1.10475317 0.886294397 1.377058872 0.375508073

LTF 1.07336712 0.963535322 1.195718473 0.198614155

MMP19 1.07573521 0.906241704 1.276928928 0.403973391

MMP7 1.08890983 0.9733895 1.218139933 0.136591778

MS4A18 1.16103337 0.87338476 1.54341882 0.303979155

MS4A6A 1.30235412 1.076392497 1.575750711 0.006585199

NPS 1.30028934 1.038978688 1.627321513 0.021789224

PI3 1.11206459 0.970938203 1.273703776 0.125022883

PLA2G2A 1.07054961 0.956105386 1.198692621 0.237279756

RNASE2 1.20247034 1.027392368 1.40738335 0.021643479

RNASE3 1.13588087 0.947471011 1.361757073 0.168558144

SAA1 1.27770512 1.092172861 1.494754574 0.002203186

SAA2 1.54587115 1.253874467 1.905866717 4.54E-05

SAA2.SAA4 1.71834957 1.295116327 2.27989192 0.000175121

SEMG1 0.73695081 0.422560476 1.285251517 0.282096946

SEMG2 0.81504085 0.440134346 1.509292788 0.515332513

SERPINA1 1.23919535 1.025166407 1.497908151 0.026630699

SERPINB2 0.97940182 0.837863545 1.144849821 0.793822582

SERPINB4 0.74079768 0.449792849 1.220075431 0.238563585

SLC17A8 0.97157479 0.873003646 1.081275643 0.597273097

SLC18A3 1.17226028 1.013940044 1.355301202 0.031795339

TREM1 1.12228451 0.978805459 1.286795553 0.098327687

TYMP 1.25469942 1.045712163 1.505453117 0.01465489
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Discussion

Among primary brain tumors, malignant gliomas are the

most common and show a poor prognosis (18). One of the most

common genetic lesions in gliomas is a heterozygous mutation

in IDH1, which occurs in 70–80% of grade II or III gliomas and

most secondary glioblastomas (7). IDH1mt induces high histone

methylation, high DNA methylation, high DNA damage

response, and low amino acid metabolism in glioma cells (8).

Due to the specific molecular mechanisms involved in the

progression of glioma with IDH1mt, some biomarkers and

therapeutic drugs may not be suitable for the IDH1mt

subtype. The identification of specific biomarkers for gliomas

with IDH1mt may aid diagnosis and therapy.

As previous studies have indicated that dysregulation of

immune microenvironments is involved in the progression of

gliomas with IDH1mt (19, 20), we first calculated the stromal

and immune scores in glioma tissues with IDH1mt. We found

that IDH1mt-glioma patients with high stromal/immune scores
Frontiers in Immunology 09
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had lower survival rates than those with low stromal/immune

scores. We then focused on the DEGs between the high and low

stromal/immune score groups of IDH1mt-glioma. In total, 222

DEGs were identified, while 29 genes interacted with others in

the PPI network and were significantly associated with

prognosis. Then, via LASSO and Cox regression analyses,

immune signatures were constructed using HLA-DQA2,

HOXA3, and SAA2, and IDH1mt-glioma patients were divided

into high-risk and low-risk groups. Risk models have been

constructed for gliomas and exhibited remarkable prognostic

value (21, 22). However, the prognostic value of these risk

models for each subtype of glioma is limited, which restricts

their clinical application.

HLA-DQA2 belongs to the HLA class II alpha chain family,

and its encoded protein forms a heterodimer with a class II beta

chain, contributing to the present antigenic peptides (23).

Previous studies indicated that HLA-DQA2 mutations were

associated with the susceptibility of lung cancer (24). However,

its role in glioma was still known limit. HOXA3 encodes a DNA-
B

C

A

FIGURE 4

Hub genes selected to construct the risk model. (A, B) LASSO analysis for hub genes associated with the survival rate of IDH1mt-glioma
patients. (C) Multivariate Cox regression analysis of HLA-DQA2, HOXA3, and SAA2. These three genes were used to construct the risk model.
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binding transcription factor, which involved in the embryonic

development through regulating genes of morphogenesis and

cell differentiation (25). Upregulated HOXA3 was observed in

series of cancers, including glioma (26). SAA2 encodes a

member of the serum amyloid A family of apolipoproteins,

which would elevated in the tissues with inflammation (27).

SAA2 encoded protein plays an important role in HDL

metabolism and cholesterol homeostasis (28). Previous studies

indicated that high level of SAA2 was associated with the

progression of inflammatory disease, including cancer (29). In

glioma, high expression of SAA2 was associated with

temozolomide resistance (30). In this study, we focused on the

IDH1mt subtype glioma and found that the risk model

constructed using HLA-DQA2, HOXA3, and SAA2 showed

remarkable prognostic value for IDH1mt glioma in both
Frontiers in Immunology 10
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TCGA and CGGA cohorts but not for wtIDH1-glioma.

Furthermore, this risk model may act as an independent

prognostic factor for IDH1mt glioma. We suggest that this

risk model constructed using immune-related genes may

characteristically contribute to the assessment of the prognosis

of IDH1mt glioma.

The tumor environment (TME) is a complex integrated

system that contains cancer cells, immune cells, inflammatory

cells, tumor-associated fibroblasts, and various cytokines (31,

32). Immune cells infiltrating the TME participate in the

progression of glioma. For example, high number of cells are

polarized to M2 phenotype in glioma tissues and have the

potential to enhance the invasiveness of glioma cells by

inducing angiogenesis, whereas M1 cells have the opposite

effects (33). NK and CD8 T cells have the potential to induce
B
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FIGURE 5

Verification of the applicability of the risk model in IDH1mt-glioma patients in TCGA and CGGA databases. (A, B) IDH1mt-glioma patients in
TCGA and CGGA databases were divided into high- and low-risk score groups according to the median of risk scores. (C) The survival
difference between high- and low-risk score group IDH1mt-glioma patients in TCGA. (D, E) The diagnostic value of risk model for one- and
three-year survival in IDH1mt-glioma patients in TCGA. (F) The survival difference between high- and low-risk score group IDH1mt-glioma
patients in CGGA. (G, H) The diagnostic value of risk model for one- and three-year survival in IDH1-mt glioma patients in CGGA. (I, J) Death
cases in high- and low-risk score group IDH1mt-glioma patients in TCGA and CGGA (Green dots mean alive cases, red dots mean death cases).
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FIGURE 6

Verification of the applicability of the risk model in wtIDH1-glioma patients in TCGA and CGGA databases. (A, B) wtIDH1-glioma patients in
TCGA and CGGA databases were divided into high- and low-risk score groups according to the median of risk scores. (C) The survival
difference between high- and low-risk score group wtIDH1-glioma patients in TCGA. (D, E) The diagnostic value of risk model for one- and
three-year survival in wtIDH1-glioma patients in TCGA. (F) The survival difference between high- and low-risk score group wtIDH1-glioma
patients in CGGA. (G, H) The diagnostic value of the risk model for one- and three-year survival in wtIDH1-glioma patients in CGGA. (I, J) Death
cases in high- and low-risk score group wtIDH1-glioma patients in TCGA and CGGA (Green dots mean alive cases, red dots mean death cases).
TABLE 2 Cox regression analysis of the immune signature.

Characteristics HR (95% CI) Univariate
analysis

P value Univariate
analysis

HR (95% CI) Multivariate
analysis

P value Multivariate
analysis

Age 1.017 (1.001-1.034) 0.042 1.016 (1.000-1.033) 0.048

Gender

0

1 0.744 (0.534-1.036) 0.049 0.592 (0.421-0.834) 0.003

Grade

2

3 2.280 (1.532-3.394) <0.001 1.981 (1.316-2.982) 0.001

4 12.863 (8.264-20.022) <0.001 10.030 (6.184-16.268) <0.001

riskScore 1.382 (1.286-1.485) <0.001 1.203 (1.113-1.300) <0.001
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FIGURE 7

Construction of nomogram based on the signature risk score and clinical characteristics.
BA

FIGURE 8

GSEA analysis of the pathway terms enriched in high-risk score IDH1mt-glioma tissues in TCGA (A) and CGGA (B).
B

C D

A

FIGURE 9

Immune characteristics of the three immune signatures. (A, B) The gene expression profiles of the high- and low-risk score group IDH1mt-
glioma tissues in TCGA and CGGA were converted into 22 immune cell expression matrices. (C, D) Difference in immune cells between high-
and low-risk score group IDH1mt-glioma tissues in TCGA and CGGA.
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senescence in glioma cells (34). However, the immune signature

of IDH1mt glioma is limited. In this study, we found that high

levels of M1 and CD8 T cells were more prevalent in IDH1mt

patients with high-risk scores in both the TCGA and CGGA

cohorts. Regarding the cancer-killing effects of M1 and CD8 T
Frontiers in Immunology 13
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cells, lower survival rates were observed in IDH1mt-glioma

patients with high-risk scores and high M1 and CD8 T cells

infiltration. To explore the mechanism, TIDE was performed,

and we found that IDH1mt-glioma patients with high-risk

scores had high dysregulation scores and low exclusion scores.
B C
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FIGURE 10

Expression of HLA-DQA2, HOXA3, SAA2, CD86, and CD8 in IDH1mt-glioma tissues. IDH1mt-glioma tissues were divided into long- and short-
term survival groups according to the patient’s number of days of survival with the cut-off as 15 months. (A) The IHC score of HLA-DQA2,
HOXA3, and SAA2 in IDH1mt-glioma tissues in long- and short-term groups. (B) Representative figures of expression of HLA-DQA2, HOXA3, and
SAA2 in long- and short-term group IDH1mt-glioma tissues. (C) Expression of CD86 and CD8 in long- and short-term group IDH1mt-glioma
tissues. (D–F) The diagnostic value of HLA-DQA2, HOXA3, and SAA2 for distinguishing long- and short-term survival of IDH1mt-glioma patients.
**P < 0.01.
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FIGURE 11

Glioma patients with IDH1mt in high-risk group exhibit high responsiveness to ICB therapy. (A) Exclusion score of glioma patients with IDH1mt
in high- and low-risk groups. (B) Dysregulation score of glioma patients with IDH1mt in high- and low-risk groups. (C) TIDE score of glioma
patients with IDH1mt in high- and low-risk groups. (D) Responders and non-responders among glioma patients with IDH1mt in high- and low-
risk groups. *P < 0.05; **P < 0.01.
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This evidence suggests that the TME of IDH1mt-glioma patients

with high-risk scores may inhibit the functions of M1 and CD8 T

cells and that they cannot exert their function, even though they

show high infiltration.

ICB is a potential anti-tumor therapy that exhibits

significant curative effects in a range of cancer types, including

hepatocellular carcinoma (35) and breast cancer (36). By

blocking immune checkpoints, deactivated cells can be

reactivated to help the host kill cancer cells (37, 38). However,

evidence of the benefits of ICB in gliomas with IDH1mt is

limited. As evidenced that TME in IDH1mt-glioma patients in

the high-risk score group can induce the inactivation of M1 cells

and CD8 T cells, we furthered analyzed whether ICB had a high

benefit for IDH1mt-glioma patients in the high-risk score group.

Compared with those in the low-risk score group, the TIDE

score and response rate of ICB were higher in the high-risk score

group. This indicates that ICB may improve the prognosis of

IDH1mt-glioma patients with high-risk scores.

However, there are some limitations in our present study.

Compared with the samples in TCGA and CGGA, the samples

from our research group is quite little. Furthermore, more

experiments should be performed to determine how HLA-

DQA2, HOXA3, and SAA2 affect the TME.

In conclusion, an immune signature constructed usingHLA-

DQA2, HOXA3, and SAA2 exhibited significant and specific

prognostic value for IDH1mt glioma, while the high-risk group

classified by the signature had a high benefit from ICB. This

immune signature may contribute to the diagnosis and

treatment of IDH1-mt gliomas.
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Dysregulation of immune cell infiltration in the tumor microenvironment

contributes to the progression of osteosarcoma (OS). In the present study,

we explored genes related to immune cell infiltration and constructed a risk

model to predict the prognosis of and guide therapeutic strategies for OS. The

gene expression profile of OS was obtained from TARGET and Gene Expression

Omnibus, which were set as the discovery and verification cohorts. CIBERSORT

and Kaplan survival analyses were used to analyze the effects of immune cells

on the overall survival rates of OS in the discovery cohort. Differentially

expressed gene (DEG) analysis and protein–protein interaction (PPI)

networks were used to analyze genes associated with immune cell

infiltration. Cox regression analysis was used to select key genes to construct

a risk model that classified OS tissues into high- and low-risk groups. The

prognostic value of the risk model for survival and metastasis was analyzed by

Kaplan–Meier survival analyses, receiver operating characteristic curves, and

immunohistochemical experiments. Immunological characteristics and

response effects of immune checkpoint blockade (ICB) therapy in OS tissues

were analyzed using the ESTIMATE and Tumor Immune Dysfunction and

Exclusion algorithms, while sensitivity for both targeted and chemotherapy

drugs was analyzed using the OncoPredict algorithm. It was demonstrated that

the high infiltration of resting dendritic cells in OS tissues was associated with

poor prognosis. A total of 225 DEGs were found between the high- and low-

infiltration groups of OS tissues, while 94 genes interacted with others.

Through COX analyses, among these 94 genes, four genes (including AOC3,

CDK6, COL22A1, and RNASE6) were used to construct a risk model. This risk

model showed a remarkable prognostic value for survival rates and metastasis

in both the discovery and verification cohorts. Even though a high

microsatellite instability score was observed in the high-risk group, the ICB

response in the high-risk group was poor. Furthermore, using OncoPredict, we

found that the high-risk group OS tissues were resistant to seven drugs and
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sensitive to 25 drugs. Therefore, our study indicates that the resting dendritic

cell signature constructed by AOC3, CDK6, COL22A1, and RNASE6 may

contribute to predicting osteosarcoma prognosis and thus therapy guidance.
KEYWORDS

immune cell, signature, osteosarcoma, prognosis, riskscore
Introduction

As a primary malignant bone tumor, osteosarcoma (OS) is

the leading cause of cancer-related deaths among children and

adolescents (1). Currently, surgery and chemotherapy are the

primary treatments for OS. Over the past 30 years, the 5-year

survival rate of OS has increased to 70%. However, patients with

OS still have a poor prognosis due to drug resistance, metastasis,

or recurrence (2, 3). Therefore, an urgent need to identify novel

biomarkers for OS that may contribute to therapy practices

is apparent.

Previous studies have indicated that the dysregulation of

immune cells plays a key role in the malignant activity of

osteosarcoma, which also includes metastasis and drug

resistance (4, 5). Sun et al. demonstrated lower infiltration of

CD8-positive T cells in OS tissues and induced OS cell

proliferation (6). Shao et al. demonstrated that M2

macrophages are enriched in primary osteosarcoma tissues,

thus activating cancer stem cells in osteosarcoma tissues and

inducing drug resistance (7). Therefore, immunotherapy

(including adoptive cell therapy, vaccination, and checkpoint

inhibitors) has become increasingly popular for cancer therapy

in recent years (8). Anti-programmed cell death 1 (PD1) and

anti-programmed cell death 1 ligand 1 (PDL1) blockade

therapies have shown encouraging results in various preclinical

studies (9, 10). However, differing from the success of preclinical

studies, a randomized clinical trial conducted by Tawbi et al. in

2017 showed that only 5% of patients with OS had an objective

response to pembrolizumab—a PD1 antibody. The authors

indicated that different patients with OS have different

immune microenvironment characteristics and, therefore, have

different responses to immunotherapy (11). Hence, studying the

immunological characteristics of OS tissues may contribute to

improving immunotherapy efficiency.

In the present study, we aimed to explore genes associated with

immune cell infiltration and constructed a riskmodel to predict the

prognosis of OS and thus guide therapeutic strategies for OS. We

found that high levels of resting dendritic cells were associated with

poorer prognoses in OS, and the risk model (constructed using
02
375
resting dendritic cell-associated genes) may have remarkable value

in predicting OS prognosis and guiding therapy.

Materials and methods

Data acquisition and preprocessing

Gene expression in OS tissues was acquired from the

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET; https://ocg.cancer.gov/programs/target)

database and Gene Expression Omnibus (GEO; accession

number: GSE21257; https://www.ncbi.nlm.nih.gov/gds). For

the gene expression profile in TARGET, a total of 85 tissues

provided by patients had fully equipped clinical messages,

including that of age, sex, and metastasis status. The gene

expression of GSE21257 was supplied by Buddingh et al. (12),

and 53 tissues provided by patients had fully equipped clinical

messages. Prior to the analyses, we translated the probe name

into gene symbols and performed batch normalization

and centralization.
Immune cell analysis

CIBERSORT is an R package that calculates cell fractions

from bulk tissue gene expression profiles (13). In the present

study, we used CIBERSORT to calculate the number of 22

immune cells in OS. The relationship between immune cells

and survival rates of patients with OS was analyzed using

Kaplan–Meier survival analyses (log-rank), and p < 0.05 was

set as the threshold of significance.
DEG analysis

OS tissues were divided into high- and low-infiltration groups,

according to the median level. Differentially expressed genes

(DEGs), between the high- and low-infiltration groups, were

analyzed using the Limma package (version 3.15), while p < 0.05,

and | log fold change (FC)| ≥1 were set as thresholds to select DEGs.
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Protein–protein interaction (PPI) network
construction and enrichment analysis

DEGs were imported into STRING (https://cn.string-db.org/),

with a reliability>0.4, to establish an initial network. In this network,

genes with no interactions were removed. The adjusted initial

network was visualized using the Cytoscape software (version

3.6.1). Genes in the network were subjected to enrichment

analysis. Analyses of biological process (BP), molecular function

(MF), and KEGG pathway enrichment were performed using the

DAVID database (https://david.ncifcrf.gov/tools.jsp). Terms with a

p value of <0.05 were regarded as significant, and the top five terms

were visualized.
Construction and verification of the
risk model

Gene expression and survival data of patients with OS were

imported and used to conduct a univariate COX analysis. Then,

survival-associated genes (p < 0.05) were subjected to least

absolute shrinkage and selection operator (LASSO) COX

analysis to select more important survival-associated genes, by

adding appropriate penalties (lambda). Finally (utilizing the

Akaike information criterion), an optimal prognostic risk

model was built, using a multivariate Cox regression analysis.

The prognostic value for survival in the discovery and

verification cohorts was analyzed using Kaplan–Meier survival

analyses and receiver operating characteristic (ROC) curves. p <

0.05 was defined as the threshold for significance in Kaplan

survival analyses, while p < 0.05 and the area under the curve

(AUC) being ≥0.65 were set as cutoffs for ROC curve analyses.
Tissue collection and
immunohistochemical (IHC) analysis

Written informed consent was obtained from all patients

enrolled in the study. A total of 44 OS tissues were collected from

the Affiliated Hospital of Guizhou Medical University (Guiyang,

China), with the approval of the Human Ethics Committee of

Guizhou Medical University. Of the 44 OS tissues, 18 tissues

were obtained from patients with metastasis at diagnosis, while

26 tissues were obtained from patients without metastasis at

diagnosis. These OS tissues were sliced into 4-mm sections and

embedded in paraffin, prior to performing IHC experiments.

The paraffin-embedded slices were dried at 60°C, deparaffinized

by xylene, and soaked in 100%, 90%, 80%, and 70% ethyl alcohol

for 10 min (in that order). Antigen retrieval was performed at

120°C in a citrate buffer (pH 6.0) for 10 minutes. After washing

with PBS twice, the slices were incubated with 0.3% H2O2 and

5% bovine serum albumin reagent (Thermo Fisher Scientific,

USA) for 30 min, to prevent subsequent non-specific binding.

The primary antibodies used were AOC3 (1:500; Cat no. 66834-
Frontiers in Immunology 03
376
1-Ig, Proteintech, Wuhan, China), CDK6 (1:200; Cat no. 14052-

1-AP, Proteintech, Wuhan, China), COL22A1 (1:250; Cat no.

ab121846; Abcam, USA), and RNASE6 (1:100; Cat. ab121111;

Abcam, USA), for 14 hours at 4°C. After washing twice with

PBS, secondary antibodies were added and incubated for 2 h at

room temperature (20°C). Finally, DAB reagent was used to

visualize the antigen-antibody complex. The IHC score was

determined by the product of the staining area (≤5%, 0; 6%–

25%, 1; 26%–50%, 2; 51%–75%, 3; >75%, 4) and depth (none, 0;

slight, 1; moderate, 2; strong, 3).
Construction of the nomogram

A nomogram is a way to visualize the results of logistic or

Cox regression analyses. According to the size of the regression

coefficient of all independent variables to develop a scoring

standard, each value level of each independent variable is

given a score. For each patient, a total score can be calculated,

and the probability of the outcome time of each patient can then

be calculated by the conversion function between the score and

probability of the outcome (14). Information on age, sex, risk

score, and metastasis status were imported and used to perform

univariate and multivariate COX analyses, where these analyses

were then used to construct the nomogram. The efficiency of the

nomogram was set to 1 year, 3 years, and 5 years.
Tumor immune dysfunction and
exclusion (TIDE) analysis

The TIDE algorithm, developed by Jiang et al., is a

computational framework developed to evaluate the potential of

tumor immune escape from the gene expression profiles of cancer

samples (15). Therefore, the gene expression of OS tissues was

downloaded into the TIDE online database (http://tide.dfci.

harvard.edu/) to calculate various immune parameters,

including microsatellite instability (MSI) score, PDL1

expression, and myeloid-derived suppressor cell (MDSC) levels,

and to predict the response rate of immune checkpoint blockade

(ICB). The differences in MSI scores between high- and low-risk

scores were analyzed using unpaired t-tests, while the relationship

between PDL1 expression, MDSC levels, and risk scores was

analyzed by Pearson co-expression analyses. p < 0.05 was set as

the level of significance.
OncoPredict for drug sensitivity analysis

The OncoPredict R package was developed by Maeser et al.

(16) to predict in vivo drug responses in cancer patients.

OncoPredict fits the gene expression profile of tissues to the

half-maximal inhibitory concentration (IC50) of the cancer cell
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lines to drugs from Genomics of Drug Sensitivity in Cancer

(GDSC; https://www.cancerrxgene.org/) and the gene expression

profile of cancer lines from the Broad Institute Cancer Cell Line

Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle_

legacy/home). A total of 198 drugs were calculated, and the

sensitivity of the drugs (between the high- and low-risk groups)

was analyzed using unpaired t-tests. p < 0.05 was set as the

threshold for significance.
Results

High infiltration of resting dendritic cells
was related to poorer prognoses in OS

Previous studies have indicated that dysregulated infiltration

of immune cells is associated with the prognosis of patients with

OS. We first transformed the gene expression matrix of

osteosarcoma tissues in TARGET into the expression levels of

22 types of immune cells, using CIBERSORT (Figure 1A). We

found that, among the 22 types of immune cells, a high

infiltration of resting dendritic cells was associated with a

poorer prognosis in patients with OS (HR = 2.18, 95%

confidence interval [CI] = 1.01–4.71; Figure 1B).
Genetic characterization of OS tissues
with high infiltration of resting
dendritic cells

We then divided the OS tissues into high- and low-infiltration

groups, according to the median levels of resting dendritic cells

within these tissues. DEG analysis was performed, and a total of

175 upregulated genes and 50 downregulated genes were observed

in OS tissues with a high infiltration of resting dendritic cells
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versus those with a low infiltration of resting dendritic cells

(Figures 2A, B). We then performed a PPI network analysis and

found that 94 of these genes were related to others (Figure 2C).

Therefore, these 94 genes were set as resting dendritic cell-

associated genes, and we focused on them. GO analysis revealed

that these 94 genes were enriched in “ossification” (BP term;

Figure 2D), “extracellular matrix organization” (BP

term; Figure 2D), “extracellular structure organization” (BP

term; Figure 2D), “tissue remodeling” (BP term; Figure 2D),

“bone mineralization” (BP term; Figure 2D), “matrix structural

constituent” (MF term; Figure 2E), “tyrosine kinase activity” (MF

term; Figure 2E), “protein kinase activity” (MF term; Figure 2E),

“p ep t i d e b i n d i n g ” (MF t e rm ; F i g u r e 2E ) , a nd

“metalloendopeptidase activity” (MF term; Figure 2E). KEGG

analysis indicated that these genes were enriched in the MAPK,

PI3K-AKT, cell adhesion, Rap1, and Ras pathways (Figure 2F).
Construction of risk model using resting
dendritic cell-associated genes

First, univariate COX analyses were performed for these 94

resting dendritic cell-associated genes to calculate their prognostic

value. The expression of 14 genes (SOST, MCAM, COL22A1,

AOC3, CYFIP2, ISM1, PYGM, DKK1, BMP2, BAMBI, SCL36A2,

EBF1, FAT3, and CYGB) was associated with a shorter overall

survival rate of OS, while the expression of seven genes (CDK6,

FAP, C1R, EGFR, SLC38A4, FBLN1, and RNASE6) was

associated with an increased overall survival rate of OS

(Figure 3A). LASSO COX analysis was then conducted, and

seven genes of them (including AOC3, CDK6, COL22A1, EBF1,

MCAM, RNASE6, and SLC38A4) were obtained as more

important genes (Figures 3B, C). Moreover, by performing

multivariate COX analyses for these seven more important

genes, four genes (AOC3, CDK6, COL22A1, and RNASE6)

were used to construct the risk model (risk score =
BA

FIGURE 1

High infiltration of resting dendritic cells was related to poorer prognoses in OS. (A) The gene expression matrix of osteosarcoma tissues in
TARGET was transformed into expression levels of 22 immune cells, through CIBERSORT. (B) The effects of the 22 immune cells on the survival
rate of OS were analyzed via Kaplan survival analysis.
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0.307745*COL22A1 expression + 0.43972*AOC3 expression –

0.44907*CDK6 expression – 0.67038*RNASE6 expression;

Figure 3D). CDK6, COL22A1, and RNASE6 also had

prognostic value in TARGET patients with OS, as per

multivariate COX analyses (Figure 3D).
The risk model exhibited high prognostic
value in the TARGET discovery cohort

The prognostic value of the risk model was first determined

in the TARGET discovery cohort. Therefore, OS tissues in
Frontiers in Immunology 05
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TARGET were divided into high- and low-risk groups,

according to median risk scores (Figure 4A). A shorter overall

survival rate was observed in the high-risk group than in the

low-risk group (Figure 4B). ROC analysis demonstrated that the

diagnostic value (AUC) of this risk model for the 1-year, 3-year,

and 5-year survival rates of patients with OS in the TARGET

cohort were 0.837, 0.805, and 0.842, respectively (Figures 4C–E).

Moreover, high-risk groups had a higher proportion of deaths

(Figure 4F). Furthermore, we found that the expression of

COL22A1 and AOC3 was increased in high-risk score groups,

whereas the expression of CDK6 and RNASE6 was reduced in

high-risk score groups (Figure 4G). Taken together, these results
B
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FIGURE 2

Genetic characterization of OS tissues with high infiltration of resting dendritic cells. (A) Volcano plot exhibiting the upregulated and
downregulated genes in OS tissues between groups with high and low infiltration of resting dendritic cells. (B) Heatmap plot exhibiting the
upregulated and downregulated genes in OS tissues between groups with high and low infiltration of resting dendritic cells. (C) PPI network
indicating the relationship between the 94 genes associated with the infiltration of resting dendritic cells. (D) Biological process analyses for the
94 genes associated with the infiltration of resting dendritic cells. (E) Molecular function analyses for the 94 genes associated with the
infiltration of resting dendritic cells. (F) KEGG analysis for the 94 genes associated with the infiltration of resting dendritic cells.
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indicate that the risk model exhibited a high prognostic value in

the TARGET discovery cohort.
The risk model exhibited high prognostic
value in the GSE21257 verification cohort

The gene expression profile of GSE21257 was set as the

verification cohort, and the tissues were divided into high- and

low-risk groups according to the medium-risk score (Figure 5A).

The results indicated that a lower overall survival rate was

observed in the high-risk group than in the low-risk group

(Figure 5B). ROC analysis demonstrated that the diagnostic

value (AUC) of this risk model for the 1-year, 3-year, and 5-year

survival rates of patients with OS in GSE21257 were 0.745, 0.681,

and 0.703, respectively (Figures 5C–E). Moreover, the results

indicated that the high-risk groups also had a higher proportion
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of deaths (Figure 5F). Furthermore, we found that the expression

of COL22A1 and AOC3 was also elevated in the high-risk group,

whereas CDK6 and RNASE6 expression was decreased in the

high-risk group (Figure 5G). In conclusion, the risk model

exhibited high prognostic value in the verification

cohort GSE21257.
The risk model had the potential to
predict metastasis in patients with OS

More metastasis cases (TARGET, 35.7% and GSE21257,

87.5%) were found in the high-risk group than in the low-risk

group (TARGET, 13.9% and GSE21257, 52.6%; Figure 6A). ROC

analyses indicated that the diagnostic values (AUC) of the risk

model for predicting metastasis were 0.741 and 0.720 for OS

patients in TARGET and GSE21257, respectively (Figure 6B).
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FIGURE 3

Construction of a risk model. (A) Univariate COX regression analysis for the 94 genes associated with the infiltration of resting dendritic cells.
(B, C) LASSO analysis for other important genes associated with the survival rate of OS. (D) The HR and p value of genes (including AOC3,
CDK6, COL22A1 and RNASE6) under multivariate COX analysis are shown.
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Moreover, we detected the expression of AOC3, COL22A1,

CDK6, and RNASE6 in OS tissues obtained from patients with

metastasis (n = 18) versus those without metastasis (n = 26),

using IHC. We found that the protein levels of AOC3 and

COL22A1 were increased, and RNASE6 was decreased in OS

tissues from patients with metastasis (Figures 6C, D). These

results indicate that the risk model has the potential to predict

metastasis in patients with OS.
The risk model can act as an
independent factor for predicting OS
patient prognosis

Information on age, sex, metastasis status, and risk score of

all patients with OS in the TARGET and GSE21257 groups was

used to conduct Cox regression analyses. Risk score and

metastasis status could act as independent factors for

predicting OS patient prognosis (Table 1). To further help in

predicting OS patient prognosis, a nomogram was constructed
Frontiers in Immunology 07
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(Figure 7A), which showed high prognostic value for the 1-year,

3-year, and 5-year survival rates (Figure 7B).
The high-risk group patients with OS
exhibited resistance to ICB

We then analyzed immunological characteristics of the high-

and low-risk OS tissues. We found that microsatellite instability

(MSI) scores were higher in the high-risk group than in the low-

risk group (Figure 8A). The risk score was negatively associated

with PDL1 expression (R = -0.37, p < 0.01; Figure 8B) and

positively associated with MDSC cell levels (R = 0.24, p < 0.01;

Figure 8C). Moreover, by performing TIDE analyses, we found

that both exclusion and TIDE scores were higher in the high-risk

groups of patients with OS than in the low-risk groups, while

dysregulation scores were reduced in the high-risk groups

(Figure 8D). Moreover, the proportion of non-responders to

ICB therapy was higher in the high-risk group (70.7%) than in
B
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FIGURE 4

The risk model exhibits high prognostic value in the TARGET discovery cohort. (A) OS tissues in TARGET were divided into low- and high-risk
groups, according to median risk scores. (B) Kaplan survival analysis indicated the difference between low- and high-risk group OS tissues in
TARGET. (C–E) ROC analyses of the risk model for the 1-year, 3-year, and 5-year survival rates for OS patients in TARGET. (F) Alive and death
cases between low- and high-risk group OS tissues in TARGET. (G) Expression of COL22A1, CDK6, RNASE6 and AOC3 between low- and high-
risk group OS tissues in TARGET.
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low risk group (52.5%; Figure 8E). These results indicate that the

high-risk group of patients with OS exhibited resistance to ICB.
Selecting suitable drugs for the high-risk
group of patients with OS,
via OncoPredict

To explore suitable drugs for patients with high-risk scores,

we transformed the gene expression of OS tissues in the

TARGET and GSE21257 groups into a drug sensitivity matrix,

using the OncoPredict algorithm (Figure 9A). All scores for each

sample are exhibited in Supplementary Table 1. OS tissues from

high-risk group patients exhibited greater resistance to seven

drugs, including those of AZD8055 (targeting drug, mTOR

inhibitor), XAV939 (targeting drug, tankyrase inhibitor),

AZD1332 (targeting drug, receptor tyrosine kinase inhibitor),

Entospletinib (targeting drug, Syk inhibitor), ERK 2440

(targeting drug, ERK inhibitor), AZ960 (targeting drug, JAK
Frontiers in Immunology 08
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inhibitor), and Uprosertib (targeting drug, AKT inhibitor), than

those from low-risk group patients (Figure 9B). OS tissues from

high-risk group patients were more sensitive to 25 drugs,

including those of ABT737 (targeting drug, Bcl-2 inhibitor),

BMS-345541 (targeting drug, IKK inhibitor), Navitoclax

(targeting drug, Bcl-2 inhibitor), TAF1 5496 (targeting drug,

TAF1 inhibitor), I-BRD9 (targeting drug, BRD9 inhibitor),

Linsitinib (targeting drug, IGF-1R inhibitor), Vorinostat

(targeting drug, HDAC inhibitor), Nilotinib (targeting drug,

Bcr-abl inhibitor), Venetoclax (targeting drug, Bcl-2 inhibitor),

VE-822 (targeting drug, ATM inhibitor), AGI-5198 (targeting

drug, IDH inhibitor), Osimertinib (targeting drug, EGFR

inhibitor), Daporinad (targeting drug, NMPRTase inhibitor),

Tamoxifen (Chemotherapy drug), VE821 (targeting drug, ATM

inhibitor), UMI-77 (targeting drug, Bcl-2 inhibitor),

Dihydrorotenone (mitochondrial inhibitor), KRAS (G12C)

Inhibitor-12 (targeting drug, KRAS inhibitor), AZD6738

(targeting drug, ATR inhibitor), WEHI-539 (targeting drug,

BCL-XL inhibitor), Sabutoclax (targeting drug, Bcl-2
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FIGURE 5

The risk model exhibits high prognostic value in the GSE21257 verification cohort. (A) OS tissues in GSE21257 were divided into low- and high-
risk groups according to median risk scores. (B) Kaplan survival analysis indicated the difference between low- and high-risk group OS tissues in
GSE21257. (C–E) ROC analysis of the risk model for the 1-year, 3-year, and 5-year survival rates for OS patients in GSE21257. (F) Alive and death
cases between low- and high-risk group OS tissues in GSE21257. (G) Expression of COL22A1, CDK6, RNASE6 and AOC3 between low- and
high-risk group OS tissues in GSE21257.
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inhibitor), Lapatinib (targeting drug, EGFR/HER2 inhibitor),

AZD5991 (targeting drug, MCL-1 inhibitor), LY2109761

(targeting drug, TGF-b Receptor I/II inhibitor) and NVP-

ADW742 (targeting drug, IGF1R inhibitor; Figure 9C) than

were OS tissues from low-risk group patients. We believe that

these drugs may help in the treatment of OS patients with high-

risk scores.
Frontiers in Immunology 09
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Discussion

The effectiveness of immunotherapy in the treatment of

several cancers has gained recognition in recent years. Similarly,

immunotherapy is expected to be widely used in the treatment of

OS. However, compared with its success in preclinical studies,

the clinical effectiveness of immunotherapy is limited by
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FIGURE 6

The risk model has the potential to predict metastasis in patients with OS. (A) Non-metastasis and metastasis cases between low- and high-risk
group OS tissues in the TARGET and GSE21257 cohorts. (B) ROC analysis for the diagnostic value of the risk model in the prediction of OS tissue
metastasis. (C, D) IHC was performed to detect the expression of COL22A1, CDK6, RNASE6 and AOC3 in non-metastasis and metastasis OS
tissues (magnification 200× and 400×). *p < 0.05; **p < 0.01; ns, no significant.
TABLE 1 Univariate and multivariate COX regression analyses for age, gender, risk score, and metastasis status in OS tissues.

