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Background

Bladder cancer (BCa) is a remarkably malignant and heterogeneous neoplastic disease, and its prognosis prediction is still challenging. Even with the mounting researches on the mechanisms of tumor immunotherapy, the prognostic value of T-cell proliferation regulators in bladder cancer remains elusive.



Methods

Herein, we collected mRNA expression profiles and relevant clinical information of bladder cancer sufferers from a publicly available data base. Then, the LASSO Cox regression model was utilized to establish a multi-gene signature for the TCGA cohort to predict the prognosis and staging of bladder cancer. Eventually, the predictive power of the model was validated by randomized grouping.



Results

The outcomes revealed that most genes related to T-cell proliferation in the TCGA cohort exhibited different expressions between BCa cells and neighboring healthy tissues. Univariable Cox regressive analyses showed that four DEGs were related to OS in bladder cancer patients (p<0.05). We constructed a histogram containing four clinical characteristics and separated sufferers into high- and low-risk groups. High-risk sufferers had remarkably lower OS compared with low-risk sufferers (P<0.001). Eventually, the predictive power of the signature was verified by ROC curve analyses, and similar results were obtained in the validation cohort. Functional analyses were also completed, which showed the enrichment of immune-related pathways and different immune status in the two groups. Moreover, by single-cell sequencing, our team verified that CXCL12, a T-lymphocyte proliferation regulator, influenced bladder oncogenesis and progression by depleting T-lymphocyte proliferation in the tumor microenvironment, thus promoting tumor immune evasion.



Conclusion

This study establishes a novel T cell proliferation-associated regulator signature which can be used for the prognostic prediction of bladder cancer. The outcomes herein facilitate the studies on T-cell proliferation and its immune micro-environment to ameliorate prognoses and immunotherapeutic responses.





Keywords: bladder cancer, single cell sequencing, T-cell proliferation regulator, predictive gene signature, prognostic



Introduction

Bladder cancer (BCa) is the 9th most commonly seen tumor across the globe and ranks 13th in terms of tumor mortality, and 10-15% of patients encounter metastasis at the time of diagnosis (1). Although surgical treatment and postoperative Bacillus Calmette-Guerin (BCG) infusion and other immunotherapies have been used in the clinical management of bladder cancer (2), bladder cancer still exhibits high recurrence and metastasis rates due to its remarkable heterogeneity and genomic instability (3, 4). About 50%-70% of NMIBC patients will experience recurrence within 5 years, with 10%-30% of patients progressing to an aggressive form (5, 6). Immune-checkpoint inhibitors (ICIs) that target the programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) axis and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are emerging as valid salvage treatments for sufferers displaying chemotherapy resistance, but the response rate to therapy is relatively low (21%) (7). Therefore, it’s imperative to search for new therapeutic targets or biomarkers regarding the efficacy of ICIs associated with BCa immunotherapy. Cancer-infiltrating immunocytes, like modulatory T cells (Tregs), macrophagus, mast cells, and B cells, may influence the equilibrium between anti-cancer immunity and immuno-evasion in MIBC (8–11). Studies on BCG-refractory bladder cancer suggest that BCG tolerance might be mediated by an intricate causal link of immune-evasion (12). Several studies have identified that tumors may evade antitumor immunity through immune-checkpoint paths regulating T cell stimulation. Substantial immune-checkpoint molecules participate in the such causal link, like CTLA-4, PD-1 and its ligands PD-L1 and PD-L2 (13). Cancer immunotherapy targeting tumor-specific T cells can benefit tumor sufferers, whereas the clinical effectiveness changes remarkably in different tumor types. Cancer-infiltrating T cells frequently develop into a dysfunction status. T cell failure, and the anti-tumor function of effector T cells is modulated by several factors, like modulatory T cells (Treg). The changes of status and abundance of T cells depend on the tumor microenvironment (TME) of diverse tumor types, which might influence clinical results, like drug responses to immunotherapies (14). The specific mechanisms by which different subtypes of T lymphocytes in the tumor microenvironment modulate each other and their roles in the prognosis of BCa immunotherapy remain elusive.

In this study, a T lymphocyte proliferation regulatory factor-associated prognostic model was systematically evaluated to reveal the correlation with prognostic and clinicopathological characteristics of BCa patients. First, a column line graph containing T-lymphocyte proliferation regulatory factor characteristics and clinical factors was created to forecast survival in those sufferers. Then, our team verified the genes in the signature were expressed differently in normal bladder tissue and bladder tumor tissue by immunohistochemistry (IHC). Eventually, we verified the communication crosstalk between cells in the bladder tumor microenvironment by single cell sequencing. All in all, this research offers enlightenment regarding the modulatory causal links through which T lymphocytes promote BCa and might ameliorate the validity of personalized therapy and prognostic assessment.



Materials and methods


Datasets and pre-processing

The RNA-seq profiles of BCa (n=414) and normal bladder specimens (n=19) from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) (Level 3 data, FPKM value) were acquired. The data type was set to “Gene Expression Quantification “ and the work flow type was “HTSeq-FPKM”. For further analysis, our team first normalised expression profiles to transcripts per kilobase million values, and each analysis was completed via the R software (4.1.1). Gencode (version 26) GTF files were obtained through Ensembl (http://asia.ensembl.org) for annotation and differentiation of mRNAs and lncRNAs [25], while sex, age, clinical staging, survival rates were acquired from the TCGA data portal, after the removal of specimens with no clinical data or with a survival duration of 0 day. Overall, 408 BCa samples and 19 normal bladder specimens were selected. The full clinical characteristics of BCa sufferers are shown in Supplementary Table 1. Internal standardisation was completed through the “limma” package. Afterwards, difference analyses were completed through the “Deseq2” R package. Then, 35 T cell proliferation regulatory factors were retrieved from a previous literature (15). This is the first article defining the definition of T-cell proliferation regulators (TCRs). The 35 genes obtained were used in our subsequent analysis, and they are displayed in Supplementary Table 2.



Functional and pathway enrichment analyses

DEG’s putative biological processes, cellular components, and molecular activities were investigated using GO enrichment and KEGG pathway analysis. The signal pathways were strongly correlated with what David (https://DAVID.ncifcrf.gov/) found. This research makes use of annotation, visualization, and a large discovery database (David did a functional enrichment analysis on TCRs variables. Furthermore, using the R package “cluster Profiler” and data from the Kyoto Encyclopedia of Genes and Genomes (KEGG), functional analysis of biological processes (BP), molecular functions (MF), and cellular components (CC) regulated by macrophage phagocytosis regulators was done. The cut-off for P values was established at P< 0.05.



Development of a T cell proliferation related prognostic risk model

TCGA-BLCA sufferers were stochastically separated into learning and verification groups via a stochastic grouping approach. Then, univariable Cox analyses of OS were completed to identify TCR-associated genes with prognosis significance. An interplay net of overlapped prognosis TCRs-associated genes was produced through the STRING data base 11.0 (16). The univariate Cox was applied to investigate the prognostic value of DEFAGs. LASSO Cox regression analysis was then applied to minimize the risk of overfitting, contributing to variable selection and regularization (17, 18). Eventually, we established a prognostic model by employing the multiple stepwise Cox regression. The algorithm of each BLCA patient was constructed as follows:Riskscore = esum (the expressing level of every gene×relevant coefficient). Sufferers were separated into the riskhigh and risklow groups as per the mid-value of the risk score. PCA was completed using the “prcomp” function of the “stats” R package as per the genetic expressions in the hallmark. For the survival analysis of each gene, the optimal cutoff expression value was determined by the “surv_cutpoint” function of the “survminer” R package. ROC curve analysis over time was completed using the “survROC” R package to assess the prediction power of the gene hallmark.



Nomogram construction and validation

Univariable and continuous multivariable Cox regressive analysis was performed to identify whether the T cell proliferation regulator (TCR)-associated model was independent of certain clinic features through survival R packages. Afterwards, a nomogram was established on the basis of the multivariable Cox regressive coefficients of TCR features in the TCGA learning cohort and it was created according to clinical variables. The consistency index (C-index) was computed to verify the prediction ability of the column line plots, and correction curves were drawn to check the consistency between the forecasted 1-, 3-, and 5-year OS possibilities and the real observational results (as per bootstrap 1000 iterative resampling validation).



TME cell infiltration

Our team utilized the CIBERSORTx arithmetic and EPIC to realize the quantification of immunocytes. For CIBERSORTx, the normalised genetic expression information was uploaded to the online platform via LM22 signature and 1,000 permutations (19). EPIC is an online platform for studying mass cytometry data from immunocytes in a standardised way (20). Cancer purity scoring was speculated via the “ESTIMATE” package (21, 22).



Mutation SNP and copy number variation analyses

To explore the diversity in SNP expression between riskhigh and risklow patients, our team acquired and studied the SNP data of BLCA via the maftools package (23), and the Top 20 genetic variants were visualised via waterfall plots with the 10 core genes described in Section 2.12. Tumor mutation burden (TMB) was the sum of somatic mutations per megabase in each cancer specimen. Hence, our team computed the quantity of genetic variants in each cancer specimen to identify the TMB. Afterwards, our team performed statistic assay between groups to identify the TMB in riskhigh and risklow patients.

CNV segment files were acquired and analyzed to acquire the biomarker files and the files were uploaded to the Gene Pattern Gistic 2.0 module for CNV analyses. The data base default was chosen for analyzing variables, and the maftools package (23) was utilized to visualise the outcomes of CNV analyses.



Drug sensitivity analysis

Chemotherapy susceptibility and immune therapy reaction forecast. To forecast susceptibility between high and low TCR risk groups, our team utilized the pRRophetic R package (0.5) to acquire IC50 values via establishing a ridge regressive model with 10-fold cross-verification (24, 25). Multiple commonly seen anti-tumor medicines (cisplatin, docetaxel, gefitinib, gemcitabine, pazopanib, sunitinib) and their gene profiles were acquired from the biggest public pharmacogenomic data base: the Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/) (26). Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu/) arithmetic was utilized to forecast the reaction to immune-checkpoint blockage treatment between these 2 groups (27).



Single-cell analysis of the origin of gene expression in the signature

To reveal if the expression levels of genes in the hallmark are associated with T cells in the TME, the TISCH data base (http://tisch.comp-genomics.org/home/ ) was utilized (28). TISCH is a TME-focused scRNA sequencing data base providing cell type annotation details at the single-cell level, which allows us to investigate TME in different cancer types including BCa.



Human protein atlas database and IHC validation

The protein expression levels of those TCRs-related hallmark genes in BCa samples was studied in the HPA on-line data base (https://www.proteinatlas.org/) intending to produce a HPA via integratedomics techniques (29).




Result


Overview of gene variations and expression variants of TCRs-associated genes in BCa

The flow chart for this article is shown in Figure 1. The STRING platform was utilized to analyze the potential biofunctional network associated with 35 regulatory factors related to T-cell proliferation (Figure 2A). We focused on regulatory factors related to immune response and T-cell proliferation. At the gene level, 98 out of 412 specimens (56.79%) displayed variants in regulatory factors associated with T cell proliferation, among which AHNAK showed the highest mutation frequency (Figure 2B). Our team also identified CNVs in 34 regulatory factors associated with T cell proliferation, and we identified 34 alterations in regulatory factors correlated with CNVs on chromosomes (Figures 2C, E). Figure 2D demonstrates the regulatory relationship between prognosis-related TCRs and risk factors for bladder cancer. Compared to normal samples, where the expression levels of IFNL2, CXCL12, IL12B, FOSB, AHNAK, CYP27A1, GPD1, ITM2A, CD19 and NGFR were decreased, the expression levels of all other genes were elevated. Interestingly, our study also identified a reciprocal regulatory relationship between TCRs associated with bladder cancer prognosis (Figure 2F). The analytical results in the present research unveiled that the expression levels of T-cell proliferation-associated regulatory factors were associated with BCa, which hence unveiled that they might show the diverse characteristics of sufferers. Afterwards, we found that the majority of TCRs were related to worse survival in bladder cancer according to the results of survival analysis (Supplementary Figure 1).




Figure 1 | The flowchart for this article.






Figure 2 | Characterization and differences of T cell proliferation regulator-associated regulators in BCa. (A) A collection of potential biological interactions with TCR-associated modulators from the STRING platform. (B) Mutation mapping of 412 BCa sufferers from the TCGA-BLAC cohort. Each waterfall plot represents data about every TCR-associated mutation. Relevant colors are annotated at the bottom, which means different mutation types. The bar line graph shows the mutation burden. The correct number indicates the mutation frequency respectively. (C) CNV change position of TCRs on chromosome TCGA cohort. CNV, copy number change. (D) Interactions among TCRs in BCa. The circle size denotes the effect of every modulator on prognosis, and contrasts were completed via the log-rank test (p < 0.05, p < 0.001, p < 1E-05 and p < 1E-08), and blue connecting lines represent negative correlations. (E) TCGA cohort associated with TCRs in CNV frequency. The height of the bars shows the proportion of different types of CNV. (F) Expression of TCRs between normal and bladder cancer tissues (Wilcox test, ∗P < 0.05;∗∗P < 0.01;∗∗∗P < 0.001;P < 0.0001;ns, not statistically significant).





Functional enrichment analysis of T cell proliferation regulator-associated regulators in BCa

To analyze the potential roles of DEGs, GO analyses were performed through the DAVID website and we visualised the data in R. Regarding biological processes (BPs), the results revealed that genes related to TCRs were mainly enriched in cytokine activity, cyclin binding, cyclin-reliant protein kinase activity, histone kinase activity and cyclin-reliant protein serine/threonine kinase activity. Regarding cell composition (CCs), they were mainly enriched in side of membrane, recycling endosome, chromosome, telomeric region, inherent constituent of endoplasm reticulum membrane and MHC protein complex. In addition, in terms of molecular function (MF), TCRs were mainly enriched in leukocyte differentiation, lymphocyte differentiation, rhythmic process, mitochondrial cell cycle checkpoint and B cell activation involved in immune response. (Figures 3A, B). Then, we further analyzed the KEGG pathway enriched in TCR-related genes using the DAVID online tool and visualised it by R language. We found that TCRs were mainly enriched in human T-cell leukemia virus 1 infection, cytokine-cytokine receptor interaction, viral carcinogenesis, human cytomegalovirus infection, antigen processing and presentation, and HIV 1 infection signaling pathways (Figures 3C, D).




Figure 3 | Functional analysis of T cell proliferation-associated regulatory factors: (A, B) the enrichment analysis of T cell proliferation-associated regulatory factors (BP, CC, MF). (C, D) the KEGG pathway enrichment analysis.





Establishment of a prognosis model in TCGA cohort

First, we randomly divided TCGA-BLCA patients into the training and validation groups. To build a prognostic model, the expression profiles of the 35 aforesaid genes were studied via LASSO Cox regression analyses. We obtained a risk model constructed from four TCRs associated with bladder cancer prognosis (Figures 4A, B). In survival analyses, high expression level of each gene was found to be related to poor prognosis based on the optimum cutoff value (modified P*0.05, Figures 4C, E). Risk scores were computed through: Risk score = (0.279*the expression level of CXCL12 + 0.351*the expression level of AHNAK + 0.455*the expression level of AHCY + 0.440*the expression level of HOMER1). Sufferers were separated into riskhigh (n=213) or risklow groups (n=190) as per median cutoff values. In the TCGA-BLCA training cohort, we found that patients in the high-risk score group possessed poorer survival rates. Consistently, Kaplan-Meier (K-M) curves showed that riskhigh sufferers displayed remarkably shorter OS in contrast to risklow sufferers (Figures 4D, F. P<0.001). Surprisingly, in the TCGA-BLCA validation cohort, we observed the same results. The prediction ability of the risk scoring for OS, assessed by the ROC curve, reached an AUC of 0.759 at 1 year, 0.664 at 3 years and 0.712 at 5 years in the training group over time (Figures 4G, I). In the validation group, we also obtained a better prognostic efficacy. Its AUC attained 0.5693 at 1 year, 0.6467 at 3 years, and 0.5703 at 5 years, respectively. Surprisingly, considering the significance of risk scoring in forecasting the prognoses of BCa sufferers, our team afterwards investigated its clinical potential. Our team established a nomogram having four clinical characteristics that are readily available and normally considered to exert an influence on the prognoses of BCa, and such nomogram had the ability to predict the 1-, 2-, and 3-year OS for BCa sufferers (Figure 4H). Collectively, the nomograph has satisfactory forecast ability. We found that four genes showed differential expression in samples from different risk groups (Figure 6A).




Figure 4 | Development of TCRs-related prognostic signature. (A) Univariable Cox hazard analyses were completed on TCRs pairs. (B) LASSO regression of TCRs for establishing prognosis. (C, E) Difference in survival status between riskhigh and risklow sufferers in learning and verification groups. (D, F) Survival analysis shows that survival outcomes are significantly different between riskhigh and risklow sufferers in learning and verification groups. (G, I) ROC curves at 1, 3 and 5 years are described for learning and verification groups. (H) Predictive efficacy of nomogram validation model.





Differences in TCR-related signature and TME infiltration and analysis of immunotherapy correlation

Tumor-associated fibroblasts, extracellular matrix, immune cells, various growth factors, inflammatory factors (characterized by special physicochemical characteristics), cancer cells, etc. exist in the tumor microenvironment. The microenvironment significantly affects the diagnosis of tumors, survival outcomes, and response degree toward clinical treatment. The outcomes revealed that risk score was tightly associated with immunocyte infiltration. To unveil the association between the risk scoring and immunity status, our team quantified the enrichment scoring of different immunocyte sub-populations, correlated biofunctions or pathways via ssGSEA. Interestingly, the outcomes revealed that CXCL12 and AHNAK were related to most immunocyte infiltration in a positive manner, while AHCY and HOMER1 were related to most immunocyte infiltration in a negative manner (Supplementary Figure 2). Further analysis of the results similarly confirmed that risk scoring was related to most immunocyte infiltration. Figure 6A demonstrated the association between the expressions of the four TCRs in each sample and the clinic features of patients.



Correlation of risk score with tumor mutations and gene regulation

As per those outcomes, our team discovered that risk scores were vital for clinical forecast. Subsequently, we explored if risk scores could facilitate clinical therapy, particularly immune therapy. The infiltration of TME cells with diverse risk score was studied (Figure 5B). The outcomes revealed that risk score was tightly associated with immunocyte infiltration. To unveil the association between risk scoring and immunity status, our team quantified the enrichment scoring of diverse immunocyte sub-populations, associated biofunctions or paths via ssGSEA. Interestingly, the our revealed that CXCL12 and AHNAK were related to the majority of immunocyte infiltration in a positive manner, whereas AHCY and HOMER1 were related to the majority of immunocyte infiltration in a negative manner (Figure 5A). Further analysis of the results similarly confirmed that risk score was related to the majority of immunocyte infiltration. The immunity scores from ESTIMATE analysis decreased with the increasing risk scoring, while stroma scoring displayed contradictory effects. Those data suggested that risklow sufferers had stronger immune responses than riskhigh sufferers. Diversities in TME cells might be the primary cause for the inhomogeneity of risk scoring. Cancers attracting more T-cell infiltration are referred to as “hot cancers” and are more susceptible to immune therapy, which hence leads to superior immunotherapeutic results (30). Recent studies have confirmed that sufferers with greater somatic TMB display reinforced responses, longterm survival, and persistent clinical benefits after immune-checkpoint blockage (31). Fortunately, we explored TMB across risk scoring and found a strong correlation between risk score and TMB (Figures 6B, C). These results suggest that risk score may forecast the prognoses of BCa sufferers and may show the reaction to immune therapy.




Figure 5 | TME immunocyte infiltration features and immune constituents among different risk groups. (A) Heat map showing the correlation analysis between four prognostically relevant TCRs and 28 immune cell subpopulation infiltrates. (B) Relative richness of every infiltration cell type expressed between riskhigh and risklow sufferers. (C) Correlation analysis of signature with PD1/PDL1 treatment. (D) Differences between stroma scoring, immunity scoring and Estimate scoring between riskhigh and risklow sufferers. *P<0.05, **P<0.01, ***P<0.001, ns: P≥0.05.






Figure 6 | (A) Distribution of the risk score, the associated survival data and the mRNA expression heat map in the TCGA dataset. (B) Analysis of differences in TMB scores between high and low risk score groups. (C) Risk score and TMB correlation analysis. (D) Correlation analysis of risk score and tumor stem cell index.



Previous studies have suggested that T-cell proliferation-related regulators might reflect the effects of immune therapy. There are proofs supporting the fact that sufferers with high TMB status have a durable clinical response to anti-PD1/PD-L1 immune therapy (31). Surprisingly, we first examined changes in the expression of immune-checkpoints. Our team contrasted the diversities in the expression levels of immune checkpoint genes in the TCGA-BLCA cohort (Figure 5C). Next, we analyzed the roles of risk scoring in immunotherapy response, and the results showed that the cohort with higher scores had better immunotherapy outcomes (Figure 5D). When the results of risk scoring and stem cell index were analyzed, a positive association was discovered between them (Figure 6D). Those outcomes explain the latent role of risk scoring in immune therapy and provide some evidence that risk scoring can be utilized as a prediction factor of immune therapy response.



Correlation analysis of risk score and drug sensitivity analysis

To further explore the effect of TCR-related prognostic models on the response to bladder cancer drug therapy, we performed a correlation analysis by analyzing risk score and bladder treatment drugs. Surprisingly, the outcomes revealed that risk score was remarkably correlated with drug treatments as displayed in Supplementary Figure 3. Those outcomes suggest that TCR-related genes might be related to BCa drug resistance and might be latent treatment targets for Bladder cancer drug therapy.



Single-cell RNA sequencing analysis, clustering and marker identification

To further explore the mechanism of the effects of T-cell proliferation factors on the tumor microenvironment of bladder cancer. We showed 29 cell back markers by single cell sequencing analysis (Figure 7A). Their cell types were mainly fibroblasts, T cells, macrophages and epithelial cells (Figure 7B). Surprisingly, T-cell proliferation factor was specifically expressed in paracancerous tissues, which were mainly fibroblasts (Figure 7C). Likewise, further analysis showed that BCN had the highest score, that is, the highest score of paraneoplastic tissues (Figures 7D, E). Interestingly, CXCL12 was mainly enriched in fibroblasts in paraneoplastic tissues (Figures 8A-H). Recent studies have confirmed that CXCL12 is a regulatory factor located in the cytoplasm, whereas the other three are expressed in the nucleus. Therefore, we focused on CXCL12. We conjectured that tumore-related fibroblasts in the BCa TME regulate T-cell proliferation in the TME by the paracrine secretion of CXCL12, thereby influencing tumorigenesis and progression. To test our conjecture, by further analysis, we found that CXCR4, a specific receptor for CXCL12, was expressed in T cells and macrophages in tumor tissues (Figure 8I). It is puzzling that T cell proliferation in tumor tissues promotes tumor progression. By testing Treg and T-cell failure markers (Figure 8J). Surprisingly, our results suggested that CD69 (a T cell failure-specific marker) was abnormally expressed in T cells in bladder tumor tissues, however, no significant expression was observed in other cells (Figure 8K). Taken together, we found that fibroblasts in bladder cancer parietal tissue promote bladder tumorigenesis and progression by the paracrine secretion of CXCL12 into the tumor microenvironment to bind specifically to CXCR4 receptors and promote the proliferative ability of depleted T cells in cancer tissues. This may be a latent new treatment target for bladder cancer immunotherapy.




Figure 7 | Overview of single cells from BCa and non-malignant tissues. (A) 29 major cell types, (B) T cells, epitheliums, fibroblasts, and macrophages are identified. (C) Identification of the distribution of various cells in tissues. (D) The deeper the color, the smaller the P value. (E) T cell proliferation regulatory factors among the expression of seven cell types.






Figure 8 | (A-D) UMAP plots of single cells for four prognosis-related T cell proliferation regulation factors. (E-H) Expression profiles of four prognosis-related T cell proliferation regulation factors in T cells, epithelial cells, fibroblasts and macrophages. (I) UMAP plots of single cells for specific receptors of CXCL12. (J) Expression profiles of T cell proliferation regulatory factor CXCL12 in regulatory T lymphocytes. (K) Expression profile of T cell proliferation regulatory factor CXCL12 in depleted T lymphocytes.





Expression features of TCR-associated signature genes at the protein level were investigated by HPA database and IHC analysis

Finally, regarding the expression levels of BCa tissue proteins, immune histochemical outcomes from the HPA data base showed that the expression levels of CXCL12 and AHNAK were low in BCa tissue, whereas the protein expression of AHCH and HOMER1 was higher (Figures 9A-D).




Figure 9 | Immunohistochemical analysis of four prognostically relevant T cell proliferation-related regulatory factors (A: AHCY; B: AHNAK; C: CXCL12; D: HOMER1).






Discussion

BCa takes a heavy toll on Medical and Health Services worldwide, especially in Europe and North America (2). Most sufferers are confirmed with NMIBC at first diagnosis, where the tumor does not invade the muscular layer, and most cases can be treated by transurethral resection of bladder (TURB) or intravesicular BCG vaccine or other types of chemotherapy (5, 32, 33). However, a large proportion of patients with NMIBC will eventually develop into the MIBC stage (34), and the standard method for MIBC is radical cystectomy with or without neoadjuvant chemotherapy or radiotherapy. Even after treatment, approximately 50% of patients with MIBC will recur and die within 3 years (35). Recently, several researches have discovered that tumor cells can evade anti-tumor immunity by modulating T cell-activated immunity response mechanisms, and many immunity response related molecules participate in such causal link, like CTLA-4, PD-1 and its ligands PD-L1 and PD-L2 (13). Although the resulting cancer immunotherapies targeting cancer-specific T cells have brought substantial benefits to substantial tumor sufferers, the clinical effectiveness changes remarkably across tumor types. Therefore, a complete understanding of the mechanisms of T lymphocyte action in the immunotherapy of BCa is essential to guide the selection of immunotherapeutic regimens for BCa patients.

Herein, our team systematically explored the expression of T-cell proliferation regulators in BCa cancer tissue and their relationship with OS. Firstly, a new prognosis model consisting of four T-cell proliferation regulators in the TCGA-BCa cohort was constructed. Simultaneous function analyses showed that immunity-associated pathways were improved. Although it is currently well documented that T lymphocytes are vital for bladder oncogenesis and developmental process (36, 37), the exact mechanism of action remains unexplained. Surprisingly, the expression of T cell proliferation regulators was significantly different between cancer and neighboring non-tumor samples, and univariable Cox regression analyses revealed that a larger TCR was associated with OS in BCa patients. These results suggest a potential role of T lymphocyte proliferation regulators in BCa progression and the possibility of prognostic modeling with these T lymphocyte proliferation regulators.

The prognostic model proposed in this study consisted of four T cell proliferation regulators (CXCL12, AHNAK, AHCY and HOMER1).AHNAK is the largest protein in the human body and participates in cytoskeletal structure formation, muscle regeneration and calcium homeostasis (38). AHNAK is a cancer inhibitor protein and inhibits the developmental process of mammary and pulmonary cancer via enhancing the transforming growth factor-β (TGF-β) signal path (39, 40). The initiation of the T cell antigen acceptor in the course of immune antigen presentation requires the coordination of substantial signal transmission proteins and ionic pathways. AHNAK1 is a scaffolding protein and a key part of calcium signal transmission in the course of CD4 T cell stimulation (41), and AHNAK expression is tightly related to T cell responses. Several recent studies have verified the participation of AHNAK in the modulation of T-cell responses (42). Mazza et al. discovered that AHNAK-knockdown mice displayed damaged CD4+ T cell proliferative ability and decreased IL-2 generation upon in vitro activation via anti-CD3 antibodies (42). Nevertheless, the effects of AHNAK on immunomodulation and tumor immunotherapy are still elusive. Our results show that the expression of AHNAK is high in BCa nuclei and regulates oncogenesis and progression by modulating T cell responses in the bladder tumor microenvironment. Adenosine homocysteinase (AHCY) is a special enzyme and one of the most conservative proteins (43). Adenosine homocysteinase was originally defined as a cancer inhibitor (44). However, the function of AHCY as a cancer inhibitor appears to be cell type specific, as AHCY suppression is associated with antimigratory and anti-invasion activities in mammary carcinoma cells (45, 46) and related to enhanced apoptosis in highly aggressive neuroblastoma (47). In neuroblastoma, the expression level of AHCY was increased in MYCN-magnified cancer specimens and neuroblastoma lineage cells (48). Interestingly, AHCY knockout or medicine-mediated suppression caused an elevation in programmed cell death, particularly in MYCN-magnified neuroblastoma cells. In our study, AHCY was shown to be highly expressed in bladder tumors and it regulated oncogenesis and progression by affecting T lymphocyte responses in the tumor microenvironment. Homer-1 is a synaptic scaffolding protein that regulates glutamatergic synapses and spine morphogenesis (49). However, the role of Homer-1 in cancer immunotherapy is unclear. Herein, our team discovered that the expression of Homer-1 was high in bladder tumors and negatively correlated with patient OS. Chemotactic factor ligand C-X-C motif chemokine ligand 12 (CXCL12) is extensively expressed in a variety of tissues (50–52). The chemotactic factor CXCL12 is identified at commonly seen sites of cancer metastases and in animal models, and it’s expressed in circulation oncocytes (53). CXCR4 activates tumor metastases and its ligand CXCL12 is substantially generated. The interplay between CXCL12 and CXCR4 induces the forming of metastasis cancers. Moreover, CXCL12 hyper-methylation was discovered in multiple tumors, like stomach carcinoma (54), mammary carcinoma (55), colon carcinoma (56), pulmonary carcinoma (57), and prostate cancer (58), which suggested a possible role of CXCL12 in carcinogenesis. In our study, CXCL12 was found to be widely expressed in the fibroblasts of paraneoplastic tissues of bladder tumors by single cell sequencing analysis and immunohistochemistry. Its specific binding to CXCR4 receptors in T cells in the TME via paracrine secretion promotes the proliferation of depleted T cells, thus promoting bladder oncogenesis and progression, which may be a new latent treatment target for BCa immunotherapy. This discovery provides a new therapeutic direction for clinicians.

The most important contribution of our study is the identification of the association between T cell proliferation regulators and the TIME. Evidently, the intricate interactions between oncocytes and the TME are not only pivotal for cancer developmental process, but have a remarkable impact on immunotherapy effectiveness and OS (14, 59). Herein, function enrichment analyses showed that most TCR genes were sponged in signal paths like human T-cell leukemia virus infection, cytokine-cytokine acceptor interplay, and viral carcinogenesis. This demonstrates that TCR genes are vital for immunoregulation. Meanwhile, our team also found that riskhigh sufferers had a greater proportion of stimulated memory CD4 T cells, activated CD8 T cells and mast cells, etc., which confirmed the role of T cell proliferation regulators in the modulation of cancer immunocyte infiltration. As the outcomes herein associate the TCR-related signature with BCa, those T cell proliferation regulators may be targeted for combination therapy with immune-checkpoint suppressors. Combining immune-checkpoint blockage with immune therapies like CTLA-4, PD-1 and PD-L1 suppressors is a prospective method for the treatment of multiple malignant tumors, and a stimulated TIME is related to satisfactory results with immune-checkpoint suppressor treatment (60, 61). Intriguingly, the expression level of PD-L1 was high in riskhigh sufferers, which revealed that riskhigh sufferers might have more benefits from anti-PD-L1 immune therapy, but the expression of CTLA-4 was high in risklow sufferers, which revealed that risklow sufferers might have more benefits from anti-CTLA-4 immune therapy. These outcomes offer novel enlightenment regarding cancer immune therapy.

Comparatively higher immune suppressive micro-environment and lower TMB have been shown to lead to immune therapy failures (62–64). We found that TMB was related to risk scoring in a negative manner and that riskhigh sufferers had high immune scores and PD1 expression. These findings link the TCR-related signature for BCa immunotherapy to riskhigh sufferers having better immunotherapy outcomes. This may also provide a latent treatment target for the prognosis of BCa immunotherapy. Interestingly, by single cell sequencing, we found that the expression of TCR-related gene CXCL12 was high, especially in fibroblasts in the TME, and it promoted the proliferation of T lymphocytes in the TME as well. This discovery is contrary to the widely recognized anti-cancer role of T lymphocytes. By searching for specific literature, we found that recent studies have revealed that the phenotype and abundance of T lymphocytes may vary greatly in the TME of various tumors, with a higher proportion of depleted T lymphocytes in the TME of patients with liver and colon cancer than in the TME of patients with lung cancer. In contrast, no significant expression was observed in the TME of patients with multiple myeloma (65–68). This difference in T lymphocyte infiltration is due to the fact that tumor-associated T lymphocyte phenotypic status and infiltration are influenced by multiple aspects (69). To identify the key factors effecting T lymphocyte status and proliferation in bladder cancer TME, we annotated single-cell data. From our results, we can see that CXCL12, which is highly expressed in the fibroblast cytoplasm, specifically binds to CXCR4, a specific receptor in T lymphocytes in TME, through paracrine action, promoting the proliferation of depleted T lymphocytes and thus evading immune surveillance to promote oncogenesis and progression. This finding might offer a novel treatment target for sufferers with advanced bladder tumors after they display immunotherapy resistance. It provides a new therapeutic direction for clinicians to follow.