Characteristics Total
(N)

HR(95% CI) Univariate
analysis

P value Univariate
analysis

HR(95% CI) Multivariate
analysis

P value Multivariate
analysis

Age 138 1.009 (0.979-1.040) 0.566 – –

Gender 138 – 0.955 – –

Female 56 Reference – – –

Male 82 0.970 (0.545-1.727) 0.955 – –

Metastasis 138 – <0.001 – –

Yes 56 Reference – – –

No 82 0.173 (0.093-0.323) <0.001 0.200 (0.105-0.379) <0.001

riskScore 138 1.223 (1.146-1.305) <0.001 1.172 (1.099-1.250) <0.001
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1017120
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2022.1017120
different immune microenvironments in OS tissues (17). For

example, Groisberget et al. demonstrated that only 26% of

patients with OS yielded a partial response or experienced

stable disease progression after immunotherapy (18).

Regarding clinical traits assessed by Ullenhag et al., the

effective rate was 30% (19). Therefore, the identification of

genes associated with the immune characteristics of OS may

contribute to improved diagnosis of and therapy for OS.

In the present study, we first calculated the number of immune

cells in OS tissues. We found that high levels of resting dendritic

cells were associated with poorer prognoses. Being the most typical

type of antigen-presenting cell, dendritic cells bridge the gap

between innate and adaptive immunity, which also includes

antitumor T-cell activation. Dendritic cells are activated during
Frontiers in Immunology 10
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immunoreaction. Activated dendritic cells recognize and process

immune signals and present antigens to T cells, thus activating

immunological cascades (20, 21). Therefore, high levels of resting

dendritic cells indicate lower levels of immunoreaction. Consistent

with previous studies, our results indicate that activated dendritic

cells may contribute to improving OS survival rate.

We then analyzed gene expression differences between the high

and low dendritic cell group OS tissues. A total of 94 key dendritic

cell-associated genes were identified, and four genes associated with

the survival of patients with OS (including AOC3, CDK6,

COL22A1, and RNASE6) were used to construct the risk model.

AOC3 encodes a cell adhesion protein that mediates lymphocyte

binding to peripheral lymph node vascular endothelial cells during

lymphocyte extravasation and recirculation, in an L-selectin-
BA

FIGURE 7

Construction of the nomogram. (A) Age, gender, risk score, and metastasis was used to construct the nomogram. (B) Efficiency of the
nomogram in the 1-year, 3-year, and 5-year survival rates of patients with OS.
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FIGURE 8

The high-risk group patients with OS exhibit resistance to ICB. (A) MSI scores between high- and low-risk group OS tissues. (B) Co-expression
relationships between risk scores and PDL1 expression. (C) Co-expression relationships between risk scores and MDSC levels. (D) The difference
of exclusion, dysregulation, and TIDE scores between high- and low-risk group OS tissues. (E) Predication of non-responder and responder
numbers after ICB in high- and low-risk group OS tissues. *p < 0.05, **p < 0.01.
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independent fashion (22). AOC3 is dysregulated in various cancers,

with contradictory roles. In colorectal cancer, AOC3 expression is

reduced in both in situ tissues and serum, and reduced AOC3

expression is related to poorer prognoses (23). In breast cancer,

AOC3 is highly expressed and is positively associated with

lymphatic invasion and distant metastasis (24). CDK6 is a serine/

threonine-protein kinase involved in the control of the cell cycle and

cell differentiation, and has the potential to promote G1/S transition

(25). Oncogenic effects have been widely reported in various cancer

types, including those of OS. COL22A1 encodes a collagen family

member that is thought to be involved in stabilizing myotendinous

junctions and strengthening skeletal muscle attachment (26). High

expression of COL22A1 was observed in head and neck cancer, and

was correlated with a decrease in disease-free survival (27). RNASE6

is a secreted protein with broad-spectrum antimicrobial activity

against pathogenic bacteria (28). However, the role of RNASE6 in
Frontiers in Immunology 11
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cancer is unclear. In the present study, we found that the risk model

constructed by AOC3, CDK6, COL22A1, and RNASE6 showed

distinct prognostic value for OS in both TARGET and GSE21257

groups, as well as for predicting metastasis. Furthermore, this risk

model was found to be an independent factor for OS. We believe

that this risk model may aid in OS diagnosis.

Immunological characteristics, including tumor mutation

burden (TMB) and the MSI score of tumor tissues, can

indicate the therapeutic effects of ICB (29, 30). Previous

studies have indicated that high TMB and MSI in tumor

tissues indicate beneficial effects after ICB (31). To analyze the

benefit for patients with OS, we analyzed the MSI score in the

high- and low-risk groups. Our results indicated that the MSI

score was higher in the high-risk group, suggesting that the high-

risk group patients had a greater benefit from ICB. However,

after calculating other parameters, we found that the risk score
B
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FIGURE 9

Selecting suitable drugs for high-risk group patients with OS via OncoPredict. (A) OncoPredict was used to transform the gene expression
profile of OS tissues in the TARGET and GSE21257 groups into a drug sensitivity matrix of 198 drugs. (B) Resistant drugs identified in high-risk
groups in both the TARGET and GSE21257 cohorts. (C) Sensitive drugs identified in high-risk groups in the TARGET and GSE21257 cohorts.
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was negatively associated with PDL1 expression and positively

associated with MDSC levels. High exclusion and TIDE scores

were observed in the OS tissues of the high-risk group, while the

dysregulation score was reduced. These parameters inversely

indicated that the high-risk group had a lesser benefit from ICB,

while the low-risk group had a greater benefit from ICB.

Combining these parameters, we speculated that, although

high MSI scores would induce immune responses, the lack of

activated dendritic cells ultimately prevents T cells from being

activated to effectively kill tumors. Similarly, because this type of

immune escape was not due to PDL1 overexpression in OS

tumors in the high-risk group, some ICB strategies for targeting

surface antigens of T cells were less beneficial. This supposition

was consistent with some evidence from clinical traits, where

supplementation of activated dendritic cells combined with ICB

was more beneficial than ICB alone, in the context of OS (32,

33). Based on this evidence, we consider that the risk model

provided in the present study has remarkable value in guiding

ICB. Finally, we performed OncoPredict and found that the

high-risk group OS tissues were resistant to seven drugs and

sensitive to 25 drugs. This evidence may also contribute to

guiding chemotherapy and targeted therapies for OS.

Our study has some limitations. First, whether and how the

four genes (AOC3, COL22A1, CDK6, and RNASE6) affect the

activation of dendritic cells has not been studied. The sensitivity

of OS tissues to chemotherapy and targeted drugs also needs to

be verified.

In conclusion, the signature constructed by four key genes

associated with the level of dendritic cells (AOC3, COL22A1,

CDK6, and RNASE6) had remarkable prognostic value for

predicting prognosis and metastasis in patients with OS, as well

as guiding ICB, chemotherapy, and targeted chemotherapy for OS.
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Cancer is a disease with high morbidity and mortality in the world. In the past, the

main treatment methods for cancer patients were surgery, radiotherapy and

chemotherapy. However, with early treatment, the recurrence rate of cancer is

higher, and the drug resistance of cancer cells is faster. In recent years, with the

discovery of immune escapemechanismof cancer cells, Immunotherapy, especially

Immune Checkpoint Inhibitors (ICIs), has made a breakthrough in the treatment of

solid tumors, significantly prolonging the overall survival time and disease-free

progression in some solid tumors, and its clinical benefits are more prominent

than those of traditional anti-tumor drugs, which has become the hope of cancer

patients after the failure of multi-line therapy. More and more studies have shown

that there is a correlation between cancer driving genes and the clinical benefits of

ICIs treatment, and the therapeutic effects and adverse reactions of ICIs can be

predicted by the status of driving genes. Therefore, screening potential biomarkers

of people who may benefit from immunotherapy in order to maximize the

therapeutic benefits is a top priority. This review systematically summarizes the

cancer driving genes that may affect the clinical benefits of immune checkpoint

inhibitors, and provides accurate scientific basis for clinical practice.

KEYWORDS

cancer, immune checkpoint inhibitor, biomarker, overall survival, progress free survival
Introduction

Tumor immunotherapy is a breakthrough research direction in the field of cancer

therapy. It mainly inhibits and kills tumor cells by affecting the body’s immune system

and enhancing anti-tumor immunity. This therapy has greatly changed the traditional

tumor treatment strategy and brought more survival opportunities for patients (1, 2).
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Immune checkpoint inhibitors mainly include antibodies

targeting cytotoxic T lymphocyte antigen-4 (CTLA-4) and

antibodies targeting programmed cell death receptor-1 and its

ligand (PD-1/PD-L1). CTLA-4 is a transmembrane protein,

belonging to the immunoglobulin superfamily, which consists

of extracellular domain, transmembrane domain and

intracellular domain, and its extracellular domain is the

receptor of B7 molecule (3). CTLA-4 competed with CD28 for

binding to B7 ligand. Both CTLA-4 and CD28 molecules on the

surface of T cells could bind to B7 ligand on the surface of

antigen-presenting cell (APC), and the binding affinity of

CTLA-4 was stronger than that of CD28. The binding of

CD28 and B7 ligand produces synergistic stimulation signal,

which can stimulate the activation of T cells and then produce

the effect of killing tumor cells (4, 5). Contrary to the function of

CD28, CTLA4 combined with B7 molecule to produce

inhibitory signal, which blocked the effect of CD28 molecule

on T cells, thus inhibiting the proliferation and activation of T

cells (6). Programmed death receptor 1 (PD-1) is an important

immunosuppressive molecule in CD28 superfamily, encoded by

human PDCD1 gene, and its expression is enhanced under the

stimulation of tumor necrosis factor. The main ligands of PD-1

are programmed death-ligand 1 (PD-L1) and PD-L2 (7).

Immune checkpoint inhibitors can accurately occupy PD-1 or

PD-L1 molecules, produce steric hindrance effect, hinder the

binding of PD-1 and PD-L1, and restore immune responses

inhibited by PD-1 pathway, including normal anti-tumor

immune responses (8, 9). However, studies have shown that

the inhibition rate of ICIs on solid tumors is only 10-40% (10).

The results of this study show that a large number of patients do

not benefit from immunotherapy. In addition, neo-antigen can

also be recognized by T cells and cause immune response of

tumor clearance. For example, the higher the tumor mutation

burden (TMB), the neo-antigen, the higher the tumor

immunogenicity and the higher the anti-tumor response of T

cells. Therefore, there are individual differences in tumor types,

ICIs types, susceptibility and new antigenicity of tumors, and

biomarkers related to driving genes that determine the difference

of clinical benefits of ICIs are the key to predict the curative effect

of ICIs (11).
Driver gene-related biomarkers

PD-L1 is an important immune checkpoint, which is called

programmed cell death ligand 1 (PD-L1). PD-L1 antigen

binding site is located in the variable region of Fab segment in

the light chain of antibody structure, which determines the target

of antibody and the target cells it acts on, while the constant

region Fc segment of antibody structure determines the type of

antibody, which binds to Fc receptor expressed by immune cells,

resulting in antigen clearance (12). In current clinical practice,

the expression intensity of PD-L1 is significantly correlated with
Frontiers in Immunology 02
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OS and PFS of cancer patients after ICI treatment. The results of

KEYNOTE 024 show that (13), compared with traditional

chemotherapy drugs, OS and PFS treated with pembrolizumab

are better for patients with advanced NSCLC with high

expression of PD-L1 (≥ 50%), and when PD-L1 expression <

50%, the efficacy of immunotherapy is equivalent to that of

traditional chemotherapy drugs. This indicates that the higher

the expression level of PD-L1, the better the immunotherapy

effect of NSCLC. The results of KEYNOTE-042 and CheckMate

227 showed that (14), compared with chemotherapy, the ICI

group improved the overall survival time (OS) [Nivolumab plus

ipilimumab: risk ratio (HR) 0.82, 95% CI 0.69-0.97;

Pembrolizumab: (HR) 0.81, 95% ci 0.71-0.93]; In CheckMate

012 study (1), nivolumab combined with CTLA-4i ipilimumab

was used to treat advanced NSCLC, and the effective rate of

patients with PD-L1 ≥ 50% was over 90%. It exists not only in

NSCLC, but also in other cancers. For example, triple negative

breast cancer (TNBC) has a higher level of programmed cell

death ligand 1 (PD-L1) expression, which is more likely to

benefit from immune checkpoint treatment than other breast

cancer subtypes. In 2019, according to the results of

IMPASEN130 Phase III clinical trial (15), FDA accelerated the

approval of atezolizumab combined with nab-paclitaxel to treat

unresectable locally advanced or metastatic PD-L1 positive

TNBC. In 2020, according to the results of KEYNOTE-355

Phase III clinical trial (16), FDA accelerated the approval of

PD-1 inhibitor pembrolizumab combined with chemotherapy to

treat locally relapsed, unresectable and metastatic PD-L1

positive TNBC. Therefore, PD-L1 positive subsets may benefit

the most from immune checkpoint inhibitor (ICI) treatment,

which can affect the therapeutic effect of clinical ICI to a

certain extent.
KRAS

RAS/Mitogen-activated protein kinase (MAPK) pathway

plays a central role in the development of human cancer. It is

highly activated in a variety of tumors, and many of its

components have been identified as oncogene (17). The most

common mutation of this pathway occurs in Kirsten rat sarcoma

viral oncogene homologue (KRAS) (18). KRAS is a guanine

nucleotide binding protein that regulates the mitogen-activated

protein kinase pathway. When it is activated, it promotes

downstream signal transduction and leads to cell growth and

proliferation. In many cancers, KRAS mutation rate is high, such

as 96% in pancreatic cancer, 52% in colorectal cancer and 32% in

non-small cell lung cancer (19). KRAS mutant subtypes mainly

include G12A, G12C, G12D, G12V and G13C. Up to now,

although some targeted drugs are in clinical trials, they have not

been approved to directly target the mutation of some subtypes

of KRAS (20). At present, many studies have evaluated the

influence of KRAS mutation on the curative effect of ICIs in
frontiersin.org
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cancer patients. A study on the prognostic characteristics and

immunotherapy response of KRAS mutated non-squamous

non-small cell lung cancer in East Asian population found that

the disease remission rate (53.8% vs 8.3%, p = 0.030) and

progression-free survival time (4.8 months vs 2.1 months, p =

0.028) of KRAS-non-G12C patients receiving ICIs treatment

were higher than KRAS-non-G12C patients, and the tumor

recurrence time of G12C patients (22.8 months) was shorter

than that of KRAS-non-G12C patients (97.7 months, p = 0.004).

For advanced NSCLC patients, there was a significant difference

in OS between KRAS-G12C and KRAS-non-G12C patients (7.7

months vs 6.0 months, p = 0.018), while KRAS-G12V patients

had the shortest OS (21). Another trial (22) retrospectively

studied KRAS mutant non-small cell lung cancer patients

treated with ICIs, suggesting mPFS (4.6 vs. 3.3 months) in

KRAS mutant and non-KRAS mutant patients, but the results

were not significant. Adi Kartolo et al. (23) evaluated the results

of KRAS mutation in patients with advanced non-small cell lung

cancer (NSCLC) with high expression of PD-L1 on treatment

with first-line immune checkpoint inhibitors. The results

showed that there was no significant difference in mOS

between KRAS-MT and KRAS-WT patients (12.9 vs. 19.3

months, p = 0.879), and the trend of mOS deterioration in

KRAS G12C patients was not significant compared with non-

G12C and KRAS-WT patients (11.4 vs. 44.9, p = 0.772). In

multivariate analysis, KRAS-MT status was independent of mOS

(HR 0.901, 95% CI 0.417-1.946, p = 0.791). In patients with

tumors with KRAS G12C variant treated with ICIs, the trend of

declining survival rate is not significant. Therefore, KRAS

mutation is positively correlated with the curative effect of

ICIs in cancer patients, but KRAS-G12C mutation is

correlated with the shorter tumor recurrence time in early

NSCLC patients. Compared with KRAS-G12C, KRAS-G12V

mutation is associated with shorter OS in patients with

advanced NSCLC. However, it is worth noting that according

to the summary analysis of ASCO FDA in 2022, the report shows

that the status of KRAS has no effect on the tumor immune

microenvironment of non-small cell lung cancer. The above

related studies show that KRAS mutation is of great benefit to

ICIs compared with KRAS WT patients. Therefore, we have

reason to believe that the same driving genes may play different

roles and functions in the formation of tumor immune

microenvironment (TME) based on different solid tumors or

genetic backgrounds.
TP53

TP53 gene was first discovered in 1979 and is the first tumor

suppressor gene to be discovered (24). Solid tumors are often

accompanied by inactivation of TP53 function or pathway,

which is related to the increase of malignant tumors, poor

survival time of patients and drug resistance. This gene is
Frontiers in Immunology 03
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involved in many biological processes, including DNA repair,

cell cycle arrest, apoptosis, autophagy, metabolism and aging

(25). The mutation rate of TP53 is high in cancers, and up to

50% of cancers contain two allele mutations of TP53 gene. TP53

gene has six most significant mutation sites, five of which are G

to T mutations on codon containing methylated CpG sequence,

including codon 157, 158, 245, 248 and 273 (26). Therefore,

understanding the tumor-specific mutation profile of TP53 gene

is very important for studying TP53-related carcinogenesis. A

series of clinical studies have also been conducted to observe the

effect of TP53 mutation on the clinical benefits of tumor patients

treated with ICIs. Patient data obtained from a cancer genome

map show (27) that TP53-MT is a potential indicator of

relatively good response of bladder cancer patients to ICIs,

and is related to prolonged overall survival (OS) [HR = 0.65

(95% CI 0.44-0.99), p = 0.041]. Through the comprehensive

analysis of multiple platforms, it was found that TP53-MT

patients showed stronger tumor antigenicity and tumor

antigen presentation, higher tumor mutation load, higher new

antigen load and higher MHC expression. Compared with

TP53-WT, TP53-MT has stronger pre-existing anti-tumor

immune effects in tumors, including interferon-g enrichment,

positive regulation of TNF secretion pathway and increased

expression of some immunostimulating molecules (such as

CXCL9 and CXCL10). Therefore, patients with TP53-MT are

more likely to benefit from ICIs than patients with wild-type P53

(TP53-WT). As we know, tumor mutation burden (TMB) is

related to tumor response to immune checkpoint inhibitors, and

TP53 can also be used as an indirect quantification tool of tumor

mutation burden (TMB). Sandra Assoun et al. (28) used next-

generation sequencing to evaluate TP53 mutation in aNSCLC

patients treated with programmed death-1 (PD-1) blockers.

Tumor analysis of multiple TP53 mutations showed that

patients with TP53 mutations had longer median OS (18.1

months vs. 8.1 months, p = 0.004), significantly longer median

progression-free survival (4.5 months vs. 1.4 months, p=0.03),

and higher objective remission rate (ORR) (51.2% vs. 20.7%,

p=0.01). Xiangkun Wu et al. (29)discussed the relationship

between TP53 mutation and immunophenotype of muscular

invasive bladder cancer (MIBC) by comprehensively analyzing

TP53 gene mutation and expression. A total of 99 differentially

expressed immune-related genes (DEIGs) including ORM1,

PTHLH and CTSE were identified based on TP53 mutation

status, and the high-risk prognostic groups with poor prognosis

were identified in The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) database. In addition, they showed

lower expression of CD56 bright NK cells, CTLA4, LAG3,

PDCD1, TIGIT and HAVCR2, and were more likely to

respond to PD-1 and neoadjuvant chemotherapy than the

low-risk prognosis group. Therefore, TIPS derived from TP53

mutation is a potential prognostic marker or therapeutic target,

but additional prospective studies are needed to verify this

potential marker.
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STK11/KEAP1

STK11 is a key upstream activator of AMP activated protein

kinase and a central metabolic sensor, which participates in the

response to intracellular energy changes through different cellular

processes, including regulating glucose and lipid metabolism, cell

growth and homeostasis (30). This genetic mutation of tumor

suppressor gene leads to Peutz-Jeghers syndrome, which is a rare

disease, which is characterized by easy development into benign and

malignant tumors in different organ systems (31). In the mouse

model of non-small cell lung cancer, STK11 mutation is related to

“cold” immunosuppressive tumor microenvironment, showing a

decrease in the expression of immune inflammatory factors (CD8+

and CD4+T lymphocytes, type 1 macrophages) and PD-L1, and an

increase in T cell failure markers and tumor-promoting cytokines

(32). STK11 mutation is more common in non-squamous NSCLC,

with STK11 mutation occurring in 8-39% of patients (33). KEAP1 is

the main regulator of nuclear factor erythroid-2-related factor-2

(NRF2, also known as NFE2L2), which plays a central role in cell

response to oxidative stress and regulates the expression of a large

number of genes. KEAP1 functional loss mutation occurs in about

11%-27% of NSCLC. KEAP1 mutation and NFR2 mutation are

mutually exclusive, and are often related to simultaneous aberrations

of targeted genes (such as 6% EGFR mutation and 18% MET

amplification) and non-targeted genes (such as 45% TP53

mutation) (34). The absence of KEAP1-negative regulation

determines the constitutive activation of NFR2, promotes tumor

survival, and may also lead to drug resistance and poor prognosis of

NSCLC patients (35). Biagio Ricciuti et al. (36)studied the

relationship between STK11/keap1 mutation and KRAS mutation.

The results suggest that in the joint cohort study involving 1261

patients, STK11 and KEAP1 mutations were associated with

significantly worse progression-free (STK11 HR = 2.04, p < 0.0001;

KEAP1 HR = 2.05, p < 0.0001) and overall(STK11 HR = 2.09, p <

0.0001; KEAP1 HR = 2.24, p < 0.0001) survival to immunotherapy

uniquely among KRAS mut, but not KRAS wt LUADs. Gene

expression ontology and immunocyte enrichment analysis showed

that STK11 or KEAP1 mutation led to different immunophenotypes

in KRAS mutation, but not in KRAS wild type and lung cancer. The

results indicated that KRAS mutation status affected STK11/keap1

mutation and then affected the curative effect of ICIs. Simon Papillon

et al. (35) studied the correlation between STK11 and KEAP1 and

adverse reactions of immune checkpoint inhibitors. By analyzing the

clinical andmutation data of 2276 patients, it is suggested that STK11

or KEAP1 mutation is related to poor prognosis in multiple

therapeutic classes, while STK11 mutation is related to PFS treated

with anti-PD-1/anti-PD-L1 (HR = 1.05; 95% CI 0.76-1.44; P=0.785)

or OS (HR=1.13; 95% CI 0.76-1.67; P = 0.540). Similarly, KEAP1

mutation was also correlated with PFS (HR= 0. 93; 95%CI 0.67-1.28;

P = 0.653) or OS (HR = 0.98; 95% CI 0.66-1.45; P = 0.913), which

suggests that STK11/KEAP1 mutation is a prognostic marker rather

than a predictive marker for anti-PD-1/anti-PD-L1 therapy.
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In another study (37), the prognostic effect of ICIs on patients with

non-squamous non-small cell lung cancer (NSCLC) with STK11 or

KEAP1 mutation was analyzed. Univariate and multivariate analysis

showed that STK11/KEAP1 mutation was an independent and

important prognostic factor affecting overall survival (P < 0.05)

and progression-free survival (P < 0.05). Importantly, STK11/

KEAP1 mutant patients showed poorer OS than wild type patients

when receiving atezolizumab (all P < 0.05). In addition, for STK11

mutant subsets, atezolizumab did not improve OS (HR = 0.669; 95%

Cl 0.380-1.179; P = 0.669), while the survival of KEAP1 mutation

patients who received atezolizumab was improved (HR = 0.610; 95%

Cl 0.384-0.969; P = 0.036).
EGFR

Epidermal Growth Factor Receptor (EGFR) is a

transmembrane glycoprotein and one of the four members of

ErbB family of tyrosine kinase receptors. Activation of EGFR

leads to autophosphorylation of receptor tyrosine kinase, which

initiates a series of downstream signaling pathways involved in

regulating cell proliferation, differentiation and survival. EGFR is

abnormally activated through various mechanisms (such as

receptor overexpression, mutation, ligand-dependent receptor

dimerization, ligand independent activation, etc.), which is related

to the occurrence of various human cancers (38). In cancer patients,

while immune checkpoint inhibitors are used, EGFR status also

provides a new treatment strategy for cancer patients, thus

improving clinical outcomes. It is considered that the progress of

tumor biology and tumor microenvironment (TME) differences in

NSCLC with EGFRmutation may be a newmethod to enhance the

curative effect of ICIs. Specific EGFR mutations affect the

immunogenicity of TME and the response sensitivity to ICIs.

Chen et al. (39) conducted a large-scale study on 600 EGFRm

NSCLC patients in China. They reported that the OS of PD-L1

positive EGFRm NSCLC patients was worse than that of PD-L1

negative patients (median OS 15.2 vs 29.3 months, p = 0.006),

although most of these patients also received EGFR TKI

monotherapy in all treatment lines. Negrao et al. (40) reported

that compared with patients with classical gene mutation, patients

with metastatic EGFRm NSCLC benefited more from ICIs, ORR

was 25% vs 0%, and disease control rate (DCR) was 50% vs 15%.

Mazieres et al. (40, 41)analyzed the IMMUNOTARGET registry

and compared the molecular characteristics of EGFRm patients’

response to ICIs. In this database, patients with EGFR exon 21

mutation had significantly longer PFS (2.5 months) than patients

with EGFR exon 19 mutation (1.4 and 1.8 months, p < 0.001).

Therefore, these studies indicate that EGFR mutation may increase

the immunogenicity and immune response of ICIs. Future clinical

trials should ensure that specific EGFR gene changes are reported

and provide mutation subgroup data in order to further obtain

evidence of this subject.
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MSI-H/dMMR

The main function of MMR is to correct the errors in DNA

replication and ensure the fidelity of replication process.

However, the hypermethylation and frameshift mutation of

promoter lead to the loss of mismatch repair protein

expression, which leads to MSI-H/dMMR. Patients with MSI-

H/dMMR may benefit from PD-1/PD-L1 inhibitors, and about

15% of colorectal cancer patients have MSI-H gene test results

(42). ASAOKA et al. (43) reported for the first time that 16

(57%) of 25 patients with MMR were treated with

Pembrolizumab, and the other 9 patients (32%) were stable

(SD). In 2017, Pembrolizumab became the first anti-PD-1 drug

approved in the United States, suggesting that MMR status can

predict the clinical efficacy of Pembrolizumab. HAUSE et al. (44)

analyzed 5930 genomes of multiple tumors by genome

sequencing, and found that MSI-H existed in 14 kinds of

malignant tumors. The frequency of MSI-H in colorectal

cancer, gastric cancer and endometrial cancer was significantly

higher than that of other tumors, but the proportion of

malignant tumor patients was still small. At present, it is

generally recognized that patients with gastric and colorectal

malignant tumors and MSI-H/dMMR in tumor tissues have

better curative effect and higher benefit rate when using PD-1/

PD-L1 inhibitor.
HLA

Human leukocyte antigen (HLA) is the expression product

of human major histocompatibility complex gene. HLA plays an

important role in immune presentation and recognition. CD8+T

cell-dependent killing requires human leukocyte antigen class I

(HLA-I) molecules to present tumor antigens effectively. The

loss of HLA diversity will lead to the decrease of immunotherapy

response rate (45). Studies have shown that in patients with

malignant melanoma and lung cancer, the A, B and C genes of

HLA-I molecule are all heterozygous compared with patients

with at least one gene homozygous, and the curative effect of

immunotherapy is better; If all heterozygous patients have high

TMB, the prognosis is better than patients with at least one gene

homozygous and low TMB (46). HLA-B44 is a supersubtype of

HLA, which can cross-present new antigens presented by other

subtypes of HLA, which increases the diversity of HLA. Studies

have shown that patients with HLA-B44 positive and high

mutation level have higher survival rate (47).
Discussion

This review explored the influence of driving genes on the

therapeutic effect of ICIs, but the diversity and complexity of driving
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genes also have certain influence on tumor microenvironment. At

present, it has been found that many immunotherapy markers are

related to tumor microenvironment. For example, lymphocytes,

macrophages and interstitial cells in tumor immune

microenvironment also express PD-L1, and the expression level

of PD-L1 also has certain influence on tumor microenvironment.

For example, lymphocytes, macrophages and interstitial cells in

tumor immune microenvironment also express PD-L1, and the

expression level of PD-L1 also has certain influence on tumor

microenvironment. In lung cancer, the level of PD-L1 was

significantly correlated with the site of biopsy, with the highest

expression in adrenal and liver metastases and the lowest expression

in bone and brain metastases. At the same time, the level of PD-L1

in lung and distant metastatic tissues is positively correlated with

clinical benefit, but the level of PD-L1 in lymph node metastasis

may not be correlated with clinical benefit. Similar conditions exist

in other driving genes, which suggest that driving genes have

different roles in different tumor microenvironments.

Based on the above research and discussion, it is not difficult to

find that the state of tumor driving genes affects the therapeutic

effect of ICIs. However, it is more noteworthy that the influence of

driving genes on the immune microenvironment of different

tumors determines the predicted value of ICIs. As shown in

Meichen Gu et al. (48), KRAS/LKB1 and KRAS/TP53 common

mutations produce different immune signals in lung

adenocarcinoma. New data suggests that KRAS-mutated lung

adenocarcinoma can exhibit enhanced PD-L1 expression and

additional somatic mutations, linking the prospect of immune

checkpoint blockade therapy being applied to the disease.

However, the response of lung adenocarcinoma with kras

mutation to this treatment is different, which is largely attributed

to the heterogeneity of tumor immune environment. Recently, it

has been found that lung adenocarcinoma with KRAS-mutation

expresses LKB1 or TP53 mutation at the same time, and its tumor

immune characteristics are usually different. Tumors with KRAS/

TP53 co-mutation usually have significant up-regulation of PD-L1

expression and accumulation of tumorigenic t cells, while tumors

with KRAS/LKB1 co-mutation usually have negative PD-L1

expression and few tumorigenic immune infiltration. Therefore,

in addition to PD-L1 expression, detection of TP53 or LKB1

mutation will hopefully guide the clinical use of immune

checkpoint blocking therapy for kras mutant lung adenocarcinoma.

Tumor formation is the result of immune escape, and ICIs

can reverse immune escape and restore the body’s ability to

recognize and eliminate tumor cells. Immunotherapy opens up a

new model of cancer treatment. The biomarkers that predict the

cancer efficacy, adverse reactions and drug resistance of ICIs play

an important role in screening ICIs beneficiaries. Among them,

efficacy markers PD-L1, TMB and MSI/MMR have entered the

guidelines or consensus, while there are few studies on other

driving gene markers of immunotherapy, such as EGFR, HLA,

TP53, etc., and the exploration of more accurate biomarkers is

still the focus of research. In addition, more related biomarkers
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and other factors affecting survival and prognosis of

immunotherapy (such as tumor microenvironment, intestinal

flora, DNA repair damage, etc.) need to be further explored and

studied. At present, there are still few large sample trial data

based on Chinese population, but with the continuous

development of cancer ICIs clinical trials and the increasing

number of treatment cases, it is believed that tumor markers will

play an increasingly important role in predicting the efficacy,

survival prediction and adverse reactions of ICIs. At the same

time as the specification of biological detection technology,

progress of gene diagnosis technology and medical data, the

rapid development of new technologies and means such as

artificial intelligence, immunotherapy of cancer will shift from

illness condition as they intend and, since the future is expected

to be through the detection of biomarkers to predict treatment in

patients with different stages of treatment benefits and risks, In

this way, precise and individualized treatment plans can be

developed to enable patients to have a longer survival time

and a higher quality of life. This will be our next

research direction.

At the same time, it has become the focus of clinical research to

explore new and different combination therapy modes and

improve the immunotherapy response rate. Combination

therapy can overcome the limitations of monotherapy. ICIs has

elicited a lasting clinical response in some patients, which is largely

dependent on effective T cell infiltration and effector T cell function

in TME, while combination therapy is recommended to target

multiple abnormalities in the differentiation of cancer cells and
Frontiers in Immunology 06
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normal cells. It mainly includes decreasing TMB and enhancing

tumor immunogenicity (such as in combination with

chemotherapy, radiotherapy and targeted therapy), enhancing T

cell transport and enhancing T cell response. The status of driver

genes in cancer cells and normal cells will also provide better

strategies for drug combination. In the future, with the progress of

genomics, transcriptomics and immunodetection technology, the

combination therapy withmultiple ICIs will be a new development

trend. The establishment of comprehensive biomarker evaluation

system through bioinformatics and other methods can predict the

efficacy of ICIs more comprehensively, thus promoting the

development of tumor precision medicine.
Search strategy and selection criteria

As shown in Figure 1, the data for this review was obtained by

searching PubMed with key words “cancer; Immune checkpoint

inhibitors; Biomarkers; Overall survival; No disease progression

“retrieved from related articles. We identified 4193 records through

PubMed database search, but did not find relevant information

records through other sources. Before screening, we deleted 3393

literatures, including records of review literatures (n = 3226), meta-

analysis (n = 96), and case reports (n = 71). In addition, 735

references without relevant driver gene introduction were excluded.

Another 38 literatures without relevant data such as OS and PFS

were excluded. Finally, the review included 27 records. Only articles

published in English between 2000 and 2022 are included.
FIGURE 1

PRISMA Flow chart of article selection.
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advanced urothelial carcinoma
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Purpose: Immune checkpoint blockade agents were shown to provide a

survival advantage in urothelial carcinoma, while some patients got minimal

benefit or side effects. Therefore, we aimed to investigate the prognostic value

of m6A methylation regulators, and developed a nomogram for predicting the

response to atezolizumab in urothelial carcinoma patients.

Methods: A total of 298 advanced urothelial carcinoma patients with response

data in the IMvigor210 cohort were included. Differential expressions of 23m6A

methylation regulators in different treatment outcomes were conducted.

Subsequently, a gene signature was developed in the training set using the

least absolute shrinkage and selection operator (LASSO) regression. Based on

the multivariable logistic regression, a nomogram was constructed by

incorporating the gene signature and independent clinicopathological

predictors. The performance of the nomogram was assessed by its

discrimination, calibration, and clinical utility with internal validation.

Results: Six m6Amethylation regulators, including IGF2BP1, IGF2BP3, YTHDF2,

HNRNPA2B1, FMR1, and FTO, were significantly differentially expressed

between the responders and non-responders. These six regulators were also

significantly correlated with the treatment outcomes. Based on the LASSO

regression analysis, the gene signature consisting of two selected m6A

methylation regulators (FMR1 and HNRNPA2B1) was constructed and showed

favorable discrimination. The nomogram integrating the gene signature, TMB,

and PD-L1 expression on immune cells, showed favorable calibration and

discrimination in the training set (AUC 0.768), which was confirmed in the

validation set (AUC 0.755). Decision curve analysis confirmed the potential

clinical usefulness of the nomogram.
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Conclusions: This study confirmed the prognostic value of FMR1 and

HNRNPA2B1, and constructed a nomogram for individualized prediction of

the response to atezolizumab in patients with urothelial carcinoma, which may

aid in making treatment strategies.
KEYWORDS

m6A methylation regulators, urothelial carcinoma, PD1/PDL1, prediction, outcome
Introduction

Urothelial carcinoma is one of the most common cancers

worldwide (1), and the bladder is the usual site of occurrence (2).

Due to the high recurrence rate and complicated therapeutic

strategies, bladder cancer (BCa) is considered the most expensive

tumor, which has brought a heavy economic burden to patients

and society (3). Notably, a considerable proportion of urothelial

carcinoma patients develop metastases during follow-up after

radical therapies. The prognosis for advanced urothelial

carcinoma remains poor (4). Emerging immunotherapy

heralds a new era for the treatment of urothelial carcinoma.

For the past few years, immunotherapy for malignant tumors

has achieved many encouraging breakthroughs, making it the

fourth treatment technique for cancer therapy after the

operation, radiation therapy, and chemotherapy (5).

Currently, blockade of immune checkpoint molecule,

programmed cell death 1 (PD1), or its ligand, PD ligand 1

(PDL1), was shown to provide a survival advantage in numbers

of different advanced malignancies (6, 7). Effective as it is, only

a subset of patients experienced durable responses and long-

term survival after anti-PD1/PDL1 therapy, and the majority of

patients achieved minimal or no clinical benefit (8). For

example, the effective response rate for BCa is approximately

20% (9). Meanwhile, immunotherapy may cause adverse

effects, and some may even lead to serious or life-threatening

consequences (10, 11). Therefore, the optimization of

individualized treatment has been listed as one of the top ten

challenges of immunotherapy for tumors (12). How to identify

the patients who are prone to have a good response to anti-

PD1/PDL1 therapy is the current focus of intense research

efforts. Many biomarkers have been reported to be predictive of

cancer response to immunotherapy. The immunity system

extends from systems-level principles of immune cell

connectivity down to mechanistic characterization of

individual receptors, which could provide potential

opportunities for therapeutic intervention (13). Of these,

tumor mutational burden (TMB) quantifying the number of

somatic mutations in the tumor, CD8+ T-cell abundance, and

PDL1 expression are commonly used predictors (9, 14, 15).
02
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However, their predictive efficacy may vary in specific cancer

types (9, 12).

N6-methyladenosine (m6A) modification represents one of

the most common chemical modifications in eukaryotic mRNA,

which is a reversible process regulated by the balanced activities of

methyltransferases, binding proteins, and demethylases, also

known as “writers”, “readers” and “erasers” (16). Studies have

demonstrated that m6A plays an important role in mRNA

splicing, localization, translation, export, degradation, and

stability (17–19). In addition, substantial evidence showed that

dysregulated expression and genetic changes of m6A methylation

regulators were associated with multiple biological disorders

including dysregulated cell proliferation, differentiation and

death, developmental defects, cancer progression, damaged self-

renewal capacity, and aberrant immune regulation (20–22).

Moreover, m6A methylation regulators also played critical roles

in the development and progression of BCa by promoting cancer

cell proliferation, self-renewal of cancer stem cells and so on (23–

25). Besides, m6A regulators were reported to serve as reliable

biomarkers to predict the treatment response and/or prognosis in

BCa (26) as well as other tumors (27–29). Nonetheless, whether

m6A regulators could aid in the prediction of immunotherapy

response in urothelial carcinoma remains unknown.

In the present study, we systematically analyzed the

association between the expression of 23 widely reported m6A

regulators and the anti-PDL1 treatment (i.e., atezolizumab)

response in advanced urothelial carcinoma patients. And we

developed and validated a nomogram that integrated a gene

signature derived from pre-treatment expression of m6A

regulators and clinical variables for individualized prediction

of the response to atezolizumab treatment in patients with

urothelial carcinoma.
Methods

Data acquisition

Under the Creative Commons 3.0 license, standardized RNA-

sequencing data and corresponding clinicopathological data,
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including TMB, PD-L1 expression on immune cells (IC), and

tumor cells (TC), for the IMvigor210 cohort were extracted from

the IMvigor210CoreBiologies R package (http://research-pub.gene.

com/IMvigor210CoreBiologies/) developed by Mariathasan et al

(30). Tumor specimens were scored via immunohistochemistry

for PD-L1 expression on immune cells as IC0, IC1, IC2, or IC3 if

<1%, ≥1% but <5%, ≥5% but <10%, or ≥10% of immune cells were

PD-L1 positive, respectively. Besides, tumor tissue samples were

scored as TC0, TC1, TC2, or TC3 if <1%, ≥1% but <5%, ≥5% but

<50%, or ≥50% of tumor cells were PD-L1 positive, respectively.

RNA-seq count data were transformed into Transcripts Per

Million (TPM). Among 348 bladder cancer patients in the

IMvigor210 cohort, we excluded those patients without

treatment response data. Therefore, a total of 298 patients were

finally included in our study (Supplementary Table S1). A

reduction of tumor volume over 10% is defined as partial

response (RECIST v1.1). All patients were classified into

responders (complete and partial response) and non-responders

(stable and progressive disease).
Atezolizumab treatment response
associated m6A methylation regulators

To explore the role of m6A methylation regulators in

atezolizumab treatment, their differential expressions in

different treatment outcomes were analyzed in all enrolled

patients. The expressions of m6A methylation regulators were

compared between the response group and non-response group

using Wilcoxon’s test. To further understand the interactions

among 23 m6A regulators, their expression correlations were

evaluated using the correlation plot and the Spearman

correlation test.
Functional enrichment annotation

Metascape (http://metascape.org) is an online analysis tool

designed to provide a comprehensive gene list annotation and

analysis resource for experimental biologists, including gene

annotation, functional enrichment, and construction of

protein-protein interaction networks (31). In this study, we

used Metascape to conduct the pathway and process

enrichment of the m6A methylation regulators.
Construction of the gene signature and
evaluation of performance

The model construction flowchart of this study is presented

in Supplementary Figure S1. All enrolled patients were randomly

divided into two groups at a ratio of 7:3. As a result, 209 patients

were allocated to the training set, whereas 89 patients were
Frontiers in Immunology 03
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allocated to the independent validation set. In the training set,

the univariable logistic regression analyses were used to measure

the potential associations between 23 m6A regulators and the

therapeutic outcomes. And the least absolute shrinkage and

selection operator (LASSO) regression algorithm was

performed to select treatment response-related genes with

nonzero coefficients among 23 m6A regulators (32). An m6A-

related gene signature was developed to evaluate the probability

of treatment outcome for each patient using the gene score,

which was calculated as a linear combination of the selected

genes weighted by their respective coefficients. The

discrimination of the gene signature was estimated by the area

under the receiver operator characteristic (ROC) curve (AUC) in

the training set and then validated in the validation set.
Weighted gene co-expression
network analysis

We used genes in the IMvigor210 dataset that were in the top

25% of variance from responders and non-responders to

construct a weighted gene co-expression network analysis

(WGCNA). Detailed descriptions regarding the WGCNA are

shown in Supplementary Methods. To ensure the reliability of

the WGCNA result, outlier samples that were distant from other

samples were removed. An appropriate power cut-off threshold

was selected to generate a scale-free topology overlap matric

(TOM) and average linkage hierarchical clustering was used to

detect gene modules. With the Dynamic Tree-Cut algorithm,

gene modules were displayed as branched of dendrogram. The

significance and correlation of module eigengenes of each gene

module were generated. Then, we explored whether the module

that most significantly correlated to treatment response contains

m6A-related genes.
Relationship of treatment
outcome-related genes with
immune infiltration patterns

The CIBERSORT algorithm was utilized to estimate the

infiltration of 22 types of immune cells in all samples (33).

Furthermore, to further investigate the role of treatment

outcome-related genes in atezolizumab therapy, the

relationship of those m6A methylation regulators selected in

the LASSO regression analysis with different types of immune

cells were analyzed.
Construction of the nomogram

After univariable logistic regression analyses, the variables

with P < 0.05 in the regression analyses were included in the
frontiersin.org
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following multivariable analysis in the training set. Backward

stepwise selection using Akaike’s Information Criterion (AIC)

was used to identify the significant predictors to develop the

prediction model. A variance inflation factor (VIF) was

calculated to assess the collinearity diagnostics of the

multivariable logistic regression. According to the results of

the multivariable logistic analysis, a nomogram was then

constructed. A response score for each patient was calculated

based on the multivariable logistic regression formula to reflect

the probability of treatment response.

Assessment of performance of
the nomogram

In the training set, the AUC was used to measure the

discrimination performance of the nomogram. In addition, a

calibration curve was performed to estimate the calibration of the

nomogram, along with the Hosmer-Lemeshow test to assess the

goodness-of-fit (34).

Validation of the nomogram

The performance of the nomogram was subsequently

validated in the validation set. A response score can be

calculated for each patient in the validation set by using the

formula constructed in the training set. The AUC was then

calculated, and the calibration curve and the Hosmer-Lemeshow

test were conducted.
Clinical usefulness of the nomogram

All patients were categorized into the predicted response or

the predicted non-response groups according to their response

scores, whose optimal cut-off point value was determined by the

maximum Youden index in the training set (35). The log-rank

test was performed to compare the Kaplan-Meier overall

survival curves of the predicted response and the predicted

non-response groups in the training and validation sets.

Moreover, to determine the clinical usefulness of the

nomogram, a decision curve analysis (DCA) was performed by

calculating the net benefits for different threshold probabilities

using the training and validation sets separately (36).
Statistical analysis

All statistical tests were conducted using R statistical

software (version 4.0.4; R Foundation for Statistical

Computing). R packages used in this study, detailed

descriptions regarding the LASSO algorithm, and DCA are

available in Supplementary Methods. A two-sided P-value <

0.05 was considered statistically significant.
Frontiers in Immunology 04
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Results

Patient clinical characteristics

Patient clinical characteristics in the training and validation

sets are shown in Table 1. Totally, 22.8% (68/298) of patients

achieved complete response/partial response after atezolizumab

treatment. In addition, 189 patients (63.4%) were dead during

the follow-up. The median follow-up was 10.3 months

(Interquartile range, 4.4–18.8). No significant difference was

found between the training and validation set regarding the

clinical characteristics (Table 1).
Atezolizumab treatment response
associated m6A methylation regulators

Figures 1A, B show that six m6A methylation regulatory

genes (IGF2BP1, IGF2BP3, YTHDF2, HNRNPA2B1, FMR1,

and FTO) expressed differentially between the responders

and non-responders. The expression levels of IGF2BP1,

IGF2BP3 , YTHDF2 , HNRNPA2B1 , and FMR1 were

significantly higher in the response group, while expression

levels of FTO were significantly decreased in the non-

response group. Among them, a significant difference in

expression between bladder cancer and normal tissue in

the TCGA-BLCA cohort is only detected in IGF2BP3

(Supplementary Figure S2). The correlation heatmap

ind ica t ed tha t FMR1 , YTHDF3 , CBLL1 , ZC3H13 ,

METTL14 , YTHDC1 , KIAA1429 , and LRPPRC have a

strong association with others (most r2>0.4; Figure 1C).

Supplementary Figure S3 presents the results of the functional

enrichment analysis obtained from Metascape. As shown in

Supplementary Figure S3A, we found that several pathways

were enriched, including regulation of mRNA metabolic

process, regulation of mRNA stability, mRNA metabolic

process, mRNA modification, regulation of mRNA process,

mRNA transport, and negative regulation of mRNA metabolic

process. The network of enriched terms can be found in

Supplementary Figure S3B and Table S2. Supplementary Figures

S3C, D presents the protein-protein interaction network and

Molecular Complex Detection (MCODE) components. Five

treatment response associated m6A regulators were found in the

MCODE_1 component.
Construction of the gene signature and
evaluation of performance

In the univariable logistic regression analysis, ELF3, FMR1,

HNRNPA2B1, HNRNPC, IGF2BP3, and KIAA1429 were

associated with the therapeutic outcomes in the training
frontiersin.org
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FIGURE 1

Relationship between the expression of m6A RNA methylation regulators and treatment response in urothelial carcinoma patients. (A) The
heatmap shows the expression patterns of the 23 m6A methylation regulators between the response group and non-response group. (B) The
violin plots exhibit the differential expression of the 23 m6A methylation regulators in the response group (red) and the non-response group
(blue). (C) Spearman correlation analyses of the expression of the 23 m6A methylation regulators. *P < 0.05, ***P < 0.001.
TABLE 1 Baseline characteristics of the patients.

Characteristic Training set (n = 209) Validation set (n = 89) P

Sex

Male 164 (78.5) 69 (77.5) 0.979

Female 45 (21.5) 20 (22.5)

IC

IC0 59 (28.2) 25 (28.1) 0.757

IC1 81 (38.8) 31 (34.8)

IC2 69 (33.0) 33 (37.1)

TC*

TC0 164 (78.8) 74 (83.1) 0.494

TC1 14 (6.7) 3 (3.4)

TC2 30 (14.4) 12 (13.5)

TMB, mut/Mb†

Median (Interquartile range) 8 [5, 14] 8 [5, 14] 0.662

Treatment response

Complete response 14 (6.7) 11 (12.4) 0.059

Partial response 26 (12.4) 17 (19.1)

Stable disease 42 (20.1) 21 (23.6)

Progressive disease 127 (60.8) 40 (44.9)

Gene score

Median (Interquartile range) -1.490 [-1.615, -1.352] -1.475 [-1.597, -1.286] 0.355
Frontiers in Immunology
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Data are presented as No. (%) unless indicated otherwise.
P values were derived from the univariable association analyses between the training and validation set.
*One patient’s PD-L1 expression on tumor cells (TC) data was not available.
†TMB data were available for 161 and 73 patients in the training and validation sets, respectively.
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set (Figure 2A). Additionally, using the LASSO regression

analysis, two treatment outcome-related genes (FMR1 and

HNRNPA2B1) with nonzero coefficients were selected in the

training set (Figures 2B, C). Based on the LASSO logistic

regression analysis, a gene signature was constructed, which

can be calculated as a gene score for each patient: gene score =

0.000545 × FMR1 expression level + 0.004127 × HNRNPA2B1

expression level - 2.30373.

The gene signature showed favorable discrimination, with an

AUC of 0.634 (95% confidence interval [CI] 0.535-0.733) in the

training set, which was validated in the validation set with an

AUC of 0.646 (95% CI 0.520-0.773; Figure 2D).
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Weighted gene co-expression
network analysis

There was one outlier in the sample clustering

(Supplementary Figure S4), which was excluded in the

subsequent WGCNA. As 4 is the lowest value that allows

obtaining more than 90% similarities in topology models

(Figures 3A, B), a soft threshold power of 4 was selected.

Finally, a total of 15 modules was obtained using a dynamic

tree-cutting method (Figure 3C). Among these modules, the

turquoise module was the most significantly correlated to

treatment response (Pearson correlation coefficient = 0.23 and
BA

C

D

FIGURE 2

Construction and assessment of the m6A-related gene signature. (A) Univariable logistic regression analyses evaluating the predictive ability of
m6A methylation regulators for treatment response of urothelial carcinoma patients. (B) Tuning parameter (l) selection in the LASSO model
used 10-fold cross-validation via minimum criteria. Binomial deviances from the LASSO regression cross-validation procedure were plotted as a
function of log(l). The numbers along the upper x-axis represent the average number of predictors. The red dots indicate the average deviance
values for each model with a given l, and the vertical bars through the red dots show the upper and lower values of the deviances. The dotted
vertical lines are drawn at the optimal values where the model provides its best fit to the data. The optimal l value of 0.053 with log (l) = -2.936
was chosen. (C) LASSO coefficient profiles of the 23 m6A methylation regulators. The dotted vertical line is drawn at the value selected using
10-fold cross-validation in Figure 2B, where optimal l resulted in 2 nonzero coefficients. (D) ROC curves of the gene signature in the training
and validation sets.
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P < 0.001, Figure 3D). Of note, two identified treatment

outcome-related genes, FMR1 and HNRNPA2B1, are found in

the turquoise module, indicating the important role of these two

m6A regulators in the immunotherapy of bladder cancer.

Patients with low expression of FMR1 and HNRNPA2B1

were more likely to have death after receiving immunotherapy in

the IMvigor210 cohort (Supplementary Figure S5). Their

performance in prognostic prediction is also presented in

Supplementary Table S3. However, we found that expression

of FMR1 and HNRNPA2B1 were not correlated with the overall

survival in bladder cancer patients based on TCGA-BLCA

dataset, who were not treated with immunotherapy

(Supplementary Figure S6). These results suggest that these

two identified genes might influence the immunotherapy

response through m6A methylation, affecting the prognosis of

patients with urothelial carcinoma.
Relationship of treatment
outcome-related genes with
immune infiltration patterns

As shown in Figure 4, FMR1was negatively related to regulatory

T cells, resting NK cells, M0 macrophages, M2 macrophages, was
Frontiers in Immunology 07
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positively correlated with activated CD4+ memory T cells, gamma

delta T cells, activated myeloid dendritic cells, and eosinophil.

HNRNPA2B1 was negatively related with M0 macrophages, and

was positively correlated with activated CD4+ memory T cells and

activated myeloid dendritic cells. Note that FMR1 was most

negatively correlated with M2 macrophages, and HNRNPA2B1

was most negatively correlated with M0 macrophages.
Construction of the nomogram and
assessment of performance

According to the univariate logistic regression analyses,

three candidate variables were found to meet the threshold of

P < 0.05, including the gene signature, IC, and TMB (Table 2).

They were identified as the significant predictors of treatment

outcomes in the subsequent multivariable logistic regression

analysis. The VIF values ranged from 1.000 to 1.003,

indicating that there was no collinearity in the collinearity

diagnosis. By incorporating IC, TMB, and the gene signature,

a nomogram was developed (Figure 5A) and the response score

could be calculated for each patient to reflect the probability of

treatment response based on the multivariable logistic regression

formula. The calculating formula was as follow: response score =
B

C

DA

FIGURE 3

Weight Gene Co-expression Network Analysis. (A) Analysis of the scale-free index for various soft power thresholds. (B) Analysis of the mean
connectivity of various soft power thresholds. (C) Dendrogram of the genes clustered based on a dissimilarity measure (1-TOM). (D) Average
gene significances and errors in the modules associated with treatment response. The turquoise module was the most significantly correlated to
treatment response. FMR1 and HNRNPA2B1 are in this module.
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1.673 × gene score + 0.481 × IC + 0.093 × TMB − 0.542. The

predicted treatment response probability was calculated using 1/

[1 + exp (−response score)].

In the training set, an AUC of 0.768 (95% CI, 0.678-0.858)

indicated that the nomogram had good discrimination (Figure 5B).

The calibration curve of the nomogram estimating the probability

of an effective treatment response demonstrated good agreement

(Figure 5C), and the Hosmer-Lemeshow test yielded a non-

significant statistic (P = 0.256), suggesting no departure from the

perfect fit. The favorable calibration and discrimination
Frontiers in Immunology 08
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performance of the nomogram was confirmed in the validation

set, with an AUC of 0.755 (95% CI 0.636-0.875; Figures 5B, C). The

Hosmer-Lemeshow test also demonstrated a non-significant

statistic for the nomogram (P = 0.214).
Clinical usefulness of the nomogram

After obtaining the response scores from the nomogram,

the patients were classified into the predicted response and
B C D

E F G H

I J K

A

FIGURE 4

The relationship of FMR1 and HNRNPA2B1 with different types of immune cells. (A–H) Correlation plots show the relationship between FMR1
and different types of immunocytes. (I–K) Correlation plots show the relationship between HNRNPA2B1 and different types of immunocytes.
TABLE 2 Univariate logistic regression analysis of the gene score and clinical candidate predictors in the training set.

Variables Univariate logistic regression Multivariate regression

OR (95% CI) P OR (95% CI) P

The gene score 6.970 (1.567-35.815) 0.014* 5.330 (1.072-30.194) 0.044*

Sex (male vs. female) 2.171 (0.861-6.648) 0.130 – –

IC 1.894 (1.129-3.316) 0.019* 1.618 (0.933-2.910) 0.095

TC 1.170 (0.723-1.815) 0.499 – –

TMB 1.105 (1.055-1.168) <0.001* 1.098 (1.047-1.163) <0.001*
frontie
*P < 0.05.
CI, confidence interval; OR, odds ratio.
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the predicted non-response groups according to the optimal

cutoff value of 0.194. Notably, in the training set, patients in

the predicted response group had better OS compared with

those in the predicted non-response group (Figure 6A); the

same was true in the validation set (Figure 6B).

In the training and validation sets, the DCA suggested

that using the nomogram to detect a treatment response adds

more net benefit than either the treat-all or treat-none

scheme for a wide range of threshold probabi l i ty

(Figures 6C, D).
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403
Discussion

Anti-PD1/PDL1 treatment has been increasingly recognized as

a critical strategy in urothelial carcinoma. Precise targeting of

patients is of great importance to increase benefits and cost-

effectiveness. In this study, we determined the associations

between m6A methylation regulators and atezolizumab treatment

response. Furthermore, we developed a nomogram incorporating

the m6A-related gene signature and clinical variables for

individualized prediction of the response to atezolizumab in
B C

A

FIGURE 5

Nomogram to predict the response of atezolizumab treatment for patients with advanced urothelial carcinoma and its performance evaluation.
(A) Points were assigned for gene score, IC and TMB by drawing a line upward from the corresponding values to the “Points” line. The sum of
these three points, plotted on the “Total points” line, corresponds to predictions of the treatment response. (B) ROC curves of the nomogram.
(C) Calibration curves of the nomogram. The observed treatment outcome is shown compared with the nomogram using the training set and
validation set, respectively. The calibration curves depict the calibration of the nomogram in terms of the agreement between the predicted
treatment outcomes and the observed treatment outcomes. The 45-degree dotted gray line represents a perfect prediction, and the solid lines
represent the predictive performance of the nomogram. The distance between the solid line and the ideal line represents the superior predictive
accuracy of the nomogram.
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patients with urothelial carcinoma. This could aid in making

treatment strategies and facilitate precision medicine.

In the study, differential expression analysis showed that six

m6A methylation regulators, including IGF2BP1, IGF2BP3,

YTHDF2, HNRNPA2B1, FMR1, and FTO, were significantly

differentially expressed between the responders and non-

responders. Moreover, the expression of these six regulators

was significantly correlated with the treatment outcomes. These

results may preliminarily indicate that these six m6A regulators

have the potential of influencing the survival of urothelial

carcinoma cells. Subsequently, we identified two critical m6A

methylation regulators (i.e., FMR1 andHNRNPA2B1) to develop

an m6A-related gene signature for the prediction of the response
Frontiers in Immunology 10
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to atezolizumab. The gene signature showed satisfactory

discrimination with an AUC of 0.634 in the training set,

which was further confirmed in the validation set with an

AUC of 0.646.

Furthermore, after using multivariable logistic regression

analysis to select candidate predictors, a nomogram was

built by incorporating the gene signature, IC, and TMB.

The nomogram demonstrated favorable calibration and

discrimination in the training set (AUC 0.768) and also

performed well in the validation set (AUC 0.755). Moreover,

the DCA suggested that within a broad threshold probability,

using the prediction tool to predict treatment response adds

more benefit than the treat-all or the treat-none scheme. The
B

C D

A

FIGURE 6

Clinical Usefulness of the Nomogram. (A, B) Kaplan-Meier survival curves of patients categorized into response and non-response groups in the
training set (A) and validation set (B), respectively. (C, D) DCA of the nomogram in the training set (A) and validation set (B), respectively. The x-
axis represents the threshold probability. The y-axis measures the net benefit. The black line depicts the net benefit of the strategy of treating
no patients. The gray line depicts the net benefit of the strategy of treating all patients. The red line represents the nomogram. The net benefit
was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true positive, weighting by the
relative harm of forgoing treatment compared with the negative consequences of unnecessary treatment. The threshold probability is where the
expected benefit of treatment is equal to the expected benefit of avoiding treatment.
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presented nomogram could serve as a reliable prediction tool

and inform a clinician how big the possibility is that a certain

patient with advanced urothelial carcinoma would respond to

atezolizumab treatment. Furthermore, this tool would aid in

better risk stratification among these patients, which could allow

better allocation of health resources and avoid adverse effects

brought by atezolizumab on patients that would not

respond well.

In our study, two treatment outcome-related m6A

methylation regulators, i.e., FMR1 and HNRNPA2B1, were

determined by the LASSO regression analysis. And a high

expression of FMR1 and HNRNPA2B1 indicated a favorable

treatment outcome. The result of the prognostic value of FMR1

is in line with previous research where the expression levels of

FMR1 were positively correlated with the overall survival of

testicular germ cell tumors (37). On the other hand, the finding

regarding HNRNPA2B1 is contrary to other studies where high

expression of HNRNPA2B1 was significantly associated with

poor prognosis in osteosarcoma (38), esophageal cancer (39) and

adrenocortical carcinoma (40).

FMR1 and HNRNPA2B1 were both regarded as m6A

methylation reader (41–43). FMR1 plays an important role in

promoting m6A-modified mRNA nuclear export (44, 45) and

interacts with m6A reader YTHDF1 and YTHDF2 to maintain

the stability of its mRNA targets (43, 46, 47). To our knowledge,

there is a lack of studies between FMR1 and tumor immunity.

In our study, FMR1 was correlated with several types of

tumor-infiltrating immune cells, suggesting that FMR1

may be involved in the regulation of immune cells in the

tumor microenvironment. HNRNPA2B1 mediates mRNA

slicing, primary microRNA processing and facilitates

nucleocytoplasmic trafficking of mRNAs (41, 48–50). Previous

studies have found that high expression of HNRNPA2B1

promotes lymphatic metastasis (51)and recurrence (52)of

bladder cancer. The function of HNRNPA2B1 in tumor

immunity remains controversial. Some studies have shown

that HNRNPA2B1 can promote tumor immunity and anti-

tumor. For example, there is a significant positive correlation

between HNRNPA2B1 and M1 macrophages in esophageal

cancer (39), and the expression of HNRNPA2B1 is higher in

M1 macrophages and T/NK cells than in other cells in

glioblastoma (53). In contrast, other studies have revealed that

HNRNPA2B1 inhibits tumor immunity. For example,

HNRNPA2B1 is negatively correlated with the immune score,

stromal score, and ESTIMATE in adrenal cortical cancer (40), as

well as Th1 and Th17 in prostate cancer (54). In our study,

HNRNPA2B1 was positively correlated with activated CD4+

memory T cells and activated myeloid dendritic cells, implying

that HNRNPA2B1 may enhance the efficacy of immunotherapy

through regulating the tumor-infiltrating immune cells.
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However, further experiments are needed to clarify the

mechanism between these two genes and tumor immunity.

Of note, tumor mutation burden (TMB) has been found to

be able to predict treatment efficacy of immune checkpoint

blockade and has become a reliable biomarker for the

identification of patients that will benefit from immunotherapy

in many tumor types (55–57). In our study, patients with high

TMB were prone to achieve a positive response. This is

consistent with some previous studies which have shown that

high TMB is associated with response to anti-CTLA-4 in

melanoma (58, 59), and anti-PD1 in NSCLC (60). Given that

high TMB is correlated with a greater likelihood of presenting

cancer neoantigens on cancer cell surface (61), it is reasonable to

speculate that those cancers with high TMB tend to respond to

immune checkpoint blockade drugs as this greater mutation

load may increase the probability of recognition by neoantigen-

reactive T cells.

In addition, IC was positively correlated with an effective

response in our study, which is in line with previous studies (62,

63). Webb et al. found that PD-L1 was mainly expressed by

tumor-associated CD68+ macrophages rather than cancer cells,

and showed a positive association with survival in high-grade

serous carcinomas (62). PD-L1+ tumor-infiltrating lymphocytes

densities were favorable prognostic indicators for progression-

free (PFS) and overall survival (OS) (63).

Our study has several limitations. First, although m6A

methylation regulatory genes have been found to have high

prognostic values in the response to atezolizumab among

advanced urothelial carcinoma patients, their specific

mechanisms in urothelial carcinoma progression and

prognosis are not yet clear and warranted to be further

investigated by in vitro and in vivo experiments. Second,

external validation in a larger dataset is needed to confirm the

performance of the nomogram.

In summary, two critical m6A methylation regulators

associated with immunotherapy in patients with advanced

urothelial carcinoma were identified in our study. In addition,

the presented nomogram derived from the m6A-related gene

signature and clinical variables could serve as a reliable tool to

predict the response to atezolizumab in advanced urothelial

carcinoma. Further external validation is needed to determine

the performance of the nomogram before its application in

clinical practice.
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patients with esophageal
squamous cell carcinoma
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Ferroptosis and iron-metabolism have been widely reported to play an

important role in cancer. Long non-coding RNAs (lncRNAs) are increasingly

recognized as the crucial mediators in the regulation of ferroptosis and iron

metabolism. A systematic understanding of ferroptosis and iron-metabolism

related lncRNAs (FIRLs) in esophageal squamous cell carcinoma (ESCC) is

essential for prognosis prediction. Herein, Pearson’s correlation analysis was

carried out between ferroptosis and iron-metabolism-related genes (FIRGs)

and all lncRNAs to derive the FIRLs. Based on weighted gene co-expression

network exploration (WCGNA), least absolute shrinkage and selection operator

(LASSO) regression and Cox regression analysis, a risk stratification system,

including 3 FIRLs (LINC01068, TMEM92-AS1, AC243967.2), was established.

According to Kaplan-Meier analysis, receiver operating characteristic (ROC)

curve analysis, and univariate and multivariate Cox regression analyses, the risk

stratification system had excellent predictive ability and clinical relevance. The

validity of the established prognostic signature was further examined in TCGA

(training set) and GEO (validation set) cohorts. A nomogram with enhanced

precision for forecasting OS was set up on basis of the independent prognostic

elements. Functional enrichment analysis revealed that three FIRLs took part in

various cellular functions and signaling pathways, and the immune status was

varied in the high-risk and low-risk groups. In the end, the oncogenic effects of

LINC01068 was explored using in vitro researches. Overall, a risk stratification

system of three FIRLs was found to have significant prognostic value for ESCC

and may serve as a ferroptosis-associated therapeutic target in the clinic.

KEYWORDS

esophageal squamous cell carcinoma, ferroptosis, lncRNA, prognostic signature,
stratification system
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Introduction

As a common malignant digestive system cancer,

esophageal carcinoma was number 8 in morbidity and

number 6 in mortality across the world (1). On basis of the

National Central Cancer Registry of China (NCCR) statistics,

Chinese esophageal cancer patients comprise up to 70% of

al l esophageal cancer cases worldwide. Esophageal

adenocarcinoma and esophageal squamous cell carcinoma

(ESCC) are two histopathological subtypes of esophageal

cancer. In China, 90% of patients with esophageal cancer are

ESCC (2, 3). Standardized surgery is the main treatment for

esophageal cancer; however, surgery alone does not often lead

to a radical cure for patients with locally advanced esophageal

cancer (4). Studies on radiotherapy and chemotherapy,

targeted therapy, and biological therapy for the treatment of

esophageal cancer have continued over the years; however, the

5-year survival rate of patients with esophageal cancer is less

than 20% (5, 6). Hence, new sensitive biomarkers for

forecasting the survival of ESCC patients shall be identified

as soon as possible.

Iron is elementary for the maintenance of normal roles

and homeostasis in cells. Accordingly, an imbalance in iron

metabolism is related to the occurrence, growth, and

metastasis of cancers closely (7). To be notable, iron

metabolism plays double roles in tumor cells (8). In the one

aspect, tumor cells proliferate by more depending on iron

than normal cells, which is a phenomenon of iron addiction

(9). In the other aspect, as iron concentrations increase, cell

death will be caused because of accumulated reactive oxygen

species and lipid peroxidation outcomes, termed ferroptosis

(10, 11). As a necrotic cell death modality, ferroptosis is

varied from apoptosis, necrosis, and autophagy in a

morphological, biochemical, and genetical way (12).

Recently, ferroptosis was revealed to exert various effects on

biological regulation and signal transduction paths, resulting

in tumor generation and progression (13, 14). Ferroptosis and

iron metabolism have also been recognized as hidden

preventive or therapeutic measures to cause cancer cell

death (15, 16).

Long non-coding RNAs (lncRNAs) have a molecular weight

greater than 200 nucleotides. Although lncRNAs account for at

least 80% of the human genome, they do not take part in protein

translation (17, 18). According to recent studies, the

dysregulation of specific lncRNAs is inescapably associated

with the ferroptosis process of malignant cancers (19). Further,

the upregulation of the lncRNA, NEAT1, was found to

potentially regulate ferroptosis sensitivity in non-small cell

lung cancer (20). The upregulation of the lncRNA,

LINC00336, was also found to inhibit ferroptosis in lung

cancer by acting as a contradictive endogenous RNA (21).
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Nowadays, the effect of lncRNAs on the ferroptosis process of

ESCC is unknown.