All in all, this study identified 4 differently TCR-associated genes and successfully constructed an individualized signature, which proved to be significantly associated with prognoses of bladder cancer in both the derivation and validation datasets. The signature-based risk score can differentiate immunotherapy in high-risk sufferers exhibiting chemotherapy resistance. We also estimated the potential relationship among immunotherapy-related biomarkers, immune cell infiltration and immune-related pathways. In our future study, we may focus on the small molecule drugs related to TCR for BCa and try to verify TCR-associated gene as an oncogenic factor in BCa cell lines. This research was anticipated to provide new insights into ferroptosis for future work. Nevertheless, there are certain deficiencies in this research. Firstly, this paper is completed retrospectively on the foundation of publicly available databases, and the clinical effectiveness and steadiness of TCR-associated genetic signatures require more verification from larger prospective studies. Secondly, the biofunctions of genes have to be explained further by more experiments. Thirdly, the reaction of TCGA patients to immune therapy is based on algorithmic predictions, and the accurateness of the genetic hallmark has to be validated in actual immunotherapy cohorts.



Conclusion

In conclusion, a T-cell proliferation regulator (TCR) associated signature was established to forecast the prognoses of bladder cancer pre-operatively. This signature which involves 4 TCR genes may have an association with oncogenesis, progression and metastasis in bladder cancer. This is one of the few studies that focus on the immunotherapeutic value of TCR associated with bladder cancer. Those outcomes offer a foundation for exploring the T cell proliferation regulator-related mechanism in BCa immunotherapy.
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Background

Cancer-associated fibroblasts (CAFs) are involved in tumor growth, angiogenesis, metastasis, and resistance to therapy. We sought to explore the CAFs characteristics in hepatocellular carcinoma (HCC) and establish a CAF-based risk signature for predicting the prognosis of HCC patients.



Methods

The signal-cell RNA sequencing (scRNA-seq) data was obtained from the GEO database. Bulk RNA-seq data and microarray data of HCC were obtained from the TCGA and GEO databases respectively. Seurat R package was applied to process scRNA-seq data and identify CAF clusters according to the CAF markers. Differential expression analysis was performed to screen differentially expressed genes (DEGs) between normal and tumor samples in TCGA dataset. Then Pearson correlation analysis was used to determine the DEGs associated with CAF clusters, followed by the univariate Cox regression analysis to identify CAF-related prognostic genes. Lasso regression was implemented to construct a risk signature based on CAF-related prognostic genes. Finally, a nomogram model based on the risk signature and clinicopathological characteristics was developed.



Results

Based on scRNA-seq data, we identified 4 CAF clusters in HCC, 3 of which were associated with prognosis in HCC. A total of 423 genes were identified from 2811 DEGs to be significantly correlated with CAF clusters, and were narrowed down to generate a risk signature with 6 genes. These six genes were primarily connected with 39 pathways, such as angiogenesis, apoptosis, and hypoxia. Meanwhile, the risk signature was significantly associated with stromal and immune scores, as well as some immune cells. Multivariate analysis revealed that risk signature was an independent prognostic factor for HCC, and its value in predicting immunotherapeutic outcomes was confirmed. A novel nomogram integrating the stage and CAF-based risk signature was constructed, which exhibited favorable predictability and reliability in the prognosis prediction of HCC.



Conclusion

CAF-based risk signatures can effectively predict the prognosis of HCC, and comprehensive characterization of the CAF signature of HCC may help to interpret the response of HCC to immunotherapy and provide new strategies for cancer treatment.
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Introduction

Liver cancer is a lethal disease with high prevalence and unfavorable outcomes, where liver hepatocellular carcinoma (HCC) is the primary malignancy of liver cancer, consisting of 75%–85% of cases (1). Although significantly progression in the treatment of HCC, the average 5- year survival rate remains below 20% due to the development of recurrence (2, 3). It has been suggested that several factors such as chronic liver disease, alcohol addiction, and metabolic syndrome, increasing obesity rates, contribute to an increased incidence and mortality of HCC (4). Over the past decades, our understanding of the molecular pathogenesis of HCC has improved significantly thanks to the rapid development of omics technology (5, 6). A series of omic data-derived signatures were generated to predict the clinical outcomes of HCC (7). Accordingly, more novel multigene signature are valuable for predicting the outcome and recurrence of HCC.

The tumor microenvironment (TME) is composed of tumor cells and stromal cells. The malignant potential of tumors has long been thought to be entirely due to cancer cells (8). However, the dynamic crosstalk between cancer cells and stromal cells has been shown to be involved in cancer progression (9). The stroma consists of fibroblasts, pericytes, mesenchymal stem cells, and various types of immune cells, which were surrounded by fibrous structural proteins in the extracellular matrix (10). Cancer-associated fibroblasts (CAFs) are important components of the TME which arise from bone marrow-derived mesenchymal stem cells, hematopoietic stem cells, adipocytes, and endothelial cells (8, 11), as well as cancer cells (12). CAFs have been observed in a majority of cancers, such as breast cancer, prostate cancers, and HCC (13, 14), and its crosstalk with cancer cells has been revealed to be crucial for tumor progression (15). CAFs secrete a variety of growth factors and cytokines, and degrade extracellular matrix proteins, thereby affecting tumor cell proliferation, metastasis and chemotherapy resistance (16–18). CAFs could be stably maintained the tumor-promoting characteristics even without exposure to cancer cells (19). Therefore, it has become a potential strategy to shut down the downstream effects of CAFs or inhibit CAF-secreted factors that facilitate tumor development and progression for HCC intervention.

Although many studies focusing on CAF have been carried out in HCC, the systematic CAF characteristics and its relationship with HCC prognosis and immunotherapy response remain poorly understood. Herein, we obtained HCC single-cell RNA-sequencing (scRNA-seq) data and transcriptome data from accessible databases. We distinguished CAFs subclusters and identified CAF-based risk signature for HCC. Clinical relevance of the CAF-based signature was determined, and the immune landscaoe and responsiveness to immunotherapy underlying the CAF-based signature were further analzyed. Finally, we developed a novel nomogram combining the CAF-based risk signature and clinicopathological features to facilitate the clinical application of CAF features in the prognosis of HCC. It may provide new insights into the pathophysiology of HCC, leading to more tailored treatments and improved outcomes for patients with HCC.



Materials and methods


Data acquisition and processing

ScRNA-seq data of GSE149614 was downloaded from the Gene Expression Omnibus (GEO) database, including 10 samples of primary tumors, 2 samples of portal vein tumor thrombi, 1 sample of metastatic lymph node, and 8 samples of non-tumor liver. For scRNA-seq data, single cells were firstly screened with each gene expressing in at least 3 cells and each cell expressing at least 250 genes. Then PercentageFeatureSet function in Seurat R package was conducted to evaluate the proportion of mitochondria and rRNA. The single cells were further screened by setting each cell expressing at least 6000 genes with UMI > 100. Finally, a total of 69145 cells were remained. The transcriptome data, single-nucleotide variant (SNV) and copy number variants (CNV) data of Masked Copy Number Segment, and corresponding clinical information of HCC were obtained from The Cancer Genome Atlas (TCGA) database. For transcriptome data, the samples without survival data and outcome status were removed, and eventually, 360 tumor samples and 50 para-cancerous samples were included. GSE76427 cohort with 115 HCC samples was downloaded from the GEO database as a validation cohort after the removal of normal tissue samples and tumor samples without follow-up and outcome status information. Ten cancer-related pathways (Cell Cycle, HIPPO, MYC, NOTCH, NRF1, PI3K, TGF-Beta, RAS, TP53, and WNT) were retrieved from the literature (20).



Definition of CAF

We re-analyzed the scRNA-seq data of HCC using the Seurat package (21) to comprehensively characterize the CAF signature. Firstly, we removed the cells with over 6000 or below 250 expressed genes, followed by log normalization of expressed genes. The batch effects for 21 samples were eliminated using the FindIntegrationAnchors function. The non-linear dimensional reduction was conducted using the uniform manifold approximation and projection method, with 15 principal components and a resolution at 0.2. Single cells were clustered into different subgroups by using the functions of FindNeighbors and FindClusters (dim = 40 and resolution = 0.2).Then t-distributed stochastic neighbor embedding (TSNE) dimensional reduction was conducted using the RunTSNE function. Fibroblasts were annotated with 4 marker genes, including ACTA2, FAP, PDGFRB, and NOTCH3. The fibroblasts were re-clustered with the same algorithm of FindNeighbors and FindClusters functions. TSNE dimensionality reduction was further performed on fibroblasts clusters. Marker genes of each CAF cluster were identified using FindAllMarkers function by comparing one cluster with other clusters with logFC = 0.5, minpct = 0.35, and adjusted p-value<0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the marker genes of CAFs clusters using the clusterProfiler package (22), and the CNV characteristics among the CAFs clusters were analyzed using the CopyKAT R package to differentiate between tumor cells and normal cells in each sample (23).



Identification of hub genes of CAF

Firstly, the differentially expressed genes (DEGs) between the tumor and normal tissue were screened out via limma package with a false discovery rate (FDR)<0.05 and |log2(Fold Change)|>1 (24). Then, we assessed the correlations between the DEGs and CAF clusters, and identify the key CAF-related genes with p<0.001 and cor>0.4. The prognosis-related genes were further identified using univariate Cox regression analysis in survival package with p<0.05 (https://rdocumentation.org/packages/survival/versions/2.42-3). To compress the gene number, we performed the least absolute shrinkage and selection operator (lasso) cox regression analysis, followed by multivariate Cox regression analysis with a stepwise regression method. According to the results of the multivariate Cox model, we constructed a risk signature with the following formula: risk score=Σβi*Expi. Where i is the gene in risk signature, expi represents the expression of the gene i, and βi represents the coefficients of gene i in multivariate Cox model. The patients were divided into the high- and low-risk groups after zero-mean normalization. The receiver operating characteristic curve (ROC) analysis was performed using the timeROC package (https://cran.r-project.org/web/packages/timeROC/index.html) to analyze the predictive performance of the risk signature. Similar analyses were conducted in the validation cohort.



Immune landscape analysis

The proportions of 22 immune cell subtypes in the TCGA cohort were evaluated by the CIBERSORT algorithm (25), a tool for assessing immune cell infiltration, and the immune and stromal scores were calculated using the ESTIMATE algorithm (https://sourceforge.net/projects/estimateproject/) to further explore the TME.



Construction of a risk signature and nomogram

To construct a nomogram model for clinical use, we first perform the univariate and multivariate Cox regression analysis on clinicopathological and risk signature. The variables with p<0.05 in the multivariate Cox model were used to construct a nomogram for the prediction of HCC prognosis using the rms package (26). The calibration curve was generated to evaluate the predictive accuracy of the model. The reliability of the model was evaluated using decision curve analysis (DCA).



Responsiveness to immune checkpoint blocks

We downloaded the transcriptomic, and matched clinical data of patients with HCC treated with an anti-PD-L1 agent (atezolizumab) (27) from IMvigor210 cohort (http://research-pub.gene.com/IMvigor210CoreBiologies). Meanwhile, GSE78220 cohort comprised of transcriptomic data from pre-treatment melanomas receiving anti-PD-1 checkpoint inhibition therapy (28), and also download for the determination of the potential value of the risk signature score in the prediction of responsiveness to immune checkpoint blocks (ICB).



Statistical analysis

All statistical analyses were performed using the R software (v3.6.3). The correlation matrices were conducted using Pearson or Spearman correlation. Wilcoxon test was conducted for the comparisons between the two groups. Survival differences were compared using K–M curves with a Log-rank test. P-value < 0.05 was considered statistical significance.




Results


Screening the CAFs in scRNA-seq samples

The flow chart of this study was shown in Figure 1. A total of 69145 cells were obtained from the scRNA-seq data after initial screening (Table 1). The detailed results of data preprocessing were shown in Figure S1. After log-normalization and dimensionality reduction, 15 subpopulations were obtained, and 9 CAF populations were identified based on four marker genes, including ACTA2, FAP, PDGFRB, and NOTCH3 (Figures S2A, B). The cells of 9 CAF populations were extracted for further clustering and dimensionality reduction. The CAF populations were further clustered by using the same clustering algorithm and four CAF clusters were identified (Figures S2C, D). The epithelial cell specific gene was not expressed in all four CAF clusters, supporting the accuracy of CAF identification (Figure S3). Figure 2A showed the TSNE plot of 21 sample distributions. As a result, four CAF clusters were finally generated and used for subsequent analysis (Figure 2B). A total of 211 DEGs among the 4 CAF clusters were identified and the expression of the top 5 DEGs (determined as the marker genes of CAF clusters) in the 4 clusters was shown in Figure 2C. The proportion of the 4 clusters in each cohort were illustrated in Figure 2D. As shown in Figure 2E, the results of KEGG analysis demonstrated that these DEGs were enriched in multiple pathways, including vascular smooth muscle contraction, focal adhesion, oxytcosin signaling pathway, PPARG signaling pathway, etc. In addition, the 4 CAF clusters consist of 1533 tumor cells and normal cells according to the CNV characteristics (Figure 2F).




Figure 1 | The flow chart of this study.




Table 1 | Cell counts before and after filtration of samples.






Figure 2 | The identification of CAF clusters based on scRNA seq data of HCC patients. (A) tsne plot of the distribution of 21 samples; (B) tsne plot of the distribution of four fibroblasts after clustering; (C) dot plot of the top 5 marker gene expression of subgroups; (D) subgroups in cancer tissue and Proportion and cell number of adjacent tissue; (E) kegg enrichment analysis of 4 fibroblast subsets; (F) tsne distribution map of malignant and non-malignant cells predicted by copykat package.





The expression of cancer-related pathways in CAF

To elucidate the associations between the CAF clusters and tumor progression, we investigated the characteristics of ten tumor-related pathways in the four CAF clusters. The GSVA scores of the ten tumor-related pathways in different CAF clusters were shown in Figure 3A. The ratio of malignant cells in CAF_0 cluster was significantly higher than that in the other three clusters (Figure 3B). However, there were no significant differences among the CAF_1, CAF_2, and CAF_3. Furthermore, we analyzed the GSVA scores of the ten tumor-related pathways between malignant and non-malignant cells in each CAF cluster, with slight differences observed (Figures 3C-F).




Figure 3 | The characteristics of tumor-related pathways in CAF clusters. (A) Heatmap of 10 tumor-related pathway scores enriched in CAF cells; (B) Comparison of CAF clusters in malignant and non-malignant cells; Comparison of GSVA score of each pathways between malignant and non-malignant cells in CAF_0 (C), CAF_1 (D),CAF_2 (E), and CAF_3 cluster (F). (wilcox.test, *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001). ns, not significant.



To determine the associations between the CAF clusters and prognosis, we first calculated the ssGSEA score of the marker genes (the top 5 DEGs of CAF clusters defined in Figure 2C) of each CAF cluster based on the TCGA cohort. The results demonstrated that the CAF_2 cluster had a significantly higher score in tumor samples than in normal samples, whereas the other CAF clusters had an opposite trend, with a higher score in normal samples than in tumor samples (Figure 4A). The HCC samples of TCGA dataset were separated into the high- and low-CAF score groups according to the optimal cut-off value analyzed by survminer R package. The samples in the high-CAF score group had a better prognosis in the CAF_0, CAF_1, and CAF_2 clusters than those in the low-CAF score group, whereas the CAF_3 was not associated with the prognosis of HCC (Figures 4B-E). The above results suggested that CAF_3 cluster may contribute little in the HCC progression although CAF_3 enrichment was differential in HCC and normal samples.




Figure 4 | The associations between the four CAF cluster and prognosis of HCC patients. (A) Comparison of four CAF scores in cancer and normal tissues; K-M curves of the high and low CAF score groups in the CAF_0 cluster (B), CAF_0 cluster (C), CAF_0 cluster (D), and CAF_0 cluster (E). **P < 0.01, ****P < 0.0001.





Identification of hub genes associated with CAF

To construct a risk signature, we firstly screened out DEGs between the tumor and normal tissues. As shown in Figure 5A, a total of 2349 DEGs were obtained, with 462 up-regulated DEGs and 1887 down-regulated DEGs. Among them, there are 423 genes that showed significant correlations with those prognosis-related CAF clusters. Furthermore, the prognostic value of each gene was assessed via univariate Cox regression analysis, with 234 genes exhibiting prognostic values (Figures 5A, B). Lasso Cox regression analysis was performed to narrow down the number of genes, with 11 genes left as lambda=0.047 (Figures 5C, D). Finally, we included 6 genes, including HMG-box containing 3 (HMGXB3), GCN1 activator of EIF2AK4 (GCN1), LUC7 like 3 pre-mRNA splicing factor (LUC7L3), ADAMTS like 2 (ADAMTSL2), solute carrier organic anion transporter family member 2A1 (SLCO2A1), and CD4 molecule (CD4), in the risk signature after multivariate Cox regression analysis with stepwise regression method (Figure 5E). The final 6-gene signature formula is as follows: RiskScore = -0.088*ADAMTSL2 - 0.121*SLCO2A1 - 0.217*CD4 + 0.249*GCN1 + 0.345*HMGXB3 + 0.271*LUC7L3. We calculated the risk score for each sample and divided them into the high- and low-risk groups after z-mean normalization. The AUC values of the model for 1- to 5-year survival range from 0.68 to 0.76 in the TCGA cohort and range from 0.65 to 0.7 in the GEO cohort (Figures 5F, G). Kaplan-Meier survival analyses revealed that high-risk patients had significantly poorer survival outcomes compared with low-risk patients in the TCGA cohort, as well as in the GEO cohort (Figures 5H, I).




Figure 5 | Identification of the hub predictive genes to construct a risk signature. (A) Volcano plot of differentially expressed genes of cancer and normal tissues in TCGA cohort; (B) Volcano plot of prognosis-related genes identified from univariate Cox regression analysis; (C) The trajectory of each independent variable with lambda; (D) Plots of the produced coefficient distributions for the logarithmic (lambda) series for parameter selection (lambda); (E) The multivariate Cox coefficients for each genes in the risk signature. (F) and (G) ROC curves of risk model constructed by 6 genes in TCGA cohort and GEO cohort; (H) and (I) K-M curves of risk model constructed by 6 genes in TCGA cohort and GEO cohort.





Mutation and pathway analysis of the hub genes

Next, we checked out the SNV mutations of the six genes of the risk signature. It showed that ADAMTSL2, SLCO2A1, HMGXB3, LUC7L3, and CD4 have SNV mutations in more samples, while no SNV mutation was observed in GCN1 (Figure S4A). We analyzed the co-occurrence probability of these key genes and the 10 most mutated genes. As revealed in Figure S4B, there was no significant probability of co-occurrence of the mutations in these 5 genes, but LUC7L3 presented a significant probability of co-occurrence with ABCA13 mutation. In the 6 genes, it was found that only a very small number of samples had gain/loss of CNV (Figure S4C). To further elucidate the associations between the risk genes and HCC, we analyzed the correlations between these genes and several molecular signatures of HCC. The results demonstrated that SLCO2A1 had significantly negative correlations with Aneuploidy Score, Homologous Recombination Defects, Fraction Altered, Number of Segments, and Nonsilent Mutation Rate, whereas HMGXB3, LUC7L3, and GCN1 showed significantly positive correlations with Homologous Recombination Defects and Fraction Altered (Figure S4D). In addition, we analyzed the potential pathways associated with each risk gene. As shown in Figures 6A, B, a total of 39 pathways were significantly correlated with these six genes, including angiogenesis, apical junction, apoptosis, etc.




Figure 6 | Identification of pathways that the risk genes involved in. (A) Gene-pathway correlation heatmap; (B) Enrichment score heatmap for key pathways. *P < 0.05, **P < 0.01, ***P < 0.001.





Relationship between hub genes and immunity

Our data demonstrated that ADAMTSL2, SLCO2A1, and CD4 presented significantly positive correlations with the stromal score, immune score, and estimate score, while LUC7L3 showed significantly negative correlations with the stromal, immune, and estimate scores. However, there was no significant correlations observed between the three scores and the other genes (GCN1 and HMGXB3) (Figure S5A). After grouping according to the median value of expression of each gene, we compared the three scores in different expressed groups. The results showed that, with regard to the ADAMTSL2, SLCO2A1, and CD4 genes, the three scores of the high expression group were significantly higher than those of the low expression group (Figure S5B). Correlation analysis revealed that ADAMTSL2, SLCO2A1, and CD4 presented a significantly negative correlation with the majority of T cells. Additionally, LUC7L3, GCN1, and HMGXB3 significantly positively correlated with M0 macrophages and neutrophils (Figure S5C). Moreover, we also observed significant differences between the high and low expression groups of risk genes in several immune cells (Figure S5D).



The responsiveness of risk signature to PD-L1 blockade immunotherapy

T-cell immunotherapy has emerged as an anticancer treatment with synergistic survival benefits (29). Therefore, we assessed the prognostic value of risk signature for immune-checkpoint therapy in the IMvigor210 and GSE78220 cohorts. The 348 patients in the IMvigor210 cohort showed varying degrees of response to anti-PD-L1 receptor blockers, including complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). SD/PD patients presented higher risk scores than CR/PR patients (Figure 7A). In the high-risk group, the percentage of SD/PD was higher than that in the low-risk group (Figure 7B). We observed that in the IMvigor210 cohort, patients in the low-risk group showed significant clinical benefits and a significantly longer overall survival as compared with those in the high-risk group (Figure 7C, p=0.0053). Specifically, there were significant survival differences in Stage I+II patients between the different risk groups (Figure 7D, p=0.0017), but not in Stage III+IV patients (Figure 7E, p=0.5). It suggested that the risk score is more sensitive in early-stage patients. In the GSE78220 cohort, we also found a significantly longer overall survival of patients in low-risk group than in high-risk group (Figure 7F, p=0.036). Meanwhile, the percentage of SD/PD in the high-risk group was higher than that in the low risk group (Figure 7G).




Figure 7 | The responsiveness of risk score to PD-L1 blockade immunotherapy in IMvigor210 cohort. (A) Differences in risk scores among immunotherapy responses in the IMvigor210 cohort; (B) Distribution of immunotherapy responses among risk score groups in the IMvigor210 cohort; (C) Prognostic differences among risk score groups in the IMvigor210 cohort; (D) Prognostic differences between risk score groups in early stage patients in the IMvigor210 cohort; (E) prognostic differences between risk score groups in advanced patients in the IMvigor210 cohort; (F) prognostic differences in risk score groups in the GSE78220 cohort; (G) Distribution of immunotherapy responses among risk score groups in the GSE78220 cohort. ****P < 0.0001.





Identification of independent risk factors and nomogram developing

To optimize the predictive performance of the risk signature, we integrated the clinicopathological characteristics and risk score via univariate and multivariate Cox regression analysis. Multivariate analysis demonstrated that risk signature was the most significant independent prognostic factor of osteosarcoma [hazard ratio (HR) = 1.77, 95% confidence interval (CI): 1.42 - 2.13, P < 0.001], followed by metastatic status (HR = 1.74, 95%CI: 1.22 - 2.46, P = 0.002) (Figures 8A, B). Therefore, a nomogram combining stage and risk score was constructed, as shown in Figure 8C. The calibration plot demonstrated that the nomogram can effectively forecast the actual survival outcomes (Figure 8D). Moreover, DCA revealed a better discriminative ability of the nomogram in recognizing patients at high risk than the risk score and stage, as shown in Figure 8E. TimeROC analysis showed that the AUC of the risk score and nomogram was higher than that of other indicators in the TCGA cohort (Figure 8F).




Figure 8 | The development of a nomogram for predicting the prognosis of HCC. (A, B) Univariate and multivariate Cox analysis of risk score and clinicopathological characteristics; (C) Nomogram model integrating the risk score and stage was constructed; (D) Calibration curves for 1, 3, and 5 years of nomogram; (E) Decision curve for nomogram; (F) Comparison of predictive capacity of clinicopathological features and the nomogram using time-ROC analysis. ***P < 0.001






Discussion

Accumulating evidence has demonstrated the dynamic crosstalk between tumor cells and the stromal cells contributes to tumor progression (9), As CAFs have been confirmed to be involved in tumor proliferation, angiogenesis, metastasis, as well as chemotherapy resistance via releasing various factors into the TME (30). In the present study, we concentrated on the diversity of CAFs and performed a systematic characterization and classification of CAFs of HCC based on scRNA-seq data. Eventually, we identified four CAF clusters with distinct properties, which might contribute to the regulation of different aspects of the biology of the TME. Accumulating evidence has confirmed the prognostic value of CAF-secreted factors or CAF-related gene signature in HCC (31). Consistently, our data revealed three of the clusters with a significant association with HCC prognosis, which were determined using a score derived from DEGs across the four clusters. Interestingly, we observed the differences in HIPPO and MYC among the CAF clusters might may partially contribute to the prognostic value of CAF. Hepatic Hippo signaling inhibits development of HCC (32), and the MYC-mediated axis has been confirmed as a dominant part of HCC in terms of proliferation, migration, invasion, and drug resistance (33).

Given the prognostic values of three CAF clusters, we established a CAF-based risk signature with 6 genes. It consisted of three protective genes (ADAMTSL2, SLCO2A1, and CD4) and three risk genes (HMGXB3, GCN1, and LUC7L3). In our study, SNV mutations were observed in ADAMTSL2, SLCO2A1, HMGXB3, LUC7L3, and CD4 without significant co-occurrence probability. Sense SNV mutations affect protein activity or function, leading to HCC development or affecting HCC progression (34). Although there are no independent studies linking SNV mutations in these risk genes to HCC progression, our data also suggest a potential role of SNV mutations in these genes in HCC progression. A recent study constructed a genomic instability-derived genes signature, which contains SLCO2A1, for the prediction of HCC prognosis (35). We further found that the six genes were significantly correlated with 39 pathways, while protective genes and risk genes clearly had different pathway signatures. For example, the protective genes were significantly positively associated with allograft rejection, myogenesis, complement, interferon-gamma response, whereas risk genes were significantly connected with fatty acid metabolism, xenobiotic metabolism, and adipogenesis. The alterations of fatty acid metabolism plays an important role in HCC and the prognostic value of fatty acid metabolism-related genes in HCC has also been revealed (36). Polymorphisms in xenobiotic metabolism-related genes were suggested to increase the risk of developing HCC (37). Adipogenesis is an indication of the development of obesity and is associated with multiple cancers (38). Hence, these data provide us with the direction to further study the regulation of these risk genes in HCC.

Recent evidence suggests that the interaction of CAFs and the tumor immune microenvironment (TIME) can promote tumor progression (39). In our study, three predictive genes were significantly positively correlated with immune score, while a risk gene was negatively associated with the immune score. These data indicated the potential crosstalk between these genes with TIME in HCC and implied the potential values of these genes as therapeutic targets of HCC. Various immune cells in tumor islets make up the TIME and synergistically determine the antitumor immunological state in the TME. CAFs can interact with these immune cells to form a immunosuppressive TME, thereby enable tumor cells to evade the surveillance of the immune system (40). In the risk signature, multiple types of T cells were negatively associated with the predictive genes. T cells are involved in tumor progression and the potential of T cell-derived therapies, including checkpoint blockade and chimeric antigen receptors T (CAR-T) cell therapy, has been confirmed (41).

Nevertheless, most of the patients show innate or acquired resistance to immunotherapies (42). Our data found that the risk signature was capable to distinguish patients who were more likely to benefit from immunotherapies. Additionally, it was reported that CAF-expressed endosialin regulated macrophage recruitment and polarization in HCC (43). In the defined signature, the risk genes were positively correlated with M0 macrophages and negatively correlated with M2 macrophages, indicating the potential involvement of the risk genes in the macrophage polarization. It was demonstrated that CAFs regulated neutrophil survival, activation, and function in HCC via the IL6-STAT3-PDL1 signaling cascade (44). Meanwhile, our data showed that CAF-based signature could predict the responsiveness to anti-PD-L1 immunotherapy. There data provided novel clues of the role of CAF in remodeling the cancer niche and immune status in TME. However, it requires more experiments to explore the role of CAF-TIME communication in HCC and its potential value in HCC immunotherapy.

Nevertheless, several limitations in our study should be acknowledged. First, the CAF clusters and CAF-based risk signature was generated using retrospective data from public databases. Therefore, it should be validated in more prospective and multi-center HCC cohorts in the future. Second, we only investigated the potential prognostic value of the CAF-based risk signature, so further studies are required to explore the underlying mechanisms of the signature in the development of HCC.



Conclusion

In summary, this study systematically characterized the CAF populations in HCC and generated four CAF clusters with distinct diversity. The DEGs among the four clusters were enriched in vascular smooth muscle contraction, focal adhesion, oxytcosin and PPARG signaling pathway, etc. Three of the cluster were significantly associated with HCC prognosis, and used to construct a CAF-based prognostic risk signature with 6 genes. The CAF-based gene signature was observed to be connected with the immune landscape and could be used for the prediction of the responsiveness to PD-L1 blockade immunotherapy. Finally, a novel nomogram integrating the risk signature and clinicopathological features were developed, which provided a favorable predictive performance in the clinical outcome of patients with HCC.
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Supplementary Figure 1 | The results of re-process of scRNA-seq data of LIHC. (A): The relationship between mitochondrial genes and the amount of UMI/mRNA, the relationship between UMI and the amount of mRNA; (B) The relationship among mRNA, UMI, mitochondrial content, and rRNA content of each sample before filtering; (C) The relationship among mRNA, UMI, mitochondrial content, and rRNA content of each sample after filtering; (D) The sample distribution map of PCA dimensionality reduction and the anchor point map of PCA.

Supplementary Figure 2 | The clustering of CAF populations and dimensionality reduction. (A) Distribution of subpopulations after clustering of all cells; (B) TSNE map of fibroblast marker gene expression; (C) Distribution of subpopulations after re-clustering of fibroblasts; (D) TSNE diagram.of marker expression in four CAF clusters.

Supplementary Figure 3 | The expression of EPCAM in four CAF clusters.

Supplementary Figure 4 | The characteristics of mutations of the genes included in the risk signature. (A) Waterfall diagram of SNV mutations of 6 key genes; (B) Colinearity and mutual exclusion analysis of key genes and the 10 most mutated genes in tumors; (C) CNV mutations (gain, loss, none) of 6 key genes; (D) Correlation heatmap of 6 key genes with Aneuploidy Score, Homologous Recombination Defects, Fraction Altered, Number of Segments, and Nonsilent Mutation Rate.

Supplementary Figure 5 | The relationship between the risk genes and immune landscape. (A) The correlation matric of the risk genes and stromal score, immune score, and estimate score. (B) Comparison of high and low expression of key genes and immune score (wilcox.test); (C) Correlation between key genes and immune cell score predicted by CIBERSORT analysis; (D) Comparison of high and low expression of key genes with 22 immune cell scores (wilcox.test). *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001.
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Increasing evidence has highlighted the critical functions of immunogenic cell death (ICD) within many tumors. However, the therapeutic possibilities and mechanism of utilizing ICD in melanoma are still not well investigated. Melanoma samples involved in our study were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. First, pan-cancer analysis of ICD systematically revealed its expression characteristics, prognostic values, mutation information, methylation level, pathway regulation relationship in multiple human cancers. The non-negative matrix factorization clustering was utilized to separate the TCGA-melanoma samples into two subtypes (i.e. C1 and C2) with different prognosis and immune microenvironment based on the expression traits of ICD. Then, LASSO-Cox regression analysis was utilized to determine an ICD-dependent risk signature (ICDRS) based on the differentially expressed genes (DEGs) between the two subtypes. Principal component analysis and t-distributed stochastic neighbor embedding analysis of ICDRS showed that high- and low-risk subpopulations could be clearly distinguished. Survival analysis and ROC curves in the training, internal validation, and external validation cohorts highlighted the accurate prognosis evaluation of ICDRS. The obvious discrepancies of immune microenvironment between the different risk populations might be responsible for the different prognoses of patients with melanoma. These findings revealed the close association of ICD with prognosis and tumor immune microenvironment. More importantly, ICDRS-based immunotherapy response and targeted drug prediction might be beneficial to different risk subpopulations of patients with melanoma. The innotative ICDRS could function as a marker to determine the prognosis and tumor immune microenvironment in melanoma. This will aid in patient classification for individualized melanoma treatment.
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Background

The most severe type of skin cancer is melanoma, which is caused by a malignancy of melanocytes (1). It is late diagnosis that leads to the poor prognosis in melanoma (2). Although typical therapies such as surgical excision (3), immunotherapy (4), gene therapy (5) are wildly used for melanoma patients, the mortality of melanoma has increased steadily in the last decades, which results in public health problems (6). Hence, there is need to come up with sensitive approaches for accurate assessment of clinical outcomes of melanoma patients, facilitating the development of precision medicine.

In recent years, most immune system components have been notified to be linked to melanoma’s genesis and progression (7, 8). Currently, PD-1, PD-L1, and CTLA-4 inhibitors which are examples of immunotherapy medications are applied in melanoma (9–11). However, these treatments are only effective in a small number of patients, with a vast number of patients having a restricted or non-existent response to treatment, particularly as the melanoma progresses. As a result, in order to investigate the potential predictive usefulness of immune and immune-related indicators, extensive investigations of the relationship between immune and melanoma are required.

The Nomenclature Committee on Cell Death (NCCD) has developed recommendations for defining and interpreting cell death from morphological, biochemical, and functional viewpoints over the last decade (12). Immunogenic cell death (ICD) is a distinct sort of cell death produced by a variety of anticancer treatment modalities, such as radiotherapy and chemotherapeutic medicines. In immunocompetent hosts, it entails activating the immune system against malignancy. ICD is followed by the exposure and generation of various molecular patterns linked to damage, which offer a strong adjuvanticity to dying cancer cells by favoring antigen-presenting cell recruitment and activation (13–15). Improving the immunogenicity of tumor cells by inducing ICD is a crucial strategy for improving cancer immunotherapy (16). However, the therapeutic possibilities and mechanism of utilizing ICD in melanoma are still not well investigated.

In this research, two subtypes with different prognosis and immune environment in melanoma were identified on the basis of ICD-related genes and an ICD-dependent risk signature (ICDRS) was created with the differentially expressed genes (DEGs) between the two melanoma subtypes. Additionally, the relation between the signature, prognosis and immune were further analyzed. The findings in the study illustrated that a novel ICDRS might be utilized as a helpful marker for the prognostic prediction and immune environment assessment in melanoma.



Materials and methods


Data collection

The Cancer Genome Atlas (TCGA) system was established in 2006 by the National Human Genome Institute and the National Cancer Institute with the purpose to map cancer genes, understand cancer’s potential pathways, and improve the ability of preventing the advancement of cancer, making precise diagnoses, and curing cancer (https://portal.gdc.cancer.gov/). High-throughput microarray and next-generation sequencing gene function data sets are archived in the Gene Expression Omnibus (GEO), a public database that is accessible worldwide. In the current study, the TCGA database was used to gather mRNA expression, clinical features, single nucleotide variation (SNV), copy number variation (CNV) and methylation data of pan-cancer (17, 18). In addition, GEO database was also searched to acquire mRNA expression profiles and corresponding clinical characteristics of melanoma transcriptome (19–21). ICD-related genes were identified based on the literature (22). Common immune checkpoint genes (ICGs) were identified from the review (23). The ‘c2.cp.kegg.v7.4.symbols.gmt’ file received from the Molecular Signatures Database (MSigDB) was used to identify immune-related pathway genes (MSigDB) (24–26).



Data procession

To find intersecting genes, the intersection of melanoma mRNA expression matrix from TCGA and melanoma mRNA expression matrix from GEO were taken. Data about crossing genes’ expression from the TCGA and GEO were transformed to log2(x + 1) form and batch normalized by conducting the “ComBat” function in the “sva” package in R. The transcriptome data of the intersecting genes in TCGA and GEO datasets were merged with corresponding clinical data, respectively.



Pan-cancer analysis

In recent years, various studies have been conducted to investigate the association between ICD-related genes and malignancies. Nonetheless, the prognostic effect, expression level, CNV, SNV and methylation of ICD-related genes in different types of cancers are poorly summarized. Thus, a pan-cancer assessment about these factors of ICD-related genes was carried out using the similar methods as the previous studies (27–32). Fold change of expression of ICD-related genes in pan-cancer was assessed. Univariate Cox regression analysis was performed to determine the ICD-related genes’ prognostic importance in distinct malignancies. CNV amplification and CNV deletion were evaluated. SNV of each gene was accumulated and the mutation frequency were calculated as follows: samples with SNV/all samples. The SNV type was also summed up. The pan-cancer methylation variation compared with normal tissue was analyzed. Additionally, for unveiling immune-related pathways affected by ICD-related genes, ICD scores in each sample of each cancer were computed through single sample gene set enrichment analysis (ssGSEA). Samples with the bottom and top 30% of ICD scores were selected into two groups respectively. Then, gene set enrichment analysis (GSEA) and the transcriptome were utilized to explore the difference of immune-related pathway activities caused by ICD-related difference between high-ICD and low-ICD groups. R and TBTools were used to conduct all of these analyses (33).



NMF clustering identification of two subtypes of melanoma

The mRNA expression matrix of ICD-related genes in TCGA dataset was collected to perform non-negative matrix factorization (NMF) clustering with the adjusted number of clusters as 2-10 by utilizing the “NMF” package in R (34). The standard “brunet” option was selected, and 100 iterations were performed. The most appropriate clustering number was determined based on the NMF rank surveys and discrimination between different cluster subtypes (35).



Comparison of the clinical traits, survival status, tumor immune microenvironment, and gene expression levels between different cluster subtypes

The fisher test was employed to the compositional discrepancies of clinical traits in different subtypes. Kaplan–Meier analyses were conducted to investigate the differences of disease specific survival (DSS), overall survival (OS), and progression free interval (PFI) in different subtypes. The wilcox test was employed to investigate the discrepancies of tumor immune microenvironment in different cluster subtypes after computing the ImmuneScore and TumorPurity of each melanoma sample by utilizing the “estimate” package in R (36). The CIBERSORT approach was employed to compare the infiltration composition of 22 immune cells in each melanoma sample (37, 38). The wilcox test was then implemented to investigate the discrepancy in the immune cell infiltration and the ICG expression levels between different subtypes (39). The ‘limma’ package in R was utilized to identify the ICD-dependent DEGs (ICD-DEGs) between the two melanoma subtypes and FDR < 0.05 and | log 2 fold-change (FC) | > 1 were used as screening criteria.



Development and verification of a risk signature based on ICD- DEGs

Melanoma samples from the TCGA dataset with full transcriptome and survival data were randomly separated into two cohorts: train and test1. Following that, all TCGA samples were set as test2 cohort, whereas every GEO sample was included in test3 cohort.

In train cohort, univariate Cox regression analysis was carried out for distinguishing prognostic ICD-DEGs (screening criteria: p < 0.05). Secondly, to minimize over-fitting and choose relevant variables among the prognostic ICD-DEGs, least absolute shrinkage and selection operator (LASSO) regression analysis was employed. After that, multivariate Cox proportional hazards regression analysis was conducted for identifying an ICD-dependent risk signature (ICDRS) and the risk score of each sample was determined under the help of the “predict” function in R. Following the calculation of each sample’s risk score in the train cohort, samples were stratified into low- and high-risk subpopulations depending on the median value. Then, based on the median risk score of the train cohort, the melanoma patients in the three test cohorts were all categorized into high- and low-risk subpopulations. The following analyses were carried out in the train and three test cohorts for ICDRS creation, external validation, and internal validation: (1) the use of principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) to visualize sample classification; (2) the use of Kaplan-Meier analysis to investigate the discrepancies of survival status in high- and low-risk subpopulations; (3) the use of the ‘pheatmap’ R package to display the expression levels of the genes in the ICDRS; (4) the use of the wilcox test for investigating the variations of tumor immune microenvironment in low- and high-risk subpopulations after computing the ImmuneScore and TumorPurity of each melanoma sample utilizing transcriptome data the “estimate” package in R; (5) the use of Pearson correlation analysis to illustrate the correlation between ImmuneScore and TumorPurity and risk score; (6) the use of a time-dependent receiver operating characteristic (ROC) curve to verify the ICDRS diagnostic values for 0.5-year, 1-year, and 2-year survival rates utilizing the ‘survivalROC’ package in R. (7) combined application of survival analysis, time-dependent ROC curve, and C-index to highlight the accuracy of our signature comparing with another three well-established signatures [a ferroptosis-related signature recognized by Zeng et al. (40), a metabolism-related signature recognized by Deng et al. (41), and a pyroptosis-related signature recognized by Wu et al. (42)].



The ICDRS-based immune-related discrepancies in all the four cohorts

After the investigation about the discrepancies of the tumor immune microenvironment between the low- and high-risk subpopulations, the ICDRS-depend immune-related discrepancies were studied in depth. First, the different expression analysis of ICGs and ICD-related genes between low- and high-risk subpopulations was conducted by utilizing the wilcox test. Then, the varied infiltration of immune cells between low- and high-risk subpopulations was analyzed after calculating the infiltration composition of 22 immune cells in every melanoma sample according to CIBERSORT algorithm (37, 43). In addition, the activities of immune-related pathways were compared with the help of the wilcox test after evaluating the activities of these pathways according to the transcriptome data by the single sample gene set enrichment analysis (ssGSEA) in R (18, 44, 45).



The correlation analysis between ICDRS-based risk score and immune-related indicators in all the four cohorts

All the statistically different immune-related indicators in all cohorts concurrently were studied deeply in the following analysis. It is Pearson correlation analysis that was performed for illustrating the relationship between ICDRS-based risk score and immune-related indicators including the proportion of immune cells existing in the tumor immune environment, the expression of ICGs and ICD-related genes, and the immune-related pathway scores.



Prediction of immunotherapy response and potential drugs for melanoma treatment based on ICDRS

Immunotherapy is wildly applied in melanoma. To distinguish patients more suitable for immune checkpoint inhibitor (ICI) treatment, the Cancer Immunome Atlas (TCIA), a database helping predict immunotherapy response, was searched to downloaded immunophenoscores (IPS) of melanoma samples in TCGA (46, 47). Subsequently, wilcox.test was utilized to compared IPS between low- and high-risk subpopulations in the three cohorts derived from TCGA. Of note, IPS is a satisfied predictor for anti-PD-1 and anti-CTLA-4 therapies. In order to investigate the potential drugs for melanoma patients, DEGs between low- and high-risk subpopulations were additionally explored utilizing the ‘limma’ in R and those DEGs which expressed highly in high-risk subpopulation were identified with the filtering parameters were FDR < 0.05 and log2 FC > 1. Then CMap database (https://clue.io/COMMAND) was applied to predict potential drugs which targeted highly expressed DEGs in all the four cohorts respectively.




Results


Data procession

Figure 1 shows a flow chart with a summary of the research process. The analysis includes 472 melanoma samples from the TCGA database and an additional 214 melanoma samples (GSE65904) from the GEO database. A total of 20,188 common genes were found after all of the genes from the TCGA and GEO datasets were intersected. Notably, 37 TCGA melanoma samples and 4 GEO melanoma samples were omitted because their survival data was incomplete. Totally, the mRNA expression data and survival data of 435 TCGA melanoma samples and 210 GEO melanoma samples were merged respectively. For the following research, 34 ICD-related genes were included.




Figure 1 | The present study’s workflow.





ICD-related genes’ mRNA expression and prognostic significance across cancer types

First, Figure 2A shows the levels of mRNA expression of ICD-related genes. In the heat map, IFNG indicated a clearly elevated expression in CESC, KIRC, and GBM. IFNB1 showed a markedly elevated expression in BRCA and BLCA, while IL6 showed an obviously decreasing expression in BRCA and BLCA. To more vividly demonstrate the importance of variance in mRNA expression levels, a heat map displaying -lg (pValue) was constructed. The more intense the change of mRNA expression in corresponding tumor, the redder the color. (Figure 2B). The results of univariate cox regression analysis between the mRNA expression and OS distinguished risky ICD-related genes (HR>1, p<0.05) and protective ICD-related genes (HR<1, p<0.05). Of note, CD4, FOXP3, CD8A, CXCR3, IFNG, PRF1, MYD88, ATG5, CD8B, IL1R1, TLR4, PIK3CA, TNF, CASP8, and EIF2AK3 showed protective function in SKCM (Figure 2C).




Figure 2 | Pan-cancer overview of ICD-related genes. The discrepancies in expression levels of ICD-related genes across pan-cancer and corresponding paracancerous tissues (A): log2(FC), (B): -lg(pValue)). (C) Survival landscape of ICD-related genes across cancer types. (D) CNV of ICD-related genes in various cancers. (E, F) SNV frequencies and types in pan-cancer. (G) Methylation variation of ICD-related genes in pan-cancer. (H) Immune-related pathways affected by ICD-related genes (The redder the color, the higher the normalized enrichment score (NES); the larger the dot, the lower the corrected p-value).





CNV, SNV, methylation of ICD-related genes and immune-related pathways affected by ICD-related genes in different types of cancers

The CNV, SNV and methylation existed in various cancers. The summary of pan-cancer CNV suggested CNV occurred in various cancers at high frequencies (>5%) (Figure 2D). The SNV states of ICD-related genes were evident and attractive in UCEC. And the PIK3CA showed higher SNV in BRCA, COAD, and UCEC. The mutation frequency of PIK3CA SNV in UCEC reached nearly 50% (Figure 2E). Exactly, the SNV types of PIK3CA were mainly Missense_Mutation (Figure 2F). Of note, the PIK3CA methylation made no sense in most cancers (Figure 2G). Indeed, ICD-related genes might correlate to many immune-related pathways which were shown in Figure 2H.



NMF clustering identifying of two melanoma subtypes

According to the ICD-related genes’ expression matrix, NMF clustering was conducted and the optimal clustering number of 2 was selected (Figure 3A). The compositional differences of clinical traits between cluster1 and cluster2 suggests that the two subtypes differed statistically in many aspects such as survival status, cancer status, and tumor stage (Figure 3B). As for the different survival status in the two clusters, samples in cluster2 had better DSS, OS, and PFI (Figures 3C–E).




Figure 3 | Comparison of the clinical traits, survival status, tumor immune microenvironment between different cluster subtypes obtained by NMF clustering. (A) The optimal clustering number of 2; (B) Pie charts illustrating the clinicopathologic factors in the two molecular subtypes; (C–E) Kaplan–Meier analyses (DSS, OS and PFI) based on the two molecular subtypes; (F) Comparison of TME components; (G) Discrepancy analysis of tumor-infiltrating immune cells in different subtypes; and (H) Differential expression analysis of 68 immune checkpoints genes between two molecular subtypes.(* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p > 0.05).



The tumor immune microenvironment is also statistically different. The higher ImmuneScore, which is correlated with immune components, existed in C2. The TumorPurity in C2 is worse than those in C1 (Figure 3F). Of note, the tumor-infiltrating immune cells in different subtypes showed different percentages. There were more anti-tumor immune cells in C2 such as CD8+ T cells, activated CD4+ T memory cells, activated NK cells, and M1 macrophages. As for cancer-promoting immune cells, M2 macrophages are downregulated in C2 (Figure 3G). ICGs also displayed discrepancies in the two cluster subtypes. Almost all the ICGs had a higher expression in C2. It is noteworthy that common immunotherapy targets including PD-1(PDCD1), PD-L1(CD274), and CTLA4 were highly expressed in C2 (Figure 3H).



Investigation of ICD-DEGs and construction of an ICDRS

In view of the statistically different survival status and tumor immune microenvironment in the two cluster subtypes, the two clusters can be differentiated from each other. Then 534 ICD-DEGs between cluster1 and cluster2 were identified (Supplementary Figure 1). The findings of the univariate Cox regression analysis revealed that 237 of the 534 ICD-DEGs might be used as prognostic predictors. Subsequently, collinearity among the 237 ICD-DEGs was eliminated and over-fitting of the prognostic signature was avoided through LASSO regression analysis (Supplementary Figures 2A, B). 3 ICD-DEGs were selected for further multivariate Cox regression analysis (Supplementary Figure 2C). Finally, an ICDRS was developed using multivariate Cox proportional hazards regression analysis incorporating 3 ICD-DEGs (i.e., GBP2, THBS4, and APOBEC3G). The “predict” function in R was applied to calculate risk score of each patient with melanoma in all the four cohorts, and samples were separated into high- and low-risk subpopulations using the median risk score of 1.0342095 in train as cutoff value.

PCA and T-SNE were then conducted to determine the overall distribution of melanoma samples in low- and high-risk subpopulations. The patients within the two subpopulations can be effectively differentiated (Figures 4A, B). The survival analysis illustrated samples in the two subpopulations correspond to different survival status: OS rates were lower in the high-risk subpopulation (p < 0.05) (Figure 4C). Then levels of expression of these three ICD-DEGs in ICDRS are shown by a heatmap: GBP2 and APOBEC3G in high-risk subpopulation had lower levels of expression while THBS4 had higher expression in high-risk subpopulation compared with low-risk subpopulation (Figure 4D). Moreover, the tumor immune microenvironment was also statistically different in low- and high-risk subpopulations: patients with high-risk exhibited decreased levels of ImmuneScore but showed increased levels of TumorPurity compared with low-risk patients (Figures 4E, F); in addition, the ImmuneScore indicated a highly adverse correlation with risk score (R=-0.52, P=2.8e-16) while the TumorPurity indicated a moderately positive correlation with risk score (R=0.39, P=2.5e-09) (Figures 4G, H). Moreover, the ROC curves’ area under the curve (AUC) values are 0.922, 0.763, and 0.696 for 0.5-, 1-, and 2-year survival (Figure 4I).




Figure 4 | Construction of ICDRS in the train cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the train cohort; (D) Distribution pattern of the expression levels of the 3 genes in the train cohort; (E, F) Comparing TME components in train cohort (*** indicates p < 0.001); (G) The correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of ROC curves in the train cohort.





Internal and external validation of the ICDRS in melanoma

First, patients in the three test cohorts were grouped respectively into low- and high-risk subpopulations according to median risk score of train cohort as the unified benchmark. For the internal validation (test 1 and test2 cohorts) and the external validation (test3 cohort), patients in the two subpopulations could be easily distinguished from one another using T-SNE and PCA (Figures 5A, B, 6A, B, 7A, B). Similarly, in the three test cohorts, patients in high-risk subpopulation experienced poorer OS (all p < 0.05) (Figures 5C, 6C, and 7C). Also, the heatmaps obtained from the three test cohorts demonstrated the presence of GBP2 and APOBEC3G with attenuated expression while THBS4 with high expression in the high-risk subpopulation (Figures 5D, 6D, and 7D). Likewise, the tumor immune microenvironment was statistically different in these three cohorts which was the same as the results in train cohort (Figures 5E, F, 6E, F, and 7E, F). Moreover, the ImmuneScore also showed a significant negative relationship with risk score in test1 cohort (R=-0.4, p=1.2e-09), test2 cohort (R=-0.43, p<2.2e-16), and test3 cohort (R=-0.6, p<2.2e-16) (Figures 5G, 6G, and 7G), while the TumorPurity also indicated a significant positive relationship with risk score in test1 cohort (R=0.25, p=0.00026), test2 cohort (R=0.29, p=5.2e-10), and test3 cohort (R=0.39, p=5.2e-09) (Figures 5H, 6H, and 7H). As for the diagnostic value of risk score, the AUC values of the ROC curves were 0.768, 0.767, and 0.673 in the test1 cohort, 0.852, 0.762, and 0.684 in the test2 cohort, and 0.729, 0.706, and 0.730 in the test3 cohort for 0.5-, 1-, and 2-year survival, respectively (Figures 5I, 6I, and 7I). Of note, all the results in the internal validation (test1 and test2 cohorts) and external validation (test3 cohorts) were consistent with those in train cohort.




Figure 5 | Internal verification of ICDRS in test1 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the test1 cohort; (D) Distribution pattern of the expression levels of the 3 genes in the test1 cohort; (E, F) Comparing TME components in test1 cohort (*** indicates p < 0.001); (G) The correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-year in the test1 cohort.






Figure 6 | Internal verification of ICDRS in test2 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the test2 cohort; (D) Distribution pattern of the expression levels of the 3 genes in the test2 cohort; (E, F) Comparing TME components in test2 cohort (*** indicates p < 0.001); (G) The correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-year in the test2 cohort.






Figure 7 | External verification of ICDRS in test3 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the test3 cohort; (D) Distribution pattern of the expression levels of the 3 genes in the test3 cohort; (E, F) Comparing TME components in test3 cohort (*** indicates p < 0.001); (G) The correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-year in the test3 cohort.



What’s more, taking the ICDRS-based survival probability discrepancy, AUC value, and C-index into consideration simultaneously, ICDRS showed superior in prognostic value and diagnostic accuracy compared with another three signatures (Figure 8). On the basis of the AUC, ICDRS showed a satisfied and stable performance in all the four cohorts. Of note, the discrepancies of the survival probability in different risk subpopulations distinguished by another three signatures sometimes showed no statistical significance. And the C-indexes of ICDRS were higher than another three signatures and were 0.66, 0.62, 0.64, and 0.67 in the four different cohorts respectively.




Figure 8 | Comparative analysis of ICDRS. The comparison of AUC values, survival analysis and C-indexes between ICDRS and three additional signatures in train (A–E), test1 (F–J), test2 (K–O), and test3 (P–T) cohorts.





The ICDRS-based immune-related discrepancies in all the four cohorts

In view of the differences in tumor immune microenvironment in low- and high- risk subpopulations, more in-depth exploration of immune-related discrepancies were made in all the four cohorts in the following research.

First, the consensus discrepancy of tumor-infiltrating immune cells in low- and high-risk subpopulations in the four cohorts indicated that less infiltration abundance of M1 macrophages and activated CD4+ T memory cells but more infiltration of M2 macrophages and resting CD4+ T memory cells existed in the high-risk subpopulation (Figures 9A–D). Subsequently, the Pearson correlation analysis showed that the proportion of M1 macrophages had a significant inverse relationship with risk score in train cohort (R=-0.3, p=0.0037), test1 cohort (R=-0.22, p=0.021), test2 cohort (R=-0.23, p=0.0016), and test3 cohort (R=-0.31, p=0.00041) (Figure 9E); the percentage of M2 macrophages had a significant positive relationship with risk score in train cohort (R=0.37, p=0.00026), test1 cohort (R=0.35, p=0.00016), test2 cohort (R=0.35, p=5.9e-07), and test3 cohort (R=0.56, p=2.2e-11) (Figure 9F); the proportion of activated CD4+ T memory cells had a significant inverse relationship with risk score in train cohort (R=-0.38, p=0.00018), test1 cohort (R=-0.3, p=0.0014), test2 cohort (R=-0.29, p=4.4e-05), and test3 cohort (R=-0.36, p=4.6e-05) (Figure 9G); the percentage of resting CD4+ T memory cells had a significant positive relationship with risk score in train cohort (R=0.3, p=0.0029), test1 cohort (R=0.26, p=0.0048), test2 cohort (R=0.24, p=0.00082), and test3 cohort (R=0.25, p=0.0049) (Figure 9H).




Figure 9 | The discrepancy of tumor-infiltrating immune cells in two risk subpopulations in train (A), test1 (B), test2 (C), and test3 (D) and the correlation between ICDRS-based risk score and the proportion of immune cells in the tumor immune environment in train (E), test1 (F), test2 (G), and test3 (H). (* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p>0.05).



Additionally, the discrepancies of ICGs’ expression in low- and high-risk subtypes in the four cohorts showed that a total of 52 ICGs had decreasing expression in high-risk subpopulations (Figures 10A–D). It is 30 ICGs (HLA-A, BTLA, CD80, HLA-C, CD27, CD40, CD86, BTN3A1, HLA-DMB, CD96, HAVCR2, HLA-B, HLA-DMA, ICOS, HLA-DOB, LGALS9, PDCD1, HLA-DPB1, HLA-F, HLA-DOA, HLA-DRA, HLA-E, HLA-DQA1, IDO1, KIR2DL4, LAG3, PDCD1LG2, HLA-DPA1, HLA-DQB1, and TIGIT) indicated a moderately inverse relationship with risk score in the four cohorts simultaneously (all R<-0.3, all p<0.05) (Figures 10E–H).




Figure 10 | The discrepancy of the expression levels of ICGs in two risk subpopulations in train (A), test1 (B), test2 (C), and test3 (D) and the correlation between ICDRS-based risk score and the expression of ICGs in train (E), test1 (F), test2 (G), and test3 (H). (* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p>0.05).



Next, ICD-related genes also had differences in low- and high-risk subpopulations. A total of 17 ICD-related genes (ATG5, CASP1, CASP8, CD4, CD8A, CD8B, CXCR3, ENTPD1, IFNG, IFNGR1, IL1B, LY96, MYD88, NLRP3, PRF1, TLR4, TNF) had decreasing expression in high-risk subpopulation in all the four cohorts simultaneously (Figure 11A). What’s more, the activation of each immune-related pathway was different in low- and high-risk subpopulations. High-risk subtype featured a decreasing activation of immune-related pathways. There were 21 pathways showed statistical differences in the two subpopulations in the four cohorts simultaneously (Figure 11B). Of note, 6 ICD-related genes (CD8A, PRF1, IFNG, CXCR3, TNF, CD8B) showed a moderately negative correlation with risk score in the four cohorts consistently (all R<-0.3, all p<0.05) (Figures 11C–F). And 20 of 21 statistically different immune-related pathways (such as MHC class I and II-mediated antigen presentation and processing, Toll-like and NOD-like receptor signaling pathway, T cell and B cell receptor signaling pathway, NK cell-mediated cytotoxicity, IL-1, IL-2, and IL-10 associated signaling pathway, PD-1 and CTLA-4 associated pathways) showed a moderately negative correlation with risk score in the four cohorts similarly(all R<-0.3, all p<0.05) (Figures 11G–J).




Figure 11 | (A) The discrepancy of the expression levels of ICD-related genes in high- and low-risk subpopulations in train, test1, test2, and test3; (B) The discrepancy of the activity of the immune-related pathways in two risk subpopulations in train, test1, test2, and test3; The correlation between ICDRS-based risk score and the expression of ICD-related genes in train (C), test1 (D), test2 (E), and test3 (F); The correlation between ICDRS-based risk score and immune-related pathway scores in train (C), test1 (D), test2 (E), and test3 (F). The correlation between ICDRSbased risk score and immune-related pathway scores in train (G), test1 (H), test2 (I), and test3 (J). (* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p>0.05).





Prediction of immunotherapy response and potential drugs for melanoma treatment based on ICDRS

Recent researches suggested that IPS based on immunogenicity is helpful in immunotherapy response prediction. The response probabilities of using anti-PD-1 antibody and anti-CTLA-4 antibody in the different ICDRS subpopulations were analyzed. It indicated that high-risk subpolulation had lower IPS and might have a worse immunotherapy response (Figures 12A–C). The upregulated target DEGs in high-risk were explored with the criteria for filtering were FDR < 0.05 and log2 FC > 1 in all the four cohorts respectively. In view of respective prediction of potential drugs in the four cohorts, 31 drugs which acted on the upregulated target DEGs were as follows: axitinib, brivanib, cediranib, cinobufagin, dasatinib, dovitinib, ENMD-2076, GTP-14564, HG-6-64-01, imatinib, linifanib, masitinib, midostaurin, motesanib, nilotinib, orlistat, ouabain, pazopanib, phenylbutazone, PD-173074, quizartinib, RHC-80267, RO-08-2750, rofecoxib, semaxanib, sorafenib, strophanthidin, SU-11652, sunitinib, tandutinib, and tivozanib. And the action mechanisms were shown in Figures 12D–G.




Figure 12 | Immunotherapy response prediction in train (A), test1 (B), test2 (C); Potential drugs targeted the upregulated DEGs in high-risk for melanoma treatment based on ICDRS in train (D), test1 (E), test2 (F), and test3 (G).






Discussion

Melanoma, the deadliest type of skin cancer, is a deadly disease that is becoming more common (48). It accounts for about 1.7 percent of all newly diagnosed primary malignant malignancies worldwide, and melanoma patients account for about 0.7 percent of all cancer deaths (49–51). Due to the influence of ICD on survival in many types of tumor including lung (52), ovarian malignancies (22), and head and neck squamous cell carcinoma (53) and cancer therapy (54–56), it is meaningful to explore whether ICD has a significant impact in tumor initiation and progression and whether ICD-related prognostic factors can be novel therapy targets in melanoma.

Hence, two subtypes (C1 and C2) were classified by NMF clustering. Based on the existence of survival and immune-related discrepancies in C1 and C2, ICD-DEGs were identified and utilized to construct a novel ICDRS. After internal and external validation, a 3-gene signature, involving GBP2, THBS4, and APOBEC3G, were unearthed. The prognostic significance of GBP2 and APOBEC3G in melanoma has also been backed up by other research investigations. It is reported that GBP2 exerted anti-tumour effects by inhibiting the Wnt/β-catenin pathway in skin cutaneous melanoma (SKCM) (57) and showed an association with poor prognosis in SKCM when its expression decreased (58). APOBEC3G, as a member of the cellular polynucleotide cytidine deaminases, catalyzes the deamination of cytosine to uracil in single-stranded DNA (59, 60) is significantly correlated with better prognosis when its expression is elevated in SKCM patients (61). As for THBS4, its potential role and prognostic performance in melanoma remains unclear but it is linked to poor prognosis in many other cancers: it effects the amplification and metastasis of gastric cancer positively (62); it may facilitate invasion of tumour cells in breast cancer (63); it accelerates HCC progression by modulating ITGB1 through FAK/PI3K/AKT pathway (64).

To guarantee the comprehensive verification and broad applicability of the prognostic signature, four cohorts (TCGA: train, test1 and test2 cohorts; GEO: test3 cohort) were identified. It’s worth noting that the internal validation cohort (test1 and test2 cohorts) and external validation cohort (test3 cohort) coexisted. It is the 3-gene signature that contributes to the differentiation of patients to low- and high-risk subpopulations. In all the four cohorts, our signature showed consistently satisfactory performance: (1) patients in the different risk subpopulations might be plainly discriminated from one another; (2) patients in the high-risk subpopulation have a dismal prognosis; (3) the signature-related tumor immune microenvironments in low- and high-risk subpopulations are statistically different; (4) ImmuneScore had a significant inverse relationship with risk score while the TumorPurity had a strong favorable relationship with risk score; (5) the diagnostic values of the signature for 0.5-year, 1-year, and 2-year survival rates were satisfactory; (6) ICDRS showed superior in prognostic value and diagnostic accuracy compared with another three well-recognized signatures.

As for the following in-depth investigation of the ICDRS-based immune-related discrepancies, it has been discovered that more infiltration of M2 macrophages but less infiltration of M1 macrophages existed in the high-risk subpopulation. Of note, proinflammatory M1 macrophages have the ability to phagocytose tumor cells, whereas anti-inflammatory M2 macrophages facilitate tumor development and invasion (65–67). Consequently, the discrepancies of these immune cell infiltration may result in a dismal prognosis of patients in high-risk subpopulation. Additionally, the inverse relationship between risk score and 30 ICGs suggest immune checkpoint inhibitor therapy could be more efficient for low-risk patients. And the negative correlation between 6 ICD-related genes (CD8A, PRF1, IFNG, CXCR3, TNF, CD8B) and risk score and the protective function of these 6 genes in SKCM indicates that drugs targeting these genes may be a novel treatment method in melanoma. Moreover, many immune-related pathways had different activities in the two subpopulations with different risk, and their activities were negatively linked with risk score. All of these differences could be the cause of differing prognoses and could be used as immunotherapy targets.

Finally, ICDRS-based immunotherapy response prediction suggested that low-risk subpopulation may benefit from anti-PD-1 and anti-CTLA-4 therapies. And the potential drugs targeted DEGs between the different risk populations were explored. Due to the increasing expression in high-risk subpopulation, these drugs might be effective for the high-risk populations.

This study has some limitations that should be acknowledged. To begin, the ICDRS was created with a small sample of melanoma patients from the TCGA and GEO databases. To confirm the predictive significance of this prognostic signature, a large-scale prospective clinical research is required. Besides, the ICDRS was generated solely through bioinformatic research, and further basic investigations are required to corroborate the conclusions.