In the present study, we constructed a risk stratification

system, including 3 ferroptosis and iron-metabolism related

lncRNAs (FIRLs), and systematically assessed the correlation

of the risk stratification system with the prognosis and

clinicopathological features of ESCC patients. Thereafter, we

established a nomogram that incorporates the FIRL signature

and clinical factors to forecast the survival of these patients.

Functional enrichment analysis revealed that three FIRLs were

involved in various cellular roles and signaling paths, and the

immune state was varied in the high-risk and low-risk groups. In

the end, the oncogenic effects of LINC01068 were explored using

in vitro researches, and a new FIRL risk stratification system was

developed to enhance the forecast of clinical results in patients

with ESCC. To the best of our knowledge, this study firstly

constructs and validates a FIRL prognostic signature for

ESCC patients.
Materials and methods

Datasets and data pre-processing

The RNA-seq transcriptome information and clinical

information of ESCC patients were extracted from TCGA

database. LncRNAs and protein-coding genes were recognized

on basis of annotation documents from the GENCODE database

(22). In addition, 296 ferroptosis and iron-metabolism related

genes (FIRGs) (Table S1), including ferroptosis regulators,

ferroptosis markers, ferroptosis pathway, iron uptake and

transport, and iron ion homeostasis, were extracted based on

previous studies (23). The GSE53624 dataset, which includes

RNA-seq information and related survival data of patients

suffering from ESCC, was available from the Gene Expression

Omnibus (GEO) database. The multi-lncRNA prognostic

signature was established with the data from TCGA database

as the training cohort while the predictive value of the risk score

was determined with the data from GEO as the validation

cohort. We performed TPM transformation on the RNA-Seq

data of TCGA cohort (FPKM format) and then used the combat

method in the”sva”package to remove the batch effect with

GEO cohort.
Identification of FIRLs

Pearson correlation analysis was conducted using the

13,832 lncRNAs and 296 FIRGs identified (p < 0.01,

correlation coefficient > 0.3). Ultimately, 1,005 FIRLs were

screened for follow-up bioinformatics analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1010074
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Niu et al. 10.3389/fonc.2022.1010074
Establishment of the weighted gene
co-expression network analysis network

WGCNA is an integrated algorithm for clustering greatly

related genes and identifying great modules or core genes related

to a given phenotype (24). The present research employed the

WGCNA package to set up a gene co-expression network for

FIRLs. Briefly, sample clustering was performed using the mean

linkage approach to identify and eliminate outlier samples.

Thereafter, a suitable soft thresholding power (b = 6) was

selected to realize a scale-free topology fitting indicator > 0.9.

Outlier samples were eliminated using a suitable cut-off value. As

the clustering performed well, a cut-line of 70 was set. Adjacency

was then transformed into a topological overlap matrix (TOM)

and the corresponding dissimilarity matrix (1-TOM), which was

applied to make the gene clustering dendrogram with a

minimum module of 50. The merging of greatly similar

dynamic modules into larger modules was made at a cutline of

0.6. The associations between the modules and the immune

mark were evaluated with Pearson correlation analysis. While

identifying the most obvious module, the calculation of gene

significance (GS) and module membership (MM) was

performed. Key genes were identified as those with GS > 0.7

and MM > 0.7.
Construction of the risk
stratification system

On basis of the clinical information of ESCC cases in

TCGA, univariate Cox regression for FIRLs in the hub

module was adopted for the identification of FIRLs

associated with total survival for risk stratification system

establishment. LncRNAs with a P value less than 0.01 were

regarded as obvious prognostic signature. To avoid the

collinearity of high-dimensional transcriptome data, the

“glmnet” package was employed for least absolute shrinkage

and selection operator (LASSO) regression. Finally, the best

risk stratification system on basis of FIRLs was established

using multivariate Cox regression. In particular, the risk score

was determined for ESCC cases using the formula below: risk

score = (lncRNA 1 expression × coefficient) + (lncRNA 2

expression × coefficient) + … + (lncRNA n expression ×

coefficient). According to the cut-off value of the risk score,

ESCC patients in TCGA and GEO cohorts were fallen into

high-risk or low-risk groups.
Assessment of the clinical benefit

Kaplan-Meier analysis and area under the ROC curves were

used for the evaluation of the survival benefit, while independent

prognostic factors for patients with ESCC were identified by
Frontiers in Oncology 03
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performing univariate and multivariate Cox regression analyses.

On basis of the median value of the risk score and the total

survival among various groups were compared through Kaplan-

Meier analysis with the log-rank test. Thereafter, the predictive

precision of the FIRL signatures was evaluated by conducting a

time-dependent ROC curve analysis with “survivalROC” R

package. To confirm the value of the stratification system for

evaluating the prognosis of ESCC patients, we combined clinical

variables and performed univariate and multivariate Cox

regression analyses in TCGA and GEO cohorts, respectively.

To confirm the prognostic value of the stratification system for

evaluating different clinical subtypes of ESCC patients, we

combined patients from the GEO and TCGA cohorts into

different clinical subtypes to explore the association between

risk scores and clinical subgroups. A stratification system for

predicting survival was also assessed using PCA, AUC,

and decision curve analysis (DCA) curve to weigh the

clinical practicability.
Visualization of the risk
stratification system

Multivariate Cox regression analysis was adopted for the

estimation of hazard ratios (HRs) and 95% confidence intervals

(CIs). The “rms” R packages were employed to formulate a

nomogram. The establishment of a prognostic nomogram

included all independent prognostic elements recognized by

multivariate Cox regression analysis to determine the potential

1-, 3-, and 5-OS of ESCC. The predictive ability of the

nomogram was evaluated with AUC and calibration curve. A

stratification system for predicting survival was also assessed

us ing PCA, AUC, and DCA curve to we igh the

clinical practicability.
Construction of a potential regulatory
network and functional analysis

For exploring the hidden biological processes involving the 3

FIRLs, we identified 49 possible upstream regulated FIRGs

through Pearson correlation analysis. Thereafter, gene

enrichment analysis was performed with differentially

expressed FIRGs using “ggplot2” and “clusterProfiler”

packages in R software.
Immune landscape analysis

We used single-sample gene set enrichment analysis

(ssGSEA) (25) to conduct immune landscape analysis and

then calculate the scores of infiltrating immune cells to

evaluate the activity of immune-related pathways.
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Vitro assays

In this study, we used cell culture, transfection, CCK-8, and

qRT-PCR as in vitro assays. Human normal esophageal

epithelium cells (HET-1A) and ESCC cell lines (Eca109, TE-

1, and KYSE-150) were purchased from the Shanghai Cell

Institute Country Cell Bank. All cell were cultured in RPMI

1640 medium with 10% fetal bovine serum (FBS) and 1%

Penicillin-Streptomycin, and maintained in a humidified

incubator at 37°C, 5% CO2. Medium, FBS and Penicillin-

Streptomycin were purchased from Corning. Guangzhou

Ribobio Co., Ltd generated and annealed small-interfering

RNA (si-RNA-1/2/3) oligos for LINC01068 and a general

negative control. Following the manufacturer’s procedure, the

transfection of each siRNA duplex into cells was made with

Lipofectamine® 2000 (Invitrogen, Carlsbad, CA, USA). RNA

samples from the cultured cells were extracted using the

FastPure® Cell/Tissue Total RNA Isolation Kit V2 (Vazyme,

Nanjing, China). The concentration and purification of RNA

were detected by the Nanodrop 2000 Spectrophotometer

(Thermo Scientific, USA). Cell proliferation was monitored

using the CCK-8 kit (Dojindo, USA). Details of these methods

are provided elsewhere (26). Meanwhile, a total of 10 tumor

tissue samples and nearby normal esophageal tissue samples

were obtained from ESCC patients who underwent tumor

resection. In previous studies, we have cryopreserved cDNA

in liquid nitrogen container. Therefore, lncRNAs expression of
Frontiers in Oncology 04
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clinical samples was validated according to previous

methods (27, 28).
Results

Identification of hub module invovled in
disease progression

Based on previous literature, we collected 296 FIRGs (Table

S1). For TCGA cohort, Pearson correlation analysis was

performed using the 296 genes and all annotated lncRNAs.

Ultimately, 1005 FIRLs were we identified (Figure 1A). The

clustering of each sample was good, and only one outlier sample

was eliminated (the cutting line was 500). Topological

calculation was then performed with a soft threshold value of

1 to 20, and an optimal soft threshold value of 4 (Figure 1B).

According to the soft threshold, the relationship matrix was

finally converted into a TOM, and the related modules were

classified according to the TOM. The number of genes in each

module was not less than 50, and the shear height of gene

modules was 0.6 (Figure 1C). By using Pearson correlation

analysis to decide the correlation between the modules and

clinical traits, seven modules were identified. Of note, the blue

module had the strongest correlation with pathological staging

and survival status. Accordingly, this module was recognized as

the core module in ESCC patients (Figure 1D). Finally, the 151
B

C D

A

FIGURE 1

Screening of survival-related lncRNAs by WGCNA. (A) Identification of FIRLs using Pearson correlation analysis. (B) Soft power in WGCNA. (C)
Clustering and merging of the co-expression modules. (D) Association heatmap of module genes and clinical features. Red means positive
association, and blue refers to negative association. Correlation grows as the color darkens.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1010074
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Niu et al. 10.3389/fonc.2022.1010074
FIRLs in the module were found to be associated with the

occurrence of ESCC closely (Table S2).
Construction of risk stratification system

To identify survival-related FIRLs, univariate Cox analyses

were performed using 151 FIRLs in the blue module. Finally, 16

FIRLs were screened for subsequent analyses (Figure 2A). For

further decreasing the number of genes in the signature, the

subjection of 16 FIRLs to LASSO regression analysis was

performed (Figures 2B, C). Thereafter, three FIRLs from

LASSO were retrieved and subjected to multivariate Cox

regression analysis to develop a risk stratification system

(Figure 2D; Table 1). The calculation of the risk score of ESCC

patients was made below: risk score = 0.5697×LINC01068 +

0.5154 × TMEM92-AS1 + 0.5964 × AC243967.2).
Clinical benefits of the risk
stratification system

On basis of the cut-off value of risk scores, ESCC patients

from the TCGA cohort were divided into two risk groups:

high-risk (n = 40) and low-risk (n = 40). Using the same cut-

off value, ESCC patients in the GEO cohort were fallen into

high-risk (n = 31) and low-risk (n = 88) groups. As shown in

Figure 3A, the AUCs of the 3 FIRL risk stratification system

performed with TCGA cohort were 0.712, 0.822, and 0.883 at
Frontiers in Oncology 05
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1, 3, and 5 years. In addition, the 1-year survival prediction in

the GEO cohort showed good results (Figure 3B). The

association between the risk mark and prognosis of ESCC

patients was explored with the Kaplan-Meier method and log-

rank tests. Patients in the high-risk group were found to have a

lower survival rate than those in the low-risk group (P < 0.001)

(Figures 3C, D). Furthermore, in the prediction of median

survival time, ROC curve analysis revealed that the risk mark

showed better predictive performance than the other

clinicopathological features (Figures 3E, F). DCA also

suggested that in actual clinical applications, this risk score

had a better value than traditional pathological staging

(Figures 3G, H).
Risk stratification system is an
independent prognostic element for
ESCC patients

For determining whether the risk score was an independent

prognostic element for ESCC patients, univariate and

multivariate Cox regression analyses were conducted using the

clinical features and risk score. Based on the outcomes of

univariate Cox regression analysis, the risk score was greatly

related to OS in both TCGA and GEO cohorts (TCGA cohort:

HR = 2.769, 95% CI = 1.175-7.866, p = 0.036; GEO cohort: HR =

1.443, 95% CI 1.143-1.821, p = 0.002) (Figures 4A, B). After the

modification for other confounders, the risk score was still an

independent predictor of OS in multivariate Cox regression analysis
B C
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A

FIGURE 2

Construction of the risk stratification system. (A) The FIRLs that significantly correlated with survival were identified by univariate analysis. (B, C)
LASSO-validation. (D) Forest plot of hazard ratios showing the prognostic value of the 3 FIRLs. *P < 0.05, **P < 0.01.
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FIGURE 4

Evaluation of the prognostic values of risk stratification. (A, C) Univariate and multivariate Cox regression analyses of the risk scores in TCGA. (B, D)
Univariate and multivariate Cox regression analyses of the risk scores in GEO.
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FIGURE 3

Clinical benefits of the risk stratification system. (A, B) Time-dependent ROC curves. (C, D) Kaplan-Meier analysis of high- and low-risk patients.
(E, F) ROC curve analysis revealed the prognostic accuracy of risk mark and clinicopathological coefficients. (G, H) Decision curve analysis
(DCA).
TABLE 1 The optimal prognostic risk stratification system of 3 lncRNAs by multivariate Cox regression analysis.

LncRNA coef HR HR.95L HR.95H P-value

LINC01068 0.5697 1.7678 1.1665 2.6788 0.0072

TMEM92-AS1 0.5154 1.674 0.9593 2.9223 0.0697

AC243967.2 0.5964 1.8157 1.0883 3.0292 0.0224
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(TCGA cohort: HR = 3.750, 95% CI = 1.151-12.219, p = 0.028; GEO

cohort: HR = 1.242, 95% CI = 1.115-1.687, p = 0.025;

Figures 4C, D).
Subgroup analysis of the risk
stratification system in the total cohort

To determine the prognostic value of the risk stratification

system for ESCC patients based on different clinical

characteristics, subgroups were derived on basis of age (≤65 vs.

>65 years), sex (male vs. female), clinical phase (I-II vs. III-IV), T

phase (T0-T2 vs. T3-T4), and N phase (N0 vs. N1-N3). The

results indicated that the risk stratification system has prognostic

significance between high and low risk patients for N0, I-II, and

male subgroups. Patients in the high-risk group shown

significantly poorer OS than patients in the low-risk group

(Figures 5A–J). In sum, these results testify that the risk

stratification system exerts critical roles in determining the

prognosis of ESCC patients.
Survival analysis and clinical correlation
analysis of FIRLs in the risk
stratification system

For further exploring the association between the risk

stratification system and clinical parameters, we constructed

two composite heat maps for patients from TCGA (Figure 6A)
Frontiers in Oncology 07
415
and GEO (Figure 6E) cohorts. A heat map could display the risk

scores, clinicopathological parameters, and FIRL expression for

each group. A survival analysis of FIRLs participating in the risk

stratification system was also performed. Based on the results,

AC243967.2 and LINC01068 were identified as high-risk factors

for ESCC patients (high expression of AC243967.2 and

LINC01068 was related to poor survival rate of ESCC patients)

(P < 0.05) in TCGA cohort (Figures 6B–D). In the GEO cohort,

LINC01068 was proved to be a high risk factor for ESCC

(Figures 6F–H).
Construction and verification of
nomogram based on the risk
stratification system

The OS of patients with ESCC was predicted by

establishing a nomogram on basis of independent predictive

elements originated from a multivariate Cox risk regression

model (Figure 7A). According to the prediction model

calibration curve, consistent predicted and actual survival

rates for the training and validation sets were revealed

(Figures 7B–G).
Regulatory network of the potential
biological functions of 3 FIRLs

To explore the potential biological processes involving the

three FIRLs, 49 possible upstream regulated FIRGs were
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FIGURE 5

Subgroup analysis based on different clinical characteristics of the risk stratification system. (A) age ≤ 65, (B) age > 65, (C) NO, (D) N1-N3, (E) T1-
T2, (F) T3-T4, (G) stage I-II, (H) stage III-IV, (I) female, and (J) male.
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FIGURE 6

Survival analysis and clinical correlation analysis of FIRLs in risk stratification. (A) A composite heat map containing clinical information and
expression of 3 FIRLs in TCGA cohort. (B-D) Survival analysis of FIRLs participating in risk stratification in TCGA cohort. (E) A composite heat
map containing clinical information and expression of 3 FIRLs in the GEO cohort. (F–H) Survival analysis of FIRLs participating in risk
stratification in the GEO cohort. *P < 0.05, **P < 0.01, ***P < 0.001.
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identified through Pearson correlation analysis (Figure 8A). The

analyses of GO functional enrichment and KEGG pathway

enrichment were conducted on the 49 FIRGs. On basis of the

outcomes of KEGG analysis, in addition to ferroptosis, 49 FIRGs

were mainly enriched in the IL-17 signaling pathway, HIF-1

signaling pathway, VEGF signaling pathway, and TNF signaling

pathway (Figure 8B). Further, GO analysis results indicated that

in addition to iron death, iron metabolism, and other related

processes, the 49 FIRGs were related to DNA damage response
Frontiers in Oncology 09
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and signal transduction by p53 class mediator processes

(Figures 8C–E).
Immunity analyses

Given that ferroptosis and iron-metabolism plays a critical

role in the immune processes in human cells, especially in the

tumor microenvironment, we compared the enrichment scores
B C D
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A

FIGURE 7

Establishment and verification of a nomogram. (A) Nomogram for forecasting the total survival (OS) of patients with ESCC at 1, 3, and 5 years.
Calibration curves of nomogram for OS forecast at 1, 3, and 5 years in (B–D) TCGA and (E–G) GEO cohorts. *P < 0.05, **P < 0.01.
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FIGURE 8

Analysis of the potential functions of 3 FIRLs. (A) Regulation network diagram of the 49 upstream coding FIRGs of 3 FIRLs. (B) KEGG enrichment
analysis of 49 upstream FIRGs. (C–E) GO enrichment analysis of 49 upstream FIRGs.
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of 16 types of immune cells and the activity of 13 immune-

related pathways between the low- and high-risk groups in both

the TCGA and GEO cohorts by employing ssGSEA. In the

TCGA cohort (Figure 9A), the high-risk group generally had

high levels of infiltration of immune cells, especially of DCs,

mast cells, pDCs, T helper (Th) cells (Tfh and Th1 cells), and

tumour-infiltrating lymphocytes (TILs), than the low-risk group.

In addition, patients from the high-risk group had

significantly higher activity of chemotactic cytokines receptors

(CCR) pathway, check-point, human leukocyte antigen (HLA)

pathway, parainflammation, T cell co-inhibition, T cell

co-stimulation, and type I IFN response pathway compared to

patients in low-risk group (Figure 9B). When assessing the

immune status in the GEO cohort, better conclusions

were drawn. The infiltration level of 16 immune cells was

higher in the high-risk group than in the low-risk

group. Thirteen immune-related pathways showed higher

activity in the high-risk group than in the low-risk group

(Figures 9C, D).
In vitro assays for validation

To further validate the bioinformatics results, the expression

level of LINC01068 mRNA in ESCC cell lines was detected. It

was found that the expression of LINC01068 is upregulated in

ESCC cell lines by comparing with the normal cell line, as shown
Frontiers in Oncology 10
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in Figure 10A. In addition, si-LINC01068 and si-NC were

transfected into Eca109 and TE-1 cells, respectively, and qRT-

PCR was adopted for the detection of the expression of

LINC01068. LINC01068 expression was downregulated in

ESCC cell lines after transfection, as shown in Figures 10B, C.

Similarly, the CCK-8 assays revealed that ESCC cell proliferation

was inhibited after transfection with LINC01068, as shown in

Figures 10D, E. Meanwhile, qRT-PCR was used to detect the

expression of the three lncRNAs in 10 pairs of tissues (Figure

S1). The results were consistent with the prediction results in

public databases. Tumor tissues showed obviously higher

expression levels than the normal esophageal tissues.
Discussion

The transformation of next-generation sequencing has been

performed for prognosis of cancer. In clinical routines, the

prognosis of cancer patients cannot be adequately predicted

with the conventional staging system. Biomarkers associated

with tumor diagnosis and prognosis are thus urgently needed

(29, 30). Due to the disturbances in iron metabolism, overmuch

intracellular iron storage was caused with ferroptosis induced

(31). As a hallmark of tumors, Ferroptosis is greatly related to

the prognosis of cancer patients (32). Because of the significant

effect of ferroptosis and iron metabolism on cancer, remarkable

attention has been paid to its associated lncRNAs (33).
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FIGURE 9

Comparison of the ssGSEA scores for immune cells and immune pathways. (A, B) Comparison of the enrichment scores of 16 types of immune
cells and 13 immune-related pathways between low- (green box) and high-risk (red box) group in the TCGA cohort. (C, D) Comparison of the
enrichment scores of 16 types of immune cells and 13 immune-related pathways between low- (green box) and high-risk (red box) group in the
GEO cohort. *P < 0.05, **P < 0.01, ***P < 0.001.
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To the best of our knowledge, this research firstly identifies

and analyzes prognostic FIRLs in ESCC in a comprehensive way.

On basis of previous studies, we collected 296 FIRGs. In TCGA

cohort, Pearson correlation analysis of 296 genes and all

annotated lncRNAs was performed, and 1005 FIRLs were

identified. Through WGCNA, 151 core FIRLs were identified

in the blue module, and a risk stratification system comprising 3

FIRLs (LINC01068, TMEM92-AS1, and AC243967.2) was

established by integrating LASSO regression and Cox

regression analyses. The assignment of all patients to high-

and low-risk groups was performed on basis of risk scores. On

basis of Kaplan-Meier curve analysis, high-risk groups were

related to dismal OS by comparing with low-risk groups. The

ROC curve indicates the excellent performance of our risk

stratification system. The AUCs of the ROC plots for one-,

three-, and five-year OS in TCGA cohort were 0.712, 0.822, and

0.883. In addition, the stratification system for predicting

survival was assessed by PCA, AUC, and DCA curve to weigh

the clinical practicability. Based on the results, our risk signature

consistently realized good predictive value by comparing with

other risk prognostic signatures published for ESCC. The GEO

cohort was adopted to verify the established prognostic

signature. Moreover, other clinicopathological features and

prognostic signatures were combined for Cox analysis, which

ultimately verified that the constructed risk stratification system

may be used as an independent prognostic element for ESCC

patients. Herein, while establishing a nomogram, whether the

nomogram was precise at predicting one-, three-, and five-year

OS was determined with calibration plots. Altogether, our

findings indicate that the risk stratification system could be a
Frontiers in Oncology 11
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high-class predictor relative to the conventional clinical

indicator. To determine the potential biological processes

involving the 3 FIRLs, we identified 49 possible upstream

regulated FIRGs through Pearson correlation analysis, and

further conducted functional enrichment analysis with these

genes to dig the potential biological pathways.

Tumor-related immune responses play important roles in cell

infiltration and metastasis in the tumor microenvironment,

whereas ferroptosis and lncRNAs play key regulatory roles

in tumor-related immune responses (34, 35). Notably, the

complex interplay between ferroptosis-related lncRNAs and the

tumor microenvironment not only plays a pivotal role in tumor

development but also has significant effects on immunotherapeutic

efficacy and overall survival (36). In the TCGA cohort, by immune

infiltration analysis, the high-risk group generally had high levels of

infiltration of immune cells, especially of DCs, mast cells, pDCs, T

helper (Th) cells (Tfh and Th1 cells), and tumour-infiltrating

lymphocytes (TILs), than the low-risk group. A functional

enrichment analysis indicated that patients with high-risk scores

had higher activity of chemotactic cytokines receptors (CCR)

pathway, check-point, human leukocyte antigen (HLA) pathway,

parainflammation, T cell co-inhibition, T cell co-stimulation, and

type I IFN response pathway compared to patients with low-risk

scores. When assessing the immune status in the GEO cohort,

better conclusions were drawn. The infiltration level of 16 immune

cells was higher in the high-risk group than in the low-risk group.

13 immune-related pathways showed higher activity in the high-

risk group than in the low-risk group. The above results confirm

that the roles of ferroptosis-related lncRNAs in the regulation of

tumor immune infiltration. Since our results link FIRLs to immune
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FIGURE 10

Effects of inhibiting the expression of LINC01068 on cell proliferation. (A) The upregulation of LINC01068 was displayed in Eca109, TE-1, and
KYSE-150 cells compared to HET-1A based on qRT-PCR. (B, C) The expression of LINC01068 was downregulated in TE-1 and Eca109 cells by
si-RNAs. (D, E) TE-1 and Eca109 cell proliferation after measuring anti-LINC01068 siRNA transfection with CCK-8 assays. ns, not significant, **P
< 0.01, ***P < 0.001.
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infiltration in ESCC, these ferroptosis-related lncRNAs may be

targets for immunotherapy.

In the end, the association between LINC01068 and ESCC

progression was determined. The inhibition of LINC01068

inhibited the cell viability and migration of Eca109 and TE-1

cells, which further verified the carcinogenic effect of LINC01068

on digestive system neoplasms.

This study had some limitations. First, the FIRL risk

stratification system was constructed and validated using a

public database. However, the use of prospective, multicenter,

real-world data for the assessment of the clinical utility of this

system would be more ideal. Second, the association between

FIRLs and anti-tumor immunity was preliminarily revealed by

our research. Therefore, it is necessary to further dig the hidden

mechanisms. Final, the signaling pathways involved in FIRLs

were only preliminarily explored. Accordingly, the specific

mechanism of FIRLs in ESCC and their association with

ferroptosis are not completely acknowledged. More studies are

thus needed to validate our findings.

In summary, this study fills a gap regarding the use of FIRLs

for the prognostic forecast of ESCC. The prognostic FIRLs

derived in our research displayed robust capacity at forecasting

the survival results of ESCC patients and were related to the

immune landscape of the ESCC microenvironment. The risk

stratification system based on FIRLs could serve as a reliable tool

for forecasting the survival of patients with ESCC.
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Background: Immunotherapy has gradually become an important therapy option

for lung cancer patients.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases were responsible for all the public data.

Results: In our study, we firstly identified 22 characteristic genes of NSCLC

immunotherapy response using the machine learning algorithm. Molecule subtyping

was then conducted and two patient subtypes were identified Cluster1 and Cluster2.

Results showed that Cluster1 patients had a lower TIDE score andweremore sensitive to

immunotherapy in both TCGA and combined GEO cohorts. Biological enrichment

analysis showed that pathways of epithelial-mesenchymal transition (EMT), apical

junction, KRAS signaling, myogenesis, G2M checkpoint, E2F targets, WNT/b-catenin
signaling, hedgehog signaling, hypoxia were activated in Cluster2 patients. Genomic

instability between Cluster1 and Cluster2 patients was not significantly different.

Interestingly, we found that female patients were more adaptable to immunotherapy.

Biological enrichment revealed that compared with female patients, pathways of MYC

target, G2M checkpoints, mTORC1 signaling, MYC target, E2F target, KRAS signaling,

oxidative phosphorylation, mitotic spindle and P53 pathway were activated. Meanwhile,

monocytesmighthaveapotential role in affectingNSCLC immunotherapyandunderlying

mechanism has been explored. Finally, we found that SEC14L3 and APCDD1L were the

underlying targets affecting immunotherapy, as well as patients survival.

Conclusions: These results can provide direction and guidance for future research

focused on NSCLC immunotherapy.
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Introduction

With recent advances in biotechnology, researchers have

gained a deeper understanding of tumor genomics and

immunosuppressive tumor microenvironments, also leading to

the change of treatment concepts for tumors (1). Nowadays,

personalized precision therapy is gradually available for the

treatment of tumors instead of tumor type-centered therapies

(2). Annually, approximately 1.76 million people die from lung

cancer, which is a serious threat to public health (3). Targeted

therapies and immunotherapies based on EGFR, KRAS, and

PD-L1 in individual patients have achieved promising results

(4). Furthermore, researchers have classified tumor

microenvironments (TME) as “immune inflammation”,

“immune evasion”, and “immune desert” and adopted

appropriate treatment methods according to these categories

(5). Meanwhile, modern tumor treatment is gradually becoming

more individualized.

For the moment, surgery, along with postoperative systemic

therapy can still provide good therapeutic gain for resectable

lung cancer patients (6). Nevertheless, insidious early symptoms

usually lead to the challenge of early diagnosis and disease

advancement has been occurred when most patients are first

diagnosed (6). For advanced lung cancer, especially for those

who lost surgery chance, therapy options are limited. The past

decade has seen tremendous advancements in medical

technology and basic biological research and therefore, cancer

immunotherapy has gained public attention. The advent of

immunotherapy has revolutionized lung cancer treatment and

has become a vital biological therapy, among which immune

checkpoint inhibitors (ICIs) indicated promising effects (7).

Despite this, not all patients respond to immunotherapy well,

indicating that immunotherapeutic response may vary

according to the individual’s biological characteristics. An

example, according to previous high-quality studies, tumor

mutational burden (TMB) appears to be a promising

immunotherapy biomarker. As of yet, there are no satisfactory

markers for predicting lung cancer immune response. As a

consequence, the identification of new and effective markers to

assess lung cancer patients’ immunotherapy response is of

great significance.

In our study, we comprehensively explored the underlying

differences between immunotherapy responders and non-

responders of non-small cell lung cancer (NSCLC). We

identified characteristic genes based on machine learning and

performed molecular subtyping to screen patients with different

responses to immunotherapy. Two patient subtypes Cluster1

and Cluster2 were identified, among which Cluster1 patients

were more adaptable to immunotherapy. Interestingly, we found

that female patients were more adaptable to immunotherapy;

monocytes have a potential role in affecting NSCLC

immunotherapy; SEC14L3 and APCDD1L were the underlying
Frontiers in Immunology 02
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targets affecting immunotherapy, as well as patients survival.

These results can provide direction and guidance for future

research focused on NSCLC immunotherapy
Methods

Assessment of data

Gene expression profiles and corresponding clinical

parameters of NSCLC patients were downloaded from the

public databases, The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO). For TCGA, the gene

expression profiles were obtained from the GDC interactive

interface in a “STAR-Counts” file. Then, the gene expression

of transcripts per kilobase million (TPM) form was extracted.

For GEO, the GSE30219, GSE37745 and GSE50081 were

identified and the platforms of which were all GPL570. The

‘affy’ and ‘simpleaffy’ R packages were utilized to contextualize

and normalize the raw ‘CEL’ files of microarray sequencing. The

batch effects of different datasets were eliminated based on the

“Sva” package. The patients with complete gene expression

profiles and corresponding clinical parameter were included in

this study, otherwise, were excluded. The baseline information of

enrolled patients were shown in Tables S1–S4.
Immunotherapy response

Evaluation of patients’ responses to immunotherapy was

realized through Tumor Immune Dysfunction and Exclusion

(TIDE) website (8). The cancer type was selected as “NSCLC”.

The “Previous immunotherapy” was set as “No”. Patients were

assigned a TIDE score based on their normalized expression

profile, of which TIDE scores > 0 were non-responders and < 0

were responders. The Submap module in the GenePattern

website was used to quantify the response probability of a

single sample or a subtype to immunotherapy (https://cloud.

genepattern.org/gp).
Machine learning and
molecular subtyping

For the identification of the characteristic genes, LASSO logistic

regression and support vector machine recursive feature

elimination (SVM-RFE) algorithms were utilized (9). Machine

learning algorithms were utilized to select the optimized variables

through dimensionality reduction. A consensus clustering analysis

was performed using the ConsensusClusterPlus package and the

resamplings of which was 1,000.
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Biological enrichment and
genomic analysis

The potential biological differences between specific groups

were determined through Gene Set Enrichment Analysis (GSEA)

and clueGO analysis (10). The reference gene set was the Hallmark,

c2.cp.kegg.v7.5.1.symbols and c5.go.v7.5.1.symbols gene set.

Somatic nonsynonymous mutations occurring per megabase in

NSCLC samples were used to account for the tumor mutational

burden (TMB). Copy number variation (CNV) burden was

calculated using the GISTIC 2.0 and the input file was obtained

from the https://gdac.broadinstitute.org/%20website, including

segmented copy number profiles and genomic positions of

amplified regions. The mRNAsi and EREG-mRNAsi score

reflecting tumor stemness were get from the previous study (11).
Immune microenvironment
quantification

Quantification of infiltration of 22 immune cells was

conducted with the CIBERSORT algorithm (12).
Single cell analysis

The single-cell analysis was performed based on the TISCH

website (http://tisch.comp-genomics.org/home/). Aside from

providing detailed cell-type annotations, TISCH also allows for

the exploration of TME across a variety of cancer types (13).
Statistical analysis

All statistical analysis was conducted using R software v4.0.0.

The Mann-Whitney U test was used for non-normally

distributed variables. Statistical differences between continuous

variables with normal distributions were determined by the

Student-T test. Kaplan-Meier (KM) survival curves were

utilized to determine the prognosis difference in different groups.
Results

Identification of characteristic genes

The whole chart of this study was shown in Figure S1. Firstly,

through the TIDE analysis, we divided the NSCLC patients in

TCGA cohort into two groups, immunotherapy responders and

non-responders, according to the calculated TIDE score

(Figure 1A). Subsequently, SVM-RFE algorithm and LASSO

logistic regression were utilized to screen the optimal variable on
Frontiers in Immunology 03
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immunotherapy response (Figures 1B–D). Ultimately, 22 genes

were selected as the characteristic genes of NSCLC

immunotherapy response, including CLEC19A, SEC14L3,

SLC27A6, APCDD1L, FGF16, CBLN2, SLC24A2, CEACAM8,

KRTAP2-3, GBX1, ZDHHC22, CASR, UNC80, C1QL4, NKX3-

2, IGFL3, GUCA1A, NETO1, SP7, UGT2B15, AC020922.1 and

DLX2 (Figure 1E).
Genotyping of NSCLC patients

Based on the identified characteristic genes, we performed

genotyping using the ConsensusClusterPlus R package

(Figure 2A). We found two subtypes had the best

discrimination (Figure 2B and Figure S2). KM survival

indicated a worse overall survival (OS) in Cluster2 patients

compared to Cluster1 patients (Figure 2C, HR = 1.28, P =

0.022). Meanwhile, the patients in Cluster2 had a higher TIDE

score than Cluster1 patients (Figures 2D–F). The expression of

all 22 of these characteristic genes differed between Cluster1 and

Cluster2 (Figure 2G). Then, we assessed the CTLA4, PD-L2, PD-

1 and PD-L1 expression in Cluster1 and Cluster2 patients

(Figures 2H–K). Corresponding results showed that Cluster2

patients had a higher PD-L2 expression than Cluster1

patients (Figure 2J).
Cluster1 patients are more sensitive
to immunotherapy

Moreover , we found an increa sed number o f

immunotherapy responders in Cluster1 patients than in

Cluster2 patients (Figures 3A, B, 44.8% vs . 11.3%).