Conclusions

We successfully separated the TCGA-melanoma samples into two subtypes on the basis of the expression of the ICD-related genes and developed a prognostic ICDRS involving 3 genes (i.e., GBP2, THBS4, and APOBEC3G) based on the DEGs between the two subtypes. The ICDRS exhibited good diagnostic values and correlated with different tumor immune microenvironment in train cohort, internal validation cohorts (test1 and test2 cohorts) and external validation cohort (test3 cohort). As a result, the ICDRS, based on the expression of three ICD-dependent DEGs, might be applied to determine the prognosis, the infiltration of M1/M2 macrophages, the expression levels of ICGs and ICD-related genes, as well as the functioning of immune-related pathways in melanoma. This will aid in patient classification for tailored melanoma treatment.
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In 2011, J. Hoffman, and B. Beutler won the Nobel Prize of medicine for the fact that they discovered the pattern recognition receptors (PRRs) and meanwhile described their effect on cell activation from the innate and adaptive immune systems. There are more and more evidences that have proved the obvious effect of PRRs on tumorigenesis progression. Nevertheless, the overall impact of PRR genes on prognosis, tumor microenvironmental characteristics and treatment response in patients with colon adenocarcinoma (COAD) remains unclear. In this research, we systematically assessed 20 PRR genes and comprehensively identified the prognostic value and enrichment degree of PRRs. The unsupervised clustering approach was employed for dividing COAD into 4 PRR subtypes, namely cluster A, cluster B, cluster C and cluster D, which were significantly different in terms of the clinical features, the immune infiltrations, and the functions. Among them, cluster B has better immune activities and functions. Cox and LASSO regression analysis was further applied to identify a prognostic five-PRR-based risk signature. Such signature can well predict patients’ overall survival (OS), together with a good robustness. Confounding parameters were controlled, with results indicating the ability of risk score to independently predict COAD patients’ OS. Besides, a nomogram with a strong reliability was created for enhancing the viability exhibited by the risk score in clinical practice. Also, patients who were classified based on the risk score owned distinguishable immune status and tumor mutation status, response to immunotherapy, as well as sensitivity to chemotherapy. A low risk score, featuring increased tumor stemness index (TSI), human leukocyte antigen (HLA), immune checkpoints, and immune activation, demonstrated a superior immunotherapeutic response. According to the study results, the prognostic PRR-based risk signature could serve as a robust biomarker for predicting the clinical outcomes as well as evaluating therapeutic response for COAD patients.
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Introduction

Colon cancer refers to the malignant lesions of colonic mucosa epithelium under the action of multiple carcinogenic factors such as environment or heredity, and is one of the common malignant tumors of digestive tract (1). Globally, about 8 million new cases occur each year, accounting for 10% to 15% of all malignancies (2). The colon adenocarcinoma (COAD) is the representative subtype regarding colon cancer, which takes up 98% of new colon cancer cases, with the 5-year survival rate of 40 – 60% (3). The early diagnosis rate of COAD was low, and most patients were in the middle and late stages when they were found (4). With the development of diagnostic techniques and optimization of treatment technologies, the mortality rate of COAD has decreased by 20% in the last 10 years (5). However, the exploration of new therapeutic targets and prognostic biomarkers for COAD at the molecular level still needs to be further carried out.

Innate immune pattern recognition receptors (PRRs) are crucial components of innate immunity, and constitute a bridge between the innate and acquired immunities (6). The immune system can remarkable affect the cancer formation, and it is essential to deeply understand the effect of specific PRRs in the cancer environment. In the past two decades, with the successive reports of various PRRs including TLR-like receptors, RLR-like receptors and NOD-like receptors, the research on innate immunity in cancer has set off a wave of climax (7, 8). PRRs can significantly regulate the tumor suppression and promote tumor cell responses in many cancer types. PRRs are capable of promoting the cancer shaping, to be specific, TLR9 activation by mitochondrial DNA in a hypoxic environment can induce the growth of hepatocellular carcinoma cells (9); TLR2 takes charge of triggering MyD88-IRAK1 signaling in the epithelial cells of breast cancer for inducing cell proliferation (10); activation of TLR2, TLR4, TLR7, TLR9 and NLRP3 can trigger multiple pro-tumor activities in pancreatic cancer (11). Besides, studies also proved the inhibiting effect of many PRRs on tumor progression, e.g., activating TLR8 in tumor cells is capable of preventing the generation of the immunosuppressive metabolite cAMP, thereby reversing immunosuppression in the tumor microenvironment (12); in colorectal cancer, TLR2, NOD1 and NLRP3 in the immune cells facilitate the antitumor activity via triggering the inflammation (13). However, there are no studies that confirm if the expression regarding PRR family-related genes are correlated with the COAD prognosis in clinical practice and if they can serve as the biomarkers of COAD.

Here, we provide a comprehensive overview of PRR-related genes in COAD and explore the potential of PRR signature for prognostic prediction and immunotherapeutic reflection.



Materials and methods


Dataset and preprocessing

The fragments per kilobase of transcript per million mapped reads (FPKM) format RNA sequencing (RNA-seq) data with complete follow-up information of 438 samples were downloaded from TCGA-COAD cohort. We excluded duplicate sequencing samples from the same patients and patients lacking complete follow-up information and with 0 survival days. We performed log2 [transcripts per million (TPM) + 1] transformation on the above raw data (14). Using the same exclusion criteria, 556 patients with COAD from the GEO database (GSE39582 cohort) were included as the validation cohort. Second, “sva” R package assisted in removing their batch effects (Figure S1).



Exploring the function of PRR

Twenty PRR genes were included from previous literature. In the TCGA-COAD cohort, each tumor sample was scored for PRR status using the GSVA algorithm. In all PRR, the best cut-off value -0.6131245 was taken into account for grouping patients with high score and low score. In the two groups, we use “limma” package and | log2-fold change (FC) | ≥ 1 and p-value < 0.05 as the threshold for identifying DEGs.



Unsupervised clustering analysis

Unsupervised consistent clustering analysis was performed based on the expression levels of DEGs. Principal component analysis (PCA) assisted in determining the independence between subtypes. The R package “ConsensuClusterPlus” helped to determine the cluster number and we performed 1000 iterations for ensuring their stability. Biological information was obtained from the KEGG database and GSVA assisted in evaluating the difference between subtypes in terms of the biological pathways.



Risk score model construction and validation

LASSO regression analysis was used for removing redundant genes. Next, we used multivariate Cox regression analysis to further screen genes according to best AIC value. Finally, the gene expression values were first weighted by the LASSO-Cox coefficient which were then integrated for establishing the risk score formula. Cox regression analysis served for evaluating the independent prognostic value of risk score in training set and external validation set.



Immune cell infiltration and tumour mutation burden estimation

For immune cell analysis, we used simultaneously different algorithms including TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL and EPIC for estimating the quantity and correlation of immune cells in various risk groups. Besides, the ssGSEA algorithm served for estimating immune cells as well as immune-related functions. MutSigCV algorithm assisted in selecting oncogenes of which the mutation frequency was higher relative to background, and maftools was used to display the mutations.



Drug sensitivity analysis

The “prophetic” package in the R software assisted in the IC50 calculation. Chemotherapy drugs came from the Genome of Drug Sensitivity in Cancer (GDSC) database.



qRT-PCR

TRIzol was employed to isolate the total RNA from COAD tumors as well as adjacent tissues, and SYBR Premix Ex Taq II (Takara, Shiga, Japan) served for cDNA amplification. Based on the three independent experiments, 2-ΔΔCT values were applied for data analysis. The study has obtained the approval of The Ethics Committee of the Second Hospital of Hebei Medical University and obtained all patients’ written consent. For specific experimental protocols, please refer to previous studies in our hospital (15, 16).



Statistical analysis

The R software (v.4.0.1) assisted in all the statistical analyses. Statistical methods for processing transcriptome data have been described in above section in detail. A p-value < 0.05 indicated statistical significance.




Results


Prognostic value of PRRs

GSVA algorithm assisted in calculating different PRR enrichment scores, and the correlation between the four groups of PRR enrichment scores and clinical pathological characteristics was further studied in the TCGA-COAD cohort. The results showed a negative correlation between partial PRR enrichment scores and M stage and pathological stage (Figure 1A). Subsequently, we performed survival analysis of four groups of PRR enrichment scores (Figures 1B–E), where the high and low scores in DNA sensor and all PRR were statistically different. We then grouped the TCGA-COAD cohort according to the cut off values in all PRR and explored the DEGs between the two groups. A majority of the DEGs were upregulated in the high score group, with 164 upregulated genes and 1 downregulated gene (Figure 1F). Finally, DEGs in clue GO underwent enrichment analysis, finding that entries such as peptide ligand-binding receptors, cytokine signaling in immune system, neutrophil deimmune system, immune system, and adaptive system were significantly enriched (Figure 1G).




Figure 1 | Prognostic value of PRRs. (A) Correlation between PRR enrichment scores and clinicopathological features. (B–E) Kaplan-Meier survival analysis between low-PRR enrichment scores and high-PRR enrichment scores. (F) Heatmap of DE-PRRs between low-PRR enrichment scores and high-PRR enrichment scores. (G) Enrichment analysis of DE-PRRs. *P < 0.05, **P < 0.01, ***P < 0.001.





Clusters mediated by PRR related DEGs

We integrated the clinical as well as transcriptome data regarding TCGA-COAD and GSE39582 cohorts into a meta cohort for further analysis. The expression levels of PRR-related DEGs were taken into account to classify patients into four subtypes under the assistance of the unsupervised consensus clustering analysis (Figures 2A, B), with cluster-A containing 361 patients, cluster-B containing 163 patients, cluster-C containing 199 patients, and cluster-D containing 271 patients. Based on the survival analysis, cluster C showed the worst prognosis among 4 clusters (Figure 2C). The PCA results demonstrated that at the transcriptome level, these four subtypes were relatively independent (Figure 2D). In addition, the heatmap showed the differential expression levels of PRR-related DEGs between clusters, demonstrating the distribution of relevant clinicopathological features, and it is worth noting that most genes in cluster B were significantly upregulated relative to other clusters (Figure 2E).




Figure 2 | PRR subtypes. (A) Consensus clustering matrix when k = 4. (B) Relative change in area under the CDF curve for k = 2 through 9. (C) Kaplan-Meier curves of OS for four subtypes in COAD. (D) PCA analysis indicating an obvious difference in transcriptomes between the four subtypes. (E) Differences in clinicopathologic characteristics and expression levels of PRRs between the four distinct subtypes.



The ssGSEA analysis showed most antigen-presenting cells and immune killer cells in cluster B were significantly upregulated (Figure 3A). To further explore the causes of immune microenvironment changes, the GSVA algorithm served for studying the biological process changes between the four clusters (Figures 3B–G). Most of the pathways in cluster B were significantly up-regulated compared with cluster A, such as ANTIGEN _ PROCESSING _ AND _ PRESENTATION, ALLOGRAFT _ REJECTION, HEMOKINE _ SIGNALING _ PATHWAY, TOLL _ LIKE _ RECEPTOR _ SIGNALING _ PATHWAY. In other two-by-two comparisons, cluster B also demonstrated a more abundant immune-related pathways active. Moreover, we used different algorithms (TIMER, CIBERSORT, MCP-counter, XCELL and EPIC) to estimate the abundance of immune cells based on the ‘IOBR package’. We found the result also showed the Cluster B maybe represent “hot tumor” (Figure S2).




Figure 3 | Biological characterization of molecular subtypes. (A) Differences in immune cell infiltration between different subtypes. (B–G) The GSVA pathway enrichment analysis between different subtypes.





Construction and validation of risk model

Although the above molecular typing results are capable of predicting the difference of COAD patients in survival and function, the molecular typing mainly considers the patient group, so it is incapable of accurately predicting each patient’s risk status. Hence, based on the mRNA expression of PRR-related DEGs, we assessed riskscore for each individual patient for clinical application. In the GEO cohort, by the LASSO-Cox algorithm (Figures 4A, B), we finally obtained a risk score formula based on 5 genes: (0.2881 × expression level (EL)of VSIG4) + (-0.1126 × EL of CXCL10) + (-0.1000 × EL of CXCL13) + (-0.1121 × EL of MMP12) + (0.0952 × EL of POSTN). In addition, the same median risk score was taken into account for differentiating between patients in different risk groups in the TCGA-COAD cohort and the GSE39582 cohort. In the GSE39582 cohort, patients with high risk exhibited obviously lower OS relative to patients with low risk (Figure 4C). The area under the ROC curve (AUC) values were 0.645, 0.659, and 0.642 for 1-, 3-, and 5-year survival, respectively (Figure 4D). The heatmap showed up-regulated CXCL10, CXCL13 and MMP12 in the group with low risk, and up-regulated VSIG4 and POSTN in the group with high risk (Figure 4E). The risk score also showed similar prediction performance in the TGCA-COAD cohort, where the AUCs at 1, 3 and 5 years were 0.659, 0.649, and 0.594, respectively (Figures 4F–H). Moreover, we compared the risk signatures in other studies (17–19). The results were also exciting: the risk signature of our study showed better C-index value (Figure S3).




Figure 4 | Construction and validation of risk model. (A) LASSO Cox regression analysis of PRRs. (B) Forest plot of the five target genes that compose the PRR signature. (C, F) KM survival analysis between low-risk and high-risk groups. (D, G) ROC curves analysis of PRR on OS at 1 year, 3 years, and 5 years. (E, H) Heatmap for the expression of five crucial genes in low-risk and high-risk groups.



For determining whether risk score could independently predict COAD patients’ prognosis, Cox regression analysis was performed based on clinicopathological characteristics and risk score. As revealed by the univariate Cox regression analysis, in TCGA and GEO cohorts, the risk score is significantly correlated with OS (GEO cohort: HR = 1.732, 95% CI = 1.477-2.032; TCGA cohort: HR = 1.916, 95% CI = 1.310- 2.803) (Figures 5A, C). After other confounding factors were adjusted, the risk score remained an independent predictor for COAD patients’ OS (GEO cohort: HR = 1.648, 95% CI = 1.347-2.017; TCGA cohort: HR = 1.829, 95% CI = 1.119-2.624) (Figures 5B, D). The nomogram can directly serve for clinical work (Figure 5E). As found by the calibration curves, for both cohorts, the predicted curves were similar to the standard curves, which indicated the close relation between the predicted survival at 1, 3, and 5 years and the actual survival (Figures 5F, G).




Figure 5 | Construction and validation of a nomogram. (A, B) The results of the univariate and multivariate Cox regression analyses regarding significant survival-related clinical characteristic parameters in the GEO cohort. (C, D) The results of the univariate and multivariate Cox regression analyses regarding significant survival-related clinical characteristic parameters in the TCGA cohort. (E) The nomogram for predicting the survival probability of COAD patients. The calibration plots of the nomogram for predicting OS probability in GSE39582 cohort (F) and TCGA cohort (G).





Immunity analysis

For comprehensively exploring the association of risk subgroups with immune cell infiltration, six algorithms were adopted for plotting the correlation heatmap (Figure 6A) and lollipop plot (Figure 6B) regarding immune cell infiltration: TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL and EPIC. Interestingly, in various algorithms, most immune cells presented a negative relation to risk score. In addition, the immune function of low-risk patients was significantly activated, indicating that low-risk patients tended to be in hot tumor state, and they might respond better to immunotherapy. Given the importance of immunotherapy, we compared the two groups in terms of the expression levels regarding 26 candidate immune checkpoints, finding that most immune checkpoints presented a high expression in groups with low risk, such as PD-L1 and CTLA4 (Figure 6C). Similarly, human leukocyte antigen (HLA) was also significantly different, and the group with low risk presented higher expression (Figure 6D). We found that the risk score may also indicate the status of microsatellite instability (MSI), with a lower proportion of high microsatellite instability (MSI-H) in high-risk patients (Figures 6E, F). Finally, considering the effect of tumor stemness index (TSI) on tumor progression, we performed a correlation analysis between risk score and DNAss and RNAss (Figures 6G, H), in which RNAs decreased significantly with the increase of risk score.




Figure 6 | Immunity analysis of the PRR-related prognostic signature. The correlation of tumor-infiltrating cells with risk score using 6 algorithms. (A) Heatmap. (B) lollipop plot. (C) Expression of immune checkpoints in the high and low-risk groups. (D) Comparison of 13 HLA-related genes expression levels in two risk score subgroups. (E–H) The correlation of the risk score and MSI and TSI. *P < 0.05, **P < 0.01, ***P < 0.001.





Mutation status in different risk subgroups

We further analyzed the whole-exome sequencing data of patients with different risk groups, and found consistent high mutation genes in the two groups: APC, TP53, TTN, KRAS and PIK3CA (Figures 7A, B). In addition, we analyzed the five genes involved in the model construction in detail in the TCGA-COAD cohort, and found that the mutation frequency of POSTN was 23%, while that of MMP12 and CCL13 was 0 (Figure 7C). In CNV, POSTN also demonstrated the highest amplification (Figure 7D), and in the methylation level analysis, MMP12 was highly methylated (Figure 7E). Finally, we performed qPCR validation in clinical tissue samples and showed highly expressed POSTN, VISG4 in tumor samples, and highly expressed CXCL10, CXCL13, and MMP12 in normal samples (Figure 7F).




Figure 7 | Mutation status in different risk subgroups. Waterfall maps of the somatic mutations in the high-risk group (A) and the low-risk group (B). (C) Mutation rates of five genes (POSTN, VISG4, CXCL10, CXCL13, MMP12) in COAD patients. (D) Frequencies of CNV gain and loss among five PRRs. (E) Methylation analysis of four genes (POSTN, VISG4, CXCL13, MMP12) in COAD patients. (F) The expression levels of five PRRs in 10 paired COAD and matched adjacent normal tissues were examined by q-PCR. **P < 0.01.





Drug effectiveness analysis

GDSC served for comparing patients’ chemotherapy response to the common chemotherapy agents in the two groups (Figures 8A–F). The IC50 values of six chemotherapeutic drugs in patients with COAD were quantified. Most of the drugs were statistically different between different risk groups, and the group with low risk was more sensitive to the above chemotherapeutic drugs.




Figure 8 | The differences in the chemotherapy response of common chemotherapy drugs between the high- and low-risk groups. (A) bleomycin, (B) cisplatin, (C) docetaxel, (D) doxorubicin, (E) etoposide, (F) gemcitabine.






Discussion

The immune system remarkably affects cancer shaping, from the early onset to the invasive metastasis and resistance to treatment (20). Since the significance of the immune system in the antitumour immunity has been recognized gradually, immune checkpoint inhibitors (ICIs) are applied in the immunotherapy for many cancers, despite the different efficacy (21). In comparison, innate immunity has not been applied in clinical practice. The dysregulation of innate immunity shows a relation to 1/3 of cancers and drives the the initiation and the maintenance regarding a chronic inflammatory state in the tumor microenvironment (TME), which is present throughout almost every stage of cancer development and cancer treatment resistance (22). In the past two decades, PRRs has gradually developed and crucially regulated the immune response to the microbial infection and the host tissue damage. In recently years, researchers have found the crucial effect exerted by PRRs on the modulation of many cellular responses regarding tumor inhibition and tumor promotion in the immune cells in the TME and directly in the cancer cells. The immune and non-immune functions of PRRs depend on the type of cancer (23, 24). Nevertheless, there are no studies that clearly explain how PRRs affect the clinical outcome, TME, and immunotherapy in COAD.

Twenty PRR genes reported in public were collected in the study. In the TCGA-COAD cohort, each tumor sample was scored for PRR status using the GSVA algorithm. In all PRR, the best cut-off value -0.6131245 was taking into account for dividing paints in group with high score and group with low score. In the two groups, “limma” package and | log2-fold change (FC) | ≥ 1 and p-value < 0.05 served as the threshold for identifying DEGs. It was found that most of the DEGs presented upregulation in the high score group, with 164 upregulated genes and 1 downregulated gene. Finally, DEGs in clue GO underwent enrichment analysis, finding that entries such as peptide ligand-binding receptors, cytokine signaling in immune system, neutrophil deimmune system, immune system, and adaptive system were significantly enriched. The unsupervised clustering approach was employed for dividing COAD into 4 PRR subtypes, namely cluster A, cluster B, cluster C and cluster D, which were significantly different in terms of the clinical features, the immune infiltrations, and the functions. Among them, cluster B has better immune activities and functions.

Although the above molecular typing results are capable of predicting the difference of COAD patients in survival and function, the molecular typing mainly considers the patient group, so it is incapable of accurately predicting each patient’s risk status. Hence, based on the mRNA expression of PRR-related DEGs, we assessed riskscore for each individual patient for clinical application. In the GEO cohort, by the LASSO-Cox algorithm, we finally obtained a risk score signature based on 5 genes. The signature classified COAD patients into group with low risk and group with high risk, and two independent validation cohorts verified its good performance and robust predicting efficiency regarding COAD survival. The signature was proved to be capable of well differentiating patients in different risk groups. Based on our study, risk score resulted from risk signature can independently predict OS. Besides, the PRR-based risk score was integrated with clinical factors, assisting in the construction of a nomogram, of which the efficacy was explained in calibration curves.

The immune system plays an important role in shaping all aspects of cancer, throughout the early initiation stage, tumor metastasis, and resistance to anti-cancer treatment. Humans have a deep understanding of the role of adaptive immunity in anti-tumor immunity and have developed immune checkpoint inhibitors (ICBs) for cancer immunotherapy. However, ICBs have different therapeutic effects in a variety of cancers (25). In contrast, innate immune function in cancer has not been fully utilized in clinic, although innate immune dysfunction is an important feature of all cancers. Recently, scientists have found that PRRs play a key role in regulating tumor cell response in many types of cancer. PRRs can play a role in immune cells and cancer cells in tumor microenvironment (26, 27). PRR provides a new perspective for clinical treatment of cancer. For a comprehensive exploration of the relation of risk subgroups to immune cell infiltration, six algorithms were employed for plotting the correlation heatmap and lollipop plot regarding immune cell infiltration: TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL, and EPIC. Interestingly, in various algorithms, most immune cells exhibited a negative relation to risk score. In addition, the immune function of low-risk patients was significantly activated, indicating that low-risk patients tended to be in hot tumor state, and they might respond better to immunotherapy. Given the importance of immunotherapy, we compared the two groups in terms of the expression level regarding 26 candidate immune checkpoints, finding that most immune checkpoints presented high expressions in group with low risk, such as PD-L1 and CTLA4. Similarly, HLA was also significantly different, which presented higher expression in the group with low risk. TSI and MSI, as the key biological markers for ICI response, can predict the immunotherapy response of various tumour types. More and more evidences found the higher sensitivity of high TSI/MSI patients to the immunotherapy (28, 29). In our study, MSI-H in group with low risk occupied a higher proportion. We analyzed the correlation of risk score with DNAss and RNAss, in which RNAs decreased significantly with the increase of risk score. Group with low risk reported obviously better clinical results relative to group with high risk, suggesting risk score could serve for independently predicting the responsiveness exhibited by immunotherapy.

This study has several limitations. Firstly, the findings were constructed and validated retrospectively in public databases. Therefore, it is necessary to conduct extensive prospective studies and supplementary in vivo and in vitro experimental studies to confirm our findings. Although there is significance in predicting the response to immunotherapy, this requires validation in another cohort of COAD patients undergoing immunotherapy.

To sum up, the study has confirmed the PRRs-based molecular subtypes in COAD, using PRRs for constructing a prognostic signature. In addition, patients with different risk score had different immune landscape, gene mutation status, expression of immune checkpoints, and drug sensitivity. Thus, PRR was a promising biomarker providing prognostic prediction and immune characterization, which may provide new strategies for personalized treatment in COAD patients.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.



Ethics statement

The studies involving human participants were reviewed and approved by The Ethics Committee of the Second Hospital of Hebei Medical University. The patients/participants provided their written informed consent to participate in this study.



Author contributions

PR and YZ downloaded the dataset, analyzed the data, and wrote the manuscript. YZ reviewed the manuscript. All authors read and approved the final manuscript.



Funding

This study was supported by Medical Science Research Plan Project of Hebei Province (No. 20200879).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.1010023/full#supplementary-material

Supplementary Figure 1 | The PCA plot of meta cohort before and after removing batch effects.

Supplementary Figure 2 | Comparison of Immune cell content of different molecular subtypes in different algorithm.

Supplementary Figure 3 | C-index in different risk signature.



References

1. Sung, H, Ferlay, J, Siegel, RL, Laversanne, M, Soerjomataram, I, Jemal, A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660

2. Siegel, RL, Miller, KD, Goding Sauer, A, Fedewa, SA, Butterly, LF, Anderson, JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin (2020) 70(3):145–64. doi: 10.3322/caac.21601

3. Siegel, RL, Torre, LA, Soerjomataram, I, Hayes, RB, Bray, F, Weber, TK, et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut. (2019) 68(12):2179–85. doi: 10.1136/gutjnl-2019-319511

4. Hu, F, Wang, Q, Yang, Z, Zhang, Z, and Liu, X. Network-based identification of biomarkers for colon adenocarcinoma. BMC Cancer (2020) 20(1):668. doi: 10.1186/s12885-020-07157-w

5. Gu, L, Liu, Y, Jiang, C, Sun, L, and Zhou, H. Identification and clinical validation of metastasis-associated biomarkers based on large-scale samples in colon-adenocarcinoma. Pharmacol Res (2020) 160:105087. doi: 10.1016/j.phrs.2020.105087

6. Paludan, SR, Pradeu, T, Masters, SL, and Mogensen, TH. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol (2021) 21(3):137–50. doi: 10.1038/s41577-020-0391-5

7. Li, K, Qu, S, Chen, X, Wu, Q, and Shi, M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci (2017) 18(2):404. doi: 10.3390/ijms18020404

8. Li, D, and Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther (2021) 6(1):291. doi: 10.1038/s41392-021-00687-0

9. Liu, Y, Yan, W, Tohme, S, Chen, M, Fu, Y, Tian, D, et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through toll-like receptor 9. J Hepatol (2015) 63(1):114–21. doi: 10.1016/j.jhep.2015.02.009

10. Scheeren, FA, Kuo, AH, van Weele, LJ, Cai, S, Glykofridis, I, Sikandar, SS, et al. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol (2014) 16(12):1238–48. doi: 10.1038/ncb3058

11. Santoni, M, Andrikou, K, Sotte, V, Bittoni, A, Lanese, A, Pellei, C, et al. Toll like receptors and pancreatic diseases: From a pathogenetic mechanism to a therapeutic target. Cancer Treat Rev (2015) 41(7):569–76. doi: 10.1016/j.ctrv.2015.04.004

12. Ye, J, Ma, C, Hsueh, EC, Dou, J, Mo, W, Liu, S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med (2014) 6(10):1294–311. doi: 10.15252/emmm.201403918

13. Fan, L, Xu, C, Ge, Q, Lin, Y, Wong, CC, Qi, Y, et al. A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs. Cancer Immunol Res (2021) 9(10):1111–24. doi: 10.1158/2326-6066.CIR-20-1019

14. Feng, S, Xu, Y, Dai, Z, Yin, H, Zhang, K, and Shen, Y. Integrative analysis from multicenter studies identifies a WGCNA-derived cancer-associated fibroblast signature for ovarian cancer. Front Immunol (2022) 13:951582. doi: 10.3389/fimmu.2022.951582

15. Zhao, F, Gao, S, Qin, X, Niu, R, Li, Z, Wang, C, et al. Comprehensive analysis of TRP channel-related genes for estimating the immune microenvironment, prognosis, and therapeutic effect in patients with esophageal squamous cell carcinoma. Front Cell Dev Biol (2022) 10:820870. doi: 10.3389/fcell.2022.820870

16. Zhao, F, Li, Y, Dong, Z, Zhang, D, Guo, P, Li, Z, et al. Identification of a risk signature based on lactic acid metabolism-related LncRNAs in patients with esophageal squamous cell carcinoma. Front Cell Dev Biol (2022) 10:845293. doi: 10.3389/fcell.2022.845293

17. Zhou, W, Zhang, S, Li, HB, Cai, Z, Tang, S, Chen, LX, et al. Development of prognostic indicator based on autophagy-related lncRNA analysis in colon adenocarcinoma. BioMed Res Int (2020) 2020:9807918. doi: 10.1155/2020/9807918

18. Zheng, H, Liu, H, Ge, Y, and Wang, X. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int (2021) 21(1):552. doi: 10.1186/s12935-021-02252-9

19. Zhang, X, Zhao, H, Shi, X, Jia, X, and Yang, Y. Identification and validation of an immune-related gene signature predictive of overall survival in colon cancer. Aging (Albany NY) (2020) 12(24):26095–120. doi: 10.18632/aging.202317

20. Candeias, SM, and Gaipl, US. The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem (2016) 16(1):101–7. doi: 10.2174/1871520615666150824153523

21. Bagchi, S, Yuan, R, and Engleman, EG. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu Rev Pathol (2021) 16:223–49. doi: 10.1146/annurev-pathol-042020-042741

22. Liu, Y, and Zeng, G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J Immunother (2012) 35(4):299–308. doi: 10.1097/CJI.0b013e3182518e83

23. Rakoff-Nahoum, S, and Medzhitov, R. Toll-like receptors and cancer. Nat Rev Cancer (2009) 9(1):57–63. doi: 10.1038/nrc2541

24. Tsan, MF. Toll-like receptors, inflammation and cancer. Semin Cancer Biol (2006) 16(1):32–7. doi: 10.1016/j.semcancer.2005.07.004

25. Bagchi, S, Yuan, R, and Engleman, EG. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu Rev Pathol (2021) 16:223–49. doi: 10.1146/annurev-pathol-042020-042741

26. Shekarian, T, Valsesia-Wittmann, S, Brody, J, Michallet, MC, Depil, S, Caux, C, et al. Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann Oncol (2017) 28(8):1756–66. doi: 10.1093/annonc/mdx179

27. Bai, L, Li, W, Zheng, W, Xu, D, Chen, N, and Cui, J. Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res (2020) 159:105017. doi: 10.1016/j.phrs.2020.105017

28. Zhao, F, Li, Z, Dong, Z, Wang, Z, Guo, P, Zhang, D, et al. Exploring the potential of exosome-related LncRNA pairs as predictors for immune microenvironment, survival outcome, and microbiotain landscape in esophageal squamous cell carcinoma. Front Immunol (2022) 13:918154. doi: 10.3389/fimmu.2022.918154

29. Eso, Y, Shimizu, T, Takeda, H, Takai, A, and Marusawa, H. Microsatellite instability and immune checkpoint inhibitors: Toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol (2020) 55(1):15–26. doi: 10.1007/s00535-019-01620-7



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ren and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 26 September 2022

doi: 10.3389/fonc.2022.917353

[image: image2]


Microsatellite stable metastatic colorectal cancer without liver metastasis may be preferred population for regorafenib or fruquintinib plus sintilimab as third-line or above therapy:A real-world study


Caiyun Nie 1,2,3,4, Huifang Lv 1,2,3,4, Beibei Chen 1,2,3,4, Weifeng Xu 1,2,3,4, Jianzheng Wang 1,2,3,4, Yingjun Liu 5, Saiqi Wang 1,2,3,4, Jing Zhao 1,2,3,4, Yunduan He 1,2,3,4 and Xiaobing Chen 1,2,3,4*


1 Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China , 2 State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China    , 3 Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China    , 4 Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China    , 5 Department of General Surgery, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China




Edited by: 

Jinghua Pan, Jinan University, China

Reviewed by: Nikola Živković, University of Niš, Serbia

Carmen Guillen Ponce, Ramón y Cajal University Hospital, Spain

Niansong Qian, PLA General Hospital, China

*Correspondence: 

Xiaobing Chen
 zlyychenxb0807@zzu.edu.cn

Specialty section: 
 This article was submitted to Gastrointestinal Cancers: Colorectal Cancer, a section of the journal Frontiers in Oncology


Received: 29 April 2022

Accepted: 12 September 2022

Published: 26 September 2022

Citation:
Nie C, Lv H, Chen B, Xu W, Wang J, Liu Y, Wang S, Zhao J, He Y and Chen X (2022) Microsatellite stable metastatic colorectal cancer without liver metastasis may be preferred population for regorafenib or fruquintinib plus sintilimab as third-line or above therapy:A real-world study. Front. Oncol. 12:917353. doi: 10.3389/fonc.2022.917353




Objectives

The antitumor activity of nivolumab plus regorafenib in colorectal cancer from a phase Ib REGONIVO study is encouraging. The present study was conducted to evaluate the efficacy and safety of regorafenib or fruquintinib plus sintilimab as third-line or above therapy in patients with microsatellite stable (MSS) metastatic colorectal cancer.