Furthermore, according to the result from submap analysis,

there is an increased sensitivity to PD-1 and CTLA4 therapy

among Cluster1 patients (Figure 3C). Clinical features analysis

indicated that the Cluster2 patients were associated with more

aggressive clinical parameters, as well as a high proportion of

male patients (Figure 3D). Additionally, we attempt to validate

our results in GEO cohorts. GSE30219, GSE37745 and

GSE50081 were selected (Figure 3E). Sva package was utilized

for data combination and batch effect reduction (Figure 3F).
Validation in the combined GEO cohort

In the combined GEO cohort, we also calculated the TIDE

score (Figure 4A). Also, an increased TIDE score was observed

among Cluster2 patients, indicating a lower percentage of

immunotherapy responders (Figures 4B–D, 8.2% vs. 45.6%).

Meanwhile, patients in Cluster2 had a poorer prognosis than

those in Cluster1, consistent with the result of TCGA

(Figure 4E). Interestingly, the result of the GSE cohort also
frontiersin.org
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indicated a higher percentage of female patients in Cluster1

(Figure 4F). However, no significant difference was found in age

and stage parameters (Figures 4G, H).
Biological and genomic
features difference

Furthermore, the potential biological differences between the

Cluster1 and Cluster2 patients were also explored. The result of

the GSEA analysis showed that pathways of epithelial-

mesenchymal transition (EMT), apical junction, KRAS

signaling, myogenesis, G2M checkpoint, E2F targets, WNT/b-
Frontiers in Immunology 04
425
catenin signaling, hedgehog signaling, hypoxia were activated in

Cluster2 patients (Figure 5A). Result of clueGO analysis

indicated that the Cluster2 patients had a higher activity of

amelogenesis, keratinization, fibrinolysis, serine-type

endopeptidase inhibitor activity and iontropic glutamate

receptor activity (Figure 5B). Kyoto Encyclopedia of Genes

and Genomes (KEGG) analysis showed that in the Cluster2,

the terms of neuroactive ligand receptor interaction, pathways in

cancer, axon guidance, focal adhesion, ECM receptor interaction

were enriched in (Figure S3A). Gene ontology (GO) analysis

indicated that in the Cluster2, the terms of sensory organ

development, morphogenesis of an epithelium, skeletal system

development, presynapse, axon development, embryonic organ
B C D

E

A

FIGURE 1

Identification of characteristic genes of NSCLC immunotherapy. (A) TIDE algorithm was performed to evaluate the immunotherapy of NSCLC
patients, of which TIDE scores > 0 were non-responders and < 0 were responders; (B, C) LASSO logistic regression; (D) SVM-RFE algorithm; (E)
Two algorithms identified 34 characteristic genes.
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development were enriched in (Figure S3B). We also

investigated the genomic difference between Cluster1 and

Cluster2 patients. TCGA-NSCLC patients’ copy numbers

profiles were investigated, including gain/loss percentages and

gistic scores (Figures 6A–D). Nonetheless, no remarkable

statistical difference was noticed in CNV burden between
Frontiers in Immunology 05
426
Cluster1 and Cluster2 patients (Figures 6E–H, focal gain load

level, focal loss load level, broad gain load level, broad loss load

level). Tumor stemness analysis showed that the patients in

Cluster1 and Cluster2 might have similar tumor stemness

characteristics (Figures 6I, J). Neither the TMB nor MSI scores

were significantly different (Figures 6K, L).
B C

D E F

G

H I J K

A

FIGURE 2

Molecular typing based on identified characteristic genes. (A) ConsensusClusterPlus package was used for molecular typing; (B) Two subtypes
provide the best differentiation; (C) KM survival curve showed that Cluster2 patients had a worse prognosis; (D) The calculated TIDE score of
TCGA patients, of which TIDE scores > 0 were non-responders and < 0 were responders; (E, F) The patients in Cluster2 had a higher TIDE
score; (G) The expression level of characteristic genes in Cluster1 and Cluster2 patients, ns = P < 0.05, *** = P < 0.001; (H–K) The PD-1, PD-L1,
PD-L2 and CTLA4 expression in Cluster1 and Cluster2 patients.
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Female patients are more sensitive
to immunotherapy

We noticed that Cluster1 patients had a higher percentage of

female patients in both TCGA and GEO cohorts. Therefore, we

speculated whether there is a potential difference in immunotherapy

between male and female NSCLC patients. Our findings from the

TCGA cohort indicated that patients who respond to
Frontiers in Immunology 06
427
immunotherapy are more likely to be female and have a lower

TIDE score (Figures 7A, B, 39.7% vs. 33.4%). Also, the same

conclusion was found in the combined GEO cohort

(Figures 7C, D, 49.1% vs. 29.9%). Moreover, we found several

immunotherapy characteristic genes were differentially expressed in

female andmale patients, including CBLN2, SLC24A2, CEACAM8,

CASR, AC020922.1, UNC80, C1QL4, NKX3-2, IGFL3, DLX2 and

GUCA1A (Figure 7E). Interestingly, a significantly increased TMB,
B C

D

E F

A

FIGURE 3

Cluster1 and Cluster2 had different immunotherapy response. (A, B) The proportion of immunotherapy responders in Cluster1 and Cluster2
patients; (C) Submap algorithm indicated that the Cluster1 patients are sensitive to both PD-1 and CTLA4 therapy; (D) Clinical features difference
in Cluster1 and Cluster2 patients; (E, F) Sva package was used for data combination and batch effect reduction of GSE30219, GSE37745 and
GSE50081.
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mRNAsi and EREG-mRNAsi were noticed inmale patients, but not

MSI (Figures 7F–I). GSEA analysis showed that compared with

female patients, pathways of MYC target, G2M checkpoints,

mTORC1 signaling, MYC target, E2F target, KRAS signaling,

oxidative phosphorylation, mitotic spindle and P53 pathway were

activated (Figure 7J).
Monocytes have a potential role in
affecting NSCLC immunotherapy

Complex immune microenvironment can affect the

immunotherapy of NSCLC patients. Thus, we quantified the

immune microenvironment (22 immune cells) using
Frontiers in Immunology 07
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CIBERSORT algorithm (Figure 8A). We found that the

activated dendritic cells, M0 macrophages, memory B cells,

follicular helper T cells, resting NK cells, monocytes, resting

dendritic cells, resting mast cells, gd T cells, activated NK cells,

activated mast cells had a different infiltration pattern in

immunotherapy responders and non-responders patients

(Figure 8B). Additionally, the naive and memory B cells,

CD8 T cells, activated mast cells, resting NK cells, regulatory

T cells, gd T cells, activated NK cells, resting dendritic cells,

monocytes, activated dendritic cells, resting mast cells,

follicular helper T cells had a different infiltration pattern in

Cluster1 and Cluster2 patients (Figure 8C). A negative

correlation was found between monocytes and the calculated

TIDE score (Figure 9A, correlation = -0.220, P < 0.001). For the
B

C D E

F G H

A

FIGURE 4

Validation in the GEO cohort. (A) TIDE analysis was performed in the combined GEO cohort; (B) Cluster2 had a higher TIDE score than Cluster1;
(C, D) The proportion of immunotherapy responders in Cluster1 and Cluster2 patients; (E) KM survival curve of Cluster1 and Cluster2 patients in
GEO cohort; (F-H) Clinical differences between Cluster1 and Cluster2, ** = P < 0.01.
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patients with high monocytes infiltration, pathways of

adipogenesis, coagulation, fatty acid metabolism, bile acid

metabolism, angiogenesis, xenobiotic metabolism, KRAS

signal ing, TGF-b s ignal ing, heme metabol ism and

inflammatory response were activated (Figure 9B). The

correlation between quantified immune cells based on the

CIBERSORT algorithm was shown in Figure 9C. Among all

the characteristic genes, SEC14L3 and APCDD1L were

identified as prognosis-related based on the univariate Cox

regression analysis (Figure 9D). SEC14L3 and APCDD1L are

primarily expressed in monocytes, based on single-cell analysis

(Figures 9E, F). These results revealed that monocytes have a
Frontiers in Immunology 08
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potential role in affecting NSCLC immunotherapy and

identified SEC14L3 and APCDD1L as the underlying targets.
Discussion

In patients with NSCLC, although early diagnosis and surgical

treatment have been shown to greatly improve cure rates, the

prognosis remains poor (14). Among NSCLC treatments,

immunotherapy is considered a promising strategy (15). Recent

studies have shown that PD-1/L1 inhibitors can effectively

increase survival over chemotherapy (16). However, it is hard to
B

A

FIGURE 5

Biological enrichment analysis. (A) GSEA analysis of Cluster2 based on the Hallmark gene set; (B) ClueGO analysis of input genes.
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FIGURE 6

Genomic analysis. (A-D) The copy number percentage and gistic score of TCGA-NSCLC in Cluster1 and Cluster2; (E-H) The CNV burden
difference in focal gain load, focal loss load, broad gain load and broad loss load level; (I-L) The difference of TMB, MSI, mRNAsi and EREG-
mRNAsi in Cluster1 and Cluster2 patients.
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accurately predict how NSCLC will respond to immunotherapy

(17). In addition, most patients do not respond to

immunotherapy, deteriorate during treatment, or suffer severe

immunotoxicity since the indications for immunotherapy are not

understood (18). Therefore, to maximize the effectiveness of

immunotherapy, it is necessary to identify biomarkers that are

associated with immunotherapy response.
Frontiers in Immunology 10
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In our study, characteristic genes were identified through two

machine learning algorithm, LASSO logistic and SVM-RFE

regression. SVM-RFE regression can determines the best variable

by deleting the SVM feature vector. Meanwhile, the A Lasso logistic

regression determines variables by searching for the smallest

classification error l. Nowadays, the massive data generated by

next-generation sequencing not only brings convenience for
B C D

E

F G H I

J

A

FIGURE 7

Female patients are more sensitive to immunotherapy. (A, B) Female patients had a lower TIDE score and higher proportion of immunotherapy
responders in the TCGA cohort, * = P < 0.05; (C, D) Female patients had a lower TIDE score and a higher proportion of immunotherapy
responders in the GEO cohort, * = P < 0.05; (E) The expression level of characteristic genes in male and female patients, ns = P > 0.05, * = P <
0.05, *** = P < 0.001,; (F–I) The difference of TMB, MSI, mRNAsi and EREG-mRNAsi in female and male patients; (J) Biological enrichment was
performed to explore the underlying difference in female and male patients.
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B

C

A

FIGURE 8

Immune infiltration. (A) The CIBERSORT algorithm was used to quantify the immune cell infiltration; (B) The immune cell infiltration level in
immunotherapy responders and non-responders, ns = P > 0.05, * = P < 0.05, *** = P < 0.001; (C) The immune cell infiltration level in Cluster1
and Cluster2 patients, ns = P > 0.05, * = P < 0.05, ** = P < 0.01, *** = P < 0.001.
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FIGURE 9

Monocytes have a potential role in affecting NSCLC immunotherapy. (A) Monocytes was negatively correlated with TIDE score; (B) Biological
enrichment analysis of monocytes; (C) Correlation of quantified immune cells; (D) Among all the characteristic genes, SEC14L3 and APCDD1L
were identified as prognosis-related based on the univariate Cox regression analysis; (E, F) Single cell analysis of SEC14L3 and APCDD1L based
on the TISCH website. *P < 0.05; **P < 0.01.
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research, but also brings redundancy of data. Through dimensionality

reduction, machine learning algorithm can effectively identify the

characteristic variables of specific groups. In the clinical practice,

detecting the expression level of identified characteristic genes

through gene chip can indicate the immunotherapy response of

patients, further guiding therapy option.

Based on the results of GSEA, the difference between Cluster2

and Cluster1 groups was associated with EMT, apical junction,

KRAS signaling, Wnt/b-catenin signaling, Hedgehog signaling

and E2F target. According to a previous study, EMT-related

genes are highly accurate predictors of immune checkpoint

inhibitor response in advanced NSCLC patients (19). Another

study revealed that clinical benefit has been demonstrated in

previously treated KRAS G12C-mutant NSCLC patients who

received immunotherapy of sotolacide and adagracil (20).

Further, based on the Hedgehog signaling and Wnt/b-catenin,
various immunotherapies have been developed for NSCLC.

Yoshiko et al. discovered that WNT/b-catenin signaling

inhibitor and PD-1 blocker combination therapy improved

antitumor immunity in NCSLS and suggested a mechanism-

oriented combination therapy (21). For Hedgehog signaling,

researchers found that targeting Hedgehog signaling could offer

therapeutic benefits to patients with NSCLC (22). According to

the GSEA, the Cluster1 group was associated with the xenobiotic

metabolism, fatty acid metabolism, bile acid metabolism,

peroxisome and reactive oxygen species pathway. Currently, the

reactive oxygen species pathway is a potential target for

immunotherapy of NSCLC. Additionally, it has been shown

that the NRF2, which is involved in the reactive oxygen species

pathway, can inhibit the immune response of NSCLC patients and

promote the immune escape of tumor cells (22). In NSCLC

patients, fatty acid oxidation has broad therapeutic potential. It

is believed that fatty acid oxidation increases mitochondrial mass,

which in turn suppresses T-cell immunity, promoting NSCLC

progression (23). Our result showed that the enriched pathway

above might be responsible for the prognosis and immunotherapy

response difference between the patients in Cluster1 and Cluster2.

Further research discovered that female and male

distributions were significantly different between Cluster1

and Cluster2. We also discovered a lower immune response

rate in male NSCLC patients, while a higher immune response

rate is observed in female NSCLC patients. Recent research has

demonstrated that men and women respond differently to

NSCLC and immunotherapy due to differences in the

immune system (24). NSCLC cells may be exposed to a more

effective immune surveillance mechanism when estrogen

regulates the production of inflammatory cytokines from

macrophages and neutrophils (25). Subsequently, immune

infiltration analysis indicated a significant difference in
Frontiers in Immunology 13
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monocyte distribution between Cluster1 and Cluster2.

According to the univariate cox regression analysis, SEC14L3

and APCDD1L are risk factors for NSCLC survival. Single-cell

transcriptomics of lung cancers reveals that SEC14L3 and

APCDD1L were also enriched in monocyte. According to

s tud i e s comb in ing an t i - ang iogen i c and t a rge t ed

immunotherapy, immunotherapy is influenced by the tumor

microenvironment, which is a potential target for developing

novel immunotherapy drugs (26). As a key regulator in NSCLC

progression, monocytes can drive an aggressive phenotype in

NSCLC (27). In a clinical study, absolute monocyte counts in

peripheral blood were found to be a good predictor of

outcomes in NSCLC patients treated with immunotherapy

(28). In this work, underlying targets like monocytes,

SEC14L3 and APCDD1L were identified, which can be

improved to be more personalized NSCLC immunotherapy

in the future.

In all, our study comprehensively explored the underlying

differences between immunotherapy responders and non-

responders. We identified characteristic genes and performed

molecular subtyping to screen patients with different responses

to immunotherapy. Interestingly, we found that female

patients were more sensitive to immunotherapy; monocytes

have a potential role in affecting NSCLC immunotherapy;

SEC14L3 and APCDD1L were the underlying targets

affecting immunotherapy, as well as patients survival. These

results can provide direction and guidance for future research

focused on NSCLC immunotherapy. However, our study also

exists some limitations. Firstly, in our analysis, White patients

constituted the majority, indicating that race bias is

unavoidable. It is important to pay more attention to large-

scale sequencing data from Asia and Africa in the future.

Secondly, the genomic data of NSCLC patients treated with

immunotherapy is still not openly accessible. In practice, the

response rate predicted by TIDE analysis does not fully

reflect reality.
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discrepancy metrics for
superiorly inferring tumor
mutation burden thresholds
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China, 5School of Public Health, Nanjing Medical University, Nanjing, China, 6State Key Laboratory
of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen
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Tumor mutation burden (TMB) is a widely recognized stratification biomarker

for predicting the efficacy of immunotherapy; however, the number and

universal definition of the categorizing thresholds remain debatable due to

the multifaceted nature of efficacy and the imprecision of TMB measurements.

We proposed a minimal joint p-value criterion from the perspective of

differentiating the comprehensive therapeutic advantages, termed TMBcat,

optimized TMB categorization across distinct cancer cohorts and surpassed

known benchmarks. The statistical framework applies to multidimensional

endpoints and is fault-tolerant to TMB measurement errors. To explore the

association between TMB and various immunotherapy outcomes, we

performed a retrospective analysis on 78 patients with non-small cell lung

cancer and 64 patients with nasopharyngeal carcinomas who underwent anti-

PD-(L)1 therapy. The stratification results of TMBcat confirmed that the

relationship between TMB and immunotherapy is non-linear, i.e., treatment

gains do not inherently increase with higher TMB, and the pattern varies across

carcinomas. Thus, multiple TMB classification thresholds could distinguish

patient prognosis flexibly. These findings were further validated in an

assembled cohort of 943 patients obtained from 11 published studies. In

conclusion, our work presents a general criterion and an accessible software

package; together, they enable optimal TMB subgrouping. Our study has the

potential to yield innovative insights into therapeutic selection and treatment

strategies for patients.

KEYWORDS

immunotherapy, tumor mutation burden, categorization thresholds, joint efficacy,
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1 Introduction

Immune checkpoint inhibitors (ICI) revolutionized cancer

therapy (1–4). Research findings demonstrate that tumor

mutation burden (TMB) as a stratification biomarker in

immuno-oncology helps predict patient prognosis (5, 6). TMB

is the number of somatic mutations per megabase (mut/Mb,

mainly single-nucleotide variants and short indels). These

mutations result in the capacity to generate surface

neoantigens that activate T lymphocytes (7), boosting tumor

immunogenicity (8, 9). Positive associations between elevated

TMB levels and benign ICI prognosis have occurred (10–12).

The NCCN guidelines and the FDA prioritized TMB as the

recommended test for patients receiving immunotherapy

(13, 14).

For clinical decision-making, physicians tend to categorize

TMB as a baseline to separate patients into distinct risk groups

with varying therapeutic benefits (15). However, due to

controversial clinical results, standardized TMB thresholds and

the proper number of patient subgroups have not been

definitively established. Specifically, i) the available quantile-

based benchmarks (e.g., median, quartiles) fail to reflect the

underlying biology of TMB and accurately locate the thresholds

(16). For example, certain investigations showed that quantile-

based TMB cutoffs could not clearly distinguish responders and

their prospective clinical benefits (17–19). ii) The typical clinical

endpoints for immuno-oncology involve objective tumor

response rate (ORR) and time-to-event (TTE), with the TMB

biomarker linked to both (20). Inconsistent TMB thresholds
Frontiers in Immunology 02
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arise when statistical studies on the same cohort of patients use

different endpoints, leaving clinicians uncertain (21). Instead of

basing a general TMB threshold on a single endpoint that

discloses only partial therapeutic benefits, a thorough

assessment of the disease’s multifaceted efficacy is needed

(22, 23).

Furthermore, iii) the effects of different endpoints may vary

in magnitude or orientation (24). Such contradiction suggests

that the connection between TMB and ICI advantages may not

be uniformly distributed and may differ across carcinomas. As

shown in Figures 1B, E, the associations between TMB and

unidimensional outcomes have only one inflection point. When

the intensities or directions of the impact of TMB on the distinct

endpoints disagree, multiple TMB thresholds permit

significantly diverse clinical performances in patient

subgroups, either from the three-dimensional space

(Figures 1A, D) or a joint perspective (Figures 1C, F).

Clinicians are uncertain about the optimal number of risk

groups to stratify patients. Simultaneously, several unobserved

common features lead to a natural correlation between tumor

response and event time, and the strength of this association

varies among regimens and cancer types (25–27). Consequently,

the favorable joint probabilities cannot be derived by simply

multiplying the probabilities of individual endpoints, which is

also a challenge in TMB categorization. Finally, iv) the imprecise

nature of TMB markers is another cause of threshold disputes

(16). Due to technical restrictions, the variant calling tools will

never be perfectly accurate, regardless of the various TMB

calculation methodologies (28, 29). TMB is inevitably subject
B C

D E F

A

FIGURE 1

The association between TMB marker and ICI benefits. (A–C) When the TMB effects on the response endpoint and survival endpoint have
different magnitudes: the association between TMB and ICI clinical benefits in space, the association between TMB and tumor response, the
survival benefit in plane, and the association between TMB and joint benefit in the plane. (D–F) When the TMB effects on the response endpoint
and survival endpoint point in different directions: the association between TMB and ICI clinical benefits in space, the association between TMB
and tumor response, the survival benefit in the plane, the association between TMB and joint benefit in the plane.
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to measurement error. In statistical models that support clinical

decision-making, we must account for lessening the instability

and bias arising from TMB errors in patient categorization (30).

Therefore, we present TMBcat, a generalized framework

based on the minimal joint p-value criterion, which can

optimize identifying the number of patient subgroups and the

corresponding TMB thresholds across all cancers. The

framework jointly models multidimensional endpoints while

accounting for TMB measurement inaccuracies, yielding the

most statistically significant TMB classification based on the

minimal p-value. The optimized TMB categorization stratifies

the patient population significantly and maximizes the

discrepancy in clinical performance between subgroups (31).

To verify the viability of TMBcat, we collected a cohort of 78

patients with non-small cell lung cancer (NSCLC) and 64

patients with nasopharyngeal carcinoma (NPC) who received

ICI treatment. We applied the proposed framework to identify

TMB thresholds and revealed novel correlation patterns

regarding TMB metrics and immunotherapy efficacy. In some

cases, the association between TMB and improved outcomes was

non-linear, i.e., the positive correlation was not perfectly

straight-line but followed a curved upward pattern varying

across regimens or carcinomas, making it more informative to

assign patients to multiple categories. Furthermore, we validated

these findings in an assembled cohort of 943 patients. The results

show that the proposed framework can provide innovative

insights into therapeutic refinement for patients. The source

code to reproduce the results can be downloaded from https://

github.com/YixuanWang1120/JM_TMBcat.
2 Materials and methods

2.1 A general statistical criterion for
TMB categorization

The categorization of TMB indicators facilitates the use of

information regarding the relationship between ICI benefits and

predictive TMB characteristics in making treatment decisions

for clinicians. Therefore, TMB thresholds should distinguish

patients with distinct risks. It is, therefore, necessary to establish

a general statistical criterion to determine the optimal TMB

thresholds and the number of patient subgroups. Our

optimization objective is to achieve categorization with the

minimum p-value, which maximizes the difference in the

probabilities of joint ORR&TTE benefit between subgroups. By

integrating multidimensional endpoints to model the joint

distribution and compensate for TMB measurement errors,

joint p-values can characterize patients’ clinical performances

with a single metric. Meanwhile, the p-value is the only CFDA-

approved metric representative of statistical significance with

good interpretability and is acceptable to clinicians. An

optimization target of minimizing the p-value can ultimately
Frontiers in Immunology 03
439
produce a significant TMB classification that distinguishes ICI

therapeutic advantages.
2.1.1 Mixed-endpoint joint probability
considering TMB errors

Given n patients, for patient i (i=1,…,n), Ri represents the

status of tumor response (Ri=1,0 for complete response (CR) and

partial response (PR), stable disease(SD) and progressive disease

(PD), respectively) and Ti denotes the observed event time,

which is the minimum of the true event time T*i and the

censoring time Ci, that is, Ti  = min(T*i ,Ci). di = I(T*i ≤ Ci)

defines the event indicator, where I(·) is the indicator function.

To comprehensively characterize the therapeutic advantages of

ICI for patients based on the recorded data, we merged the ORR

and TTE endpoints to profile each patient’s prognosis.

For ORR endpoint, the probability of favorable tumor

response for patient i is expressed as Pr(Ri = 1|TMBi). For

TTE endpoint, the survival probability up to time t for patient i is

Pr(T*i > tjTMBi) = Si(t), where Si(t) denotes the survival

function. Due to some shared unobserved features, different

endpoints may be intimately connected in practice as they all

come from the same patient. Including multiple endpoints in the

analysis can, first, increase the power of statistical tests and,

second, provide a more comprehensive picture of disease

efficacy, for which a single measure does not offer sufficient

representation. Therefore, the joint probability incorporating

ORR and TTE endpoints is preferable for the comprehensive

efficacy assessment for patients undergoing immunotherapy.

The derivation of joint probability Pr(Ri = 1, T*i > T0jTM
Bi) entails examining the correlation structure between various

clinical outcomes; indeed, ignoring such an association can lead

to higher type I and type II errors (32). The underlying

dependency between tumor response and the survival process

is commonly illustrated by the introduction of random effects.

This study proposes a joint statistics model with increased

generality in correlation capture, and via a generalized linear

mixed model (GLMM) formulation for the efficient estimation

of model parameters. We formed a multinomial logistic

regression to engage with multicategorical tumor response and

a Cox proportional hazard regression for the survival process.

The random effect u on the ORR endpoint and random effect v

on the TTE endpoint are set to account for intra-subject

correlation, assumed to follow a multivariate normal

distribution. Specifically, we extend the GLMM approach of

McGilchrist (33) to facilitate efficient statistical inference.

Pr Ri = 1,T*i > T0; q̂
� �

= Pr Ri = 1jû i; q̂
� �

Pr T*i > T0 ∣ v̂ i; q̂
� �

Pr û i, v̂ i; q̂
� �

(1)

where T0 is a prespecified survival time, q̂ is the maximum

likelihood estimate (MLE) of the joint likelihood, û i and v̂ iare

the point estimates of random effects on respective endpoints
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obtained by the empirical Bayes method. Details on joint

modeling of ORR and TTE endpoints and the solution of the

joint probability is available in Section S1.1–1.2 of

the Supplementary Materials; such an approach can bring the

statistical alpha level closer to the nominal level and can provide

additional information about the relationship.

In addition, the observations of TMB inevitably harbor

measurement errors. We hypothesize the observed TMB is

subject to the additive measurement error model: TMBi = TMB*i
+ei, (i=1,…,n). The error term ei is independent and identically

normal distributed with mean zero and variance s 2
e , and is

independent of endpoints Ri, Ti, di. Because the true TMB* is

not observed, the MLE based on true data cannot be used for joint

probability calculation directly from the perspective of

inconsistency. To reduce the biasing effect caused by

measurement errors and obtain a more robust TMB threshold,

we integrated the widely applicable corrected-score with the joint

model, resulting in approximately consistent estimators based on

the observed data. The corrected ORR&TTE joint probability is as

follows:

Pr Ri = 1,T*i > T0; ~q
� �

= Pr Ri = 1 ∣ ~ui; ~q
� �

Pr T*i > T0 ∣~vi; ~q
� �

Pr ~ui,~vi; ~q
� �

(2)

where ~q , ~ui and ~vi is the approximately consistent estimators

under the corrected-joint framework. The complete process is in

Section S1.3 of the Supplementary Materials.
2.1.2 Selection of the optimal thresholds
Given that k is the number of thresholds set for categorizing

the predictive biomarkers TMB into k+1 intervals, let Cutk=

(TMB1,… TMBk) denote the vector of k thresholds ordered

from smaller to larger. When the number of distinct TMB

values within the range of clinical meaningfulness is m, all

possible combinations of thresholds then have up to Ak
m kinds,

where Ak
m is the number of permutations of k thresholds selected

from m TMB values. Then, we propose that the vector of k

thresholds Cutk=(TMB1, … TMBk) that maximizes the

difference in ORR&TTE joint benefit between k+1 subgroups

of patients is thus the optimal thresholds. Patients are

subsequently separated into k+1 subgroups based on TMB

thresholds, Sj={ Rjr,Tjr,djr,TMBjr; r=1,…,nj, j=1,…,k+1 }, where

nj denotes the number of patients in subgroup j and Sjnj=n. The
joint probability characterizes the positive prognosis of patients

with both remission of tumor lesions and prolonged survival

time, allowing for a more comprehensive evaluation of the

patient’s treatment outcomes. Our optimization objective is

the categorization with the minimum p-value, which

maximizes the difference in the probability of the joint

ORR&TTE benefit between subgroups. Thus, given the

threshold vector Cutk and patient subgroups{ S1,… ,Sk+1 }, we
Frontiers in Immunology 04
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measure the joint probability difference Dk between k+1

subgroups from the distance metric.

Dk ≜Differences between  S1,…, Sk+1f g
= Distances between Pr Rr = 1,T*r > T0j ∣TMBr

� �
j
, j = 1,…, k + 1, r = 1,…, nj

(3)

Comparison of intergroup discrepancy based on the variance-
based distance. First, we construct a variance-based statistical

test to determine the distance between the joint probability

means of two or more populations. There are two

fundamental explanations for the disparity between the joint

probability of various subgroups: i), between-group variations

caused by the classification conditions, given as the sum of

squares of the deviation between the variable means in each

subgroup and the overall mean, given as the sum of squares

between-group, SSb, with the degrees of freedom dfb. ii),

individual differences in the joint probabilities of patients,

which become within-group differences, denoted as the sum of

the squares of the deviations between the variable mean in each

subgroup and the variable values in that subgroup, denoted as

the sum of squares within-group, SSw, with intergroup degrees of

freedom dfw. Thus, the intergroup distance between joint

probabilities is determined by the between-group variance and

the within-group variance.

Dk =
variability between groups
variability within groups

=
SSb=dfb
SSw=dfw

=
ok+1

j=1 �pj − �p
� �2�nj
h i

=k

ok+1
j=1onj

r=1 pjr − �pj
� �2

=n − k − 1

(4)

where pjr denotes the joint ORR&TTE probability for patient r in

subgroup j, �pj denotes the mean joint ORR&TTE probability for

subgroup j, and �p denotes the overall mean. When the joint

probabilities of the patient population satisfy the following

assumptions: independence of records; normality; equality of

variances (or “homogeneity”), i.e., the variance of records in

groups should be the same, then the statistic Dk follows an F-

distribution with k, n – k - 1 degree of freedom. At this point, the

p-value can be calculated from the F(k, n – k – 1) quantile. The

test of difference is equivalent to one-way ANOVA.

When the joint probabilities of populations do not fulfill the

hypothetical premise of independence, normality, and

homogeneity, the nonparametric rank statistic is used to

compare more than two populations. The total n patients

across all k+1 groups are ranked based on the calculated joint

ORR&TTE probability pi for ith patient. Tied probabilities are

allocated the average of ranks they would have received if not

tied. The diversity among joint probability subgroups is

determined by the between-group rank variance and the

within-group rank variance. The rank sum variance between

groups should be close to the rank variance of the entire sample.

Thus, the test statistic is:
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Dk =
between-group rank-sum variance
rank variance of the entire sample

= 12
n n+1ð Þo

k+1

j=1

RA2
j

nj
− 3 n + 1ð Þ

(5)

where RAj is the rank sum for the jth subgroup, RAj =

onj
r=1rank(pjr). When n is sufficiently large (the number of

observations per subgroup exceeds 5, nj > 5), Dk follows an

approximate c2 distribution with k degree of freedom. At this

point, the p-value can be calculated from the c2(k) quantile, and
the test of difference is equivalent to the Kruskal-Wallis test.

Comparison of intergroup discrepancy based on the
similarity-matrix-based distance. In addition, we constructed

a nonparametric test to measure the intergroup distance based

on the concept of the similarity matrix. The dissimilarity

between groups is measured via the distance between patients,

and then whether the target grouping is meaningful is judged by

testing whether the distance between groups is considerably

greater than the distance within groups. An n × n similarity

matrix is calculated for the joint probability of n patients, where

there are various methods for measuring distances, including

Euclidean distance, Mahalanobis distance, and Minkowski

distance. When the joint probability is one-dimensional, we

recommend the standard Euclidean distance. When the study

expects to refine the joint probability to be a two-dimensional

vector pi = [pRi, pTi]
T, we recommend the Mahalanobis distance

considering the covariance matrix V:

dil = d pi, plð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi − plð Þ V−1ð Þ(pi − pl)

T
q

(6)

The yielded similarity matrix is then translated into a rank

matrix, and the distance statistic is:

Dk = between-group dissimilarity − within-group dissimilarity

=
rb − rw

1
4 n n − 1ð Þ½ �

(7)

where rb denotes the mean rank of between-group dissimilarities,

and rw denotes themean rank of within-group dissimilarities. The

computational complexity of the n × n similarity-matrix-based

distance is O(n)2.

rb = rank dilð Þ, patients i, l belong to different subgroups
rw = rank dilð Þ, patients i, l belong to the same subgroup

(8)

As the distance metric does not obey a parametric

probability distribution, we obtained the p-values by

permutation test or boostrapping algorithm.

Then, the optimal threshold vector Cutk enables significant

discrimination of ICI benefits between patient subgroups can be

expressed as:

Cutk = TMB1,…,TMBkð Þ = arg  max 
k∈Ak

m

Dk (9)
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To solve eq. (9), TMBcat provides a global assessment of

every conceivable way of dividing a patient cohort into k+1 TMB

level expressions, ultimately using the minimal p-value principle

to produce the most significant thresholds Cutk. After selecting

the appropriate distance metric statistic Dk based on cancer

characteristics, we assessed all possible permutations of Cutk
across a range of clinically meaningful values, with a total of Ak

m

species. Specifically, for each possible form of Cutk, the

differences statistic Dk and the corresponding p-value are

calculated. We can determine the optimal Cutk by locating the

minimal p, namely, the highest Dk-statistic.

Cutk = arg  min 
k∈Ak

m

 p-value of  Dk (10)

The TMBcat framework defines the distance statistic Dk as a

measure of intergroup discrepancy in the comprehensive

prognoses to distinguish immunotherapy patient populations.

We provide various calculations of Dk depending on the features

of the different carcinomas. Under immunotherapy, different

tumors have different clinical manifestations as well as the focus

of the therapeutic regimen, where tumor remission and survival

prolongation are not equally emphasized in certain cancer types.

For example, tumor response is the treatment priority in GI

cancers as tumor lesion expansion has a tremendous negative

impact on patient survival. However, breast cancer, thyroid

carcinoma, and skin cancer, among others, are more likely to

result in the prolonged survival of patients. Therefore, when

assessing a patient’s ICI treatment outcome, the favorable

prognostic probability may be a one-dimensional joint

probability pi, which is applicable to variance-based distance,

or it may be in the form of a weighted vector pi=[w1pRi,w2pTi]
T,

where Dk should be calculated by the similarity-matrix-based

distance. At this point, our TMBcat is a general framework

suitable for pan-cancer analysis, and the appropriate discrepancy

metric statistic can be replaced based on the specific clinical

characteristics of the tumor.
2.1.3 Selection of the optimal number
of thresholds

We determined the optimal number of TMB thresholds

based on intergroup discriminations obtained for Cutk=l and

Cutk=l+1. The criterion used to assess the need for an additional

optimal cut-off point is whether it would enhance the composite

intergroup discrimination index. The values of Dk=l and Dk=l+1

across Cutk=l and Cutk=l+1 cannot be used directly for comparison

because of the non-uniform degrees of freedom. In light of this,

we based our judgment on the p-value, representing the statistical

significance. When the minimal p-value may decrease by the

inclusion of one patient subgroup, an additional threshold is

required:

p-value of  Dk=l < p-value of  Dk=l+1 (11)
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Finally, a step-by-step tutorial on TMBcat is shown in

Algorithm 1.
Fron
∈

Data: observed sample information S = {Ri, Ti, δi,

TMBi, i = 1,…, n}

Result: the optimal TMB categorization number and

corresponding thresholds

1 Jointly modeling the ORR&TTE endpoints for each

patient i;

2 Calculate the joint probability pi for each patient

i;

3 Give the thresholds number k and an optional number

of TMB values m

4 for any possible permutation Ak
m do

5 calculate the inter-group differences Dk:

6 if choosing parametric variance-

distance then

7 Dk =
ok+1

j=1 ½(�pj − �p)2 � nj�=k
ok+1

j=1onj
r=1(pjr − �pj)

2=n − k − 1

8 p-value obtained by ANOVA

9 end

10 if choosing non-parametric variance-distance

then

11 Dk =
12

n(n+1)ok+1
j=1 − 3(n + 1)

12 p-value obtained by Kruskal-Wallis

13 end

14 if choosing non-parametric similarity-

matrix-distance then

15 Dk =
rb−rw

1
4½n(n−1)�

16 p-value obtained by permutation test

17 end

18 end

19 The optimal Cutk = arg max Dk = arg min p-value of Dk;

20 Give the thresholds number k + 1, repeat step 4-19;

/* Judgment of the optimal number of thresholds

21 if p-value of Dk < p-value of Dk+1 then

22 adding a patient subgroup k = k + 1

23 end

24 return the optimal TMB categorization number k and

corresponding thresholds Cutk
ALGORITHM 1

Tutorial on TMBcat.
2.2 Cohorts assembly

2.2.1 Experimental cohorts
In this study, 64 patients with R/M NPC who have been

treated with anti–PD-(L)1 or anti-CTLA-4 were retrospectively

examined. Patients with R/M NPC were consecutively enrolled in
tiers in Immunology 06
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two single-arm, phase I trials (NCT02721589 and NCT02593786)

between March 2016 and January 2018. In addition, 78 Chinese

patients with NSCLC in this study have received anti-PD-(L)1

monotherapy at Sun Yat-sen University Cancer Center between

December 2015 and August 2017. The trial designs for the dosage

escalation and expansion phases have been discussed before (34–

36). Enrollment criteria included: i) aged 18-70; ii) Eastern

Cooperative Oncology Group performance status of 0-1; iii)

histologically or cytologically confirmed NSCLC or NPC with

metastatic disease or locoregional recurrence; iv) failure after at

least one prior line of systemic therapy; v) radiologically evaluable.

Central nervous system metastases, prior malignancy,

autoimmune disease, prior immunotherapy, active tuberculosis

infection, pregnancy, or immunosuppressive agent treatment were

exclusion criteria. The distribution of patient treatments is shown

in Supplementary Table S1. Patient characteristics, library

preparation, sequencing and bioinformatics procedures are

available in Supplementary Materials.

2.2.2 Validation cohorts from public literature
In addition to the above 2 experimental cohorts, we

assembled 11 validation cohorts of 943 different patients from

publicly available databases and studies, encompassing 453

patients with melanoma (16, 21, 37–39), 407 patients with

NSCLC (17, 21, 40, 41), 56 patients with renal cell carcinoma

(RCC) (16), and 27 patients with bladder (17) (specific clinical

characteristics are shown in Supplementary Table S2) as the

validation cohorts. Briefly, all of these studies are retrospective

studies of immunotherapy, and ICI agents include anti-PD-(L)1,

anti-CTLA4, combination anti-CTLA4/anti-PD-(L)1, and only a

few other agents. The primary efficacy information we are

interested in is ORR assessed by Response Evaluation Criteria

in Solid Tumors (RECIST 1.1 (42)) and progression-free survival

(PFS) and/or overall survival (OS) outcomes. For TMB

calculation, the mutation callings are acquired from the three

sequencing platforms. Seven studies perform comprehensive

genomic profiling by WES, two of which are called by the

standard MC3 pipeline. The other four studies are based on

currently available NGS panels for TMB estimation: F1CDx and

MSK-IMPACT, which the FDA has approved as practicable

diagnostic assays. The sequencing pipeline and diverse TMB

thresholds are listed in Supplementary Table S2.
3 Results

3.1 Simulation study for determining
TMB thresholds

To visualize how our proposed TMBcat determines the

optimal TMB thresholds and numbers within a clinically

meaningful range, we simulated two classification scenarios of

consistent versus inconsistent direction of TMB effects on separate
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endpoints. Data are simulated in an oncology trial context, with

underlying random effects correlated among patients’ ORR and

TTE endpoints. The specific modeling process and estimation

procedure are in Section S2 Simulation of the Supplementary

Materials. Through simulation experiments, we illustrate the

applicability of TMBcat for determining TMB categorization.

Given clinical practice and computational complexity, the

number of patient subgroups is generally compared within 2–5

groups, i.e., k = 1-4. The distance metric was tested with the

default parametric ANOVA. Owing to the differential direction

and magnitude of TMB effects on simulated ORR endpoints

versus TTE endpoints, Figure 2 shows the optimal dichotomous

and optimal trichotomous scenarios, respectively.

The data are presented as a right triangular grid, with each

point indicating a particular threshold division. The color

intensity of each truncated point depicts the between-group
Frontiers in Immunology 07
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variability of the ORR&TTE joint benefits for patients under that

threshold classification, with darker colors indicating smaller

joint p-values. Such a graphical display can shed light on the

specific biological basis of the connection between TMBmarkers

and immunotherapy. All probable TMB-high populations are

represented on the horizontal axis, with the size becoming

smaller from left to right. The vertical axis, which also reflects

all possible TMB-low populations, illustrates how their sizes

increase as the axis descends. The data along the hypotenuse

represents the outcomes of a single threshold that splits the data

into two subgroups. Data points away from the hypotenuse up or

to the right represent results from two cut-points that define an

additional TMB-median population. Greater separation from

the hypotenuse results in a larger median subgroup. In

Figure 2A, the boxed-out darkest-colored threshold division

point, i.e., the greatest intergroup distinction, appears on the
B

C D

A

FIGURE 2

Selection of the optimal thresholds. Each point in left column indicates a particular threshold division. The color intensity represents the joint p-
value that depicts the between-group variability of the ORR&TTE joint benefits for patients under that threshold classification. TMB Threshold 1
(on the horizontal axis) and TMB threshold 2 (on the vertical axis) form a categorization dividing the patients into 2–3 different subgroups. The
right column shows the comparative prognoses of patients under the optimal TMB categorization corresponding to the left panels. (A), The
darkest-colored threshold division point, i.e., the minimum joint p-value, appears on the hypotenuse of the right triangle. At this point, k = 1 is
the optimal subgroup number, and the boxed point locates the optimal TMB threshold. (B), A comparison of the joint prognostic favorable
probability of patients under the optimal TMB classification, clearly indicating that one TMB threshold is sufficient to separate the population
into two subgroups with distinct risks. (C), The darkest-colored threshold division point, i.e., the minimum joint p-value, appears inside the
triangle. The trichotomy is significantly superior to the dichotomy scenario, and the boxed point locates the optimal TMB thresholds. (D), A
comparison of the joint prognostic favorable probability of patients under the optimal TMB classification, where a clear stratification effect of the
treatment consequences for the three groups of patients can be discerned.
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hypotenuse of the right triangle, where k = 1 is the optimal

number of classifications. Thus, Figure 2B compares patients’

joint prognostic favorable probability under the optimal

threshold classification, indicating clearly that one TMB

threshold is sufficient to separate the population into two

subgroups with different risks. As a comparison, in Figure 2C,

the darkest-colored point that is boxed out appears inside the

triangle, which implies that the joint p-value of the optimal TMB

tri-classification is significantly smaller than the optimal TMB

dichotomous joint p-value. The trichotomy is significantly

superior to the dichotomy scenario. Similarly, Figure 2D

compares patient subgroups under the optimal threshold

division of the trichotomous categorization, from which we

can discern a clear stratification effect of treatment

consequences for the three groups of patients. Therefore, in

this case, multiple TMB thresholds are supported.
3.2 Presence of patients with
inconsistent benefiting directions on
separate efficacy endpoints

Based on the proposed joint favorable probability, we can

yield a comprehensive overview of the response probability and

the survival risk of the patient under the mutual modulation

represented by the random effects. The joint prognostic

indicators can be applied to compare the ICI treatment
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outcomes simultaneously. For further analysis, we extracted

individual patients with inconsistencies between the response

indices and survival risk.

We produced Kaplan-Meier survival curves for PFS to

display divergence (Figure 3). The lower green curve

represents patients with a tumor status of CR/PR, whereas our

compound index shows probabilistically that such a trend

should not occur in this subgroup. On the opposite, the higher

purple curve represents patients with a tumor status of SD/PD,

whereas our joint index shows probabilistically that this group

tends to possess favorable clinical outcomes. The average PFS of

patients in the CR/PR subgroup is 11.409 months (CI, 9.599–

13.218 months), and the mPFS of patients in the CR/PR

subgroup is 9.8 months (CI, 7.741–11.859 months). In

contrast, the average PFS of patients in the SD/PD subgroup is

25.589 months (CI, 15.744–35.435 months), and the mPFS of

patients in the SD/PD subgroup is 18.9 months (CI, 12.115–

25.685 months). The log-rank test measures the difference

between two survival curves, with a significant p-value of

0.002. These results identify some clinically overlooked

populations: a cohort of patients that tended to survive with

tumors, i.e., the group of patients demonstrated in the purple

curve (Figure 3), revealing an apparently prolonged PFS even

though endowed with relatively poorer outcomes in terms of

response rubrics. In addition, a cohort of patients whose tumors

have resolved may experience rapid disease progression within

the first year of treatment, i.e., the group of patients
FIGURE 3

Progression-free survival curves for selected cancer patients with opposite prognosis indices. The lower (green) Kaplan-Meier curve represents
patients with CR/PR, but the multi-endpoint joint model directs to SD/PD, and the higher (purple) Kaplan-Meier curve represents patients with
SD/PD. Still, the multi-endpoint joint model directs to CR/PR. The clinical benefits of ORR and PFS endpoints point in two distinct directions.
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demonstrated in the green curve (Figure 3). These patients are

from the 2 experimental sets and 11 validation sets, representing

a total of 110 individuals accounting for over 10% of the

surveyed cohorts. Thus, we offer a bold and novel conclusion:

a subset of patients whose effects in two different efficacy

endpoints may be of different magnitudes or even point in

different directions. This suggests the necessity of our proposal

that multiple classifications of TMB should be performed.

Such divergent results reflect, to some extent, the

reasonableness of the proposed joint probability in providing a

more comprehensive picture of disease efficacy expressed in

multifaceted forms when a single endpoint cannot fully

represent the complexity of a disease. This issue also reflects

that the populations represented by the two curves in Figure 3

are not specific individual cases, but a small cohort that will

negatively impact the whole analysis and even the stratification

of patients and should receive more attention in clinical analysis.
3.3 Triple classification of patients on
TMB level appears more reasonable

Owing to the presence of a subset of patients whose clinical

benefits are opposite at two endpoints, further refinement of

patient classification based on joint efficacy analysis is

warranted. Our clinical cohorts NPC (Panel) and NSCLC were

trichotomized by TMBcat, and the analysis of patient grouping

results is summarized below.

Figure 4 unfolds the hierarchical results formed by analyzing

two different cancer datasets utilizing the TMBcat model,

performing Kaplan-Meier survival analyses for TTE and Mann-

Whitney U tests for the ORR. We found that an improvement in

patient’s survival time did not increase linearly with higher TMB

values in the scenarios of the multi-classification. Patients in the

TMB_Median group confer a poorer prognosis in both PFS and OS

survival curves than in the other two TMB_Low and TMB_High

groups. Patients with advanced NSCLC and NPC with low TMB

might derive benefit from immunotherapy. Specifically, the mPFS

of patients in the TMB_Median group is 1.67 and 2.07 months,

respectively, in cases NPC and NSCLC, maintaining the lowest in

the respective triple classification, while patients with NPC and

NSCLC in the TMB_Low group have an mPFS of 2.57 and 2.13

months, and those in the TMB_High group have an mPFS of 2.57

and 5.97 months, respectively. Likewise, regarding the objective

response, TMB_Median groups remain the worst performers, with

the lowest ORR of 0.0% and 7.69%, respectively, whereas the

TMB_High groups retained the highest ORRs of 16.22% and

29.63%, respectively. To interpret the origins of such non-linear

trends, we considered another factor influencing tumor resistance:

intra-tumoral heterogeneity (ITH). ITH is defined as a spatially or

temporally uneven distribution of genomic diversification in an

individual tumor (43): this is associated with a poor prognosis in

solid tumors (44). Patients with low ITHmay perform better in the
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presentation and recognition of neoantigens during

immunotherapy (45). The ITH level for each patient with

NSCLC was calculated, and the favorable response to immune

agents in the TMB_Low subgroup could be partially explained by

the lower level of ITH (Figure 4E and Supplementary Table S1). In

addition, for the joint probability distribution in space (Figure 4F),

we show that the smoothed distribution curve remains with

multiple inflection points, which demonstrates the plausibility of

our proposed multiple classifications of TMB.

As a comparison, we grouped the clinical cohort NPC

(Panel) and NSCLC based on the median TMB, a frequently-

used quantile in retrospective analyses (20, 40, 41), and the

comparative results of patient efficacy after stratification are

shown in Figure 5. As TMBcat is optimized with a minimal joint

p-value, the optimal thresholds for TMB categorization based on

our proposed criterion are definitely with the smallest joint p-

value among all possible threshold divisions. The joint p-values

for both NPC (Panel) and NSCLC in Figure 4 are < 0.001,

whereas the joint p-values for the two cohorts based on the TMB

medians in Figure 5 are 0.521 and 0.061, respectively. To more

objectively illustrate the advantages of TMBcat in differentiating

patients, we observed the prognoses of patients under the TMB

categorization from a single dimension of clinical performance.

The differentiation between patient subgroups with the quantile-

based TMB categorization is insignificant compared with the

proposed minimum joint p-value criterion. Both the log-rank p-

values and Mann-Whitney U p-values increased markedly.

In summary, when the efficacy information on two

endpoints reveals a consistent direction of benefit, i.e., patients

with a higher probability of tumor response tend to have a more

extended survival period, which is sufficient to dichotomize

patients based on either endpoint. However, when patients

display inconsistent benefits on both efficacy endpoints, we

propose that it is more reasonable to triclassify patients based

on TMB levels in clinical practice, which will help oncologists to

screen for patients suitable for immunotherapy.
3.4 The TMB subgrouping landscape
varies across pan-cancer

The potential association of TMB with sensitivity to ICIs

may not be perfectly linear. We performed a pan-cancer

analysis for nearly 1,000 patients with cancer in the validation

group comprising four cancer types. We identified some

novel correlation patterns regarding TMB metrics and

immunotherapy efficacy: patients’ clinical improvement did

not increase uniformly and linearly with higher TMB values in

the multiclassification scenarios.

The trichotomy results emphasized that the association

between TMB and ICI efficacy is non-linear (Figure 6). Patients

with RCC, NSCLC, and melanoma in the TMB_Median groups

display a better trend in ICI outcomes than those in TMB_Low and
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TMB_High groups (Figures 6B–D). The advantage of the

TMB_Median groups in terms of survival time is most evident

in cases RCC and NSCLC_57, where patients maintain the highest

mPFS of 11.1 and 27.3 months (mPFS: 2.7 and 5.6 months for

TMB_Low and TMB_High in case RCC, respectively; log-rank

p=0.644; mPFS: 10.39 and 14.61 months for TMB_Low and
Frontiers in Immunology 10
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TMB_High in case NSCLC_57, respectively; log-rank p=0.047),

and the highest median overall survival (mOS) of inf, inf (mOS:

33.77 and 27.13 months for TMB_Low and TMB_High in RCC,

respectively; log-rank p=0.732; mOS: 11.5 months and inf for

TMB_Low and TMB_High in NSCLC_57, respectively; log-rank

p=0.055; Figures 6B, C). On the other hand, when evaluating from
B

C D

E F

A

FIGURE 4

(A, B) Based on the mixed-endpoint analysis model, survival curves and ORR comparison for patients with NPC in the low, intermediate, and
high TMB groups. (C, D) Based on the mixed-endpoint analysis model, survival curves and ORR comparison for patients with NSCLC in the low,
intermediate, and high TMB groups. Patients’ improvements in survival time and response status do not increase strictly linearly with higher TMB
values in the scenarios of the multi-classification. Instead, there is a trend of a minor decline followed by a considerable increase in the positive
connection between TMB and treatment outcomes. (E), ITH comparison among patients with NSCLC in the low, intermediate, and high TMB
groups. (F), Three-dimensional spatial diagram of the association between TMB markers and ICI benefit.
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ORR, TMB_High groups acquire the most improvement only in

Bladder and NSCLC_57 cases, do the proportions of tumor

response gain as the TMB value increases, ranging from 33.3%

to 100.0%, and 9.38% to 66.67%, respectively (Figures 6A, C). In

the other validation cases, ORRs in TMB_Median subgroups reach

the peak at 80.0%, 35.71%, and 46.77% in the RCC,

Melanoma_105, and Melanoma_195 sets, respectively

(Figures 6B, D, E). The results for the remaining validation

cohorts can be found in Supplementary Figure S2–7. In addition,

similar to the previous subsection, we performed a subgrouping

analysis using the TMB medians for the five validation cohorts to

allow a comparison with our proposed TMBcat; the results are

summarized in Figure 7. Quantile-based TMB subgroups were

intuitively weaker than TMBcat in p-value comparisons, and

median TMB did not distinguish the clinical benefits of patients

receiving immunotherapy.

To avoid overestimating the performance of our model and

the overfitting problem, we further partitioned the MEL_195
Frontiers in Immunology 11
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queue into training and testing sets. Using the TMBcat-based

TMB thresholds selection method, we filtered the appropriate

triple classification thresholds based on the training set and

grouped the patients for comparison (Figure 8). Subsequently,

the patients in the independent testing set were classified based

on the screened TMB thresholds and the outcomes were

analyzed (Figure 8B). As summarized by the results, patients’

efficacy had a uniform trend across the three distinct groupings.

Thus, our method is generalizable and adaptable to other

patient cohorts.

To further elaborate this non-linear distribution uniformly,

after filtering the panel-based cases, we assembled eight

validation clusters for analysis to obtain the multi-classification

profiles (Figure 9). When patients have extremely high levels of

TMB, the effectiveness of immunotherapy is, at this stage,

lessened. We speculate that this phenomenon may be due to

the accumulation of many mutations in TMB_High patients over

a long period of carcinogenesis, resulting in heavily differentiated
B

A

FIGURE 5

(A) Survival curves and ORR comparison for patients with NPC in the low and high TMB groups based on the median. (B) Survival curves and
ORR comparison for patients with NSCLC in the low and high TMB groups based on the median. The quantile-based TMB subgrouping
approach, compared to the minimum joint p-value criterion, failed to stratify patient efficacy significantly.
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FIGURE 6

The TMB subgrouping landscape analysis for various cancer types. (A), Kaplan-Meier survival analysis and ORR efficacy comparison for the
Bladder cohort. (B), Kaplan-Meier survival analysis and ORR efficacy comparison for the RCC cohort. (C), Kaplan-Meier survival analysis and ORR
efficacy comparison for the NSCLC 57 cohort. (D), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 105 cohort.
(E), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 195 cohort. The trichotomy results indicate that the association
between TMB index and ICI efficacy is not perfectly linear, i.e., treatment gains do not inherently increase with higher TMB, and the pattern
varied across carcinomas.
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FIGURE 7

The median-based TMB subgrouping landscape analysis for various cancer types. (A), Kaplan-Meier survival analysis and ORR efficacy
comparison for the Bladder cohort. (B), Kaplan-Meier survival analysis and ORR efficacy comparison for the RCC cohort. (C), Kaplan-Meier
survival analysis and ORR efficacy comparison for the NSCLC 57 cohort. (D), Kaplan-Meier survival analysis and ORR efficacy comparison for the
MEL 105 cohort. (E), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 195 cohort. The TMB median cannot distinguish
patients’ ICI prognosis and is significantly weaker than the proposed minimum joint p-value criterion in terms of statistical significance.
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tumors, leading to correspondingly high heterogeneity. At this

time, the neo-antigenic activity brought about by high TMB is

weakened by the resistance to anticancer therapy brought about

by heterogeneity. In contrast, patients with relatively low TMB

may be in the early stages of carcinogenesis and have not yet

accumulated a sufficient number of mutations; thus, they may

gain a small improvement from ICI. Per this non-linear feature,

an inverted U-shaped association between patients’ TMB levels

and ICI benefits can be clearly observed in melanoma and RCC

(Figures 6B, D, E, Supplementary Figures S2, S4), i.e., poorer

performance in patients with high TMB. In contrast, tumors of

the skin and kidney typically exhibited a high degree of tumor

heterogeneity. In lung cancers with low numbers of tumor

clones, this correlation becomes U-shaped or linear, i.e.,

TMB_Low patients may possess better outcomes (Figure 6C,

Supplementary Figures S5–7). This observation also coincides

with the relationship between ITH and tumor resistance (44).

Similarly, the comparison between the left and right columns

(Figures 9) also reflects the superior grouping ability of the

TMBcat (p-value: <0.001–0.13), whereas the quintile-based
Frontiers in Immunology 14
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grouping neither portrays a non-linear distribution, and the p-

value does not indicate significance (0.001–0.5).

The results show that the association between TMB and ICI

efficacy does not present a strict linear increasing trend but instead

a non-linear distribution in which low TMB does not preclude

response and high TMB is not a sufficient predictor. As seen from

the pan-cancer results, multiple thresholds were prevalent, and the

thresholds across carcinomas and protocols varied. Our multi-

endpoint model provides an integrated and general approach for

clinical threshold delineation. The reasons for this non-linear

distribution and the underlying driving mechanism are still

unclear; further exploratory clinical trials are needed.
4 Discussion

Tumor mutation burden has recently become an area of

interest; high TMB is associated with a better response to ICI

therapies. However, the threshold defining the TMB-high/TMB-

positive patients in clinical practice is controversial, and this is
B

A

FIGURE 8

Independent validation of the approach for comprehensively determining the threshold for positive TMB based on TMBcat. (A), The
trichotomous treatment effects of patients under the TMB thresholds obtained by training with the 130 patients sampled from the MEL 195
dataset. (B), The triple categorized efficacy comparison for the testing patients under the same TMB thresholds.
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exacerbated by the presence of multiple evaluation metrics and

TMB inaccuracy. The existing approaches to identify the TMB

threshold are merely based on a single endpoint, which may

yield excessive information loss to provide statistically

significant stratification results. Herein, we describe our

solution for TMB threshold selection using a novel criterion

named TMBcat, a generalized framework for optimally

determining the TMB categorization number and thresholds

based on a joint p-value. The proposed TMBcat has good

scalability because it allows the modeling of the joint

distribution and integrates the multidimensional clinical

information of patients into a one-dimensional statistic—joint

p-value, without considering the number of clinical endpoints.

In practical applications, when assessing the grouping effect of

all possible combinations of TMB thresholds, the number of

permutations may be huge when the number of required

thresholds k and the number of alternative TMB values m is

large. Thus, an exhaustive search is computationally costly. In

these circumstances, we reduce the size of the search space by

sampling the data with reasonable segmentation and use

heuristic search algorithms, such as simulated annealing, to

improve computational efficiency.
Frontiers in Immunology 15
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In addition, our analyses revealed a novel association pattern,

in which the positive correlation between TMB and ICI outcomes

was non-linear. In terms of overall trends, patients do not strictly

derive more clinical benefits as their TMB levels increase; indeed,

TMB-low patients are not necessarily inaccessible to

immunotherapy, while patients with extremely high TMB do

not always experience the greatest improvements from ICI. These

phenotypes may be explained by the fact that cancer patients with

remarkably high TMB levels generally accumulate many

mutations during their long period of carcinogenesis and that

their tumors have become highly differentiated, resulting in

complex heterogeneity that confers patients with poor

prognoses. Moreover, patients with relatively low TMB may

expect a little improvement from ICI because they are in the

early stages of cancer development, and manymutations have not

yet developed. This phenomenon deserves to be explored in

further clinical trials aimed at identifying the patients who may

genuinely benefit from treatment with ICIs, refining the

therapeutic selection and tailoring the treatment strategy.

Collectively, our results shed new light on TMB multi-

stratification based on a multi-endpoint joint assessment of

immunotherapy benefits, suggesting that clinicians should
B

C

D

A

FIGURE 9

A comparison between TMBcat-based and percentile-based multi-classification. (A, B) Grouping results of ORRs and KM survival curves under
multi-level division using TMBcat according to TMB levels. (C, D) Grouping results of ORRs and KM survival curves under TMB quintiles (cut-offs
at 20%, 40%, 60%, and 80%, respectively). The p-values in the figures are based on the Mann-Whitney U test and log-rank test, respectively.
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consider multiple thresholds. Current evidence on the atypical

correlation between TMB and ICI outcomes emphasizes further

exploring the corresponding immunobiological mechanisms before

wider clinical implementation. All data associated with this study

are presented in the Supplementary Materials and Tables.
5 Conclusion

Given the fusion of cross-scale, multimodal information and

scheme decision-making in immunotherapy, clinical data should

be integrated to achieve a comprehensive analysis of patient

outcomes. Therefore, we proposed a minimal joint p-value

criterion from the perspective of differentiating the

comprehensive therapeutic advantages, termed TMBcat, to

optimize TMB categorization across distinct cancer cohorts;

this method surpassed known benchmarks. Previous studies

have typically derived only one threshold to divide the

immunotherapy patient population into two subgroups, which

is largely insufficient. Instead, we consider a multi-threshold

categorization incorporating multiple clinical endpoints, a first-

of-its-kind pan-cancer framework for TMB categorization.

Based on our proposed optimization framework, we performed

our multi-endpoint analysis on 78 patients with NSCLC and 64

patients with NPC who underwent ICI treatments, as well as an

assembled cohort of 943 patients included in 11 published studies.

Our study identified more novel medical findings compared with

the available studies. From the results, we reasonably conclude that:

i) the TMB metric is closely associated with immunotherapy

benefits, although this association is non-linear and varies

between cancer types; ii) integrating multi-dimensional

information for patients to employ multi-endpoint joint analysis

can prompt a more comprehensive TMB subgrouping; iii) patients

receiving immunotherapy may have different effects on different

efficacy endpoints, which suggests that iv) there is more than one

TMB inflection point available that permit significantly different

clinical outcomes in subgroups of patients; and finally, v) the ability

of our model TMBcat to provide the optimal number of subgroups

in addition to the corresponding TMB thresholds may better assist

physicians in treatment decision-making.
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Background: Sepsis-induced apoptosis of immune cells leads to widespread

depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has

been implicated in the apoptotic pathway, although little is known regarding its

role in sepsis-related immune cell apoptosis. The aim of this study was to

develop an ER stress-related prognostic and diagnostic signature for sepsis

through bioinformatics and machine learning algorithms on the basis of

the differentially expressed genes (DEGs) between healthy controls and

sepsis patients.

Methods: The transcriptomic datasets that include gene expression profiles of

sepsis patients and healthy controls were downloaded from the GEO database.

The immune-related endoplasmic reticulum stress hub genes associated with

sepsis patients were identified using the new comprehensive machine learning

algorithm and bioinformatics analysis which includes functional enrichment

analyses, consensus clustering, weighted gene coexpression network analysis

(WGCNA), and protein-protein interaction (PPI) network construction. Next,

the diagnostic model was established by logistic regression and the molecular

subtypes of sepsis were obtained based on the significant DEGs. Finally, the

potential diagnostic markers of sepsis were screened among the significant

DEGs, and validated in multiple datasets.

Results: Significant differences in the type and abundance of infiltrating

immune cell populations were observed between the healthy control and
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sepsis patients. The immune-related ER stress genes achieved strong stability

and high accuracy in predicting sepsis patients. 10 genes were screened as

potential diagnostic markers for sepsis among the significant DEGs, and were

further validated in multiple datasets. In addition, higher expression levels of

SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis

patients than healthy donors (n = 5).

Conclusions: We established a stable and accurate signature to evaluate the

diagnosis of sepsis based on the machine learning algorithms and

bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of

sepsis that may affect its progression by regulating ER stress.
KEYWORDS

sepsis, immunity, endoplasmic reticulum stress, machine learning, SCAMP5
Introduction

Sepsis is associated with high morbidity and mortality rates

which caused by a disproportionate inflammatory response of

the host to infection (1). An estimated 48.9 million people

worldwide were diagnosed with sepsis in 2017, resulting in

over 11 million deaths that accounted for 20% of the global

mortality rate (2). Despite advances in resuscitation strategies,

ventilator management, antibiotic therapy and glucose

maintenance, there is no particularly effective treatment for

sepsis other than standard care and supportive treatment, and

severe sepsis remains a leading cause of death (3, 4). Studies in

human subjects and animal models have shown that sepsis is

associated with the overactivation of innate immune effector

cells, resulting in uncontrolled inflammation that leads to

extensive tissue damage and organ failure in case of severe

septicemia (5–7). In order to reduce sepsis-related mortality, it

is very necessary to explore the biological mechanisms and

potential biomarkers associated with sepsis.

Endoplasmic reticulum (ER) is the place of protein folding

and post-translational modifications, and is also a critical

organelle of the secretory pathway (8). Cellular stress and

inflammation can lead to the accumulation of unfolded or

misfolded proteins, a phenomenon also known as ER stress

(9). ER arising from inflammation and the loss of dynamic

balance in endoplasmic reticulum function under stress has been

closely related to the progression of sepsis (10). However, the

possible relationship between ER and sepsis, especially the

possible role of ER stress on immune cell apoptosis during

sepsis, remains unclear. To this end, we explored the role of

immune cell apoptosis and ER stress on the development of

sepsis, as well as their correlation to patient prognosis. Our
02
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objective was to identify the molecular subtypes of sepsis to

expand the repertoire of potential diagnostic biomarkers.

The gene expression profiles of sepsis and normal blood

samples were retrieved from the GEO database using R software

(11), and the differentially expressed genes (DEGs) between the

two groups were screened. Immune cell infiltration in the sepsis

and control groups was analyzed using the CIBERSORT

algorithm, and the sepsis dataset was clustered on the basis of

immune checkpoint genes in order to identify key genes

associated with the immune responses during sepsis. The

DEGs related to sepsis and ER stress were functionally

annotated by GO and KEGG pathway enrichment analyses,

and weighted gene correlation network analysis (WGCNA)

(12) was performed to identify co-expressed gene modules.

Next, the protein-protein interaction (PPI) network of the

genes intersecting the WGCNA and ER stress-related gene sets

was constructed using the STRING database (13), and the

clinical relevance of the hub genes was analyzed in multiple

datasets. In addition, the correlation between the hub genes and

immune cell infiltration levels was also examined. Finally, the

potential diagnostic markers of sepsis were screened, which

offers new insights for sepsis diagnosis and treatment.
Materials and methods

Data availability

All the raw data is available.

Raw data l ink : ht tps : / /www. j ianguoyun.com/p/

DU2vz6oQzM3iChj1us0EIAA.

(Access Password: k6zrvo).
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Identification of sepsis-related DEGs

The sepsis-related transcriptomic datasets GSE9960 and

GSE57065 (14, 15) were downloaded from the GEO database

using the GEO query package in R (version 4.0.3, http://r-

project.org/) (16). The details of the datasets are listed in

Table 1. The datasets were merged using the sva package in R,

and the difference between batches was eliminated according to

the data source. The samples in the merged dataset were divided

into the normal (n = 41) and sepsis (n = 136) groups using

ComBat in the sva package, and all samples were included in the

study. After normalizing the expression data, the DEGs between

the normal and sepsis samples were screened by the limma

package in R (17), with logFC > 1 or < -1 and adjP value < 0.05 as

the thresholds.
Analysis of immune infiltrating
cells in sepsis

Based on the principle linear support vector regression, we

used CIBERSORT algorithm to analyze the gene expression matrix

of immune cell subtypes. LM22 and CIBERSORT matrices can

predict the proportion of 22 infiltrating immune cell subtypes in

individual samples of a dataset (18). The infiltrating immune cell

populations in the sepsis and normal samples were estimated on

the basis of RNA-Seq data, and the abundance of the 22 subtypes of

immune cells in the datasets was evaluated by the CIBERSORT

algorithm. The differentially enriched immune cells between septic

and normal samples were also identified, and their correlation with

key sepsis-related genes was analyzed.
Identification of immune subtypes

Consensus Clustering is used to determine the number of

possible clusters in gene expression datasets, and is routinely

applied in cancer genomics research to identify molecular

subtypes. The “ConsensusClusterPlus” package in R (19) was

used to cluster the sepsis datasets on the basis of immune

checkpoint genes (20) in order to distinguish immune

subtypes and identify the key genes related to sepsis-related

immunity. The number of clusters was set between 2 and 10, and
Frontiers in Immunology 03
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the process was repeated 100 times to extract 80% of the total

samples using clusterAlg = “pam”, distance = “Euclidean”. The

pheatmap package in R was used to draw the clustering heat map

consisting of the top 20 down-regulated and up-regulated genes.
Functional annotation of DEGs

Gene ontology (GO) is used for large-scale functional

annotation of genes based on the enriched molecular functions

(MF), biological processes (BP) and cellular components (CC).

Subsequently, KEGG is a database of biological pathways, drugs,

genomes and diseases. The clusterProfiler package in R (21) was

used for KEGG pathway enrichment analyses and GO functional

annotation of the intersecting sepsis-related DEGs and ER

stress-related genes. P-value < 0.05 was used as the threshold

for significant enrichment. Gene set enrichment analysis (GSEA)

is used to evaluate the correlation of genes in a pre-defined gene

set with a specific phenotype (22). The “c5.go.v7.4.symbols” with

“c2.kegg.v7.4.symbols”gene sets in the MSigDB database (23)

were subjected to GSEA using the clusterProfiler package (21).