Methods

Patients with MSS metastatic colorectal cancer who have failed from prior treatment and received regorafenib or fruquintinib plus sintilimab as third-line or above therapy from January 2019 to December 2020 were prospectively analyzed based on real-world clinical practice. The primary end point was progression free survival (PFS). Secondary end points included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.



Results

42 patients received regorafenib plus sintilimab(RS), and the other 30 patients received fruquintinib plus sintilimab(FS). In the general population, the ORR and DCR were 13.9% and 70.8%, and the median PFS and OS was 4.2(95% CI=2.9-5.5) and 10.5 (95% CI=8.6-12.4) months, respectively. There were no statistically significant differences between RS and FS group in PFS (3.5(2.2-4.8) vs. 5.5(3.5-7.5) months, P=0.434) and OS (11.0(7.0-15.0) vs. 10.5(3.8-17.2) months, P=0.486). Subgroup analysis suggested that patients without liver metastasis responded well to this combination regimen (ORR: 21.4% vs. 9.1%) and obtained better OS (26(8.8-43.2) vs. 10.0(7.4-12.6) months, P=0.016). The incidence of Grade 3-4 adverse events (AEs) was 15.3% and the toxicities were generally tolerable and manageable.



Conclusions

Regorafenib or fruquintinib plus sintilimab as third-line or above therapy provide a feasible treatment regimen for MSS metastatic colorectal cancer with tolerated toxicity. Patients without liver metastasis may be the preferred population for this combination regimen.





Keywords: microsatellite stable, immunotherapy, targeted therapy, liver metastasis, colorectal cancer



Introduction

Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide (1). In the past, the incidence of colorectal cancer in China was much lower than that in western countries. However, the incidence of colorectal cancer has increased rapidly in recent years, which has become the most common malignant tumor of digestive system. 80% of patients are in the advanced stage when they are diagnosed, which greatly affects the prognosis of colorectal cancer. At present, the level of diagnosis and treatment of metastatic colorectal cancer has made great progress, precision therapy guided by genetic status detection and differentiation of primary tumor sites(left vs. right) has become the main treatment strategy for colorectal cancer (2–4).

Compared with other solid tumors, immunotherapy for colorectal cancer is relatively backward (5). Until 2015, the KEYNOTE-016 study opened the immunotherapy era of microsatellite instability-high(MSI-H) colorectal cancer (6). However, MSI-H tumors account for only about 5%, and the remaining 95% are microsatellite stable(MSS) type colorectal cancer. As a representative of “cold tumors”, immunotherapy seems to be helpless in MSS tumors, and many exploratory studies have failed (7, 8). The antitumor activity of nivolumab plus regorafenib in a colorectal cancer cohort from a phase Ib REGONIVO study is encouraging. The ORR of 25 patients was 36% (ORR of MSS patients was 33%), the median PFS was 7.9 months and the median OS was not reached (9). This is by far the most effective third-line treatment regimen for colorectal cancer. However, this is a phase Ib exploratory study with only 24 patients of MSS colorectal cancer.

Although regorafenib and fruquintinib improved prognosis in metastatic colorectal cancer, the objective response rates of regorafenib and fruquintinib monotherapy in the CORRECT and FRESCO studies were only 1.0% and 4.7%, respectively. In the phase Ib study REGONIVO announced at the 2019 ASCO meeting, the ORR of regorafenib combined with PD-1 antibody was as high as 33% in patients with MSS metastatic colorectal cancer, which were significantly higher than regorafenib and fruquintinib monotherapy. Multi-targeted antiangiogenic TKIs combined with immunotherapy have become a new treatment strategy for MSS colorectal cancer. Since then, a number of prospective single-arm studies explored the efficacy of TKIs combined with immunotherapy in the third-line treatment of MSS metastatic colorectal cancer, including REGONIVO (North America), REGOMUNE, REGOTORI, etc (10–12).

Due to the limited sample size, the results of REGONIVO still need to be further verified. And simultaneously, the efficacy of regorafenib or fruquintinib plus novel immune checkpoint inhibitors (ICIs) has not been reported. The present study was conducted to evaluate the efficacy and safety of regorafenib or fruquintinib plus sintilimab as third-line or above therapy in patients with MSS metastatic colorectal cancer.



Materials and methods


Patients population

From January 2019 to December 2020, patients with MSS metastatic colorectal cancer who have failed from prior treatment and received regorafenib or fruquintinib plus sintilimab as third-line or above therapy from Henan Cancer Hospital were prospectively analyzed based on real-world clinical practice. Immunohistochemistry (IHC) staining of four kinds of MMR protein (MLH1,MSH2,MSH6,PMS2) or polymerase chain reaction (PCR) analysis of five microsatellite markers (BAT25,BAT26,D5S346,D2S123,D17S250) were used to determine MSS status of colorectal cancer patients.



Study treatment

In this study, the patients received regorafenib or fruquintinib in combination with PD-1 inhibitor sintilimab until disease progression, unacceptable toxicity or death. In the regorafenib plus sintilimab group (RS), sintilimab was administered intravenously at a dose of 200 mg once every three weeks, and regorafenib was given orally at a dose of 80 or 120 mg once a day on d1 to d21 every 28 days. In this study, we used regorafenib as the starting dose of 80 mg and adjusted to 120 mg after one week of use, which reduced from 120 to 80 mg in case of intolerable toxicity. In the fruquintinib plus sintilimab group(FS), sintilimab was given as the same dose and fruquintinib was given orally at a dose of 5 mg once a day on d1 to d21 every 4 weeks, which reduced from 4 mg in case of intolerable toxicity.



Efficacy and safety assessments

After treatment, all patients underwent imaging examination every two cycles (6 weeks) to evaluate the clinical efficacy. The efficacy evaluation criteria are RECIST version 1.1 response evaluation criteria in solid tumors, including complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). The objective response rate (ORR) was CR + PR, and the disease control rate (DCR) was CR+ PR and SD. Adverse events (AEs) were assessed according to the Common Terminology Criteria for Adverse Events, version 4.0.



Statistical analysis

Survival curves of patients were estimated by the Kaplan-Meier method and compared using the log-rank test. The follow-up deadline is January 31, 2022. Progression-free survival (PFS) was defined as starting regorafenib or fruquintinib plus sintilimab as third-line or above treatment to disease progression or death. Overall survival (OS) was defined as the period from the time of regorafenib or fruquintinib plus sintilimab as third-line or above treatment to patient death or last follow-up. Difference between groups were determined by Pearson’s chi squared test or Fisher’s exact test. Receiver operating characteristics (ROC) analysis was applied to determine the cut-off value of Mean Platelet Volume (MPV), Neutrophil-to-Lymphocyte Ratio(NLR), lactate dehydrogenase (LDH) and D-Dimer. Subgroup analysis of predictive factor for PFS and OS was carried out by Cox proportional hazards model. All the statistical descriptive analyses were performed with SPSS 22.0 software (SPSS Inc., IL, US) software. P<0.05 was considered significant.




Results


Patient and treatment characteristics

A total of 72 patients with MSS metastatic colorectal cancer who have failed from prior treatment and received regorafenib or fruquintinib plus sintilimab as third-line or above therapy were included in the present study. Patient and treatment characteristics are summarized in Table 1. The median age was 57 years (range 32-78), with 36 female patients and 36 male patients. Primary tumor site in 54 patients were left colon, 16 patients had right colon cancer, and the other 2 patients were diagnosed as rectal cancer. Number of metastatic sites in 33(45.8%) patients were 1 or 2, and the other 39(54.2%) patients were 3 or more. The common metastatic sites included lymph node (65.3%), lung (62.5%), liver (61.1%) and peritoneum (27.8%). Regorafenib or fruquintinib plus sintilimab were given as third-line therapy in 39(54.2%) patients, and as fourth-line or above therapy in the other 33(45.8%) patients. All the patients included in the present study were confirmed as MSS status. KRAS, NRAS and BRAF gene were also detected. For KRAS, 32(44.4%) patients were wide type, 32(44.4%) patients were mutant. NRAS and BRAF gene in most patients were wide type(86.1% and 86.1%, respectively). Chemotherapy and targeted therapy are main prior treatment regimen. Chemotherapy regimens include FOLFOX and FOLFIRI. 60(83.3%) patients received anti-VEGF therapy with bevacizumab and 21(29.2%) patients received anti-EGFR therapy with cetuximab. A small proportion of patients(13.9%) had previously received regorafenib, and no patients received fruquintinib in prior therapy. Forty-two patients received regorafenib in combination with sintilimab and the other 30 patients received fruquintinib plus sintilimab. The baseline clinicopathological characteristics in the two groups were similar.


Table 1 | Patient and treatment characteristics.





Efficacy

In the general population, CR was not observed, 10 patients achieved PR, 41 patients had SD and 21 patients had PD. The overall ORR and DCR were 13.9% (10/72) and 70.8% (51/72), respectively (Table 2). In the RS population, CR was not observed, 5 patients achieved PR, 20 patients had SD and 17 patients had PD. The overall ORR and DCR were 11.9% (5/42) and 59.5% (25/42), respectively. In the FS group, CR was not observed, 5 patients achieved PR, 21 patients had SD and 4 patients had PD. The overall ORR and DCR were 16.7% (5/30) and 86.7% (26/30), respectively. The patients in FS group had higher DCR than RS population (P=0.012), but there was no statistical difference in ORR between the two groups. Meanwhile, the ORR and DCR in patients with different tumor site (left colon vs. right colon), KRAS status (wide type vs. mutant) and metastatic site (with liver metastasis vs. without liver metastasis) were also analyzed, no statistical differences were found between groups. 13.9% of patients have used regorafenib in the previous treatment, there were no statistically significant differences in ORR and DCR between patients with and without prior regorafenib therapy.


Table 2 | Efficacy of regorafenib or fruquintinib plus sintilimab in metastatic MSS colorectal cancer.



In the general population, the median PFS and median OS were 4.2 (95% CI= 2.9-5.5) and 10.5 (95% CI= 8.6-12.4) months, respectively (Figures 1A, B). The median PFS were 3.5 (95% CI= 2.2-4.8) and 5.5 (95% CI= 3.5-7.5) months in the RS and FS population, respectively (P = 0.434; Figure 1C). The median OS in the two groups were 11.0 (95% CI=7.0-15.0) months and 10.5 (95% CI=3.8-17.2) months, respectively (P = 0.486; Figure 1D). Simultaneously, the median PFS and OS in patients with different tumor site (left colon vs. right colon), KRAS status (wide type vs. mutant), metastatic site (with liver metastasis vs. without liver metastasis) and prior regorafenib therapy (Yes vs. No) were also compared, no statistical differences were found between groups with different tumor site, KRAS status and with or without prior regorafenib therapy (Figure 2). However, although no statistical difference exists in median PFS between patients with liver metastasis or without liver metastasis (3.5(2.4-4.6) vs. 4.5(1.5-7.5) months, P=0.075), the median OS in patients without liver metastasis was significantly better than patients with liver metastasis (26.0(8.8-43.2) vs. 10.0(7.4-12.6) months, P=0.016, Figure 2).




Figure 1 | Kaplan-Meier curve of PFS (A) and OS (B) in the general population. Kaplan-Meier curve of PFS (C) and OS (D) in the regorafenib plus sintilimab(RS), and fruquintinib plus sintilimab(FS) group.






Figure 2 | Kaplan-Meier curve of PFS (A) and OS (B) in patients with different primary tumor site (left colon vs. right colon). Kaplan-Meier curve of PFS (C) and OS (D) in patients with different KRAS status (wide type vs. mutant). Kaplan-Meier curve of PFS (E) and OS (F) in patients with liver metastasis or without liver metastasis.





Subgroup analysis of predictive factors

The present study also performed univariate analysis to evaluate the predictive value of clinicopathologic factors for PFS and OS, including sex (male vs. female), age (<65 vs. ≥65), treatment program (RS vs. FS), primary tumor site (left colon vs. right colon), liver metastasis (with vs. without), KRAS status (wide type vs. mutant), MPV (<9.9 vs. ≥9.9), NLR (<2.15 vs. ≥2.15), LDH (<312 vs. ≥312) and D-Dimer (<0.89 vs. ≥0.89). None of the above factors were found to be predictive factors for PFS. For OS, only with or without liver metastasis was confirmed to be a potential predictive factor (P=0.021, Table 3). We compared NLR and LDH between colorectal cancer patients with and without liver metastasis and no statistical difference was found in NLR between the two groups (P=0.330). However, the baseline LDH levels in patients with liver metastasis were significantly higher than those without liver metastasis (median level: 278 U/L vs. 218 U/L, P=0.000, Figure 3).


Table 3 | Exploratory univariate analysis of factors to predict PFS and OS.






Figure 3 | NLR (A) and LDH (B) level in colorectal cancer patients with and without liver metastasis.





Safety

Most of the adverse events were grade 1-2 in severity and the incidence of Grade 3-4 AEs was 15.3% (Table 4). No unexpected side effects or treatment-related death were observed. The dose reduction and treatment interruptions as a result of serious adverse events occurred in 28 (38.9%) and 33 (45.8%) patients, respectively. The most common treatment-related hematological AEs were increased ALT/AST (n=13, 18.1%), anemia (n=11, 15.3%), decreased white blood count (n=6, 8.3%), hyperbilirubinemia (n=5,6.9%), and decreased platelet (n=4, 5.6%). Non-hematological treatment-related AEs were fatigue (n=23, 31.9%), decreased appetite (n=22, 30.6%), secondary hypertension (n=17, 23.6%), hypothyroidism (n=15, 20.8%), oral mucositis (n=14, 19.4%), diarrhea (n=10, 13.9%), hand-foot syndrome (n=8, 11.1%), proteinuria (n=4, 5.6%), rash (n=4, 5.6%), pneumonitis (n=3, 4.2%), pyrexia (n=2, 2.8%). Grade 3-4 AEs were decreased platelet (n=1, 1.4%), increased ALT/AST (n=2, 2.8%), secondary hypertension (n=4, 5.6%), hand-foot syndrome (n=2, 2.8%), rash (n=1, 1.4%) and pneumonitis (n=1, 1.4%).


Table 4 | Treatment-related adverse events (TRAEs).






Discussion

Colorectal cancer is a highly heterogeneous disease, and stratified therapy based on genetic testing is currently the main strategy for third-line treatment of metastatic colorectal cancer. For MSI-H colorectal cancer, immunotherapy is preferred recommended treatment regimen (13–15). However, for the vast majority of patients with MSS type, single-agent chemotherapy and immunotherapy are almost ineffective. The international multicenter phase 3 clinical CORRECT study for the first time confirmed the OS benefit of regorafenib in refractory advanced colorectal cancer. The results showed that the median OS of the regorafenib group reached 6.4 months, which was significantly longer than that of the placebo control group (16). The FRESCO study evaluated the efficacy and safety of fruquintinib as third-line or later therapy in 416 patients with metastatic CRC. The results showed that the median OS of patients in the fruquintinib group was 9.3 months, which was 2.7 months longer than that in the placebo group, and the median PFS was extended from 1.8 months in the placebo group to 3.7 months (17). Based on the above clinical trials, small molecule tyrosine kinase inhibitors including regorafenib and fruquintinib are the standard third-line treatment options for colorectal cancer recommended in the current guidelines.

In addition to monotherapy, regorafenib and fruquintinib combined with immunotherapy has become a new treatment strategy. Most studies obtained consistent findings with the REGONIVO study, however in REGONIVO (North America) trial, the ORR of regorafenib combined with nivolumab was 7% in patients with MSS metastatic colorectal cancer, PFS and OS were 1.8 and 11.9 months respectively, which were worse than previous studies. Therefore, the ideal drug selection, dosage, benefit population for TKIs combined with immunotherapy in metastatic colorectal cancer still need to be further explored. Our present study evaluated the efficacy of regorafenib and fruquintinib plus sintilimab as third-line or above therapy in patients with MSS metastatic colorectal cancer, the overall ORR and DCR reached 13.9% and 70.8%, respectively. Although the ORR in our study is lower than previous clinical trials, it is worth noting that 54.2% patients received regorafenib or fruquintinib plus sintilimab as third-line therapy, and as fourth-line or above therapy in the other 45.8% patients. At the same time, the DCR was 70.8%, and median PFS and OS reached 4.2 and 10.5 months respectively, so regorafenib or fruquintinib plus sintilimab therapy still achieved a good therapeutic effect in such a relatively late-line patient population.

MSS-type colorectal cancer has been referred to as a “cold tumor” due to the low response to single-agent immunotherapy. Combination immunotherapy, including chemotherapy, targeted therapy or other immunomodulatory agents, to change it from “cold tumor” to “hot tumor”, is being actively explored. Multi-targeted antiangiogenic TKIs, including regorafenib and fruquintinib achieved better effect. Immunosuppressive cells such as regulatory T cells (Tregs) and tumor associated macrophages (TAMs) exist in the tumor microenvironment of patients with MSS colorectal cancer, which can suppress T cell activity (18–20). Basic research has shown that regorafenib can relieve the immunosuppression of Treg and TAM cells on T cells by inhibiting CSF1R and VEGFR to enhance the efficacy of immunotherapy (21, 22). Several previous retrospective studies have compared the efficacy of regorafenib and fruquintinib in combination with immunotherapy, and the results are inconsistent (23, 24). In our present study, except for DCR, fruquintinib was superior to regorafenib(86.7% vs. 59.5%, P=0.012), there were no significant differences in ORR, PFS and OS between the two groups.

However, not all MSS colorectal cancer patients respond well to this combination therapy mode, which means that it is necessary to further explore effective biomarkers and stratify the patient population to improve the survival benefit of patients. Subgroup analysis of predictive factors for PFS and OS demonstrated that the clinical benefit of this regimen was not related with sex, age, treatment program, primary tumor site, KRAS status, MPV, NLR, LDH and D-Dimer. However, patients without liver metastasis responded well to this combination regimen(ORR: 21.4% vs. 9.1%), and meantime although no statistical difference exists in median PFS between patients with liver metastasis or without liver metastasis, the median OS in patients without liver metastasis was significantly better than patients with liver metastasis. Liver is a common metastatic site of colorectal cancer, and liver metastasis is also the main cause of death in patients with colorectal cancer. Metastasis site may be a predictor of immunotherapy efficacy (25). In colorectal cancer, patients with liver metastasis have a suboptimal response to immunotherapy and have a poor prognosis (26). The REGOTORI study evaluated the efficacy of regorafenib plus toripalimab in patients with metastatic colorectal cancer, the ORR of patients with liver metastases was lower than that of patients without liver metastases (8.7% and 30.0%, respectively). Our present study yielded consistent findings that patients without liver metastasis responded well to this combination regimen and benefited more. Recent studies have shown that liver metastases suppress systemic antitumor immune responses and suppress immunotherapy efficacy by reducing systemic CD8+ T cells (27). LDH might be an indirect sign of activated tumor angiogenesis and immunosuppression, and our study also found that patients with liver metastasis had higher levels of LDH. For MSS metastatic colorectal cancer patients with liver metastasis, it is necessary to explore more effective treatment options.

13.9% of patients have used regorafenib in the previous treatment, there were no statistically significant differences in ORR, DCR, median PFS and median OS between patients with prior regorafenib therapy and without prior regorafenib therapy. This suggests that regorafenib or fruquintinib plus sintilimab remains an optional treatment strategy for patients who have failed previous regorafenib therapy.

The toxicity profile of this combination regimen was tolerable and was comparable with previous studies (28–30). The REGONIVO study demonstrated that combination of regorafenib 80 mg plus nivolumab had a manageable safety profile and encouraging antitumor activity. In this study, the dose reduction as a result of serious adverse events occurred in 28 (38.9%) patients. With this dose adjustment strategy, the treatment was well tolerated in patients. Our study has several strengths and limitations, because it is an observational study and the number of patients included is not large. Future validation clinical trials would be needed to confirm the value of regorafenib or fruquintinib plus sintilimab as third-line or above therapy in MSS metastatic colorectal cancer.



Conclusion

In conclusion, these data confirm that regorafenib or fruquintinib plus sintilimab as third-line or above therapy provide a feasible treatment regimen for MSS metastatic colorectal cancer with tolerated toxicity. Patients without liver metastases may be the preferred population for this combination regimen.
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Background

Cuproptosis, a newly discovered form of cell death, is regulated by protein lipoylation and is related to mitochondrial metabolism. However, further research is needed to determine how the cuproptosis-related gene ferredoxin 1 (FDX1) affects the tumor immune response and its prognostic significance in clear cell renal cell carcinoma (ccRCC).



Methods

The Cancer Genome Atlas was used to screen for FDX1 gene expression in ccRCC and healthy tissue samples. The results were validated using the Gene Expression Omnibus and the Human Protein Atlas. Multivariable analysis and Kaplan-Meier survival curves were used to examine the relationship between FDX1 gene expression, clinicopathological parameters, and overall survival (OS). The protein network containing FDX1 gene interaction was constructed using the online Search Tool for the Retrieval of Interacting Genes/Proteins. The relationship between FDX1 gene expression and immune cell infiltration in ccRCC was examined using Gene Ontology, gene set enrichment analysis (GSEA), and a single-sample GSEA. Using the Gene Expression Profiling Interactive Analysis and Tumor Immune Estimation Resource databases, we investigated the relationship between FDX1 gene expression, the degree of immune cell infiltration, and the corresponding gene marker sets.



Results

ccRCC samples had significantly (p < 0.05) lower FDX1 gene expression levels than normal tissue samples. Lower FDX1 gene expression levels were strongly associated with higher cancer grades and more advanced tumor–node–metastasis stages. The findings of multivariate and univariate analyses illustrated that the OS in ccRCC patients with low FDX1 expression is shorter than in patients with high FDX1 expression (p < 0.05). Ferredoxin reductase and CYP11A1 are key proteins interacting with the FDX1 gene, and ccRCC with an FDX1 enzyme defect was associated with a low number of invading immune cells and their corresponding marker.



Conclusion

In ccRCC, decreased FDX1 expression was linked to disease progression, an unfavorable prognosis, and dysregulated immune cell infiltration.
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Introduction

The number of people diagnosed with renal cell carcinoma (RCC) has increased steadily over the last several decades around the world. RCC has the highest annual mortality rate among urological tumors (1). RCC is heterogeneous cancer, with clear cell renal cell carcinoma (ccRCC) accounting for about 75–80% of cases (2). The initial disappearance of the von Hippel-Lindau tumor-suppressor gene expression in most ccRCC tumors distinguishes them from other cancers (3, 4). Targeted therapy is currently the standard treatment for ccRCC; nearly all patients eventually deteriorate as ccRCC cells escape drug-induced apoptosis or autophagy (5). Ferroptosis is a unique type of cell death, and its induction is gaining popularity as a viable therapeutic option for ccRCC (6–9). Identifying more promising therapeutic targets for ccRCC is crucial because current treatments only effectively treat a subset of patients. Furthermore, discovering additional biological markers that might aid in early diagnosis and improve prognosis is a critical endeavor.

Copper binds directly to the lipoylated components of the tricarboxylic acid (TCA) cycle, causing toxic protein stress and, cell death. This unique cell death mechanism is known as cuproptosis. Ferredoxin reductase (FDXR), a mitochondrial flavoprotein, initiates the transfer of electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to multiple cytochromes P450 using ferredoxin 1 (FDX1) and ferredoxin 2 as electron carriers. FDXR, the only ferredoxin reductase in humans, is required to synthesize heme and iron-sulfur clusters and for steroidogenesis. The gene FDX1 encodes a small iron-sulfur protein involved in synthesizing several steroid hormones and reducing mitochondrial cytochrome (10, 11). Furthermore, the FDX1 gene can increase the copper-dependent cell death caused by elesclomol, which may offer a novel approach to improving the efficacy of many cancer-targeting drugs (12). Zhang Z found that knocking out the FDX1 gene in lung adenocarcinoma did not result in apoptosis, aberrant cell cycle distribution, or inhibition of tumor cell proliferation. However, the FDX1 gene may promote ATP production. Furthermore, the FDX1 gene is strongly linked to glucose, fatty acids, and amino acid metabolism (13). According to Zhen Zhang, HCC patients with high-FDX1 expression have a significantly longer survival time than HCC patients with low-FDX1 expression (14). However, the role of the FDX1 gene in ccRCC remains unknown.

In this study, we used data from the Gene Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA), and the Human Protein Atlas (HPA) databases to investigate the association between the FDX1 gene expression, clinical data, and overall survival (OS) of ccRCC patients. Following that, we collected data from the Tumor Immune Estimation Resource (TIMER) and the Gene Expression Profiling Interactive Analysis (GEPIA) databases to examine the link between FDX1 gene expression and immune cell infiltration and the associated gene marker sets. Furthermore, the FDX1-interacting protein network was analyzed using the online Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) platform. A low FDX1 gene level was related to reduced infiltrating immune cells in ccRCC tissues, indicating a dismal prognosis. Thus, it is plausible that the FDX1 gene defect possibly debilitates antitumor immune effects in ccRCC. FDX1-related targeting may be a viable treatment approach in ccRCC along with/in combination with immunotherapy.



Materials and methods


Data source

TCGA (https://portal.gdc.cancer.gov), a publicly available data platform for a large-scale cancer genome project, provides clinicopathological data on 33 different types of cancer and is easily accessible to researchers and academics. The TCGA database was searched for clinical data on patients with ccRCC and high-throughput RNA sequencing (RNA-seq) information. The fragments per kilobase per million fragments mapped (FPKM) approach included in HTSeq was used to determine transcript expression levels. Furthermore, for the subsequent investigation, the RNA-Seq gene expression level 3 HTSeq-FPKM data of 539 patients with ccRCC and the clinical data were transformed into the format of transcripts per million (TPM) reads. Because the database is public, no permission from the local ethics committee was necessary.



The GEO and HPA databases

The GEO database, which includes one of the world’s largest collections of gene chips, is a complete and comprehensive gene expression resource at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/geo/). The HPA contains extensive data on the transcriptome and proteome of various human specimens, including tissue, cell, and pathology atlases. Currently, this web-based database contains data on the cell-specific positions of 44 normal tissues and twenty of the most frequently diagnosed cancers. Moreover, the database also provides data on protein immunohistochemistry in tumors and normal human tissue samples.



Clinical statistical analysis of prognosis, model development, and assessment

Prognostic parameters, such as OS, disease-specific survival (DSS), and progression-free interval (PFS) were analyzed using patient data from the TCGA in the clinical meaning module of the Xiantao platform (https://www.xiantao.love/). These analyses were performed using the Cox regression and Kaplan–Meier methods. The median value was used to determine the threshold value of the low and high FDX1 gene expression groups. We used the Wilcoxon signed-rank sum test in conjunction with logistic regression to determine the relationship between clinical-pathological characteristics and FDX1 gene expression. A multivariate Cox regression model was used to investigate the effect of FDX1 gene expression on the likelihood of survival and other clinical variables. A p-value of less than 0.05 was set as the threshold for significance. The Cox regression model findings were combined with the independent prognostic variables obtained from the multivariate analysis, and the survival probabilities for 1, 3, and 5 years were projected using these data. The projected odds were compared to actual occurrences using calibration curves. The 45-degree line represented the most accurately predicted value.



Comprehensive protein-protein interaction analysis

The STRING web platform (https://string-db.org/) was also adapted for data analysis. This website provides extensively integrated and consolidated PPI data. After importing the FDX1 expression data into the STRING platform, we retrieved information from the PPI network. The significance threshold was set at a confidence score greater than 0.7.



Enrichment analysis

The gene ontology (GO) enrichment analysis of the FDX1 gene expression was performed using R’s clusterProfiler program (version 3.6.3) and included analyses of molecules with differential expression, particularly those classified as cellular components (CC), molecular functions (MF), and biological processes (BP). The following parameters were changed: enrichment factor > 1.5, minimum count > 3, and p < 0.01. For each study, the gene set enrichment analysis (GSEA) (15) method was used to rank the genome a thousand times and enrich pathways associated with FDX1 gene expression. In the GSEA analysis, the threshold value for statistically significant findings was determined to be an adjusted p < 0.05 and a false discovery rate (FDR) of < 0.25. The enrichment analysis results were defined using the normalized enrichment scores (NESs) and adjusted p-values. The Cluster Profiler tool was used for the GSEA and the visualization (16).



Analysis of the infiltration of immune cells

Bindea G et al. (17) published a research report that was used to obtain the marker genes for each of the 24 different types of immune cells. The ssGSEA method investigated tumor infiltration using 24 different types of immune cells. The Spearman correlation algorithm was used not only to compare immune cell infiltration levels between subgroups with high and low FDX1 gene expression but also to evaluate the strength of association between FDX1 gene expression and infiltrating concentrations of the 24 distinct types of immune cells. The link between FDX1 gene expression and immune infiltration, as well as the association between infiltrating levels of immune cells and the values obtained in various FDX1 gene expression subgroups, were analyzed in the module of the “Xiantao tool” based on the findings of immune infiltration, Xiantao tool Spearman correlation, and Wilcoxon signed-rank sum. A p-value < 0.05 was considered statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).



Gene correlation analysis

GEPIA (http://gepia.cancer-pku.cn/index.html) is a web platform that provides information on 9,736 cancer types and 8,587 normal specimens derived from TCGA and GTEx. It usually focuses on the analysis of the RNA-seq findings. The Gene and Isoform classes each specify the types of the corresponding number of types of genes and isoforms, which total 60,498 and 198,619, respectively. An investigation was conducted in the GEPIA database to determine the relationship between the expression of the FDX1 gene and various immune cell markers. The degree of expression of the FDX1 gene is shown along the x-axis, whereas the expression of other relevant genes is shown on the y-axis. Furthermore, using data from TIMER (http://cistrome.org/TIMER/), we confirmed the expression of genes with a strong relationship to FDX1 gene expression in GEPIA. A p-value < 0.05 was considered statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).




Results


FDX1 gene expression was decreased in tumors as opposed to normal samples

To determine whether low FDX1 gene expression in cancer is a generalized phenomenon, we analyzed the FDX1 gene expression in pan-cancer samples and compared it to that in adjacent healthy tissue samples in the TCGA dataset (Figure 1A). The TCGA database was used to make predictions about the patterns of FDX1 messenger RNA (mRNA) expression in 539 ccRCC and 72 normal tissue specimens (Figure 1B). In ccRCC primary tumor specimens, FDX1 mRNA expression was significantly (p < 0.001) lower than in normal tissue specimens. Furthermore, we compared FDX1 expression in normal tissue specimens (data obtained from GTEx) to that of adjoining ccRCC tissues and that of ccRCC tissue specimens and discovered that FDX1 expression was downmodulated in ccRCC specimens (p < 0.001) (Figure 1C). Moreover, FDX1 expression was substantially downmodulated in 72 ccRCC samples compared to corresponding adjoining samples (p < 0.001) (Figure 1D). Subsequently, a receiver operating characteristic (ROC) curve was constructed to examine the diagnostic significance of FDX1 expression by comparing FDX1 expression in normal tissue specimens (data obtained from GTEx) and adjoining ccRCC tissues with that of ccRCC specimens. The findings illustrated that the area under the curve (AUC) value for FDX1 levels was 0.965 (confidence interval = 0.946–0.983), indicating a strong potential for diagnostic use (Figure 1E). The level of FDX1 protein expression was also reduced in ccRCC tissues when compared to normal tissue specimens (Figure 1F). This indicates that FDX1 protein and mRNA expression patterns were comparable across databases. Furthermore, the level of the FDX1 gene expression in the GEO datasets (GSE66271 and GSE53757) was checked for accuracy (Figures 2A, B). Similarly, using HPA data, the expression of the FDX1 protein was shown to be downmodulated in ccRCC tissue compared to normal tissue (Figure 2C).




Figure 1 | Status of ferredoxin 1 (FDX1) expression in malignancies. (A) Profile of FDX1 expression in distinct human tumors and homologous healthy tissues. (B) Differences in FDX1 expression between KIRC tissues and adjacent healthy tissues. (C) Differences in FDX1 expression between normal samples (obtained using GTEx data) and adjoining clear cell renal cell carcinoma (ccRCC) tissues and samples. (D) Differences in FDX1 expression between ccRCC samples and corresponding adjoining samples. (E) Receiver operating characteristic curve for FDX1 expression in normal samples (obtained using GTEx data) and adjoining ccRCC tissues and samples. (F) FDX1 protein expression was considerably downregulated in tumor tissues compared to non-paired normal tissues. (*p < 0.05, **p < 0.01, ***p < 0.001, and ns, no statistical difference).