P-value < 0.05 was considered statistically significant (23).
Weighted Gene Correlation Network
Analysis (WGCNA)

WGCNA is used to identify co-expressed gene modules,

explore the relationship between gene network and phenotype,

and study the core genes in the network. WGCNA was

performed on the DEGs between sepsis and control datasets

using the WGCNA package in R (12). The correlation coefficient

between two genes was first calculated, then its weighted value

was used to make the connection between the genes in a scale-

free network. The hierarchical clustering tree was then

constructed according to the correlation coefficients, wherein

different gene modules were represented by the branches and

color-coded. The “minModuleSize” was set to 50, and the

module significance and correlation of mRNA expression

levels with different modules were calculated. Finally, the most

significant module related to the disease was identified, and the

characteristic genes were extracted for subsequent analysis.
Construction of protein-protein
interaction (PPI) networks

The STRING database (13) contains 2031 species, which

includes 9.6 million proteins and 1380 million protein and

protein interactions (PPIs) obtained from experimental data,

text mining results from PubMed, other databases, and

bioinformatics predictions. The PPI network of the genes

intersecting the WGCNA and ER stress-related gene sets was
TABLE 1 Data information.

Data Normal Sepsis

GSE9960 16 54

GSE57065 25 82

GSE123729 11 15

GSE54514 18 35

GSE26378 21 82
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visualized using Cytoscape software which constructed from the

STRING database. Finally, the hub genes related to ER stress in

sepsis were screened from this PPI network.
Construction of a diagnostic model

The minor absolute contraction and selection operator

(LASSO) logistic regression method is used to screen for the

most powerful prognostic predictors since it forces the absolute

value of the regression coefficient to be less than the constant value,

which can effectively avoid model overfitting and filter out the

most important events. The sepsis-related genes were preliminarily

screened by the LASSO method using glmnet package in R (24),

and the diagnostic model was established by logistic regression.

The odds ratio (OR) and P-value of each variable were calculated

in the model, then the risk score of each sample was obtained.

Diagnostic marker genes with a P-value < 0.05 andOR value that is

more excellent than or less than one were selected.
Classification of sepsis subtypes

We used the “limma” package in R to screen the differentially

expressed genes in the combined datasets between normal and

sepsis samples. The filtering conditions were | logFC | > 2 and

adj.P Value<0.05. The ConsensusClusterPlus package in R (19)

was used to cluster the sepsis datasets based on the significant

DEGs between sepsis and control samples to obtain molecular

subtypes of sepsis.
Extraction of peripheral blood
mononuclear cells (PBMCs)

The collection of blood samples from human subjects

was approved by the Medical Ethics Committee of

Shenzhen Hospital of Southern Medical University (ID:

NYSZYYEC20200039). The clinical data is available at the China

Clinical trial Registration Center (No. ChiCTR2100043761).

Healthy volunteers were recruited from hospital staff and

through advertisements. All sepsis patients had been admitted to

the ICU of the Shenzhen Hospital of Southern Medical University.

The Third International Consensus Definitions for Sepsis and

Septic Shock (Sepsis-3) were used to diagnose sepsis (25). Blood

samples were collected by venipuncture, and the PBMCs were

separated by Ficoll-Paque density gradient centrifugation as per the

manufacturer’s instructions.
Real-time quantitative PCR

RNA was extracted from cells and tissues using TRIzol

(Gene Copoeia, MD, USA), and 1 µg total RNA from each
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sample was reverse transcribed to cDNA using specific primers

and SYBR Green reaction mix (Takara Biotech). Real-time

qPCR was per formed on the Bio-Rad Rea l -T ime

PCR cycler. Relative gene expression levels were calculated

by the 2-DDct method. The primer sequences were as

follows: SCAMP5 forward: GCCCCATCAAGGTTCAGGAC,

reverse: TACGTGTAATTGGGGGTGGC; GAPDH forward:

TGGTATCGTGGAAGGACTC, reverse: AGTAGAGGC

AGGGATGATG.
Western blotting

After proteins quantified by a BCA protein assay kit

(Thermo), equal amounts of proteins (20mg) per sample were

separated by 10% SDS-PAGE and transferred to a PVDF

membrane (Millipore, Billerica, MA, USA). After blocking

with 5% skimmed milk at room temperature for 2 h,

the membranes were incubated overnight with the anti-

SCAMP5 (Abcam, ab3432, 1:500) and anti-GAPDH (Abcam,

ab22555, 1:1000) primary antibodies, and thereafter with the

horseradish peroxidase (HRP)-conjugated secondary antibody.

The images were captured using the ChemiDoc imaging system

(Bio-Rad).
Statistical analysis

All statistical analyses were conducted using R (https://www.

r-project .org/ , 4.0.2 version). Normally distributed

continuous variables between two groups were compared

by the independent Student t-test, and variables with

non-normal distribution were analyzed by the Mann-

Whitney U test (Wilcoxon rank-sum test). The receiver

operating characteristic curve (ROC) was plotted to predict

binary categorical variables using the pROC package. All

statistical tests were two-sided. P < 0.05 was regarded as

statistically significant.
Results

Screening for DEGs between sepsis and
control samples

Data set analysis and flow chart of this study (Figure 1A).

The GSE9960 and GSE57065 datasets were merged and batch

effects were removed. To ascertain any significant differences in

the expression profiles of the two datasets, we analyzed data

distribution before and after removing the batch effect through

box plots. As shown in Figures 1B, D there were apparent inter-

and intra-group differences before removing the batch effect,
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which were eliminated once the batch effect of the dataset source

was removed and corrected (Figures 1C, E). The DEGs between

the sepsis and control groups were then screened using limma in

R, which revealed 577 DEGs, including 325 up-regulated and

330 down-regulated genes (Figures 1F, G).
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Analysis of immune cell infiltration

The proportion of different infiltrating immune cell types

between the sepsis and control groups was evaluated using the

CIBERSORT algorithm. After removing populations with a
B C

D E

F G

A

FIGURE 1

Data Preprocessing and identification of differentially expressed genes (DEGs). (A) Flow chart for gene set analyses. (B) Box line diagram of the
merged dataset before correction. (C) Box line diagram of the combined dataset after correction. (D) PCA for sepsis and healthy control
samples before batch correction with ComBat. (E) PCA for sepsis and healthy control samples after batch correction with ComBat. (F) Volcano
plot showing DEGs between sepsis and control samples. (G) Heatmap showing the top 20 up- and down-regulated genes.
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sum of immune abundance value 0, the Wilcox test algorithm

was applied to 15 immune cell populations, including naïve

B cells, plasma cells, memory B cells, CD8+ T cells, regulatory

T cells (Tregs), CD4+ memory resting T cells, follicular
Frontiers in Immunology 06
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helper T cells, resting NK cells, activated NK cells, M0

macrophages, M2 macrophages, monocytes,activated DCs,

resting dendritic cells (DCs), resting mast cells and activated

mast cells (Figure 2A).
B
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A

FIGURE 2

Distribution of immune cell subtypes in the merged dataset. (A) Bar plot showing percentage infiltration of 22 immune cells in each sample. (B)
The top 10 hub genes according to Friends analysis. (C) The PPI network shows the interactions of the top10 genes. (D) Correlation heatmap of
22 immune cell types. (E) Violin plot showing differential infiltration of the 22 immune cell populations.
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To assess the functional correlation between key genes and

immune cells in sepsis, we analyzed the PPI network of the 577

DEGs, and obtained the top 10 hub genes using the MCC

algorithm, and carried out with Friends analysis (Figure 2B).

The protein-protein interaction (PPI) networks for the top10

hub gene (Figure 2C). The correlation between immune cells

in the datasets, and the abundance of different populations in

the sepsis and control samples were analyzed. As shown in

Figures 2D, E, the B cells, T cells, NK cells and DCs were more

abundant in the sepsis samples compared to the controls,

whereas the infiltration of neutrophils was significantly lower

in the sepsis samples relative to that in the control samples.

These findings indicate that the samples from normal

and sepsis patients demonstrated a variety of different

immune contexts.
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Identification of immune subtypes

Principal component analysis (PCA) of the combined

dataset showed that although the control and sepsis groups

were distinct, there was still some overlap among the samples

(Figure 3A). Since the immune checkpoint-related genes were

differentially expressed between the sepsis and control groups

(Figure 3C), we clustered the 136 sepsis samples on the basis of

these immune checkpoints into the immune_ A (n = 66) and

immune_ B (n = 70) clusters using the ConsensusClusterPlus

package in R. PCA analysis was performed again (Figure 3B),

and the results showed that although a small number of samples

overlapped, most pieces were significantly separated. Next, we

performed the differentially expressed genes just obtained to

draw the heat map (Figure 3D), and the results show that the
B

C D

A

FIGURE 3

Identification of immune subtypes in sepsis. (A) PCA according to the subgroups of sepsis and healthy control samples. (B) PCA according to
immunophenotyping. (C) Heatmap of immune infiltration-related genes in the normal and septic groups. (D) Heatmap of immune infiltration-
related genes according to immunophenotyping. Red and blue squares indicate activation and suppression, respectively.
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expression difference trend of these genes is more prominent.

These findings indicated that sepsis samples were clustered into

immune subsets based on immune checkpoint related genes

were differentially expressed.
Functional annotation of ER stress-
related genes in sepsis

To explore the involvement of ER stress in sepsis, we

performed a Venn analysis of the sepsis-related DEGs and ER

stress-related genes (Figure 4A), and functionally annotated the

intersecting genes by GO and KEGG analyses. As shown in

Figure 4B and Table 2 the genes are enriched in biological

processes such as response to ER stress, negative regulation of

response to ER stress, negative regulation of protein exit from

the ER, cell components including platelet alpha granule lumen,
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platelet alpha granule, phagophore assembly site membrane, and

molecular functions such as ubiquitin-like protein ligase

binding, ubiquitin-protein ligase binding and protein

phosphatase 2A binding. The critical functions of the DEGs

include response to ER stress, ubiquitin protein ligase binding,

protein processing in ER, negative regulation of protein exit

from the ER and so on (Figure 4C and Table 3).

GSEA was next performed to determine the effect of gene

expression level on sepsis. As shown in Figure 5A, the DEGs are

related to biological functions such as autoimmune thyroid

disease, al lograft rejection, antigen processing and

presentation. The top 5 functions are shown in Figure 5C. To

test out the enrichment results of the gene set, we used GSVA

(Gene Set Variation Analysis) analysis. The expression matrix of

genes among different products is transformed into the

expression matrix of gene sets among samples to evaluate

whether different metabolic pathways are enriched. Finally, the
B

C

A

FIGURE 4

GO and KEGG enrichment analysis. (A) Venn diagram showing the intersection of DEGs and ER stress-related genes in the combined dataset.
(B) GO functional enrichment analysis of the intersecting genes with the top three of BP, CC and MF terms and KEGG pathways. The horizontal
coordinate shows -log(p.adjust) values and the vertical coordinate shows GO terms. (C) The enrichment results are displayed on the network,
and the node size represents the number of genes enriched. The red dots represent the nine genes that were enriched.
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results are visually displayed using the pheatmap package

(Figure 5B and Table 4). We found that sample grouping can

distinguish the effects of gene set enrichment analysis. These

results indicate activation of endoplasmic reticulum stress-

related pathways is an important biological process affecting

immune cell function in sepsis.
Identification of key ER stress-related
genes in sepsis

Furthermore, we used theWGCNA algorithm to construct co-

expression modules and identify mRNA-related modules. The key

parameter of soft threshold power was set to 7 to ensure the overall

connectivity of the co-expression module. Seven co-expression
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modules were obtained and the color-coded gene clusters are

shown in Figure 6A. The purple, gray 60 and gray modules were

positively correlated with mRNA (Meplum: r = 0.62, P = 9e−20;

Megrey60: r = 0.17, P = 0.02; Megrey: r = 0.25, P = 8e−04), and the

orange, dark blue, sky blue and orange-red modules showed

negative correlation with mRNA (Meorange: r = -0.24, P =

0.002; Memidnightblue: r = -0.19, P = 0.01; Meskyblue: r =

-0.56, P = 3e-15; Meorangered: r = -0.037, P = 0.6) (Figure 6B).

Next, the correlation of the module membership with the sepsis

samples was shown (Figures 6C–H). The purple module was most

significantly correlated to sepsis (Figure 6C), and its characteristic

genes with the highest correlation were intersected with ER stress-

related genes. There were 70 intersecting genes in the venn diagram

(Figure 7A). PPI network analysis was performed on these genes,
TABLE 2 GO enrichment analysis of differentially expressed genes.

Term ID Description p.adjust

BP GO:0034976 response to endoplasmic reticulum stress 4.91E-14

BP GO:1903573 negative regulation of response to endoplasmic reticulum stress 2.07E-06

BP GO:0070862 negative regulation of protein exit from the endoplasmic reticulum 3.83E-06

BP GO:0035966 response to topologically incorrect protein 4.35E-06

BP GO:1904293 negative regulation of ERAD pathway 4.35E-06

CC GO:0031093 platelet alpha granule lumen 0.0215363

CC GO:0031091 platelet alpha granule 0.0215363

CC GO:0034045 phagophore assembly site membrane 0.053925509

CC GO:0097440 apical dendrite 0.053925509

CC GO:0005788 endoplasmic reticulum lumen 0.053925509

MF GO:0031625 ubiquitin-protein ligase binding 8.55E-06

MF GO:0044389 ubiquitin-like protein ligase binding 8.55E-06

MF GO:0051721 protein phosphatase 2A binding 0.003507229

MF GO:0043621 protein self-association 0.008115479

MF GO:0051087 chaperone binding 0.021453686
fro
TABLE 3 KEGG enrichment analysis of differentially expressed genes.

Term ID Description p.adjust

KEGG hsa05219 Bladder cancer 0.000968991

KEGG hsa04141 Protein processing in the endoplasmic reticulum 0.001091676

KEGG hsa04115 p53 signalling pathway 0.001851097

KEGG hsa05131 Shigellosis 0.002275623

KEGG hsa05161 Hepatitis B 0.011814754

KEGG hsa05144 Malaria 0.021266314

KEGG hsa01524 Platinum drug resistance 0.037234276

KEGG hsa05210 Colorectal cancer 0.037234276

KEGG hsa05206 MicroRNAs in cancer 0.037234276

KEGG hsa05222 Small cell lung cancer 0.037234276
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and those with interaction scores greater than 0.4 are shown in

Figure 7B. The top 20 hub genes were identified with the MCC

algorithm, and are shown in (Figure 7C). In conclusion, a multi-

factor network indicated complex interaction of the 20 ER stress-

related hub genes in sepsis.
Identification of sepsis subtypes and
diagnostic markers

The potential diagnostic markers of sepsis were screened

from the DEGs of the combined dataset using LASSO regression
Frontiers in Immunology 10
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and logistic regression. As shown in (Figures 8A, B), there were

76 genes with OR > 1 and 85 genes with OR < 1 (and P < 0.05).

The potential diagnostic markers were validated on the

GSE123729 dataset by PCA, which showed that most markers

distinguished sepsis from normal samples (Figures 8C, D). The

differential expressions of these markers in the validation dataset

are shown in the heat maps in (Figures 8E, F) and Table 5.

Fifty-seven DEGs were significantly related to sepsis, including

47 up-regulated and 10 down-regulated genes, and were used to

cluster the sepsis datasets. When the number of genotypes was set

to 2, the sepsis-related genes were able to classify the sepsis samples

and distinguish them from the control samples (Figure 9A). The
B

CA

FIGURE 5

Results of GSEA and GSVA. (A) Mountain range plot showing the GSEA results of the merged dataset. Horizontal coordinate shows the gene
ratio, vertical coordinate show the KEGG pathways, and the color indicates P-value. (B) Heat map showing the results of GSVA on GSEA
enrichment data. Red and blue indicate activation and suppression, respectively. (C) The top 5 items of the GSEA.
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heat map of these genes in the normal and sepsis groups indicated

differential expression (Figure 9B). The sepsis subtypes were then

used to map the same genes again, and the difference was more

pronounced (Figure 9C). The diagnostic markers with OR < 1 and

OR > 1 were screened to improve accuracy, and the top 8 genes

with the highest correlation are shown in (Figures 9D, E.)

Together, these results indicated that the immune-related ER

stress genes achieves strong stability and high accuracy in

predicting sepsis patients.
Predictive value of SCAMP5

We further assessed the predictive value of the sepsis hub genes

on the GSE26378 and GSE54514 datasets that included data of 39

healthy controls and 117 sepsis patients. SCAMP5 was significantly

up-regulated in the sepsis samples compared to the control

samples in both datasets (P < 0.05). On the other hand, while

RNF175, FBXO6 and TBL2 showed a trend towards higher

expression levels in the sepsis patients in GSE26378, no

significant difference was observed in GSE54514 (Figures 10A,

C). ROC analysis further demonstrated that SCAMP5 could

accurately predict sepsis, with AUC of 0.757 in GSE26378 and

0.637 in GSE54514 (Figures 10B, D).We then tested the expression

levels of SCAMP5 in the PBMCs from sepsis patients (n = 5) and

healthy donors (n = 5), and found that SCAMP5 protein and

mRNA were both up-regulated in the PBMCs from sepsis patients

compared to healthy controls (Figures 10E, F). In addition, analysis

of single-cell sequencing results in Protein Atlas database (https://

www.proteinatlas.org/ENSG00000198794-SCAMP5/single+cell

+type/PBMC) showed that SCAMP5 was expressed in the

circulating DCs (Figure 10G). These results indicate that

SCAMP5 is a potential diagnostic marker for sepsis.
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Discussion

Sepsis is a syndrome associated with a high mortality rate,

and is therefore a serious public health concern worldwide.

During the COVID-19 pandemic, some severe and critically ill

patients exhibited multiple organ dysfunction that met the

diagnostic criteria of sepsis (4). In recent years, the key role of

immune cell apoptosis in sepsis-related immune dysfunction has

been elucidated (26). Sepsis-induced apoptosis of immune cells

not only leads to the depletion of critical immune effector cells,

but also exerts an immunosuppressive effect (27). Some studies

have also suggested a pathological role of ER stress in

inflammatory diseases, including sepsis (28, 29). In addition,

the ER stress-mediated apoptosis pathway is a potential

therapeutic target in sepsis (30, 31).

Machine learning algorithms are increasingly being used to

create decision models that aid in disease diagnosis and

treatment (32). In the current study, we screened the DEGs

between sepsis patients and healthy individuals, which can not

only help identify potential diagnostic/prognostic biomarkers or

therapeutic targets for sepsis from highly related gene

aggregation modules, but also elucidate the molecular

mechanisms underlying the pathogenesis of sepsis. We

identified 577 DEGs from the combined GSE9960 and

GSE57065 datasets, of which 325 were up-regulated and 330

were down-regulated in the sepsis samples relative to

the controls.

In addition, we also observed significant differences in the

type and abundance of infiltrating immune cell populations

between the two groups, which underscores the role of immune

cells in the development of sepsis. Monocytes and

macrophages are instrumental to the pathophysiological

process of sepsis and inflammation (33). The systemic
TABLE 4 GSEA analysis of differentially expressed genes GSE108474.

Description enrichmentScore p.adjust

KEGG_ALLOGRAFT_REJECTION -0.787525613 1.37E-05

KEGG_GRAFT_VERSUS_HOST_DISEASE -0.766795418 5.32E-05

KEGG_PRIMARY_IMMUNODEFICIENCY -0.756453466 6.93E-05

KEGG_AUTOIMMUNE_THYROID_DISEASE -0.753983298 1.72E-06

KEGG_TYPE_I_DIABETES_MELLITUS -0.731429168 6.93E-05

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -0.709444115 0.00011187

KEGG_ASTHMA -0.707255846 0.007752697

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION -0.68182909 1.72E-06

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 0.673225498 0.033512196

KEGG_STARCH_AND_SUCROSE_METABOLISM 0.671740494 0.004234432
fro
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inflammatory response elicited by the circulating innate

immune cells during sepsis also influences the tissue-resident

immune cells, which can compromise the functions of vital

organs (34). Sepsis development is also associated with

significant lymphopenia, which is characterized by decreased
Frontiers in Immunology 12
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counts of CD8+ and CD4+ T cells, B cells and natural killer

(NK) cells (35). Furthermore, burn patients with sepsis have

significantly higher numbers of circulating DCs compared to

burn patients without sepsis (36). In our study, B cells, NK

cells, T cells and DCs were much more abundant in the sepsis
B
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FIGURE 6

Results of WGCNA. (A) Cluster analysis of the combined dataset. The different module clusters are color-coded. (B) Correlation between the
different modules in the normal and sepsis groups. (C–H), Scatter diagrams for module membership vs. gene significance of sepsis. (C) The
plum1 modules with the highest correlation. (D) The correlation between the skyblue module and the genes.(E) Display of the correlation
between the grey60 module and the genes. (F) Display of the correlation between the orange module and the genes. (G) Display of the
correlation between the midnightblue module and the genes. (H) Display of the correlation between the orangered4 module and the genes.
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samples compared to the controls, and therefore may play a

crucial part in establishing the immune microenvironment

about sepsis.

Our studies indicate that the immune cell dysfunction in sepsis

is closely related to ER stress. Functional annotation of the sepsis-

related DEGs indicated significant enrichment of biological
Frontiers in Immunology 13
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process, molecular functions, cell components, biological

pathways and diseases involving ER stress. A recent study has

also revealed that there is a fascinating and novel interaction

between ER stress with sepsis-associated cell death (37, 38). ER

stress is also a trigger for apoptosis, except for mitochondrial

apoptotic pathwaysand death receptor (39, 40). ER function is
B C

A

FIGURE 7

Protein-protein interaction (PPI) network. (A) Venn diagram showing the intersection of the most significantly correlated genes obtained by
WGCNA with ER stress-related genes. (B) PPI network of the 70 intersecting genes. (C) Top 20 hub genes in the PPI network.
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FIGURE 8

Screening for diagnostic markers. (A, B) Lasso analysis of the combined dataset. (C, D) PCA plot and box plot of the validation set GSE123729
data after correction. (E, F) Heat map showing differential expression of diagnostic markers in the validation set obtained by one-way logistic
regression analysis. Red indicates up-regulation, blue indicates down-regulation, and darker colors indicate a larger fold change.
TABLE 5 Univariate logistic regression.

Character OR CI P. Value

SCAMP5 7.64 1.66-35.13 0.01

DNAJC18 3.74 1.07-13.06 0.04

TARDBP 0.05 0.01-0.2 0

SDF2L1 1.98 1.11-3.55 0.02

FBXO2 0.3 0.1-0.95 0.04

FBXO6 3.09 1.84-5.21 0

TBL2 3.58 1.37-9.36 0.01

RNF175 2.77 1.3-5.87 0.01

PDIA3 0.2 0.09-0.45 0

HDGF 0.57 0.35-0.93 0.02
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FIGURE 9

Identification of sepsis subtypes and diagnostic markers. (A) The number of genotype clusters in the sepsis dataset. (B) Heat map of diagnostic
genes based on control and sepsis groups. (C) Heat map of diagnostic genes based on sepsis subtype. Red indicates activation and blue
indicates inhibition. (D) Diagnostic markers with OR less than 1. (E) Diagnostic markers with OR more significant than 1.
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FIGURE 10

SCAMP5 is highly expressed in patients with sepsis and has significant diagnostic value. (A) Expression of hub genes in the control and sepsis
samples in GSE26378. SCAMP5, RNF175, FBXO6 and TBL2 were significantly up-regulated in the sepsis patients (P < 0.05 by the two-sided t
test. (B) ROC curve showing predictive value of SCAMP5 for sepsis in GSE26378 with AUC = 0.757. (C) Expression of hub genes in the control
and sepsis samples in GSE54514. SCAMP5 and SDE2L1 were significantly up-regulated in the sepsis patients (*P < 0.05 by the two-sided t test).
(D) ROC curve showing predictive value of SCAMP5 for sepsis in GSE54514 with AUC = 0.637. (E) SCAMP5 mRNA levels in the PBMCs from
healthy controls and sepsis patients as determined by qRT-PCR. Mean ± SD (n = 5), **P < 0.01. (F) SCAMP5 protein levels in the PBMCs from
healthy controls and sepsis patients. (G) Single-cell sequencing database results showing that SCAMP5 is expressed in the dendritic cells.
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disrupted during sepsis, resulting in acute or chronic ER stress,

which may initiate apoptosis in the damaged cells (41). Thus, ER

stress-mediated apoptosis pathway may be a novel therapeutic

target against sepsis-induced immune cell apoptosis (42).

We also screened for potential diagnostic markers for sepsis

among the significant DEGs, and validated them in the

GSE123729 dataset. The hub genes that can distinguish sepsis

from normal samples were identified, which included SCAMP5,

DNAJC18, TARDBP, SDF2L1, FBXO2, FBXO6, TBL2, RNF175,

PDIA3 and HDGF. Secretory carrier membrane protein 5

(SCAMP5) is an integral membrane protein that was highly

expressed in the sepsis samples compared to the controls.

SCAMP5 is known to be brain specific which is involved in

vesicle transport (43). Recent studies show that SCAMP5 is a

candidate biomarker gene for autism and its downregulation is

related to the synaptic dysfunction in autistic patients (44).

Moreover, F-box protein 6 (FBXO6) is a subunit of the

ubiquitin protein ligase complex, which bind to glycosylated

substrates within F-box-associated domains in endoplasmic

reticulum (ER) stress-associated degradation (45) .

Phosphorylation of TBL2 by ATM/ATM in response to DNA

damage identifies TBL2 is considered to be a member of the

cellular oxidative damage response network, as it phosphorylated

by ATM/ATM in response to DNA damage (46). We confirmed

the high expression levels of SCAMP5 mRNA and protein in

PBMCs isolated from sepsis patients. Moreover, SCAMP5 was

expressed in the peripheral DCs as per the single-cell sequencing

results from the Protein Atlas database. Taken together, these

findings suggest that SCAMP5 is a potential diagnostic marker for

sepsis, and may play a vital role in its development. However, it is

worth noting that the diagnosis and prediction of SCAMP5 sepsis

still need further validation in clinical trials with large sample

size. Meanwhile, the regulatory role of SCAMP5 in immune-

related ER stress needs to be further investigated in functional and

mechanistic studies.

To summarize, we developed a stable and accurate signal to

evaluate the diagnosis of sepsis through integrated bioinformatics

and machine learning algorithms. This prediction model can

surveillance protocols and optimize decision-making for

individual sepsis patients. Moreover, SCAMP5 was preliminarily

identified as a key driver of sepsis that may affect its progression

by regulating ER stress. The diagnostic and therapeutic potential

of SCAMP5 in sepsis warrants further investigation.
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Kunming Medical University, Kunming, China, 3Department of Medical Oncology, The Third
Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming,
China, 4Department of Pathology, The First Affiliated Hospital of Kunming Medical University,
Kunming, China, 5Department of Organ Transplantation, The First Affiliated Hospital of Kunming
Medical University, Kunming, China
Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the

de novo purine nucleotide synthesis pathway and is essential for cell

development. However, the effect of PRPS1 on melanoma proliferation and

metastasis remains unclear. This study aimed to investigate the regulatory

mechanism of PRPS1 in the malignant progression of melanoma. Here, we

found PRPS1 was upregulated in melanoma and melanoma cells. In addition,

our data indicated that PRPS1 could promote the proliferation and migration

and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit

melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream

transcription factor of PRPS1 that drive malignant progression of melanoma.

KEYWORDS

PRPS1, NRF2, melanoma, proliferation, metastasis
Introduction

The maximum proliferation ability of cells is limited by the abundance of their

nucleotide library and the level and activity of different rate-limiting enzymes in the

nucleotide synthesis pathway (1). Compared with normal cells, tumor cells exhibit a

larger nucleotide pool, higher activity of the nucleotide anabolic pathway, and lower

activity of the nucleotide catabolic pathway (1). PRPS1 belongs to the phosphoribosyl

pyrophosphate synthetase (PRPS) family. PRPS consists offive members, namely, PRPS1,

PRPS2, and PRPS3 (PRPS1L1) with catalytic activity, and PAP39 and PAP41 without

catalytic activity (2). PRPS1 can catalyze ribose-5-phosphate (R5P) to 5-phosphoribosyl-

1-pyrophosphate (PRPP), which is the first rate-limiting purine nucleotide (3, 4).

Additionally, PRPP is a donor of R5P for the synthesis of pyrimidine. The activity of
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PRPS1 is regulated by ADP and AMP negative feedback (4–6)

and chemical modification (3, 6).

Previously, it was reported that the PRPS1 gene mutation

could lead to deafness (7, 8), female cerebellar ataxia (9), gout

(10), diabetes insipidus, and white matter disease (11). Recently,

it has been reported that aberrant expression or mutation of

PRPS1 is closely related to a variety of cancers, such as

accelerating the proliferation of colorectal cancer (12, 13),

esophageal squamous cell carcinoma (14), neuroblastoma (15)

and childhood neuroblastoma (16), glioblastoma multiforme

(17), promoting tumor invasion and metastasis (12, 15),

changing colorectal cancer (3, 13), brain tumor initiating cells

(18) and purine metabolism, and enhancing the drug sensitivity

of lymphoblastic leukemia (4, 19–21) and breast cancer (22).

However, it is still elusive whether PRPS1 is related to the

proliferation and metastatic progression of melanoma.

In addition, melanoma cells encounter considerable

oxidative stress due to endogenous factors, such as mitochondrial

respiration andmelanogenesis, aswell as exogenous factors, such as

ultraviolet radiation and melanoma (23, 24). These oxidative

stresses are largely regulated by nuclear factor (erythroid-derived-

2)-like 2 (NRF2) (24). Therefore, previous studies have focused on

the regulation of NRF2 on oxidative stress in melanoma. Recently,

studies have shown thatNRF2 is not only related to oxidative stress,

but also to the nucleotide metabolism. For example, NRF2 can

regulate nucleotide biosynthesis and redox homeostasis thereby

promoting the recurrence of dormant breast cancer (25).NRF2up-

regulates thepentosephosphatepathway (PPP)enzyme, glucose-6-

phosphate dehydrogenase (G6PD) and transketase (TKT)

mediated nucleotide biosynthesis, thereby promoting the

malignant progression of head and neck squamous cell

carcinoma (HNSCC) (26). Also, NRF2 promotes nucleotide

production in non-small cell lung cancer by regulating the

expression of key serine/glycine biosynthetic enzymes (27).

However, the correlation between NRF2 and PRPS has not

been reported, whether in tumors or other diseases. The role of

NRF2 in the regulation of PRPS1 expression has not yet been

revealed. In this study, we first confirmed that PRPS1 is highly

expressed inmelanoma. The abnormally high expression of PRPS1

promotes the growth and metastasis of melanoma in vivo and in

vitro. In addition, we found that NRF2 is a PRPS1 transcription

factor that can bind to the PRPS1 promoter and upregulate the

expression of PRPS1. Our findings provide a theoretical basis for

PRPS1 as a potential therapeutic target for melanoma.
Materials and methods

Cell culture

Human melanoma cell lines (A875 and SK-MEL-110) were

purchased from the Cell Bank of the Chinese Academy of

Science. All cells were maintained in DMEM (Life
Frontiers in Immunology 02
475
Technologies, Carlsbad, CA, USA) supplemented with 10%

fetal bovine serum at 37°C in 5% CO2.
Cell transfection

A875 and SK-MEL-110 cells were transduced with PRPS1

overexpression (overexpression vector LV-PRPS1 or the

corresponding control (CON335)) or PRPS1 knockdown

(shRNA vector LV- PRPS1-RNAi) and the corresponding

control (CON313) for 48 h. A875 and SK-MEL-110 cells were

transduced with NRF2 overexpression (overexpression vector

LV-PRPS1 or the corresponding control (CON335)) or NRF2

knockdown (shRNA vector LV- PRPS1-RNAi) and the

corresponding control (CON313) for 48 h. The lentivirus

expression vectors were purchased from Ji Kai Gene Chemical

Technology Co., Ltd. (Shanghai, China). Then, the cells were

selected with different concentrations of puromycin until the

GFP-positive signal of the cells was not less than 95% observed

under the fluorescence microscope. The transfection efficacy was

determined by qPCR and western blotting.
Quantitative real-time PCR

Gene expression was evaluated by quantitative real-time

PCR (qPCR). qPCR was performed according to the

manufacturer’s instructions and was synthesized by real-time

PCR (American Applied Biosystems) using SYBR Green (Roche,

Switzerland). The PCR primer pairs used to amplify the target

gene are shown in Table 1.
Western blot

The cells were prepared in RIPA buffer (Solarbio, #R0020). A

BCA™ Protein Assay kit (Applygen, #P1511) was used to

determine the protein concentration. The proteins (40 mg/
sample) were separated by different polyacrylamide gel

electrophoresis, transferred to PVDF membranes (Millipore,

#IPVH00010), and incubated with the corresponding primary

antibody at 4°C overnight. Then, the membranes were incubated

with the corresponding secondary antibodies at room

temperature for 1 h and measured with a chemiluminescence

reagent ECL kit (Advansia, #K-12045-D50).

The primary antibodies used in the experiment used were:

anti-PRPS1 (Proteintech, #15549-1-AP), anti-cyclin E1

(Proteintech, 11554-1-AP), anti-CDK2 (Proteintech, 10122-1-

AP), anti-P16 (Proteintech, #10883-1-AP), anti-Bax

(Proteintech, 50599-2-Ig), anti-Bcl2 (Proteintech, 12789-1-AP),

anti-Cleaved-caspeas3 (CST, #9664), anti-MMP2 (Abcam,

ab37150), anti-MMP9 (Abcam, ab76003), anti-MMP13

(Proteintech, 18165-1-AP), anti-E-Cadherin (Proteintech,
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20874-1-AP), anti-N-Cadherin (Proteintech, 22018-1-AP), anti-

Vimentin (Proteintech, 10366-1-AP), anti-NRF2 (Abcam,

ab89443), anti-b-actin (Bioss, bs-0061R), and Tubulin (Abcam,

#ab7291). The secondary antibodies used in the experiment were

anti-rabbit IgG (Abcam, #ab6721) and anti-mouse IgG (Jackson

ImmunoResearch Laboratories, 115-035-003).
Immunohistochemistry

The immunohistochemical assay was performed as

previously described (28) using anti-PRPS1 (Proteintech,

#15549-1-AP), anti-NRF2 (Abcam, ab89443) and anti-

(Proteintech, #15549-1-AP) antibodies. Tissue microarrays

(MME1004i) were purchased from xi,an Taibosi Biological

Technology Co., Ltd. (Xian, China). Immunohistological

assessment was performed as previously described (29).
Hematoxylin and eosin staining

The lung tissue from metastatic mice was fixed in 4%

paraformaldehyde for 24 h, dehydrated in different

concentrations of graded ethanol, embedded and cut into 4 mm
thick slices. The slices were baked at 55°C for 5 h and stained with

hematoxylin (Solarbio, #G1140) and eosin (Solarbio, #G110).
CCK8 assay

A875 and SK-MEL-110 cells with PRPS1 overexpression or

knockdown and the corresponding control were inoculated in
Frontiers in Immunology 03
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96-well plates (800 cells/well) and cultured for 0 h, 12 h, 24 h, 36

h, 48 h and 72 h. The cells were treated with 10 ml CCK-8
(APEBIO, #k1018) at 37°C for 1 hour. The absorbance was

assessed by a microplate reader (Thermo Scientific, #51119200)

at 450 nm. The proliferation rate (fold) = the cell absorbance at

each time points minus blank hole absorbance/cell absorbance at

initial time.
Colony formation assay

Stable melanoma cells were seeded into 6-well plates at a

density of 500 cells/well and continuously cultured for two

weeks. The cells were washed three times with PBS every three

minutes. Then, the cells were fixed in 4% paraformaldehyde for

20 min, washed three times with PBS again, and stained using

3% crystal violet.
EdU assay

The cells were stained with a BeyoClick EdU Cell

Proliferation kit (Beyotime, #C0075S). A fluorescence

microscope (Leica, #DM4B, × 200) was used to obtain high-

quality images.
Flow cytometry

Cell proliferation was assessed using flow cytometry. The

cells were starved in serum-free DMEM for 24 h and then

cultured in 10% FBS DMEM for 48 h. The cells were fixed in 75%

ethanol for 24 h at 4°C, washed with PBS, treated with PI

(Biotech, #FXP0211) for 15 min and detected by a PARTEC

CyFlow Space flow cytometer.