Figure 2 | Assessment of the ferredoxin 1 (FDX1) gene expression data from the Gene Expression Omnibus datasets and the Human Protein Atlas (HPA). (A) Verification of the decreased FDX1 messenger RNA (mRNA) expression in clear cell renal cell carcinoma (ccRCC) compared to normal tissues in the GSE53757 dataset. (B) Verification of the decreased FDX1 mRNA expression in ccRCC compared to normal samples in the GSE66271 dataset. (C) In the HPA data, FDX1 protein expression in renal cell carcinoma tissue was lower than in normal tissue in the HPA data (Antibody HPA041630, HPA062087, and 10X). (**p < 0.01, and ***p < 0.001).





Association of FDX1 expression with clinical parameters

The proportion of FDX1 expression in tumor specimens was determined using the Z-score criterion, and the ccRCC cohort was then classified into low- and high-expression groups based on FDX1 expression levels. The Kruskal-Wallis and Wilcoxon signed-rank tests were used to determine the relationship between FDX1 expression and clinical parameters. Higher T stage, N stage, M stage, and pathological stages, as well as primary therapy outcomes (PD) and OS events (dead) (p < 0.05, Figures 3A–F), were associated with lower FDX1 expression. Concurrently, similar findings were obtained after conducting the Fisher’s exact test or the chi-square test (Table 1). Furthermore, the findings of the univariate analysis of FDX1 expression revealed a strong association between FDX1 expression and clinical parameters, particularly pathological grade (odds ratio (OR) = 0.573 (0.402–0.814), p = 0.002), histological grade (OR = 0.639 (0.453–0.900), p = 0.011), and T stage (OR = 0.609 (0.425–0.868), p = 0.006) (Table 2). However, no statistically significant difference in the association with the N stage (OR = 0.429 (0.132–1.217), p = 0.127), or age (OR = 0.964 (0.687–1.351), p = 0.829) was found (Table 2). Based on these findings, FDX1 expression was linked to the clinical features of ccRCC.




Figure 3 | Association between ferredoxin 1 (FDX1) expression and clinical-pathological parameters of clear cell renal cell carcinoma. The association between FDX1 expression and T stage (A), N stage (B), M stage (C), pathologic stage (D), primary therapeutic outcome (E), and Overall survival event (F). (*p < 0.05, **p < 0.01, and ***p < 0.001). ns, no statistical difference.




Table 1 | Association of ferredoxin 1 (FDX1) expression with clinicopathological characteristics in patients with clear cell renal cell carcinoma.




Table 2 | Logistic regression analysis of ferredoxin 1 (FDX1) expression.





Prognostic relevance of FDX1 expression in ccRCC

Figures show the relationships between FDX1 expression and prognosis indicators based on data from the TCGA database (OS, DSS, and PFS). Low FDX1 expression was associated with unfavorable OS (hazard ratio (HR) = 0.51(0.37–0.69), p < 0.001, Figure 4A), DSS (HR = 0.40 (0.27–0.60), p < 0.001, Figure 4B), and PFS (HR = 0.57 (0.41–0.79), p < 0.001, Figure 4C). Individuals with ccRCC had elevated risk scores and low levels of FDX1 expression, whereas those with low-risk scores had significant levels of FDX1 expression. Furthermore, the association between FDX1 expression and the various groups was investigated in this study. FDX1 expression was found to be low in the T3–T4 stage (HR = 0.58 (0.39–0.86), p = 0.007), pathological-grade III–IV [HR = 0.63 (0.44–0.91), p = 0.015], and histological-grade G3–G4 (HR = 0.60 (0.42–0.85), p = 0.005] (Figure 4D). A clinical prognostic risk score for ccRCC was created using M stage, pathological grade, N stage, histological grade, age, T stage, and FDX1 expression (Figure 4E). We also used a calibration chart to assess how accurate the model’s predictions were (Figure 4F). The FDX1 expression might provide a more accurate prediction of patients’ survival probabilities over 3 and 5 years. Overall, FDX1 expression was shown to correlate with the prognosis of patients with ccRCC.




Figure 4 | Ferredoxin 1 (FDX1) expression prognostic analysis. Patients with low FDX1 expression had unfavorable prognosis indicators than patients with high FDX1 expression, including shorter overall survival (OS) (A), progression-free interval (PFS) (B), and disease-specific survival (DSS) (C) (both log-rank p < 0.001). (D) Prognosis based on FDX1 expression in distinct kinds of clinical features (OS). (E) A multivariate analysis nomogram based on clinical features associated with FDX1 expression. (F) The calibration chart displays the model’s prediction accuracy as determined using multi-factor Cox regression analysis.





Constructing PPI networks

It is critical to understand the functional interactions that occur between proteins to understand the molecular basis and metabolic processes involved in cancer. An analysis of the PPI network of FDX1 was performed using the STRING program to determine the protein interactions involved in the development of ccRCC. Figure 5 shows the topmost ten proteins along with their associated gene names, scores, and annotations, including FDXR, CYP11A1, ISCU, NFS1, CYCS, AKR1B1, FXN, LYRM4, HSCB, and STAR.




Figure 5 | Proteins interacting with Ferredoxin 1 (FDX1) in clear cell renal cell carcinoma tissue. Annotation of proteins that interact with FDX1 (A), along with their respective co-expression scores (B).





Expression of the FDX1 gene to the expression pattern of whole genes

An analysis of the FDX1 gene expression profile was performed to gain a better understanding of the biological role of the FDX1 gene in ccRCC. It was discovered that the expression of 3,805 genes that were in a downmodulated and 171 genes that were in an upmodulated were substantially linked to the FDX1 gene expression (logFC > 1 and padj < 0.05) (Figure 6A). Additionally, the top 30 genes with aberrant expression levels (abslogFC > 2 and padj < 0.01) were displayed on the gene expression heat map (Figure 6B). Moreover, GO enrichment analysis was performed based on the FDX1 gene expression results. The BP primarily associated with the FDX1 gene was the regulation of pH, acute-phase response, intracellular pH regulation, cellular pH regulation, and monovalent inorganic cation homeostasis, among others (Table 3, Figure 6C).




Figure 6 | Ferredoxin 1 (FDX1) gene expression differential expression and Gene Ontology (GO) enrichment analysis. (A) A volcano map based on FDX1 expression patterns illustrating the differentially expressed genes (DEGs). (B) The expression level of the FDX1 gene was used to generate a heat map that displays 30 genes that were either upmodulated or downmodulated. (C) The GO enrichment findings of DEGs that were filtered depending on the FDX1 gene expression were analyzed via the use of the Metascape database.




Table 3 | Results of gene ontology enrichment analysis.





GSEA of the FDX1 gene expression

Using TCGA gene expression data, GSEA was performed to determine biological and functional pathways between high- and low-FDX1 gene expression groups. Based on the NESs, the enrichment signaling pathway that was determined to be the most relevant for FDX1 gene expression was chosen (Figure 7). The GSEA analysis illustrated that the low FDX1 gene expression phenotype was predominantly concentrated in reactome_cd22_mediated_bcr_regulation (A), reactome_fcgr_activation (B), reactome_creation_of_c4_and_c2_activators (C), reactome_scavenging_of_heme_from_plasma (D), reactome_role_of_lat2_ntal_lab_on_calcium_mobilization (E), and reactome_antigen_activates_b_cell_receptor_bcr_leading_to_generation_of_second_messengers (F).




Figure 7 | The findings of the gene set enrichment analysis (GSEA). GSEA results showed that reactome_cd22_mediated_bcr_regulation (A), reactome_fcgr_activation (B), reactome_creation_of_c4_and_c2_activators (C), reactome_scavenging_of_heme_from_plasma (D), reactome_role_of_lat2_ntal_lab_on_calcium_mobilization (E), andreactome_antigen_activates_b_cell_receptor_bcr_leading_to_generation_of_second_messengers (F) were enriched primarily in FDX1-associated ccRCC. ES, Enrichment score; FDR, false discovery rate; NES, normalized ES.





Relationship between the FDX1 gene expression and immune cell infiltration

The relationship between the FDX1 gene expression and 24 distinct immune cell subtypes in ccRCC was investigated and analyzed. The FDX1 gene expression had a strong positive correlation with neutrophils, Tgd cells, and mast cell infiltration and a strong inverse correlation with Treg, aDC, and cytotoxic cell infiltration, among other things (Figures 8A, E–J). Further investigation illustrated substantial variations in the FDX1 gene expression level in different infiltrating immune cells, notably aDC, pDC, mast cells, TReg, neutrophils, cytotoxic cells, and NK CD56bright cells, among other things (Figures 8B–D). To effectively examine the possible function of the FDX1 gene in influencing the infiltration status of distinct immune cells in ccRCC, we used data from the TIMER and GEPIA databases to establish the link between the FDX1 gene and different immune marker sets, which are commonly known as indicators of various immunocytes, including DCs, NK cells, M1/M2 macrophages, neutrophils, tumor-associated macrophages (TAMs), B cells, monocytes, T cells (general), and CD8+ T cells, in ccRCC (Table S1). Furthermore, this study evaluated different functional T cell subtypes, such as Tregs, exhausted T cells, Th1, Th2, Th9, Th17, Th22, and Tfh. According to the findings, the expression of most immune set markers for various types of DCs, M1/M2 macrophages, TAMs, and T cells was shown to be linked to the level of FDX1 gene expression in ccRCC.




Figure 8 | Relationship between the FDX1 gene expression and immune cell infiltration. (A) The relationship between the FDX1 gene expression and immune cell infiltration status. (B–D) Differences in the degree to which certain immune cell subsets were enriched in the FDX1 gene high- and low-expression groups. (E–J) Relationships between the FDX1 gene expression and tumor microenvironment characteristics. Ns is the abbreviation of no significance, Mean no statistical difference. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.






Discussion

The leading causes of death have changed over time. According to previous research, ccRCC is one of the most prevalent tumors and a major cause of male cancer-related mortality. As a result, researchers have conducted numerous studies on ccRCC to understand it better. In this study, we found a strong correlation between the FDX1 gene and the OS of ccRCC patients. The prognostic model was built using the Cox regression model. Patients with ccRCC were divided into low- and high-risk groups, with the low-risk group having a poor prognosis. Furthermore, the univariate and multivariate Cox analyses revealed that the FDX1 gene was an independent prognostic factor in ccRCC.

Because the FDX1 gene encodes a reductase that reduces Cu2+ to a more toxic Cu1+, given the pivotal role of the FDX1 gene in cuproptosis, we hypothesized that the FDX1 gene might help to evaluate the occurrence of this copper-induced cell death in ccRCC. FDX1 gene expression was significantly lower in ccRCC samples than in normal kidney tissues (Figures 1B–D), indicating resistance to cuproptosis. In addition, ccRCC patients with a lower FDX1 gene expression have a shorter survival time (Figures 4A–C), probably due to the survival advantage of these tumor cells by resisting copper-induced toxicity.

Tumor onset and progression are strongly linked to the immune microenvironment and abnormal metabolism. Moreover, evidence indicates that metabolism is crucial to the onset and progression of cancer (18, 19). For instance, glucose and lactic acid metabolism changes have been linked to lung cancer (20, 21). A recent study demonstrated that E2F1 promotes the growth and metastasis of ccRCC cells by activating the SREBP1-dependent fatty acid production process (22). Additionally, many studies have revealed that lung cancer cells exhibit abnormal fatty acid oxidation (FAO), and FAO may regulate immune suppression by promoting lymph node metastasis (23, 24). We observed significant downmodulation of FDX1 mRNA expression in ccRCC samples compared to normal tissues using data from various databases, including GEO, TCGA, and the HPA. Those with lower FDX1 expression had a worse prognosis than those with higher FDX1 expression.

According to STRING analysis, FDXR, CYP11A1, and ISCU were identified as proteins interacting with FDX1 in ccRCC based on their functionally distinct compositions. FDXR is a mitochondrial flavoprotein that initiates electron transport from NADPH to several cytochromes P450 via electron carriers, FDX1 and FDX2. The FDX1 protein supports steroid biosynthesis in steroidogenic cells through electron transfer to the rate-limiting steroidogenic enzyme, CYP11A1. However, their interaction during the occurrence of ccRCC needs further investigation. Furthermore, ROC analysis revealed an AUC of 0.965 in the ccRCC diagnosis, indicating that FDX1 may be useful as a diagnostic biological marker. Moreover, reduced FDX1 expression was correlated with progressive clinicopathological features and a dismal prognosis. Furthermore, the GO enrichment study found that FDX1 was strongly linked to biological processes, including pH regulation, acute-phase response, intracellular pH regulation, cellular pH regulation, and monovalent inorganic cation homeostasis.

Currently, the prognosis of ccRCC patients is primarily determined by clinical and histopathologic parameters, such as lymph node status, disease pathology, and histological grade. Several researchers have described different prognostic markers, gene signatures, and prediction algorithms for DSS and OS (25–27). For instance, a low DAPK1 expression level is linked to poor prognosis and sunitinib resistance in ccRCC (28). A low EGR1 expression level in ccRCC predicts a poor prognosis (29). A previous study found that HCC patients with a high cuproptosis-related risk score had an increased infiltration of protumor immune components (14). However, no previous studies have linked FDX1 genes to immune cells in ccRCC. Therefore, our study innovatively investigated and analyzed the association of FDX1 expression in ccRCC with 24 different immune cell subtypes. Our findings show that the FDX1 gene expression level has a substantial and consistent relationship with neutrophils, Tgd, and mast cell infiltration levels in ccRCC. Subsequent analysis of infiltrating lymphocyte markers illustrated that the expression of M1 macrophage marker NOS2 was weakly correlated with the FDX1 gene expression. In contrast, the expression of M2 macrophage markers, such as MRC1, had a moderate correlation with the FDX1 gene expression, illustrating a potential regulatory function of the FDX1 gene expression in TAM polarization. Similarly, Zhen Zhang reported that the FDX1 expression level is positively associated with the abundance of B cells (p = 2.33 × 10-3) and macrophages (p = 1.73 × 10-2) (30). We also discovered that the expression of CD4+ T cell markers, including CD4, correlates positively with FDX1 expression. CD4+ T cells are extremely versatile, performing various critical functions in developing and maintaining effective antitumor immunity and protumor functions (31). CD4+ T cells play a role in tumor invasion and progression (32) in the tumor microenvironment. In advanced kidney renal clear cell carcinoma (KIRC), immunotherapy has recently evolved from traditional immunoboosts of interferon α and interleukin-2, causing frequent immune-related adverse events to the more effective and less toxic immune normalization with programmed cell death 1 (PD-1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA4) antibodies (33). Our study found that T cell exhaustion markers such as PD-1, CTLA4, and LAG3 negatively correlate with FDX1 expression. Previous studies have shown that patients with high PD-1 expression can benefit from anti-PD-1 therapy (34). These findings suggest that FDX1 may be critical in the onset and progression of ccRCC and immunoregulatory processes and may also affect immune cell infiltration and the outcome of immunotherapy. Therefore, targeting FDX1 may become an alternative strategy for tumor therapy.

However, this study has some limitations. First, the current study was based on data retrieved from an online database, and further studies with clinical samples are needed to confirm our study findings. Second, we primarily focused on the bioinformatics analysis of FDX1 expression data without experimental validation, and it is necessary to study the mechanism underlying FDX1 expression in vitro and in vivo. Finally, further research on the biological impact of FDX1 on ccRCC cells is necessary.



Conclusions

In conclusion, FDX1 is downregulated in advanced ccRCC, which may affect the ccRCC progression via key molecular functions and pathways. Furthermore, attenuated FDX1 expression was responsible for a poor prognosis. Furthermore, FDX1 expression was linked to the infiltration levels of distinct immune cells, notably neutrophils, Tgd, mast cells, Treg, aDC, and cytotoxic cells. In the future, both in vitro and in vivo research will be warranted to bioinformatics analysis findings and explain the possible function of FDX1 in ccRCC.
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Background

Despite the comparatively low prevalence of osteosarcoma (OS) compared to other cancer types, metastatic OS has a poor overall survival rate of fewer than 30%. Accumulating data has shown the crucial functions of immunogenic cell death (ICD) in various cancers; nevertheless, the relationship between ICD and OS was not previously well understood. This research aims to determine the function of ICD in OS and construct an ICD-based prognostic panel.



Methods

Single cell RNA sequencing data from GSE162454 dataset distinguished malignant cells from normal cells in OS. The discrepancy in ICD scores and corresponding gene expression was intensively explored between malignant cells and normal cells. Using the RNA sequencing data of the TARGET-OS, GSE16091, GSE21257, and GSE39058 datasets, the molecular subtype of OS was determined by clustering seventeen ICD-related genes obtained from the literature. Differentially expressed genes (DEGs) between different molecular subtypes were identified to develop a novel ICD-associated prognostic panel.



Results

The malignant cells had a remarkable decrease in the ICD scores and corresponding gene expression compared with normal cells. A total of 212 OS patients were successfully stratified into two subtypes: C1 and C2. C1-like OS patients were characterized by better prognostic outcomes, overexpression of ICD genes, activation of the ICD pathway, high inflitration abundance of immunocytes, and low expression levels of immune checkpoint genes (ICGs); however, the reverse is true in C2-like OS patients. Utilizing the limma programme in R, the DEGs between two subtypes were determined, and a 5-gene risk panel consisting of BAMBI, TMCC2, NOX4, DKK1, and CBS was developed through LASSO-Cox regression analysis. The internal- and external-verification cohorts were employed to verify the efficacy and precision of the risk panel. The AUC values of ROC curves indicated excellent prognostic prediction values of our risk panel.



Conclusions

Overall, ICD represented a protective factor against OS, and our 5-gene risk panel serving as a biomarker could effectively evaluate the prognostic risk in patients with OS.





Keywords: osteosarcoma, immunogenic cell death, prognostic panel, molecular subtype, single cell RNA sequencing, bulk RNA sequencing



Introduction

Osteosarcoma (OS) is a primary malignant bone tumor that affects mostly children and teenagers (1, 2). OS is known as malignant tumor, which often occurs in the metaphysis of long bones, including the arms, legs, knees, and shoulders, and is distinguished by a poor prognosis and a high incidence of impairment (3, 4). Multimodal treatment has improved these patients’ 5-year survival rates to about 70%, particularly when neoadjuvant chemotherapy is used in conjunction with extensive surgical resection (5). Nevertheless, a significant proportion of individuals present with metastases when initial diagnosis or following intense therapy (6, 7). More than half of these individuals will die within five years (6, 7). It is thus imperative that indicators of osteosarcoma’s biological heterogeneity be identified in order to enhance prognosis.

Cell death has been defined and interpreted from morphological, biochemical, and functional viewpoints by the Nomenclature Committee on Cell Death throughout the last decade (8). Immunogenic cell death (ICD) was initially hypothesized in the context of anticancer treatment, and was based on animal studies that revealed that tumor-specific immune responses might decide the success of anticancer medicines (9). The ICD is aimed to stimulate the immune system in immunocompetent hosts. When ICD occurs, a slew of damage-associated molecular patterns (DAMPs) are exposed and released, giving dying cancer cells a powerful adjuvanticity boost by attracting and activating antigen-presenting cells (10–12). Diverse innate immune receptors are implicated in DAMPs-mediated ICD, and their collaboration with DAMPs is required for ICD and anti-tumor immune response (13). However, the therapeutic potential and mechanism of harnessing ICD in OS have not yet been thoroughly studied. Therefore, the in-depth understanding of the correlation between ICD-related genes and overall survival of OS maybe invent a novel method for the therapy and prognosis evaluation in patients with OS.

In this research, a molecular classifier of OS was successfully established depending on the expression profiles of ICD-related genes in the TARGET-OS, GSE16091, GSE21257, and GSE39058 datasets. The relationship between molecular clusterss, prognosis, immunocyte inflitration, and ICD activity was explored. A robust 5-gene risk panel that contained BAMBI, TMCC2, NOX4, DKK1, and CBS was developed using differentially expressed genes (DEGs) between the OS subtypes, which could serve as a biomarker to effectively evaluate the prognostic risk in patients with OS.



Methods


Data collection and processing

Single-cell RNA sequencing (scRNA-seq) data GSE162454 was downloaded from GEO platform, which detected a total of 6 osteosarcoma tissues based on the 10X Genomics (14). RNA-sequencing (RNA-seq) data and corresponding follow-up information of TARGET-OS samples were obtained from the TARGET database (https://ocg.cancer.gov/programs/target) (15, 16). The expression profiles and clinical information in the GSE16091, GSE21257, and GSE39058 datasets were acquired from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) (17–19). In total, there were 17 ICD-related genes collected from the literatures (20, 21).

The detailed processing of scRNA-seq data was illustrated below: 1) The ‘Seurat’ package was used to preprocess the scRNA-seq data (22); the PercentageFeatureSet function was used to determine the proportion of mitochondrial genes; and correlation analysis was utilized to investigate the relationship between sequencing depth and mitochondrial gene sequences and/or total intracellular sequences. 2) Set each gene to be expressed in at least 5 cells. 3) The expression of genes in each cell is more than 300 and less than 5000, the content of mitochondria is less than 10%, and the UMI of each cell is at least greater than 1000 were preserved. 3) The scRNA-seq data were normalized by the LogNormalize method after data filtering.

The detailed processing of RNA-seq data of TARGET-OS cohort was illustrated below: 1) The samples that lacked of corresponding follow-up information were eliminated; 2) The Gene Symbol format was obtained by converting the ENSEMBL gene IDs; 3) The median value was computed using multiple Gene Symbol expressions.

The detailed processing of microarray data of GEO-OS cohort was illustrated below: 1) The samples that lacked of corresponding follow-up information were eliminated; 2) The Gene Symbol format was obtained by converting the probe IDs; 3) Probes were removed because of their correspondences to multiple genes; 4) The average value was regarded as the gene expression while multiple probes were corresponded to one gene.

The intersecting genes were acquired via taking the intersection between the mRNA expression profiles from TARGET and GEO datasets. Using the “ComBat” function from the “sva” package in R, the expression data of intersecting genes were transformed into log2(x + 1) format and batch normalised (23, 24). The mRNA expression profiles of these intersecting genes were curated with corresponding follow-up data in TARGET and GEO datasets, respectively. After preprocessing, we enrolled 84 OS samples from TARGET-OS, 34 OS samples from GSE16091 dataset, 53 OS samples from GSE21257 dataset, and 41 OS samples from GSE39058 dataset.



Potential regulatory pathways between tumor cells and normal cells

The tSNE dimensionality reduction of 28968 cells were performed using “RunTSNE” functions in R. Subsequently, the “CellCycleScoring” function was employed to calculate S and G2M scores based on S phase and G2M phase gene expression, and predicts classification of each cell in either S, G2M, or the G1 phase. Meanwhile, the “copykat” package in R was applied to predict copy number variation of each cell, and in turn, infer diploid (normal cells) and aneuploid (tumor cells) (25).

Following these, we downloaded and curated 50 typical hallmark pathways and ICD pathway from the Molecular Signatures Database (MsigDB, http://www.gsea-msigdb.org/gsea/index.jsp) (26, 27). Through ssGSEA analysis of tumor cells and normal cells in each sample, we obtained the enrichment score of each pathway. A heatmap was utilized to show the discrepancies of pathway enrichment scores and ICD-related gene expressions between diploid (normal cells) and aneuploid (tumor cells).



Consistency clustering algorithm, gene set variation analysis and gene set enrichment analysis

From 212 OS samples, the expression patterns and clinical data of 17 ICD-related genes were derived. Next, these ICD-related genes were clustered using ConsensusClusterPlus (parameters: reps = 50, pItem = 0.8, pFeature = 1, clusterAlg = “km”, distance=“euclidean”) (28–30). The km and euclidean distances were used as a clustering algorithm and distance measure, respectively. The “GSVA” package in R was applied to compute the ICD scores of each patient with OS, which could serve as the indicator of ICD activites (31, 32). The “wilcox.test” fucntion in R was then employed to compare the discrepancy in the ICD scores between different clusters. In addition to ICD scores, the enrichment scores of 50 typical HALLMARKER-signaling pathways were also computed by “GSVA” package; meanwhile, similar method was applied to compare the potential discrepancy of signaling pathways between different clusters.



Cluster-based analysis of tumor immune microenvironment

The “estimate” package in R was employed to compute the ImmuneScore, StromalScore, EstimateScore, and tumor purity of each OS sample, and the “ggpubr” package in R was used to visualize this result (33). In addition, the TIMER2.0 database (http://timer.cistrome.org/) provides a complete immunological signature of tumor infiltrating cells in a variety of tumor samples from the TCGA database on the basis of the algorithms of TIMER, CIBERSORT, EPIC, and MCPCOUNTER (34). The ‘pheatmap’ package in R was used to illustrate the infiltration of distinct immune cells in each OS sample. Subsequently, the ‘limma’ package in R was used to determine statistically significant changes in immune cell infiltration between C1 and C2 subgroups; cells were then isolated and stored based on these p values (p < 0.05).

The activation of immune checkpoint genes (ICGs) that suppress antitumor immune responses is crucial for the immunosurveillance evading and malignant progression of tumor cells. It has been generally accepted that ICGs played an irreplaceable role in regulating the functions of immunocytes and disease progression. Thus, we further explored the discrepancy of the ICGs expression levels between C1 and C2 populations.



Identification of differentially expressed genes

The “limma” programme was utilized to determine the DEGs between C1 and C2 subtypes, and the filtering thresholds were as follows: 1) FDR < 0.05; 2) fold-change (FC) > 1.5 or FC <2/3. Then, the identified DEGs were investigated by performing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) enrichment analysis using multiple R packages (e.g. clusterProfiler, enrichplot, ggplot2, and dplyr) (35–37).



Development and verification of a novel ICD-based risk panel


Random assortment

The 128 OS samples in the GEO database were randomly stratified into two groups, including training dataset (n = 64) and test1 dataset (n = 64). All of 128 OS samples in the GEO database were assigned to the test2 cohort (n = 128) and all samples in the TARGET database were assigned to the test3 cohort (n = 84).



Risk panel development and validation

The univariate Cox regression analysis was carried out to determine DEGs that were highly related to prognosis in the training cohort. Second, to narrow the range of target genes, DEGs with prognostic values were included in least absolute shrinkage and seletion operator (LASSO) regression analysis. Subsequently, according to the result of multivariate Cox regression analysis, we developed a novel ICD-associated prognostic panel (ICD-APP) and calculated the risk score of it through the “predict” function in R. The median of the risk score was set as the cut-off point, and patients were stratified into high- and low-risk subpopulations. Kaplan–Meier survival curves were then depicted to analyze the survival discrepancy and receiver operating characteristic (ROC) curves of 1, 3 and 5 years were drawn to estimate the efficiency of our ICD-APP using the timeROC package. The above analysis was verified through the internal validation dataset (test1 and test2) and external validation dataset (test3). After identifying essential genes required for model construction, we queried the DisNor database (https://disnor.uniroma2.it/) to investigate these genes’ upstream and downstream connections and their mechanism of action (38, 39).





Results


Quality control, normalization, and bioinformatics analysis of scRNA-seq data

By filtering the single cell data such that each gene must be expressed in at least three cells and each cell must express at least 300 genes, a total of 49744 cells were gathered. Next, 28968 cells are obtained by calculating the proportions of mitochondria and rRNA using the PercentageFeatureSet function and ensuring that the expression of genes in each cell is between 300 and 5000, the content of mitochondria is less than 10 percent, and the UMI of each cell is at least greater than 1000. Table 1 displays the cell count data for each sample before and after filtering. There is a strong association between the number of UMI and mRNA, as shown in Figure S1A, however there is no correlation between the number of UMI/mRNA and the content of mitochondrial genes. Figures S1B, C shows the violin before and after quality assurance. Principal component analysis (PCA) was used to estimate the available dimensions, and the findings did not indicate any substantial distinction between osteosarcoma cells. Fifty of the most distinctive principal components were chosen for further investigation (Figure S1D).


Table 1 | Cell counts for each sample before and after filtering.



Then, the RunTSNE function is used to assess the TSNE dimension reduction of 28968 cells, and Figure 1A represents the tsne diagram of the distribution of six samples. Using the marker gene in S phase and G2M phase, the CellCycleScoring function generated the cell cycle stage score, and Figure 1B displayed the distribution of cells in various cell cycles. In parallel, we examined single cell data via cnv using the copykat package. The results showed that there were 4988 tumor cells, 22589 normal cells and 1391 unknown cells (Figure 1C). Lastly, we evaluated the ratio of tumor cells to normal cells as well as the ratio of cells in the G1, G2M, and S phases in various samples. As depicted in Figure 1D, the percentage of normal cells in the majority of OS samples was much greater than that of malignant cells. In addition, the majority of cells are in the G1 phase, and the percentage of G2M phase cells is nearly equivalent to that of S phase cells (Figure 1E).




Figure 1 | Tumor and normal cells of OS. (A) A t-SNE map of the distribution of cells in each OS sample, and each color represents the cells in each sample. (B) The t-SNE diagram shows the distribution traits of cells cycles marked with different colors. (C) The t-SNE diagrams of tumor and normal cells in OS samples are represented by different colors. (D) The proportion of tumor and normal cells in each OS sample. (E) Proportion of G1, G2/M and S phase cells in each OS sample.



After distinguishing tumor cells from OS tissues, ssGSEA was applied to compute the enrichment scores of HALLMARK and ICD-associated pathways in single cell. Our findings revealed that ICD scores of tumor cells were considerably lower than those of normal cells, suggesting that tumor might protect themselves and survive through suppressing ICD-related processes (Figures 2A, B). ICD-targeted intervention might encourage tumor cell death and improve patients’ prognoses. Likewise, most ICD-related genes, including IL-6, IL-10, NLRP3, CD8A, CD8B, and TLR4, exhibited attenuated expression levels in tumor cells compared to normal cells (Figures 2C, D). Finally, we depicted the single-cell subpopulation distributions of ICD-related genes (Figures S2 and S3)




Figure 2 | The role of immunogenic cell death in tumor and normal cells of OS. (A) Difference in activation of biological pathways between tumor and normal cells in OS. (B) Difference in expresion of ICD-related genes between tumor and normal cells in OS. (C) The enrichment scores of different signal pathways in normal and malignant cells of each osteosarcoma sample. (D) The expresion of ICD-related genes in normal and malignant cells of each osteosarcoma sample.





Identification of ICD-based molecular clusters in OS using consensus clustering analysis

To discover ICD-based molecular clusters of OS, consensus clustering analysis was performed using 17 ICD-related genes. In consideration of cumulative distribution function (CDF) curves and Delta area, k = 2 was selected as the number of unique and nonoverlapping subtypes (Figures 3A, B). Thus, two ICD-based molecular clusters of OS were constructed, with cluster 1 including 100 cases and cluster 2 containing 112 cases. Two ICD-related groups revealed statistically distinct survival curves (Figure 3C). Patients with OS in cluster 1 had a survival advantage and higher ICD scores than those in cluster 2, indicating the protective significance of ICD in OS patients (Figure 3C, D). Significantly different ICD-related gene expression levels were observed between the C1 and C2 subtypes, with the majority of genes being overexpressed in the C1 subtype (Figure 3E). The findings of the pathway-based ssGSEA demonstrated that the C1 subtype activates a greater number of tumor-related pathways, such as PI3K_AKT_MTOR_SIGNALING, INTERFERON_ RESPONSE, P53_PATHWAY, INFLAMMATORY_RESPONSE, KRAS_SIGNALING, APOPTOSIS, HYPOXIA, TGF_BETA_SIGNALING, and EPITHELIAL_MESENCHYMAL_TRANSITION, suggesting the close association of ICD with above typical tumor-associated pathways (Figure 3F).




Figure 3 | Consensus clustering based on the 17 ICD-related genes. (A) Cumulative distribution function (CDF). (B) 212 OS samples from GEO and TARGET platforms were divided into cluster1 (n=100) and cluster2 (n=112) by consensus clustering. (C) Kaplan-Meier analysis indicated cluster1 had more favorable prognosis than cluster2. (D) ICD scores based on ssGSEA algorithm. (E) Cluster heatmap of 17 ICD-related genes. (F) HALLMARK pathway activities based on ssGSEA algorithm *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.





Cluster-based analysis of drug sensitivity

Given that molecularly targeted medicines are currently widely used to treat OS, the chemotherapeutic response of ICD-based clusters was systematically evaluated using the “pRRophetic” package in R. Our data showed that Avagacestat, Bosutinib, Crizotinib, MG132, PD184352, Refametinib, Shikonin, Z-LLNle-CHO were expected to benefit C1 subtype; however, C2 subtype was more benefical from Axitinib, Doramapimod, EHT-1864, Elesclomol, GW-441756, Linsitinib, Motesanib, Vorinostat (Figures 4A, B).