Cell apoptosis was evaluated using flow cytometry. The cells

were incubatedwith TNF-a+SM-164 (Beyotime, #C0006S) for 6 h.

Cell apoptosis was detected using an apoptosis detection kit

(Dojindo, #AD11) and a PARTEC CyFlow Space flow cytometer.
TUNEL apoptosis assay

The cells were incubated with TNF-a+SM-164 (Beyotime,

#C0006S) for 6 h. A TUNEL apoptosis assay kit (Beyotime,

#C1090) was used to measure cell apoptosis. Images were

obtained by using a fluorescence microscope (Leica, #DM4B).
Wound healing assay

The cells were inoculated into 75 cm2 petri dishes and

cultured with DMEM without serum overnight. Cells were
TABLE 1 the sequence of the primers for qPCR.

Gene primer

PRPS1 F: 5’- -3’: CGTTGTTGATGCGAGAAA
R: 5’- -3’: ATGGTGCTTGTGGGAGAT

cyclin E1 F: 5’- -3’: ACTCAACGTGCAAGCCTCG
R: 5’- -3’: GCTCAAGAAAGTGCTGATCCC

CDK2 F: 5’- -3’: CCAGGAGTTACTTCTATGCCTGA
R: 5’- -3’: TTCATCCAGGGGAGGTACAAC

P16 F: 5’- -3’: GGGTTTTCGTGGTTCACATCC
R: 5’- -3’: CTAGACGCTGGCTCCTCAGTA

Bax F: 5’- -3’: AGACACTCGCTCAGCTTCTTG
R: 5’- -3’ CTTTTGCTTCAGGGTTTCATC

Bcl2 F: 5’- -3’: GTGCCTGCTTTTAGGAGACCGA
R: 5’- -3’: GAGACCACACTGCCCTGTTGATC

Caspase-3 F: 5’- -3’: CATGGAAGCGAATCAATGGACT
R: 5’- -3’: CTGTACCAGACCGAGATGTCA

NRF2 F: 5’- -3’: GAAAATCCATCTTCCTTCACTTG
R: 5’- -3’: GAGTTTGCTTGCCCATTGTAA

U6 F: 5’- -3’: CTCGCTTCGGCAGCACA −3′
R: 5’- -3’: AACGCTTCACGAATTTGCGT
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wounded with a 20 ml pipette tip. The pictures were acquired at 0
h and 36 h after wounding using a fluorescence microscope

(Leica, #DM4B). Wound closure (fold) = (the initial scratch

area- the unhealed area after 36 hours of scratch)/the initial

scratch area.
Transwell migration assay and Transwell
invasion assay

The cells were resuspended in serum-free medium and

placed in the upper chamber of a Transwell filter (Corning,

#3524). For the Transwell invasion assay, the upper Transwell

was coated with 1:8 diluted matrix adhesive (BD, #356234) in

advance. DMEM containing 15% FBS was added to the lower

chambers. After 24 h, the cells were fixed with 4%

paraformaldehyde for 15 min, stained with 3% crystal violet,

washed with PBS, and photographed with a fluorescence

microscope (Leica, #DM4B).
Melanoma cell line xenograft model

The xenograft models were generated in 4- to 6-week-old

female or male BALB/c nude mice (Department of Experimental

Animals, Kunming Medical University). Animals (n=6/group)

were injected with 150 µl of PBS containing 1×107 cells

subcutaneously into one side of the back and tail of the mice

(the back: the corresponding control group, the tail: the PRPS1-

overexpression group or PRPS1-knockdown group). After 42

days, the mice were sacrificed, and the tumors were collected and

weighed. According to the experimental needs, the tumor was

divided into three parts, which were used for western blotting,

qPCR, and immunohistochemistry. All animal experiments were

approved by the Institutional Animal Care and Use Committee

of Kunming Medical University.
Melanoma cell line metastatic model

Twenty-four female or male BALB/c nude mice

(Department of Experimental Animals, Kunming Medical

University) were randomly divided into four groups. Six mice

in one group were injected with A875 cells with PRPS1

overexpression, A875 cells with PRPS1 knockdown and

control cells. The mice were injected with 500 µl of PBS

containing 2×107 cells via the caudal vein. Forty-two days

later, the mice were sacrificed, and the lung tissues were

collected and photographed. According to the experimental

needs, the lung tissues were divided into three parts, which

were used for western blotting and qPCR, H&E staining, and

immunohistochemistry. All animal experiments were approved
Frontiers in Immunology 04
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by the Institutional Animal Care and Use Committee of

Kunming Medical University.
Luciferase assays

Plasmid transfection and luciferase activity were detected

using a luciferase assay kit (Vigorous, #T002) according to the

manufacturer’s protocol. PRPS1-luc and GL3-Basic-PRPS1 were

purchased from QingKe Bio Technology (Wuhan, China). The

Luciferase activity (fold) = (Firefly luciferase/Renilla luciferase

ratio was calculated for each experimental group)/(Firefly

luciferase/Renilla luciferase ratio was calculated for each the

control group).
Chromatin immunoprecipitation

The ChIP assay was carried out based on a previous report

(30). ChIP assays were performed using a ChIP assay kit

(Abcam, #ab500) according to the manufacturer’s instructions

with the indicated antibody: anti-NRF2 (Abcam, ab89443).
Statistical analysis

The data analysis was performed using GraphPad Prism 8

software. All results are expressed as the mean ± SD or mean ±

standard error. P value <0.05 was regarded as statistically

significant. One-way analysis of variance (ANOVA) and

unpaired or paired-sample Student’s t test and mixed ANOVA

were used to determine statistical significance.
Results

PRPS1 is highly expressed in melanoma
and is linked to the malignant degree of
melanoma

To investigate the role of PRPS1 in the proliferation and

malignant progression of melanoma, we analyzed PRPS1

expression in melanoma based on the GEPIA database. In

addition, we analyzed the correlation of PRPS1 with

melanoma in situ and melanoma metastasis based on the

UALCAN database. We found that the expression of PRPS1

was dramatically upregulated in melanoma (Figure 1A). It is

worth noting that the expression of PRPS1 in metastatic

melanoma patients was higher than that in primary melanoma

patients (Figure 1B). Furthermore, an immunohistochemical

(IHC) method was used to detect the expression of PRPS1 in

melanoma tissues (melanoma in situ and metastatic melanoma)
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FIGURE 1

PRPS1 is highly expressed in melanoma and is related to the degree of malignancy of melanoma. (A) The expression of PRPS1 in normal tissue and
melanoma tissue based on GEPIA database. (B) The expression of PRPS1 in normal tissue and primary melanoma and metastasis melanoma based on
Ualcan database. (C) Representative images of PRPS1 expression in the melanoma tissue microarray are shown (200×). Scale bars=100mm. (D)
Percentage of primary melanoma and metastasis melanoma with PRPS1-Low and PRPS1-High expression. (E) Immunohistochemistry of PRPS1
expression in the melanoma tissue microarray. (F, G) The mRNA and protein expression of PRPS1 in HEM cell and melanoma cells were analyzed by
qPCR (F) and western blotting analysis (G). (H, I) The stable PRPS1 overexpression and knockdown in A875 and SK-MEL-110 cells were established.
The expression of PRPS1 were measured by Q-PCR (H) and western blotting (I) analysis. The data represent three independent experiments. The data
as indicated the mean ± SD and was analyzed by student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001.
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and normal nevi. The tissue specimens included 10 nevi, 76

primary melanomas and, 14 metastasis melanomas (one case of

primary melanoma was not available). Representative images of

the IHC staining analysis are shown in Figure 1C. Importantly,

PRPS1 was highly expressed in 90.7% (68/75) of primary

melanomas, 71.4% (10/14) of metastatic melanomas, and 50%

(5/10) of nevus tissue samples (Figure 1D). More staining scores

for PRPS1 in the tissue samples are summarized in Figure 1E.

These results showed that the expression of PRPS1 was markedly

increased in primary melanomas and metastatic melanomas.

Next, we detected the expression of PRPS1 in HEM, A875

and SK-MEL-110 melanoma cell lines. The mRNA and protein

expression levels of PRPS1 in melanoma cell lines were higher

than those in HEM cell lines (Figures 1F, G). To explore the

function of PRPS1 in melanoma cells, we successfully established

stable PRPS1 overexpression and knockdown in A875 and SK-

MEL-110 melanoma cell lines (Figures 1H, I). The level of

PRPS1 in the stably transfected A875 and SK-MEL-110

melanoma cells was measured by qPCR (Figure 1H) and

western blot analysis (Figure 1I).
PRPS1 promotes the proliferation of
melanoma cells in vitro

To confirm that PRPS1 drives the proliferation progression

of melanoma, first MTS and cell colony formation assays and

EdU staining were performed. The CCK8 results showed that

stable overexpression of PRPS1 markedly promoted melanoma

cell growth. In contrast, knockdown of PRPS1 reduced A875 and

SK-MEL-110 melanoma cell proliferation (Figure 2A). In the

plate colony formation assay, we found that the colony forming

ability of melanoma cells overexpressing PRPS1 was significantly

stronger than that of the control group, and the melanoma cells

with PRPS1 knockdown showed the opposite results (Figure 2B).

EdU staining further showed that the growth of melanoma cells

overexpressing PRPS1 was significantly faster than that of the

control group, but the proliferation of cells with PRPS1

knockdown was slower than that of the control group

(Figure 2C). The results demonstrated that PRPS1 could

promote the proliferation of melanoma cells in vitro.

Next, RT–PCR, western blotting, and flow cytometry assays

were used to analyze the effects of PRPS1 on the cell cycle phase

distributions of melanoma cells. The RT–PCR results showed

that compared to the control, the mRNA levels of cell cycle

proteins, such as cyclin E1 and CDK2, were enhanced in PRPS1-

overexpressing melanoma cells, but the mRNA level of P16 was

inhibited (Figure 2D). In PRPS1 knockdown cells (Figure 2D),

the opposite was true. The western blotting results showed that

the protein levels of cyclins such as cyclin E1 and CDK2 were

increased in PRPS1-overexpressing melanoma cells, while the

level of P16 was decreased compared with the control group,

while the opposite was true in PRPS1 knockdown A875 and SK-
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MEL-110 cells (Figure 2E). Flow cytometry confirmed that

overexpression of PRPS1 increased the number of S-phase and

G2-phase cells and decreased the number of G1-phase cells

(Figure 2F). Conversely, in PRPS1 knockdown cells, the

proportion of S phase and G2 phase cells was decreased, and

the proportion of G1 phase cells was increased (Figure 2F). These

findings further suggest that PRPS1 is important for the

proliferation of melanoma cells.
PRPS1 inhibits apoptosis of
melanoma cells

To determine the relationship between PRPS1 expression

and cell apoptosis in melanoma cells. We performed cell

apoptosis detection. Based on qPCR and western blotting

analysis, we found that the mRNA and protein levels of the

apoptosis-related factor Bcl2 were significantly increased in A875

and SK-MEL-110 melanoma cells overexpressing PRPS1.

Conversely, A875 and SK-MEL-110 melanoma cells with

stable knockdown of PRPS1 exhibited lower mRNA and

protein levels of the apoptosis-related factors Bax and cleaved

caspase-3 than the controls (Figures 3A, B). In addition, by flow

cytometry analysis, we found that the percentage of early

apoptosis in melanoma cells with PRPS1 overexpression was

lower than that in the control group. In contrast, the early

apoptosis rate of PRPS1 knockdown melanoma cells was higher

than that of the control group (Figure 3C). Furthermore,

TUNEL staining showed that the number of TUNEL-positive

cells in PRPS1-overexpressing melanoma cells was less than that

in the control group. However, the number of TUNEL-positive

cells in PRPS1-knockdown melanoma cells was greater than that

in the controls (Figure 3D). These findings suggest that

overexpression of PRPS1 reduces the apoptosis of melanoma

cells and that knockdown of PRPS1 increases the apoptosis of

melanoma cells.
PRPS1 promotes the migration and
invasion of melanoma cells

We thoroughly investigated the effect of PRPS1 on the

invasion and malignant progression of melanoma. First, we

conducted scratch and Transwell migration tests. We observed

that the cell migration rate of PRPS1-overexpressing cells was

much higher than that of the control group, but the cell

migration rate of the PRPS1 knockdown group was lower than

that of the control group (Figures 4A, B). Next, a Transwell

invasion assay was performed to further estimate the invasion

capability. In the Transwell invasion experiment, we also found

that overexpression of PRPS1 promoted the invasion of

melanoma cells, while knockdown of PRPS1 suppressed the

invasion of melanoma cells (Figure 4C).
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FIGURE 2

PRPS1 promotes melanoma cells proliferation in vitro. (A–C) The proliferation rate of A875 and SK-MEL-110 cells with PRPS1 overexpression or
knock-down and the corresponding control cells were detected by MTS assay (A) and cells colony formation assay (B) and EDU method (C) scale
bars = 50mm. (D–F) The effects of PRPS1 on the phase distribution of melanoma cell cycle at mRNA level, protein level and cell level were analyzed
by qPCR (D), western blotting (E) and flow cytometry (F). The data represent three independent experiments. Each bar represents mean ± SD. p
values were calculated using a student t-test (*p < 0.05, **p < 0.01, ***p < 0.001 vs. each control). ns mean no significant difference.
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FIGURE 3

PRPS1 inhibits melanoma cell apoptosis. (A, B) The expressions of apoptosis related factors Bcl2 and Bax and Cleaved-caspeas-3 in A875 and
SK-MEL-110 and the related control cells stably transfected with PRPS1 were detected by (A) qPCR and (B) western blotting analysis. (C) The
anti-apoptotic ability of SK-MEL-110 cells overexpressing or knock-down PRPS1 and the control cells were evaluated by flow cytometry. (D)
TUNEL analysis was used to analyze the anti-apoptotic ability of A875 (left) and SK-MEL-110 (right) over-expression or knock-down PRPS1 and
the control cells. Scale bars=75mm. The data represent three independent experiments. Each bar represents mean ± SD. p values were
calculated using a student t-test (*p < 0.05, **p < 0.01, ***p < 0.001 vs. each control).
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Moreover, western blotting was performed to assess the

expression levels of EMT-associated proteins in the stable

PRPS1 overexpression and knockdown A875 and SK-MEL-110

melanoma cell lines. As Figure 4D shows, PRPS1 promoted the

expression of pro-invasion proteins, such as MMP2, MMP9, N-

cadherin, and vimentin, and inhibited the expression of anti-

invasion proteins, such as E-cadherin, in melanoma cells.

Notably, knockdown or overexpression of PRPS1 did not

cause changes in the protein level of MMP13 (Figure 4D).

These results suggest that PRPS1 can markedly promote

melanoma cell invasion and migration.
PRPS1 drives melanoma tumor
proliferation in vivo

Next, we performed animal experiments to confirm whether

the abnormal expression of PRPS1 affects the progression of

melanoma proliferation in vivo. We found that the implantation

of PRPS1 stably overexpressing A875 cells and PRPS1

knockdown SK-MEL-110 cells and control cells in BALB/c

nude mice led to the occurrence of tumors in vivo

(Figures 5A, 5D). More importantly, PRPS1-overexpressing

A875 cells significantly promoted tumor growth (Figure 5A).

The tumors formed by PRPS1-overexpressing A875 cells were

significantly earlier and faster, and larger than those in the

control group (Figures 5B, C).

In contrast, our animal experiments demonstrated that

PRPS1 cell knockdown was significantly detrimental to tumor

growth (Figures 5D–F). Compared with control cells, the tumors

induced by injection of PRPS1 knockdown cells grew slower and

weighed less (Figures 5E, F).

In addition, we further compared the expression of PRPS1 in

subcutaneous tumor tissues of nude mice by western blotting.

We found that the protein expression of PRPS1 in the tumors

was positively correlated with the tumor volume (Figures 5G, H).

We also measured the protein levels of cell cycle-related proteins

in the tumors, as Figures 5I, J show that CDK2, CDK4, cyclin D1,

and cyclin E1 levels were significantly upregulated or reduced in

PRPS1-overexpressing or PRPS1-knockdown tumors compared

to the corresponding controls. These results suggest that PRPS1

promotes melanoma growth in vivo.
PRPS1 promotes malignant melanoma
tumors in vivo

To further confirm whether PRPS1 could promote tumor

malignancy in vivo, we injected PRPS1-overexpressing or

PRPS1-knockdown A875 cells and the corresponding control

cells via the caudal vein to establish a metastatic tumor model in

BALB/c nude mice. The incidence of lung metastasis in BALB/c

nude mice injected with PRPS1-overexpressing A875 cells was
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significantly higher than that in the control group, but the

incidence of lung metastasis in BALB/c nude mice injected

with PRPS1-knockdown A875 cells was significantly lower

than that in the control (Figures 6A, 6C). We detected the

protein expression of PRPS1 in lung metastasis tumors. Notably,

western blotting demonstrated that the higher the expression of

PRPS1 was, the stronger the ability of melanoma cells to

metastasize (Figures 6B, 6D). HE staining and IHC staining of

lung tissue sections showed that BALB/c nude mice carrying

A875 melanoma cells with PRPS1 overexpression had

significantly increased formation of lung-specific metastases,

and the expression level of PRPS1 was positively correlated

with the number of tumor foci compared with BALB/c nude

mice bearing control cells (Figure 6E). The opposite was true in

BALB/c nude mice carrying PRPS1 knockdown A875 cells

(Figure 6E). Meanwhile, we also detected the protein

expression levels of cell migration- and invasion-related factors

in nude mice, including MMP2, MMP9, E-cadherin, N-

cadherin, and vimentin. The results demonstrated that

overexpression of PRPS1 promoted the expression of EMT-

related proteins, but knockdown of PRPS1 inhibited the

expression of EMT-related proteins (Figures 6F, G). The above

results indicate that PRPS1 promotes malignant melanoma

tumors in vivo.

Taken together, the results suggest that PRPS1 drastically

promotes the potential for tumor proliferation, malignancy, and

metastasis of melanoma in vitro and in vivo.
PRPS1 is upregulated by NRF2 and acts
as a prominent determinant of
melanoma proliferation and malignancy
progression

We further analyzed the mechanism by which PRPS1

regulates the malignant progression of melanoma. Nuclear

factor (erythroid-derived-2)-like 2 (NRF2) is a transcription

factor that is known to play a pivotal role in the pentose

phosphate pathway (PPP) of glioblastoma (31), breast cancer

cells (32), head and neck cancer (26), human hepatoma cells

(33), and colon cancer (34) and to affect cell metabolic

reprogramming. PRPS1 acts as an enzyme that catalyzes R5P

to PRPP, thus participating in the PPP (3, 4). Therefore, we

investigated whether NRF2 affects the malignant progression of

melanoma by regulating PRPS1.

First, through analysis of the GEPIA website, we found that

the level of PRPS1 gene expression was positively correlated with

NRF2 (PRPS1-NRF2: Pearson correlation=0.4, p=3.4e-19)

(Figure 7A). Next, we detected the mRNA and protein levels

of PRPS1 in A875 and SK-MEL-110 cells with NRF2

overexpression and PRPS1 knockdown. The results showed

that in A875 and SK-MEL-110 cells, stable overexpression of

NRF2 increased the mRNA and protein levels of PRPS1, but
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FIGURE 4

PRPS1 advances the migration and invasion of melanoma cells. (A) Representative scratch-wound images and the data analysis of PRPS1 over-
expression and knock-down melanoma A875 and SK-MEL-110 cells 0h and 24h after scratch. (B) Representative images of transwell migration of
stably transformed melanoma cells after 24h of starvation (top panel). Quantification of the number of migrating cells per field (bottom panel). (C)
Representative images of transwell invasion assay pictured 24h (top panel). Quantification of the number of invasion cells per field (bottom panel). (D)
The expression of EMT-associated proteins in the A875 and SK-MEL-110 melanoma cells with PRPS1 overexpression or knock-down and the control
cells. The data represent three independent experiments. (*p<0.05, **p<0.01, *** p<0.001, ns mean no significant difference).
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FIGURE 5

PRPS1 promotes melanoma cells proliferation in vivo. (A–C) BALB/c nude mice were injected with SK-MEL-110 cell that were stably transfected
with PRPS1 overexpression and the control. Representative images of mice with control (top) and PRPS1-overexpressing (lower) xenograft
tumors (A). The tumor volume (B) and body weight (C) were measured. (n=6/group) (D–F) BALB/c nude mice were injected with A875 cell that
were stably transfected with PRPS1 knockdown and the control. Representative photographs of mice with control (top) and PRPS1- knockdown
(lower) xenograft tumors (D). The tumor volume (E) and body weight (F) were measured. (n=6/group) (G–J) The protein level of PRPS1 (G, H)
and the cell cycle related protein (I, J) levels of tumors in each xenograft tumors group were measured by western blot analysis. The data
represent three independent experiments. The data related to tumor volume were statistically analyzed by two-way ANOVA, and the other data
were analyzed by unpaired-sample Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 6

PRPS1 promotes melanoma cells metastasis in vivo. (A–D) In vivo experimental lung metastasis assay of A875 cells stably overexpressing (A) or
knocking down PRPS1 (C). The cells were injected into BALB/c nude mice via tail vein. Representative images of mice with the corresponding
control (top) and PRPS1-overexpression/PRPS1-kockdown (lower) lungs metastasis. The expression of PRPS1 in PRPS1-overexpression and the
control metastatic tumors (B), as well as in the PRPS1-kockdown and the corresponding control metastatic tumors were compared by western
blot analysis (D). (n=6/group) (E) Morphological feature of the lung metastasis by HE staining and IHC in each metastatic tumor group. (F, G)
The migration and invasion related protein levels in each metastatic tumor group were measured by western blot analysis. The data represent
three independent experiments. Statistical analysis was carried out with unpaired-sample Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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knockdown of NRF2 markedly reduced the mRNA and protein

levels of PRPS1 (Figures 7B, C). Furthermore, PRPS1-

overexpressing A875 cells and control cells were incubated

with 0.05 uM or 0.1 uM bardoxolone methyl (NRF2 activator,

TP-155), PRPS1-knockdown SK-MEL-110 cells and control cells

were treated with 2.5 uM or 5 uM ML385 (NRF2 inhibitor), and

the results reconfirmed that the protein expression of PRPS1 was

decreased in the cells with NRF2 inhibition and vice versa

(Figure 7D). More importantly, the increase or decrease of

PRPS1 expression was positively correlated with the dose of

NRF2 activator or inhibitor.

However, it was unclear whether NRF2 could affect the

proliferation and metastasis of melanoma cells by regulating

the expression level of PRPS1. We used MTS analysis to evaluate

the effect of NRF2 on stable cell proliferation. As shown in

Figure 7E, the NRF2 activator significantly increased the

proliferation rate of PRPS1-overexpressing melanoma cells,

while the NRF2 inhibitor significantly decreased the

proliferation rate of PRPS1-knockdown melanoma cells. Next,

we evaluated whether NRF2 could influence the effects of PRPS1

on melanoma cell metastasis. We observed that the cell

migrat ion abi l i ty was improved in stable PRPS1-

overexpressing A875 cells after treatment with an NRF2

activator (Figure 7F, left). In contrast, the NRF2 inhibitor

significantly suppressed the ability of PRPS1 knockdown

PRPS1 SK-MEL-110 cell migration (Figure 7F, right). It is

worth noting that the NRF2 activator/NRF2 inhibitor has a

significant dose-response relationship in promoting/inhibiting

the proliferation, invasion and migration of PRPS1

overexpression/PRPS1 knock-down melanoma cell.

We further compared the expression of NRF2 in the animal

models. We found that the expression of NRF2 was positively

correlated with the expression of PRPS1 in the subcutaneous

tumors (Figure 7G) and the lung metastases of nude mice

(Figure 7H). The levels of PRPS1 and NRF2 in the tumors

were positively correlated with the melanoma tumor volumes

and the degree of melanoma metastasis in each group.

In conclusion, these results demonstrate that PRPS1

promotes the proliferation, malignancy, and metastasis of

melanoma, which may be related to NRF2.
NRF2 bound to PRPS1 is crucial for
PRPS1 transcription

We further explored the mechanisms by which NRF2

regulates PRPS1 in melanoma cells. JASPAR database analysis

showed that the transcriptional regulatory region of PRPS1

contains two NRF2 binding sites (Figure 8A). The ChIP–qPCR

results showed that NRF2 was recruited to PRPS1 primer 1

(-1403-1414), which was 3.1 times that of the negative control,

and PRPS1 primer 2 (1477-1487), which was 9.7 times that of

the negative control in A875 melanoma cells (Figure 8B, left). In
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110 melanoma cells, the abundance of NRF2 combined with

PRPS1 primer 1 (1403-1414) was increased by 2.8 times and that

combined with PRPS1 primer 2 (1477-1487) was increased by

7.1 times (Figure 8B, right). Furthermore, a luciferase assay

showed that PRPS1-luc activity was increased in both 293T cells

cotransfected with PRPS1 promoter1 wild-type/promoter2 wild-

type and NRF2 overexpression plasmids (Figure 8C, left). In

contrast, PRPS1-luc activity was decreased in both 293T cells

cotransfected with PRPS1 position 1-mutated/position 2-

mutated and NRF2 overexpression plasmids (Figure 8C, right).

These results reveal that NRF2 is involved in directing PRPS1

expression in melanoma. We further investigated the

relationship between PRPS1 and NRF2. We detected the

protein levels of NRF2 in the nuclei and cytoplasm of A875

and SK-MEL-110 cells with overexpression or knockdown of

PRPS1 and found that PRPS1 overexpression increased the

NRF2 levels in the nuclei and cytoplasm and that knockdown

of PRPS1 decreased the NRF2 levels in the nuclei and

cytoplasm. (Figure 8D).

These results indicate that the transcription factor NRF2 can

bind to the PRPS1 promoter and increase the transcription of

PRPS1 to advance the proliferation, migration, and invasion of

melanoma (Figure 8E).
Discussion

Tumor cells, including melanoma, are highly dependent on

de novo biosynthesis of purine and pyrimidine nucleotides (35,

36). The researchers found that the levels of xanthine, purine,

pyrimidine, AMP, ADP, ATP, and UDP in the clonally

expanded cells of metastatic lymph nodes in melanoma

patients were significantly increased (37). We found that the

mitochondrial oxidative phosphorylation pathway and purine

biosynthesis were abnormally active in melanoma cells

(unpublished data). The PPP pathway is often upregulated in

cancer cell lines, enabling cancer cells to obtain a large amount of

R5P for purine nucleotide and pyrimidine synthesis (1, 38, 39).

We previously demonstrated that G6PD, the key enzyme of the

PPP, is upregulated, and its enzyme activity is increased in

melanoma, which can promote the proliferation of melanoma

cells and inhibit apoptosis (40, 41).

PRPS1 catalyzes R5P to 5-phosphoribosyl-1-pyrophosphate,

which is the first step of de novo nucleotide synthesis. Previous

reports indicated that knockdown of PRPS1 strongly inhibited

neuroblastoma cell proliferation (15). PRPS1 is upregulated by

KHK-A and promotes the proliferation of esophageal squamous

cells (14). CDK1 upregulates PRPS1 activity by phosphorylating

PRPS1(183), so PRPS1 cell cycle-dependent phosphorylation

promotes nucleotide synthesis in colon cancer (3). The

lncRNA lymphocytic leukemia 1 (DLEU1), targeting miR-

320b/PRPS1, promotes the proliferation, migration, and

invasion and reduces the apoptosis of colorectal cancer (12).
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FIGURE 7

NRF2 is positively correlated with PRPS1 expression in melanoma. (A) Spearman correlation analysis of PRPS1 and NRF2 mRNA expression levels
was performed in melanoma and normal skin tissues through GEPIA website. (B, C) The mRNA (B) and protein (C) level of PRPS1 were analyzed
in the stably NRF2 overexpression or knockdown A875 and SK-MEL-110 and that the control cells. (D–F) The stably PRPS1 overexpression A875
and the control cells were treated with TP-155 (NRF2 activator) for 24h. The stably PRPS1 knockdown SK-MEL-110 and the control cells were
incubated with ML385 (NRF2 inhibitor) for 24h. The expression of PRPS1 was detected by using western blot in each group cells (D). The cell
proliferation rate was detected by MTS assay (E). The rate of migration was measured by transwell assay (F). TP-155 (+): 0.05uM, TP-155 (++):
0.1uM. ML385 (+): 2.5uM, ML385 (++): 5uM. The cell migration ability was evaluated by transwell migration (F). TP-155 (+): 10nM, TP-155 (++):
25nM. ML385 (+): 1uM, ML385 (++): 2uM. (G, H) The expression of NRF2 in the xenograft tumors (G) and the lung metastases of nude mice (H)
were detected by western blot analysis. Statistical analysis was carried out with unpaired-sample Student’s t test or two-way ANOVA. *P < 0.05,
**P < 0.01, ***P < 0.001, ns mean no significant difference.
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The PRPS1 mutation drove thiopurine resistance in childhood

acute lymphoblastic leukemia (4, 19). In this study, our data

demonstrated that PRPS1 is highly expressed in melanoma

tissues and melanoma cell lines (Figure 1C-G). We also

demonstrated that overexpression of PRPS1 promoted

melanoma tumor proliferation, migration, and invasion in
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vitro and in vivo and inhibited melanoma cell apoptosis. In

contrast, knockdown of PRPS1 suppressed proliferation,

migration, and invasion while advancing apoptosis in

melanoma (Figures 2, 6). We first showed that PRPS1 could

promote the growth, migration, and invasion of melanoma and

prevent melanoma cell apoptosis.
B C

D E

A

FIGURE 8

NRF2 is a transcription factor of PRPS1-mediated malignant progression of melanoma. (A) Consensus binding sites for NRF2 on the PRPS1
promoter was analyzed by JASPAR database. (B) ChIP assay was performed to assess NRF2 in the PRPS1 promoter region in A875 and SK-MEL-
110 cells. (C) 293T cells were transfected with corresponding plasmids for 48h. Luciferase dual reporter assays were performed to measure the
luciferase activity of PRPS1-luc. (D) NRF2 expression in nuclei and cytoplasm of A875 and SK-MEL-110 cells overexpressing or knockdown
PRPS1. (E) Proposed model of the relationship between PRPS1 and NRF2 in melanoma cells. The data represent three independent experiments.
The data represent three independent experiments. Each bar represents mean ± SD. p values were calculated using a student t-test (*p < 0.05,
**p < 0.01, ***p < 0.001 vs. the control).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.989263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiong et al. 10.3389/fimmu.2022.989263
A report pointed out that c-MYC is a transcription factor of

PRPS1 in neuroblastoma (18). However, another study

confirmed that in c-MYC-overexpressing malignant

lymphoma cells, the gene expression of PRPS2 rather than

PRPS1 is strongly regulated at the translational level to

regulate purine synthesis (5). However, the mechanism by

which PRPS1 regulates the malignant progression of

melanoma remains unclear.

Our study found that NRF2 can regulate the transcription of

PRPS1 and then regulate the proliferation and metastasis of

melanoma. NRF2 is considered a marker of cancer and plays a

role in tumor promotion and tumor suppression in different

cancers (42). Research confirmed that knockdown of NRF2 led

to reduced growth of melanoma cells (43). NRF2 promotes the

migration and invasion of BRAF mutant melanoma cells (44). In

our study, we confirmed that NRF2 could promote the

transcription of PRPS1 (Figure 7D). The ChIP and luciferase

assay data indicated that NRF2 binds to the PRPS1 promoter

(Figures 8B, C). In addition, after SK-MEL-110 cells with stable

PRPS1 overexpression were treated with an NRF2 activator and

PRPS1 knockdown PRPS1 A875 cells were incubated with an

NRF2 inhibitor, we reconfirmed that abnormal PRPS1 could

promote the proliferation, migration and invasion of melanoma

cells through NRF2-activated transcription (Figures 7D, E).

As a transcription factor, NRF2 is also the most potent

effector of the oxidative stress response (43, 45). Because

melanoma shows high oxidative stress in both the intracellular

and tumor microenvironments, NRF2 is involved in this process.

Therefore, previous studies have paid more attention to the

regulation of NRF2 on oxidative stress in melanoma.

Intermittent hypoxia promoted melanoma lung metastasis

through oxidative stress in a mouse model of obstructive sleep

apnea (46). Mitochondrial glycerol-3-phosphate dehydrogenase

(mGPDH) inhibits melanoma migration, and invasion by

suppressing NRF2 and downstream oxidative signals (47). Our

study demonstrates for the first time that NRF2, as a

transcription factor, can regulate the transcription of PRPS1,

an important enzyme in nucleotide metabolism.
Conclusion

Our study demonstrated that PRPS1 is highly expressed in

melanoma and promotes melanoma proliferation and metastasis

and decreases melanoma cell apoptosis. Moreover, abnormal

expression of PRPS1 occurred via NRF2-mediated upregulation.

This is the first study to provide data by systematically analyzing

the function and regulatory mechanism of PRPS1 in melanoma.

Targeting purine nucleotide metabolism may become a new

strategy for melanoma therapy.
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