Figure 4 | Targeted-drug sensitivity prediction. (A) The drugs favoring C1 subtype. (B) The drugs favoring C2 subtype.





Cluster-based analysis of tumor immune microenvironment

The “ESTIMATE” R package was utilized to assess the discrepancy in the immune characteristics between C1 and C2 subtypes (predicated on the StromalScore, ImmuneScore, ESTIMATEScore, and Tumorpurity) utilizing the transcriptome data. Our results revealed that C1 subtype exhibited enhanced levels of immuneScore, stromalScore, and estimateScore, but showed attenuated levels of tumor purity (Figure 5A). These results indicated that OS prognosis positively correlated to Immune and Stromal components. To further explore the abundance of immunocyte-infiltrating in the tumor microenvironment, a variety of algorithms were applied to estimate the percentage of the immune cell infiltrate in C1 and C2 subtypes. As depicted in Figure 5B, C1 subtype showed an enhanced proportion of B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, NK cells and myeloid dendritic cells based on TIMER, CIBERSORT-ABS, EPIC and MCPCOUNTER algorithms. It has been well-established that B cells are usually divided into four lineages-naive B cells, activated B cells, effector B cells (i.e. plasma cells), and memory B cells. Among them, naive B cells and plasma cells have a higher proportion in the C2 subtype based on CIBERSORT algorithm. ICGs are determining factors towards immune cells to perform immune function. Likewise, our findings revealed that C2 subtype exhibited enhanced expression of ICGs (Figure 5C).




Figure 5 | Cluster-based analysis of tumor immune microenvironment. (A) Comparison of tumor immune microenvironment components. (B) The distribution traits of immunocyte infiltration in ICD-based clusters. (C) The discrepancy in expression levels of immune checkpoints. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not statistically significant.





Cluster-based analysis of DEGs

A total of 212 DEGs were obtained depending on the thresholds in the methods section (Table S1). The DEGs-based GO enrichment analysis demonstrated that 699 biological process (BP), 36 cellular component (CC), and 53 molecular function (MF) terms had the significant differences between the two subtypes (FDR < 0.05). The first 18 GO terms were depicted in Figure S4A. The obviously enriched pathways were revealed by the KEGG pathway analysis of DEGs (FDR < 0.05). Further visualization of the top 18 enriched pathways demonstrated that genes were considerably enriched in tumor-related pathways such as the NF-κB signaling pathway, Toll-like receptor signaling pathway, complement and coagulation cascades, cytokine-cytokine receptor interaction (Figure S4B).


Risk model development of OS based on ICD-related genes

The DEGs-based univariate Cox analysis between the C1 and C2 subtypes identified 12 prognostic genes in the train cohort (Table S2). Lasso regression analysis was performed to further exclude the unnecessary prognostic genes. Figure S5A showed the locus of each independent variable. The number of independent variables tending to zero also enhanced accompany with the increase of lambda (λ) value (Figure S5B). The pattern was constructed by performing a10-fold cross-validation, and Figure S5C showed the confidence interval under each λ. Subsequently, a total of six ICD-related genes (i.e., BAMBI, TMCC2, NOX4, DKK1, POPDC3, and CBS) were preserved for further multivariate Cox regression analysis. Ultimately, a novel ICD-APP was constructed by integrating five-gene expressions (i.e., BAMBI, TMCC2, NOX4, DKK1, and CBS). The DisNor database was then utilized to identify the upstream and downstream genes reacted with BAMBI, TMCC2, NOX4, DKK1, and CBS (Figure S5D). FZD5 and DVL2 are neighbouring downstream of BAMBI. E2F1 acts to promote the formation of superoxide and reactive oxygen species following activation of NOX4 (Figure S5D). KREMEN1 and KREMEN2 are neighbouring downstream of DKK1. USF1, NFYA, SP3, and SP1 are neighbouring upstream of CBS (Figure S5D).

Afterwards, we used R’s “predict” function to get the median risk score across all samples and then used it to categorise them into high- and low-risk subgroups (Figure 6A). Figure 6B depicts a higher mortality rate in the high-risk category of PAAD patients based on the distributions of risk scores and survival status. The heatmap depicted the expressions of mRNA and lncRNAs in the prognostic signature (Figure 6C). Consistently, survival analyses with the Kaplan-Meier method showed that OS patients had a worse clinical outcome in high-risk subgroup, suggesting that the prognosis of OS patients with different risk stratification could be accurately distinguished by our ICD-APP (Figure 6D). We further verified the effectiveness and accuracy of our ICD-APP. Receiver operating characteristic (ROC) analysis was used to determine the diagnostic performance of the risk score. The 1-year, 3-year, and 5-year area under the curve (AUC) values of the risk score were 0.747, 0.849, and 0.840, respectively (Figure 6E).




Figure 6 | Construction of ICD-APP in the training cohort. (A) Discriminate high- and low-subpopulations in the training cohort. (B) The relationship of survival status and risk score in the training cohort. (C) The distribution traits of the expression of 5 genes used for model development in the training cohort. Evaluate the prognostic performances of ICD-APP in the training cohort (D) KM survival curves; (E) time-dependent ROC curves.





Internal and external verification of the ICD-APP in OS

First, using the median risk score in the train cohort as the standard, patients from tests 1, 2, and 3 were divided into high-risk and low-risk subpopulations, respectively (Figures 7A-9A). The distributions of survival status and risk scores were comparable in the internal validation (test 1 and test 2 cohorts) and external validation (test 3 cohort) compared to the training cohort (Figures 7B-9B). In both internal and external verification cohorts, heatmaps obtained from three test cohorts revealed the presence of genes with high expression (BAMBI, TMCC2, NOX4, DKK1, and CBS) in the high-risk group (Figures 7C-9C). Furthermore, patients with high-risk scores had worse unfavorable overall survival rates in the test1 test2 and test3 groups (Figures 7D-9D). As for the diagnostic value of ICD-APP, the AUC values of the ROC curves were 0.891, 0.744, and 0.722 in the test1 cohort, 0.820, 0.801, and 0.780 in the test2 cohort, and 0.765, 0.712, and 0.710 in the test3 cohort for 1-, 3-, and 5-year survival, respectively (Figures 7E-9E). Overall, test1 and test2 findings were compatible with train cohort results, and test3 results were consistent with both internal and external verifiers.




Figure 7 | Internal validation of ICD-APP in the test1 cohort. (A) Discriminate high- and low-subpopulations in the test1 cohort. (B) The relationship of survival status and risk score in the test1 cohort. (C) The distribution traits of the expression of 5 genes used for model development in the test1 cohort. Evaluate the prognostic performances of ICD-APP in the test1 cohort (D) KM survival curves; (E) time-dependent ROC curves.






Figure 8 | Internal validation of ICD-APP in the test2 cohort. (A) Discriminate high- and low-subpopulations in the test2 cohort. (B) The relationship of survival status and risk score in the test2 cohort. (C) The distribution traits of the expression of 5 genes used for model development in the test2 cohort. Evaluate the prognostic performances of ICD-APP in the test2 cohort (D) KM survival curves; (E) time-dependent ROC curves.






Figure 9 | External validation of ICD-APP in the test3 cohort. (A) Discriminate high- and low-subpopulations in the test3 cohort. (B) The relationship of survival status and risk score in the test3 cohort. (C) The distribution traits of the expression of 5 genes used for model development in the test3 cohort. Evaluate the prognostic performances of ICD-APP in the test3 cohort (D) KM survival curves; (E) time-dependent ROC curves.







Discussion

With a high propensity for invasion and metastasis, OS is the most prevalent malignant bone tumor in both adults and children. At present, a large number of therapeutic projects have been applied for OS patients, which includes surgery, radiotherapy, chemotherapy, and neoadjuvant chemotherapy (40). However, the overall survival of OS patients still has a large gap to satisfaction, particularly for the advanced OS, due to its high malignancy (41). The malignant progression of OS commonly develops along with the expression changes of multiple genes, which may influence the prognosis of patients with OS (42). These genes were deemed as potential therapeutic targets for personalized treatment in tumor patients. Recently, along with the sequencing technology was rapidly developed, high-throughput genomics has been used for the exploration of tumor generation and progression-related genes (43, 44). Moreover, the deep investigation of the molecular mechanisms of tumorigenesis and development can be implemented by high-throughput genomics.

In this study, combination analysis of scRNA-seq and bulk RNA-seq data was performed to highlight the significant contributions of ICD in OS. After quality control and normalization of scRNA-seq data, all single cells were divided into two subpopulations (aneuploid and diploid cells). Significant down-regulation of ICD scores and ICD-related gene expression was detected in aneuploid cells compared to diploid cells. In addition to typical cell death (e.g. apoptosis and pyroptosis), a variety of chemo- and radiotherapy-strategies were recently reported to induce a new cell death process (i.e. ICD) and then improve the prognosis. Similarly, our findings indicated that compared to diploid cells, aneuploid cells might survive through inhibition of ICD activities. These results showed that ICD played a protective role in OS, and tumor cell might protect themselves through down-regulation of ICD activities.

After illustrating the protective roles of ICD in OS, we performed clustering analysis and risk stratification to distinguish OS patients with distinct ICD activities. First, 212 OS samples were genotyped based on the expression profiles of ICD-related genes, and two subtypes (C1 and C2) were obtained. The C1 subtype with a higher ICD score and favorable prognosis was more associated with many star pathways, such as PI3K/Akt/mTOR pathway, P53 pathway, KRAS signaling, inflammatory response, apoptosis, hypoxia, and TGF-β signaling. Tang et al. (45) reported that CXCR3 had the potential to modulate above signaling pathways of OS patients, recruited more immune infiltration of CD8+T cells, M1 macrophages, plasma cells, and activated NK cells, and then improved OS patients’ prognoses. These findings were in agreement that C1 subtype with a higher ICD score had a better clinical outcome, which was also verified the protective role of ICD in OS.

Considering the remarkable significance of targeted-drug therapy in OS, we intensively explored the discrepancy in drug sensitivity between C1 and C2. Notably, C1 subtype might be beneficial from Avagacestat, Bosutinib, Crizotinib, MG132, PD184352, Refametinib, Shikonin, and Z-LLNle-CHO, whereas, C2 subtype was more benefical from Axitinib, Doramapimod, EHT-1864, Elesclomol, GW-441756, Linsitinib, Motesanib, and Vorinostat. Overall, these findings might provide new insight for individual management of patients with OS.

To explore the underlying prognostic mechanism of the proposed ICD-based molecular subtype and investigate the reason that leads to prognostic differences among the different subtypes, we compared the tumor immune microenvironment among the different subtypes. Interestingly, C1 subtype with higher ICD scores and favorable clinical outcomes had significantly higher proportions of immunocyte infiltration (e.g. B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, NK cells and myeloid dendritic cells) and lower expression levels of immune checkpoints. CD8+ T cells are the essential effector cells against tumors, and the tumor-related antigens of Major Histocompatibility Complex I (MHC I) are recognized by activated CD8+ T cells, which then destroy tumor cells by activating their T cell receptors (46). As the primary effectors in humoral immunity, B cells can stimulate the T-cell response via producing immunoglobulin and prevent the tumor progressions by destroying tumor cells directly (47). Therefore, the high infiltration of immune cells is closely correlated to a favorable prognosis of OS.

A total of 212 DEGs between the C1 and C2 subtypes were identified using the limma package. We constructed a 5-gene signature based on the DKK1, TMCC2, NOX4, BAMBI, and CBS genes rooting in the 212 identified DEGs. It has been reported that DKK1 functioned as a prognostic or diagnostic marker for OS assessment, and DKK1 immunodepletion may also be used as an additional treatment for OS (48). TMCC2 acts as a member of transmembrane and coiled-coil domain family, and its-encoding proteins might locate in endoplasmic reticulum and invovled in amyloid precursor protein metabolic process and bone marrow hematopoiesis (49, 50). In addition, TMCC2 is identified as a potential biomarker of steroid-induced osteonecrosis of the femoral head (51). NOX4 may function as an oncogene in a variety of tumors, such as pancreatic cancer, breast cancer, and lung cancer; however, its potential role in OS has not been reported before (52–54). The overexpression of BAMBI promotes the growth and invasion of human osteosarcoma cells (55). CBS has a significant correlation to the OS prognosis and is evidenced as an independent prognostic factor (56). The comprehensive effect of ICD regulated by these genes in OS was reported for the first time in this study.

The Kaplan–Meier survival analysis indicated that the risk score could clearly distinguished OS patients with a favourable or unfavourable prognosis, and the time-dependent ROC curves demonstrated the risk score’s high accuracy in predicting the clinical outcomes of OS in both internal validation and external validation cohorts.

However, despite these advances, there remain certain limitations. First, as a retrospective study of OS, our study lacked of clinical prospective studies, which should be performed for the verification of the prognostic characteristic and the stability of the 5-gene prognostic model. Additionally, the molecular mechanisms by which DKK1, TMCC2, NOX4, BAMBI, and CBS promote the malignant progression of OS still require a deeper investigation.



Conclusions

Taken together, the ICD-based molecular classifier of OS was identified, and a 5- gene prognostic signature was developed to predict prognostic risk in patients with OS.



Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.



Author contributions

JiY, JZ, and SN contributed to this study equally. All the authors participated in the design of study, data collection and processing, bioinformatics analysis, and writing and revising the manusript. All authors read and approved the final manuscript. All authors contributed to the article and approved the submitted version.



Funding

This study was supported by National Natural Science Foundation of China (No.82002908).



Acknowledgments

We thank Bullet Edits Limited for the linguistic editing of the manuscript. We also thank Dr. Sida Liu and Mr. Qihang Yuan for their selfless help and guidance.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.994034/full#supplementary-material

Supplementary Figure 1 | scRNA-seq analysis of 6 osteosarcoma samples. (A) The correlation between mitochondrial gene and the number of UMI/mRNA, and the relationship between the number of UMI and mRNA. (B, C) Quality control, including the number of unique genes and total molecules, the percentage of reads that map to the mitochondrial genome. (D) The PCA based on scRNA-seq data confirms top 50 PCs.

Supplementary Figure 2–3 | Expression distributions of ICD-related genes in single-cell levels.

Supplementary Figure 4 | Functional annotation of DEGs between C1 and C2 subtype. (A) GO functional enrichment analysis of DEGs. (B) KEGG functional enrichment analysis of DEGs.

Supplementary Figure 5 | Variable selection and prediciton of upstream and downstream genes. (A-C) Five genes selected by LASSO-Cox regression analysis. (D) The network of BAMBI, TMCC2, NOX4, DKK1, and CBS in DisNor database.
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Background

Colon cancer (CC) is a common tumor, but its pathogenesis is still not well understood. Competitive endogenous RNA (ceRNA) theory, ferroptosis and tumor immune infiltration may be the mechanisms of the development of cancer. The purpose of the study is to seek genes connected with both immunity and ferroptosis, and provide important molecular basis for early noninvasive diagnosis and immunotherapy of CC.



Methods

We extracted messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) data of CC from The Cancer Genome Atlas database (TCGA), identified the differentially expressed mRNA (DEmRNA), miRNA (DEmiRNA) and lncRNA (DElncRNA), then constructed a ceRNA network. Venn overlap analysis was used to identify genes associated with immunity and ferroptosis in ceRNA network. The expression and prognosis of target genes were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA) and PrognoScan database, and we analysed the related functions and signaling pathways of target genes by enrichment analysis. The correlation between target genes and tumor immune infiltrating was explored by CIBERSORT and spearman correlation analysis. Finally, the expression of target genes was detected via quantitative reverse transcription-PCR (qRT-PCR) in CC and normal colon tissues.



Results

Results showed that there were 4 DElncRNA, 4 DEmiRNA and 126 DEmRNA in ceRNA network. NADPH oxidase 4 protein (NOX4) was a DEmRNA associated with immunity and ferroptosis in ceRNA network. NOX4 was highly expressed in CC and connected with unfavourable prognosis. NOX4 was obviously enriched in pathways connected with carcinogenesis and significantly correlated with six kinds of immune cells. Immune checkpoints and NOX4 spearman correlation analysis showed that the expression of NOX4 was positively related to programmed cell death protein 1 (PD-1)-PDCD1, programmed cell death-Ligand 1 (PD-L1)-CD274 and cytotoxic T-lymphocyte-associated protein 4 (CTLA4).



Conclusions

To conclude, our study suggests that NOX4 is associated with both ferroptosis and tumor immunity, and might be a biomarker associated with the carcinogenesis, prognosis of CC and a potential target of CC immunotherapy.





Keywords: colon cancer (CC), ceRNA, NOX4, ferroptosis, immune infiltration, prognosis



Introduction

CC is the third most common cancer worldwide. From 2014 to 2019, the incidence of CC was 36.5 percent and the death rate was 13.4 percent in the United States (1). In recent years, due to the lack of clear early symptoms and concern about the pain of colonoscopy, most CC patients are in advanced stage at the time of diagnosis and have developed distant metastases with poor prognosis (2–4). Therefore, non-invasive early diagnosis and treatment of CC are urgently needed to improve the early recognition rate and prolong the lifetime of CC patients. Now, the standard treatment for advanced CC combines neoadjuvant chemoradiotherapy, molecular-targeted therapy and immunotherapy (5–10). In recent years, the development of cancer immunotherapy is very rapid. The therapy aims to activate the immune system to attack cancer cells through natural mechanisms and improve anti-tumor immune response with fewer off-target effects (11). For example, the remarkable development of immune checkpoint inhibitors has shown surprising clinical efficacy. To be specific, the therapy uses antibodies that block the CTLA-4 and PD-1 pathways to treat cancer patients (12). Similarly, Chen et al. show that PD-L1 expression is upregulated in many human tumors, and the antibodies block the PD-L1/PD-1 interaction, resulting in tumor regression in mice (13). However, the majority of CC patients are not eligible for the treatment, suggesting that cancer immunotherapy still needs more research to elucidate the molecular mechanisms and to identify useful biomarkers (14).

It is well known noncoding RNA, including lncRNA and miRNA, are among the major components of the human transcriptome (15, 16). According to the ceRNA theory, lncRNA and mRNA competitively bind to miRNA, due to the strong affinity between lncRNA and miRNA, the binding of miRNA and mRNA is inhibited, resulting in the weakened inhibitory effect of miRNA on mRNA and the increase of mRNA expression closely related to tumorigenesis (17, 18). The bioinformatic analyses about ceRNA related with CC or other cancers have been studied by many researchers in recent years (19–24).

Ferroptosis is an iron-dependent process of modulating cell death with excessive oxidation of phospholipids (25). In recent years, many studies have reported a correlation between ferroptosis and cancer. For example, Wang et al. report that the ferroptosis-related gene circRNA_101093 is essential for protecting lung adenocarcinoma cells from ferroptosis injury (26). Zhang et al. show that adenylate cyclase10 (ADCY10) is an ferroptosis-related gene and promotes the formation of lung adenocarcinoma. Therefore, lung adenocarcinoma patients with high ADCY10 expression may benefit from ferroptosis therapy. The authors conclude that further studies are needed to identify other genes associated with prognosis and ferroptosis of cancer patients (25). On the other hand, studies have shown that reactive oxygen species (ROS) is produced accompanied by ferroptosis, which is closely related to carcinogenesis by inducing DNA double-strands break and oncogene activation (27–31). Study has shown that ferroptotic cancer cells may secret the immune modulators such as Prostaglandin E2 to disturb the effect of immunotherapy, which raises the correlation between ferroptosis and tumor immunity (32, 33). However, the relationship between ferroptosis and immune infiltration in CC has been less studied.

The purpose of the study is to seek genes connected with both immunity and ferroptosis and provide important molecular basis for early noninvasive diagnosis and immunotherapy of CC. In our study, we constructed a ceRNA network and identified NOX4 as target genes associated with immunity and ferroptosis. We used GEPIA, PrognoScan database and qRT-PCR to analyze the NOX4 expression and prognosis, we analysed the related functions and signaling pathways of NOX4 by enrichment analysis. The correlation between NOX4 and tumor immune infiltrating was explored by CIBERSORT and spearman correlation analysis. The flow chart of the whole article was shown in Supplementary 1.



Methods


Data download

We downloaded the clinical and RNA sequencing data of 371 CC patients from TCGA database (https://portal.gdc.cancer.gov/) using the Data Transfer Tool (34), including 387 CC tissues and 38 normal colon tissues.



Identification of differentially expressed RNA as well as construction of the ceRNA network

“Limma” package of R language (35, 36) was used to obtain DElncRNA, DEmiRNA and DEmRNA with P < 0.05 and absolute value of log2 fold change (|logFC|) > 2.0, “ggplot2” package (37) was used for visualization of volcanos. We used RNAInter database (www.rnainter.org) to identify potential relationships between lncRNA–miRNA and miRNA–mRNA (38), “Venn Diagram” package (39) was used to draw the interaction between DEmiRNA–mRNA an DEmRNA. Finally, we used the Cytoscape to construct a ceRNA network (40).



Acquisition of target genes associated with immunity and ferroptosis in ceRNA network

We used the FerrDb database (http://www.zhounan.org/ferrdb/current/) to acquire the ferroptosis-related genes (41), and the ImmPort database (https://www.immport.org/shared/home) to acquire the immune-related genes (42). The overlapping target genes were identified by Venn overlap analysis.



Expression profile analysis of target genes

We applied TIMER database (https://cistrome.shinyapps.io/timer/) (43) to analyze the expression of target genes in pan-cancer, GEPIA database (http://gepia.cancer-pku.cn/) to analyze the target genes’ expression in CC (44).



Survival analysis

GEPIA database (44) and PrognoScan database (http://dna00.bio.kyutech.ac.jp/PrognoScan/) (45) were applied to analysis the prognosis of target genes. Median expression of target genes was used as cut off value.



Functional enrichment analysis

The Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed by the “clusterProfiler” package (46).



Gene set enrichment analysis

We used GSEA to explore functions of target genes (47). Firstly, the expression data of mRNA gene sets were obtained by R language. We divided CC patients into low expression group and high expression group according to the median of target genes expression. Then, we used GSEA _4.2.3 software to analysis.



Immune−related analysis of target genes

Twenty-two types of immune cells in different tissue samples were evaluated by CIBERSORT algorithm (48). Spearman analysis was used to evaluate the correlations among the expression of target genes selected in ceRNA network, immune cells, and immune checkpoints CTLA4, PD-1 and PD-L1. We performed visualization of correlations using “Ggplot2” package and “pheatmap” package (49).



Clinical tissues collection

We collected normal colon and CC specimens from 19 CC patients, during colectomy between April 25, 2021 and June 6, 2021, in the Lanzhou University Second Hospital.



qRT-PCR

We used RNA lysis solution to extract total RNA (Accurate Biotechnology, China). Evo M-MLV RT Kit II was used to synthesize the first-strand cDNA of mRNA (Accurate Biotechnology, China). CFX 96 real-time PCR system was used to amplify the cDNA. Primer sequences were as follows, β-actin, forward: TGGAACGCTTCACGAATTTGCG, revers: CTAAGTCATAGTCCGCCTAGAAGCA; NOX4, forward: CAGATGTTGGGGCTAGGATTG, revers: GAGTGTTCGGCACATGGGTA.



Statistical analysis

P < 0.05 was statistically significant. In SPSS23.0 software, we used T-test, Mann-Whitney U test or Wilcoxon rank sum test to count the results.




Results


Acquisition of differentially expressed RNA

We identified 1732 DEmRNA (684 upregulated and 1,048 downregulated), 507 DElncRNA (193 upregulated and 314 downregulated), 45 DEmiRNA (5 upregulated and 40 downregulated) between CC and colon normal specimens. The maps of volcanic distribution were shown in Figure 1.




Figure 1 | Volcano of differentially expressed RNA in CC (absolute of logFC > 2, P Value < 0.05). Volcano plots of (A) 507 DElncRNA, (B) 45 DEmiRNA, and (C) 1,732 DEmRNA. Red indicates upregulated RNA, and blue represents downregulated RNA. The x-axis depicts log2 Fold Change, the y-axis depicts -log10 (P Value).





Prediction of the target DElncRNA/DEmRNA of miRNA as well as construction of the ceRNA network

We predicted 1,686 lncRNA–miRNA interactions and 19,185 mRNA–miRNA interactions by using RNAInter database and input the 8 DEmiRNA into the RNAInter database to identify the target DElncRNA/DEmRNA. There were 9170 mRNA predicted as the target genes of 8 DEmiRNA, the intersection of these 9,170 mRNA and 1732 DEmRNA resulted in 774 DEmRNA (259 upregulated and 515 downregulated) (Figure 2A). There were 19 DElncRNA predicted as the target genes of 8 DEmiRNA. Thus, we obtained the interaction between DElncRNA–DEmiRNA and DEmiRNA–DEmRNA. To identify highly expressed oncogenes (logFC of lncRNA and mRNA >2, and logFC of miRNA< -2), we identified 4 DElncRNA, 4 DEmiRNA, and 126 DEmRNA to construct the ceRNA network (Figure 2B).




Figure 2 | Venn diagram of gene interactions and ceRNA network. (A) In the 774 differentially expressed target genes, 259 were up-regulated and 515 down-regulated. The yellow circle represents 9170 target mRNA, the blue circle represents 1732 DEmRNA, the pink circle represents 259 up-regulated differentially expressed target genes, and the green circle represents 515 down-regulated differentially expressed target genes. (B) The ceRNA network in CC. Triangles denote lncRNA, diamonds denote miRNA, and circles denote mRNA.





Acquisition of genes association with ferroptosis and immune in ceRNA network

Genes associated with immune and ferroptosis were downloaded from ImmPort and FerrDb databases, as shown in Supplementary 2. We used Venn overlap analysis to obtain the overlapping target genes among immune-related genes, ferroptosis-related genes, and 126 DEmRNA of ceRNA network. The results showed that NOX4 was overlapping target gene (Figure 3).




Figure 3 | NOX4 was both ferroptosis-related gene and immune-related gene in ceRNA network. The pink circle represents immune-related genes, the yellow circle represents ferroptosis-related genes, the green circle represents 126 DEmRNA.





NOX4 was highly expressed in CC and was connected with bad prognosis

The expression of NOX4 in pan-cancer from TIMER database was shown in Figure 4A. We visualized the expression of NOX4 from TCGA database and GEPIA database, as shown in Figures 4B and C. Then, we collected 19 paired fresh CC and normal colon tissues for qRT-PCR analysis (Figure 4D). The results showed that compared with normal colon tissues, NOX4 was higher expressed in CC. Survival analysis showed that CC patients with high NOX4 expression had poor disease-free survival and overall survival, as shown in Figures 4E–G.




Figure 4 | NOX4 was upregulated in CC and associated with poor prognosis. (A) The expression of NOX4 in pan-cancer from TIMER database. (B) The expression of NOX4 in CC from TCGA database. (C) The expression of NOX4 in CC from GEPIA database. (D) The expression of NOX4 in 19 fresh normal colon and CC tissues (n=19). (E) Overall survival curve for NOX4 in GEPIA database. (F) Disease free survival curve for NOX4 in GEPIA database. (G) Overall survival curve for NOX4 in PrognoScan database. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.





Functional enrichment of NOX4 and its co-expressed mRNA

GO includes three components: molecular functions (MF), cellular components (CC), and biological processes (BP). KEGG analysis indicated NOX4 and its co-expressed mRNA were enriched in a total of 12 signaling pathways, the results were shown in Figures 5A, B. Co-expressed mRNA were shown in Supplementary 3.




Figure 5 | Functional enrichment analysis. (A) GO functions of NOX4 and its co-expressed mRNA. (B) The KEGG pathway analysis of NOX4 and its co-expressed mRNA.





NOX4 related signaling pathways were analyzed by GSEA

In CC patients with high NOX4 expression, GSEA analysis indicated the upregulated hallmark gene sets were mainly enriched to pathways connected with tumorigenesis and immune response, mainly including IL6 JAK STAT3 signaling, interferon gamma response, TNF-α signaling via NF-κB, angiogenesis, KRAS signaling up, and interferon alpha response (Figure 6). However, in CC patients with low NOX4 expression, the significantly downregulated hallmark gene sets were enriched to MYC Targets V1, G2M Checkpoint, MYC Targets V2, DNA Repair, and E2F Targets (Figure 7).




Figure 6 | GSEA. (A–J) Ten signaling pathways enriched in CC patients with high NOX4 expression.






Figure 7 | GSEA. (A–F) Six signaling pathways enriched in CC patients with low NOX4 expression.





Correlation between NOX4 expression and tumor immunity

We evaluated the tumor infiltrating immune cell composition in tissues by CIBERSORT algorithm, as shown in Figures 8A, B. The expression of NOX4 was significantly correlated with different types of immune cells, such as CD4+ T cells (p =1.57e-18, r = 0.40), B cells (p =0.023, r = 0.11), CD8+ T cells (p = 3.41e-18, r = 0.39), Neutrophil cells (p = 3.85e-36, r = 0.54), Macrophage cells (p = 4.93e-40, r = 0.57), and Myeloid dendritic cells (p = 1.13e-40, r = 0.57) (Figures 9A–F). Spearman correlation analysis indicated NOX4 expression was positively correlated with PD-1 (PDCD1) expression (p = 7.01e-10, r = 0.28), PD-L1 (CD274) expression (p = 3.06 e-21, r = 0.42), and CTLA4 (p = 3.2e-19, r = 0.40) (Figures 9G-I).




Figure 8 | Distribution of immune cells in CC and normal colon tissues. (A) Heatmap of immune cell scores. Abscissa represents different groups, ordinate represents immune cell types. Cancer represents CC tissues, Normal represents normal colon tissues. (B) The proportion of tumor infiltrating immune cells in each CC sample by the CIBERSORT algorithm. Different colors represent different immune cell types. The horizontal axis represents samples, and the vertical axis represents the percentage of each immune cell in each sample. *P < 0.05, **P < 0.01, ***P < 0.001.






Figure 9 | Correlation of NOX4 expression with tumor infiltrating immune cells and immune checkpoints in the tumor microenvironment. NOX4 was significantly correlated with (A) B cells, (B) CD4+ T cells, (C) CD8+ T cells, (D) Neutrophil cells, (E) Macrophage cells, (F) Myeloid dendritic cells, (G) PD-1 (PDCD1), (H) PD-L1 (CD274), and (I) CTLA4 in the TCGA database. P < 0.05.






Discussion

The early diagnosis rate of CC is low, many patients develop drug resistance, and the mortality rate of CC patients has not decreased (2). Immunotherapy is regarded as an innovative treatment for cancer patients. However, due to lack of effective predictive biomarkers, limited clinical efficacy, and treatment-related adverse events, the broader clinical application of immunotherapy is limited (50). Therefore, it is necessary to further search for immune-related genes with diagnostic and therapeutic value for CC.

We acquired clinic information and transcriptome data of CC patients from the TCGA database, obtained the DElncRNA, DEmiRNA and DEmRNA, then we constructed the ceRNA network. There were 126 DEmRNA in ceRNA network, and finally we have found NOX4, a DEmRNA, was related to both ferroptosis and immunity. NOX4 is a member of NADPH oxidase, and can be induced when cells are in a state of ischemia and hypoxia (51–53). Studies have shown that ROS participates in many key cellular processes, such as proliferation, DNA damage response and angiogenesis, which are obviously connected with the occurrence of tumors (54, 55). NOX4 is a key enzyme in ROS production, which makes it to be more and more attractive to researchers (56). It has been indicated that NOX4 promotes cells migration in CC (57), breast cancer (58–60) as well as pancreatic cancer (61). NOX4 also can regulate the cell cycle to promote the carcinogenesis of melanoma and urothelium (62, 63). Xiao et al. (14) has confirmed that NOX4, as an ferroptosis-related gene, is an effective biomarker for the occurrence of gastric cancer. According to the TIMER database, TCGA database and GEPIA database, NOX4 expression was higher in CC than in colon normal samples, moreover, we confirmed the high expression of NOX4 in CC by collecting fresh clinical surgical specimens. Results from the PrognoScan database and GEPIA database showed that NOX4 was related to disease free survival and overall survival of CC patients, suggesting that NOX4 could be a biomarker to assess the prognosis of CC patients.

Based on GO and KEGG pathway enrichment analysis, we found that NOX4 and its co-expressed mRNA exhibited enrichments for signaling pathways such as PI3K/AKT, TGF-β, MAPK signaling and many more, which were connected with the tumor immune evasion as well as the occurrence of tumors. On the one hand, Fridlender et al. confirm that TGF-β signal transduction in tumor microenvironment promotes the aggregation of N2-like tumor-associated neutrophils, further increasing the tumor immune evasion (64). Regulatory T cells (Tregs) are immune-regulatory subsets of T cells. In the tumor microenvironment, abnormally activated TGF-β signaling makes T cells into Tregs, inhibiting natural killer (NK) cells from killing tumor cells and promoting immunosuppressive effect (65, 66). Conversely, NK cells are activated by inhibition of TGF-β signal transduction (67). On the other hand, Zonneville and Itatani et al. demonstrate that TGF-β signaling in the microenvironment of a tumor plays a key role in angiogenesis (68, 69). Study has shown that over activated TGF-β pathway induces MAPK signaling and PI3K/AKT signaling (70). As we all known, PI3K/AKT is one of the signaling pathways in connection with tumorigenesis. Its overactivation leads to abnormal cell cycle progression, inhibits apoptosis, and inducts angiogenesis (71, 72). Bishnupuri et al. (73) report PI3K/AKT signaling pathway is connected with the occurrence of CC. The above results also reflected the relationship between NOX4 and tumor development, and tumor immunosuppression.

In the CC patients with high NOX4 expression, GSEA analysis enriched to IFN-γ response, angiogenesis, IL6 JAK STAT3 signaling, KRAS signaling up, IFN-α response, and TNFα signaling via NF-κB, which were related to tumorigenesis and immune response. Our correlation analysis showed that NOX4 was significantly related to the expressions of CTLA4, PD-L1 (CD274), and PD-1 (PDCD1), acting as immune checkpoints. Elise et al. (74) suggests that IFN-γ increases the expression of PD-L1 in cancer cells, indirectly over-activating the PD-1/PD-L1 signaling pathway. PD-1, which belongs to the CD28 family, is mostly expressed on activated T cells and inhibits host immunity by binding to PD-L1 (75–79). Studies report that cancer cells are protected from the toxic effects of CD8+ T cells by activation of PD-1/PD-L1 signaling pathway, leading to apoptosis and depletion of T cells (75, 80). CTLA-4 is also a T cell inhibitory receptor that binds to CD80 and CD86 expressed by myeloid dendritic cells and inhibits early activation of T cells (81). Based on the above studies, it may be possible to combine PD-1/PD-L1 with NOX4 as immunotherapy targets for CC. Pro-inflammatory mediators such as IL-22, IL-6, IL-2, and IL-17 play a key part in maintaining tumor microenvironment, promoting immunosuppression, angiogenesis, and coordinating the interactions between immune cells (81). It shows IL-6 induces myelogenesis through the STAT3 signaling pathway, inhibits mature bone marrow cells from differentiating, and stimulates the formation of Myeloid-derived suppressor cells (MDSCs) (82). In addition, IL-6 activates MDSCs through the STAT3-NF-κB-IDO pathway in invasive breast cancer (83). MDSCs are immunosuppressive cells that can directly promote the formation of tumor stem cells and protect proliferating tumor cells from apoptosis (84, 85). In the CC patients with low NOX4 expression, GSEA analysis enriched to MYC Targets V1, MYC Targets V2, oxidative phosphorylation, DNA Repair and so on. It has been shown oxidative phosphorylation promotes tumor growth in vivo (86). As a oncogene, MYC can regulates tumor DNA repair, growth, metabolism and apoptosis (87). These findings indicated that NOX4 had potential value in the tumorigenesis and immunosuppression of CC.

We used CIBERSORT algorithm to evaluate the infiltrating immune cell composition in tissues. The results showed that a large proportion of immunosuppressive cells infiltrated in CC tissues. Tumor cells with high expression of ferroptosis related genes recruit and reprogram numerous immunosuppressive cells by secreting cytokines, chemokines, ROS and other proinflammatory mediators. Studies have shown that tumor cells, immunosuppressive cells and tumor stromal cells form an acidic tumor microenvironment, which makes tumor cells more conducive to escape immune surveillance of the host and promotes growth, invasion and metastasis of tumor cells (32, 81, 88). In tumor microenvironment, tumor immunosuppression includes inhibition of activity of CD8+T cells and NK, abnormal function of Myeloid dendritic cells, abnormal transformation from Th1 to Th2, as well as enhanced activity of immunosuppressive cells, including Tregs and MDSCs (81). Our correlation analysis indicated NOX4 was positively connected with the expressions of Neutrophile, CD4+T cells, Macrophage, CD8+T, Myeloid dendritic cells, and B cells. Oshima’s results show cancer cells expressing membrane-Type1-matrix metalloproteinase (MMP) are surrounded by macrophages, leading to the activation of MMP2, which increases the migration and invasion of cancer cells (89). Researches have demonstrated that a tumor’s microenvironment can control tumor occurrence and development through macrophages and myeloid dendritic cells (90, 91). Our results indicated that in the microenvironment of CC tumors, NOX4, a ferroptosis-related gene, was associated closely with immune infiltration and immunosuppression.



Conclusions

To conclude, our study suggests that NOX4 is associated with both ferroptosis and tumor immunity, and may be a biomarker associated with the prognosis and tumorigenesis of CC and a potential target for immunotherapy of CC in the future.
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Gastric cancer (GC), a malignant tumor of digestive tract, is characterized by a high death rate. Thus, it is of particular importance to clarify the mechanisms of GC and gain new molecular targets for the sake of preventing and treating GC. It was reported that long non-coding RNAs (IncRNAs) are prognostic factors to cancer. Ferroptosis refers to a process of programmed cell death dependent on iron. This study sets out to investigate the expression and function of ferroptosis-related lncRNA (FRlncRNA) in GC. TCGA datasets offered RNA-seq data for 375 GC patients and clinical data for 443 GC patients. Based on Pearson’s correlation analysis, we studied their expression and identified the FRlncRNAs. Differentially expressed prognosis related to FRlncRNA were determined with the help of the Wilcoxon test and univariate Cox regression analysis. To evaluate the accuracy of the prognostic capacity, researchers used the Kaplan-Meier technique, as well as univariate and multivariate Cox regression and receiver operating characteristic (ROC) curve studies. We also carried out the real-time PCR and CCK8 assays to examine the expression and function of FRlncRNA. In this study, we identified 50 ferroptosis-related DEGs which were involved in tumor progression. In addition, we identified 33 survival-related FRlncRNAs. Among them, lncRNA associated with SART3 regulation of splicing(LASTR) was confirmed to be highly expressed in GC specimens compared to non-tumor specimens in this cohort. Survival assays illuminated that the high LASTR expression predicted a shorter overall survival and progression-free survival of GC patients. Based on multivariate Cox regression analyses, it was confirmed that the GC had a worse chance of surviving the disease overall if their tumors expressed LASTR, which was an independent prognostic indication. Then, Loss-of-function tests showed that knocking down LASTR had a significant effect on reducing the proliferation of GC cells. Finally, we found that the expression of LASTR was negatively associated with CD8 T cells, T cells, Th17 cells, and T helper cells. Overall, our findings identified a novel survival-related FRlncRNA, LASTR which possibly can serve as a novel prognostic biomarker predicting response to cancer immunotherapy and therapeutic target for GC patients.
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Introduction

Gastric cancer (GC) is the third leading cause of cancer-related death (1). Globally, it is the fifth most common cancer with up to 1 million new gastric cancer cases and 783, 000 deaths projected in 2018 (2). While the number of inpatient admissions for GC has been dropping in the last few decades, the healthcare burden and expenditure it brought about experienced a tremendous growth (3, 4). There are many factors accounting for the occurrence of GC, including alcoholic abuse, irregular dieting, incorrect dieting habit and gene heredity (5, 6). Whether the perioperative chemotherapy and radiotherapy are implemented or not, the prognosis of GC patients are still poor (7, 8). An integrated understanding of the molecular mechanism of GC is conducive to develop efficient therapeutic methods and to ameliorate the clinical results of GC patients (9, 10). At present, surgical resection and chemotherapy are the first choices of GC treatments, since they can considerably avoid the recurrence and metastasis of GC. Consequently, to find out a sensitive diagnostic approach for the early gastric caner and facilitate prognosis, it is necessary to elucidate the molecular biological mechanism of this cancer.

Growing evidences from high-throughput sequencing have demonstrated that <2% of genes have protein-coding capacity, while >75% of gene transcripts are non-coding RNAs (11, 12). Therefore, concentrating on protein-coding genes may be ineffective to explore the mechanisms associated with tumorigenesis. A collection of non-coding transcripts that are more than 200 nucleotides long are known as long non-coding RNAs (lncRNAs) (13). While they are extremely similar in genetic organization, they play a variety of roles at the cellular level, such as regulating transcription and translation, altering gene expression and regulating the expression of chromosomally neighboring genes (14, 15). According to the findings of a number of studies, lncRNAs are at the center of a wide variety of physiological and pathological processes, including the progression of the cell cycle, the occurrence of apoptosis during the process of cellular differentiations, and immune function (16, 17). They are essential components in the processes of post-transcriptional control, transcriptional repression and chromatin remodeling (18, 19). In addition, more and more studies have reported that some functional lncRNAs possibly can serve as novel diagnostic and prognostic biomarkers for tumor patients (20, 21). However, to date, only few studies have documented lncRNAs in GC and the underlying mechanisms remain largely unknown.

Ferroptosis refers to a form of iron-dependent programmed cell death, featuring lipid peroxidation (22). With the development of study, ferroptosis is engaged in various crucial biological processes, such as cancer, ischemia-reperfusion injury, and neurodegenerative maladies (23). Ferroptosis is a crucial regulatory mechanism for tumor growth, and it is central to the chemoradiotherapy and immunotherapy treatment of malignancies, according to several studies that were conducted not too long ago (24, 25). Thus, these therapeutic approaches, when paired with drugs that target iron death signals, assist to increase their overall effectiveness against tumors. In gastric cancer, it was shown that the lncRNA known as PVT1 was elevated and had a significant relationship to both high microvessel density and a bad prognosis. Based on the gain- and loss-of PVT1 expression, PVT1 was found to be able to evidently trigger angiogenesis within tumors, apart from enhancing tumor growth by means of modulating the STAT3/VEGFA axis in vitro and in vivo. It should be noted that the carcinogenesis of lncRNA PVT1 is linked to ferroptosis (26). Up till now, it is not yet known in its entirety how ferroptosis-related lncRNAs contribute to the advancement of GC, and it is imperative that their vital significances in GC treatment and prognosis be further defined in the future.

This study identified 33 survival-related Ferroptosis-Related lncRNAs(FRlncRNA). Among them, our attention focused on lncRNA associated with SART3 regulation of splicing(LASTR) which was highly expressed in our cohort and TCGA datasets. Moreover, we analyzed the prognostic value of LASTR expression among patient with GC and the potential function in vitro experiments. These findings may provide a new a prognostic marker and therapeutic target for patients with GC.



Materials and methods


Clinic Samples

This study was composed of 11 GC specimens and the matched 11 para-tumorous specimens. Three pathologists were responsible for the confirmation of the histologic diagnosis. Patients participating in the study received surgery at The First Medical Center, Chinese PLA General Hospital, and the fresh tissues were snap-frozen in liquid nitrogen and preserved at −80°C for the next studies. We also gained the written informed consent of all patients and the approval of the Ethics Committee of The First Medical Center, Chinese PLA General Hospital.



Cell culture and transfection

The Type Culture Collection of the Chinese Academy of Medical Science supplied the control human GES-1 gastric mucosa epithelial cells as well as the four GC cell lines (HGC-27, BGC-823, AGS and MGC-803). In a humidified incubator with 5 percent CO2, RPMI-1640 medium (Hyclone, Massachusetts, USA) with 10 percent fetal bovine serum (Hyclone) and penicillin/streptomycin was used to cultivate the cells. Oligonucleotides, including negative control siRNA and LASTR siRNA were synthesized by GenePharma (Shanghai, China). Lipofectamine 3000 was employed to transfect GC cells for in vitro assays. 48 hours after this transfection, cells were collected for the downstream analyses.



RNA isolation and RT-PCR

TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.) was applied to extract total RNA from GC samples and cells, and then the total RNA was reverse-transcribed into cDNA using SuperScript Reverse Transcriptase III (Invitrogen, China) in accordance with the instructions provided by the manufacturer. The following parameters were utilized for quantitative PCR reactions that were carried out using an ABI 7500 PCR System with the use of SYBR-Green Supermix (Applied Biosystems; Thermo Fisher Scientific, Inc.): Initial denaturation at 95 degrees Celsius for thirty seconds, followed by forty cycles of denaturation at 95 degrees Celsius for five seconds, annealing at 60 degrees Celsius for thirty seconds, and then a study of the melting curve. Fluorescent signals detection was carried out after every cycle. Using the 2−ΔΔCq methods, relative mRNA expression levels were determined after being normalized to either GAPDH. The primer sequences were presented in Table 1.


Table 1 | The primer sequences included in this study.





CCK-8 assay

Cells that were in the log phase were collected 24 hours after the transfection and planted into a 96-well plate at a density of 5 x 103 cells per well, with 100 μL of media present in each well. At certain time intervals (24 h, 48 h, and 72 h), 10 μL of CCK-8 was added, and the mixture was then incubated with the cells for an additional 2 hours. In the end, the optical density(OD) values of the cells were examined at a wavelength of 450 nm using a MultiskanTM FC microplate reader manufactured in the United States by Thermo ScientificTM. The abscissa represented the passage of time, whereas the ordinate was denoted by OD value.



Data collection

The Genomic Data Commons Data Portal was used to obtain the RNA-sequencing and clinical information for the GC samples that were part of the TCGA (GDC1). Additionally, we downloaded a “HTSeq-FPKM” workflow type of transcriptome profiling for the TCGA-STAD project. This workflow type of transcriptome profiling included the gene expression profiles of 375 cancer tissue samples and 32 normal tissue samples. The “bcr xml” file type was used to obtain the clinical information for all 443 GC tissues that came from the TCGA-STAD.



Ferroptosis-associated lncRNAs

FerrDb is the first manually curated resource for regulators and markers of ferroptosis, and it was launched in December 2019; we were able to obtain 259 gene sets linked with ferroptosis from this database (22). Our group applied the limma package in R for the identification of the ferroptosis-associated lncRNAs that were found based on the correlation analysis between ferroptosis-related genes and IncRNA expressions in the GC samples. This analysis was based on the fact that there was a positive correlation between these two factors. After calculating the Pearson correlation coefficients, the threshold was determined to be a correlation coefficient of > 0.4 and a probability value of < 0.001.



Functional enrichment analysis of the DEGs

The DEGs between GC specimens and non-tumor specimens were filtered in light of specific criteria (|log2FC| ≥ 2 and FDR < 0.05). On the basis of these DEGs, GO and KEGG analyses were accomplished with the help of the “clusterProfiler” package (27).



Identification of the survival-related ferroptosis-related LncRNAs

Ferroptosis-related lncRNAs related to survival were assessed by means of univariate Cox regression analysis.



Analysis of the relationships Between LASTR and prognosis

The survival date from the samples of TCGA was also available. Overall survival (OS) and progression-free survival(PFS) were thought to be the indicators for the exploration of relevancy between LASTR expression and patient prognosis. With respect to survival analyses, the Kaplan-Meier method and log-rank test were adopted in each cancer type. The survival curves were drawn using R packages “survival” and “survminer”. Besides, the R packages “forestplot” was used to figure out the relationship between LASTR expression and survival in pan-cancer.



Statistical analysis

R statistical software version 4.0.4 and strawberry-perl-5.32.0.1 were employed to conduct all the statistical analyses. The two independent groups were compared using the Student’s t-test. We also conducted the univariate Cox regression analysis and multivariate Cox regression analysis to determine OS’s independent prognostic factors. Moreover, we carried out time-dependent ROC curve analysis to assess the predictive accuracy of the prognostic model for OS. Statistical significance was defined as p value <0.05 with all p values two-tailed.




Results


Enrichment analysis of ferroptosis-related DEGs

Firstly, we screened ferroptosis-related DEGs between GC specimens and non-tumor specimens on the basis of TGCA datasets, and identified 50 ferroptosis-related DEGs, including 20 down-regulated ferroptosis-related DEGs and 30 upregulated ferroptosis-related DEGs. Then, we used these genes to fulfill GO and KEGG assays. We found that the 50 ferroptosis-related DEGs were mainly associated with reaction to oxidative stress, cellular reaction to chemical stress, reactive oxygen species metabolic process, oxidoreductase complex, NADPH oxidase complex, endocytic vesicle, oxidoreductase activity, acting on NAD(P)H, iron ion binding and superoxide-generating NAD(P)H oxidase activity (Figure 1A). KEGG assays revealed that the 50 ferroptosis-related DEGs were mainly concentrated in Fluid shear stress and atherosclerosis, Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, Kaposi sarcoma-associated herpesvirus infection, HIF-1 signaling pathway, Human T-cell leukemia virus 1 infection and Human cytomegalovirus infection (Figure 1B).




Figure 1 | GO and KEGG analyses were applied to explore the potential function of ferroptosis-related differentially expressed genes. (A) GO assays and (B) KEGG assays.





Identification of the survival-related FRlncRNAs

We uncovered 1336 ferroptosis-related lncRNAs. To identify the survival-related FRlncRNAs, Univariate Cox regression analysis was conducted and 33 survival-related FRlncRNAs were identified (Figure 2). Among the above lncRNAs, it has been reported that some of them participant in the progression of several tumors, such as GC.




Figure 2 | Ferroptosis-related lncRNAs related to survival were assessed by means of univariate Cox regression analysis.





Identification of the dysregulated survival-related FRlcnRNAs in our cohort

In order to screen critical FRlcnRNAs, we performed RT-PCR using four survival-related FRlncRNAs, including LINC0711, LINC01094, LINC01614 and LASTR. We found that the expression of LINC0711, LINC01094 and LINC01614 failed to exhibit an apparent difference between GC samples and non-tumor samples(Figures 3A-C). However, LASTR expressions were evidently increased in GC specimens (Figure 3D). Then, our attention focused on LASTR.




Figure 3 | RT-PCR was applied to examine the expression of (A) LINC0711, (B) LINC01094, (C) LINC01614 and (D) LASTR in 11 pairs of GC specimens and matched non-tumor specimens. **p<0.01.





The expression of LASTR in GC and its association with clinical factors based on TCGA datasets

Then, to further identify LASTR’s expression in GC, TCGA datasets were analyzed. Consequently, it was found that the expression of LASTR was distinctly increased in GC specimens compared to non-tumor specimens (Figure 4A). Moreover, efforts were made to study the relationship between LASTR expressions and clinical factors in GC patients. However, it was found that LASTR expression was not associated with age (Figure 4B), gender (Figure 4C), grade (Figure 4D), clinical stage (Figure 4E), T stage (Figure 4F), M stage (Figure 4G) and N stage (Figure 4H).




Figure 4 | The expression of LASTR in specimens and its clinical significance. (A) LASTR expression was distinctly upregulated in GC specimens based on TCGA datasets. (B-H) The correlation between LASTR and clinicopathological characteristics. ***p<0.001.





The prognostic value of LASTR expression in GC patients

A Kaplan-Meier survival analysis and log-rank tests were employed. The results revealed that patients in high LASTR expression group showed poorer OS(p=0.020, Figure 5A) and PFS(p=0.004, Figure 5B) compared with those in low LASTR expression group (p = 0.0010). Moreover, the time-dependent ROC curve was conducted for the estimation of the performance of the risk prediction model. The AUC of LASTR was 0.571, 0.574, and 0.757 at 1, 3, and 5 years, respectively (Figure 5C). To further examine the clinical value of LASTR expressions in GC patients, univariate and multivariate assays were carried out based on Cox’s proportional hazard model. According to the univariate analysis, age, clinical stage, and LASTR expression were greatly linked to the overall survival of GC patients (Figure 6A). Moreover, through the multivariate Cox regression analyses, it was confirmed that the LASTR expression was an independent prognostic indicator to the overall survival (HR = 1.557; 95% CI, 1.147-2.113; p = 0.005) among GC patients (Figure 6B). These outcomes showed that LASTR expression might be consider as an important independent prognostic factor.




Figure 5 | Prognostic value of LASTR among GC patients. (A, B) Kaplan-Meier plots of OS and PFS among GC patients with low and high level of LASTR. (C) ROC curves for the model representing 1-, 3-, and 5-year predictions. The values in brackets are the areas under the curve.






Figure 6 | Univariate (A) and multivariate (B) analyses of overall survival among GC patients.





Knockdown of LASTR expression suppressed the proliferation of GC cells

To investigate whether LASTR knockdown inhibited GC cell growth, at first, the expression of LASTR in four GC cells was examined using RT-PCR, and it was found that LASTR expression was greatly increased in four GC cells compared to GES-1 (Figure 7A). Because LASTR exhibited a higher level in BGC-823 and HGC-27 cells, we chose them for further in vitro experiments. To probe the biological function of LASTR, we designed small interfering RNAs (siRNAs) that can specifically target LASTR. As shown in Figure 7B, LASTR was effectively silenced by siRNA. Then, we assessed whether the knockdown of LASTR could affect the biological function of BGC-823 and HGC-27. The outcomes of CCK-8 assay revealed that knockdown of LASTR greatly restrained the proliferation of BGC-823 and HGC-27 cells (Figures 7C, D).




Figure 7 | The function of LASTR silence on the proliferation of GC cells. (A) The expressions of LASTR were confirmed in GES-1 and four GC cell lines GES-1, HGC-27, MGC-803 and BGC-823. (B) Stable knockdown of LASTR was checked by RT-PCR in MGC-823 and HGC-27 cells transfected with si-LASTR. (C, D) The effect of LASTR expression on cell proliferation was assessed using MGC-823 and HGC-27 cells by CCK-8 assays. **p<0.01.





Association between LASTR expressions and immune infiltrating levels in GC

Then, we explored the correlation between immune infiltration and LASTR expression. As shown in Figure 8, we found that the expression of LASTR was negatively associated with TFH, B cells, CD8 T cells, Treg, T cells,  Th17 cells and T helper cells.




Figure 8 | Correlation of LASTR expression with immune infiltration level in GC. The expression of LASTR was associated with several immune cells, such as TFH and B cells.






Discussion

Since GC is a highly heterogeneous malady featuring a high death rate and imperceptible symptoms, patients tend to be diagnosed with it until the late stage (28). Though the treatments for GC is updated continuously, the 5‐year survival rate remains disappointing. The first choice for better foreseeing tumor behavior and instructing the treatment scheme is to determine the informative diagnostic and prognostic biomarkers of GC (29, 30). So far, scientists have found that lncRNAs regulate target gene expression and acts as oncogenes or tumor suppressors. As the fast growth of high throughput genomic sequencing technologies, lncRNAs prove to be valuable biomarkers to more accurately assess the prognosis of various tumors.

Mounting research reveals a connection between autophagy and ferroptosis and tumor growth, as these two RCD subtypes are inextricably linked (22). Nevertheless, the involvement of lncRNAs in GC autophagic and ferroptotic processes was under-studied. This study screened ferroptosis-related DEGs between GC specimens and non-tumor specimens on the basis of TGCA datasets, and identified 50 ferroptosis-related DEGs, including 20 down-regulated ferroptosis-related DEGs and 30 upregulated ferroptosis-related DEGs. Furthermore, KEGG assays illuminated that the 50 ferroptosis-related DEGs were mainly concentrated in Fluid shear stress and atherosclerosis, Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, Kaposi sarcoma−associated herpesvirus infection, HIF-1 signaling pathway, Human T-cell leukemia virus 1 infection and Human cytomegalovirus infection, suggesting these ferroptosis-related DEGs play a central part in the development of tumors. Then, 33 survival-related FRlncRNAs were identified. We chose LINC0711, LINC01094, LINC01614 and LASTR to demonstrate their expression in GC. Interestingly, we only found that LASTR expression was significantly increased in GC specimens in this cohort, which was further confirmed in TCGA datasets. These findings supported that LASTR was an important player in GC.

In recent years, only a few studies mentioned the function of LASTR in some tumors. For example, it was reported that the expressions of LASTR in lung cancer samples (LUAD and LUSC) were significantly higher than those in neighboring normal tissue. Patients whose LASTR expression levels were higher had a shorter overall survival and worse clinical characteristics, as determined by the Kaplan-Meier survival analysis, in comparison to patients whose LASTR expression levels were lower. This resulted in a lower overall survival rate. Knockdown of LASTR considerably curbed the proliferation and metastatic ability of lung cancer cells through the miRNA-137/TGFA axis (31). After that, the further analysis of the prognostic value of LASTR expression in GC patients found that high LASTR expression was related to shorter OS and PFS in GC patients. More importantly, through multivariate Cox regression analysis, it was confirmed that the LASTR expression was an independent prognostic indicator to the overall survival of GC patients. Finally, the loss of function experiments was performed and it was observed that the knockdown of LASTR greatly restrain the proliferation of GC cells, indicating that it is an oncogenic lncRNA in GC progression.

The tumor microenvironment, which harbors multiple immune and stromal cell types, is a key determinant of tumor progression and antitumor immunity (32). Growing studies have reported the positive associations between lncRNAs and TME immune cell infiltration (33, 34). In our study, we also observed the expression of LASTR was negatively associated with TFH, B cells, CD8 T cells, Treg, T cells,  Th17 cells and T helper cells. Our findings suggested that LASTR may be a potential biomarker for predicting response to cancer immunotherapy.

One limitation of this study was that since it is a retrospective study, missing data and selection biases were unavoidable. Another limitation was that, values of gene expressions obtained from RNA‐seqs or microarrays were all relative. Hence, it was impossible to determine the absolute thresholds of stratifications in different cohorts. With median cutoff values involved in each data, there will be a need for accurate external validations. In addition, we just performed in vitro experiments to test the function of LASTR knockdown on the proliferation of GC cells, more in vivo experiments were needed to further confirm our findings.



Conclusion

We found LASTR as an overexpressed lncRNA in GC. Meanwhile, LASTR was validated to be a novel prognostic biomarker for patients with GC. Moreover, knockdown of LASTR was confirmed to inhibit the proliferation of GC cells. The facts above pointed out that LASTR might be quite vital for the diagnosis and development of GC, and could even become an important therapeutic target for GC patients.
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Background

Melanoma is a type of skin cancer, which originates from the malignant transformation of epidermal melanocytes, with extremely high lethality. Ferroptosis has been documented to be highly related to cancer pathogenesis and the effect of immunotherapy. In addition, the dysregulation of lncRNAs is greatly implicated in melanoma progression and ferroptosis regulation. However, the significance of ferroptosis-related lncRNA in melanoma treatment and the prognosis of melanoma patients remains elusive.



Methods

Via Least Absolute Shrinkage Selection Operator (LASSO) regression analysis in the TCGA SKCM database, a cutaneous melanoma risk model was established based on differentially-expressed ferroptosis-related lncRNAs (DEfrlncRNAs). The nomogram, receiver operating characteristic (ROC) curves, and calibration plots were conducted to examine the predictive performance of this model. Sequentially, we continued to analyze the differences between the high- and low-risk groups, in terms of clinical characteristics, immune cell infiltration, immune-related functions, and chemotherapy drug sensitivity. Moreover, the expressions of DEfrlncRNAs, PD-L1, and CD8 were also examined by qRT-PCR and immunohistochemical staining in melanoma tissues to further confirm the potential clinical implication of DEfrlncRNAs in melanoma immunotherapy.



Results

16 DEfrlncRNAs were identified, and a representative risk score for patient survival was constructed based on these 16 genes. The risk score was found to be an independent prognostic factor for the survival of melanoma patients. In addition, the low-risk group of patients had higher immune cell infiltration in the melanoma lesions, higher sensitivity to chemotherapeutic agents, and a better survival prognosis. Besides, the high expression of the identified 5 DEfrlncRNA in the low-risk group might suggest a higher possibility to benefit from immune checkpoint blockade therapy in the treatment of melanoma.



Conclusion

The DEfrlncRNA risk prediction model related to ferroptosis genes can independently predict the prognosis of patients with melanoma and provide a basis for evaluating the response of clinical treatment in melanoma.
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Introduction

Melanoma is a type of skin cancer, which originates from the malignant transformation of epidermal melanocytes, with high lethality. Melanoma though accounts for only approximately 4% incidences of all skin malignancies, it results in 80% of the mortalities (1, 2), as its high invasiveness frequently contributes to the metastases in the brain, liver, lung, and other vital organs (3–6). While early-stage melanomas are curable through surgical resection, metastatic melanomas that have spread to multiple organs are extremely challenging to treat (7). The prognosis of melanoma patients has been substantially improved with the revolutionary progress in developing targeted therapy and immunotherapy. However, that tumor cell heterogeneity-induced challenges in identifying the sensitive subpopulations, low response rates, and treatment resistance have significantly hampered the efficacy of currently available therapies (8–10). Thus, it is important to explore and develop alternative potential biomarkers to provide a more accurate diagnosis and prognosis prediction and more individualized treatment of melanoma.

Long non-coding RNAs (lncRNAs) have been identified as RNAs incorporating more than 200 nucleotides and are highly involved in regulating the expression levels of downstream genes (11). Aberrantly expressed lncRNAs participate in manipulating cell biology and disease processes through epigenetics (chromosome silencing, genomic imprinting, and chromatin modification), signaling pathway transduction, and alternative non-coding RNAs such as microRNAs (miRNAs) that are involved in modulating gene expression (12). Previous investigations revealed that lncRNAs are closely related to the initiation and progression of nearly all human cancers, including melanoma. In addition, dysregulated lncRNAs play versatile roles in different aspects of tumor cell biological activities, ranging from tumor cell proliferation, invasion, and metastasis to angiogenesis (13–15). Accordingly, lncRNAs might be promising targets for melanoma treatment.

Ferroptosis is a recently-identified form of regulated cell death. The characteristics of ferroptosis include iron-dependent peroxidation and the accumulation of various reactive compounds such as oxidized polyunsaturated fatty acids (PUFAs), lipid peroxides, and reactive oxygen species (ROS) (16). Recently, ferroptosis is reported to be closely associated with regulating tumor growth and the treatment outcome of radiotherapy, chemotherapy, and immunotherapy (17). Therefore, ferroptosis-triggering drugs might robustly improve the anti-tumor efficacy of these therapies. Specifically, Tsoi et al. has shown that erastin, a ferroptosis inducer, could significantly potentiate melanoma cell death caused by BRAF inhibitors (18). In addition, it was reported that miR-324-3p reversed cisplatin resistance through the induction of ferroptosis in a GPX4-dependent manner in lung adenocarcinoma (19). Furthermore, the inhibition of GP4 might induce ferroptosis, which enhanced triple-negative breast cancer’s sensitivity to the drug gefitinib (20).

More importantly, ferroptosis also has a critical role in anti-tumor immunity and the tumor microenvironment (21). On one hand, the induction of ferroptosis leads to the exposure of tumor antigens, which enhances tumor cell immunogenicity and increases immunotherapy efficacy (22). On the other hand, interferon-γ from CD8+T cells induces lipid peroxides and consequently ferroptosis in cancer cells by suppressing the expression of systemic Xc- (cysteine/glutamate antiporter) (23, 24). These reports indicated that precise induction of ferroptosis is an encouraging combinatorial strategy that might be useful in cancer-targeted therapy and immunotherapy. Intriguingly, a recent report supported lncRNAs as a critical regulatory paradigm in ferroptosis and an important factor associated with the therapeutic outcomes of cancer (25). However, the involvement of ferroptosis-associated lncRNAs in the progression of melanoma is still elusive. Therefore, the significance of ferroptosis-related lncRNAs concerning the treatment of melanoma patients and their prognosis requires additional investigation.

This investigation explored ferroptosis-related lncRNAs and evaluated potential prognostic biomarkers in melanoma using bioinformatics methods. We employed The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) and Genotype-Tissue Expression (GTEx) databases to evaluate differentially-expressed lncRNAs associated with ferroptosis in melanoma. Sixteen lncRNAs were identified to be closely related to the prognosis of melanoma patients. Subsequently, a melanoma risk prediction model was developed, and its application in predicting patients’ diagnosis, prognosis, chemotherapy response, and tumor immune evasion was evaluated.



Materials and methods


Retrieval of transcriptome data, its processing, and analysis of differential gene expression

In this study, the data obtained from transcriptome profiling (RNA-Seq) was paired with fragments per kilobase million (FPKM) obtained from SKCM patients and normal controls that were primarily obtained from TCGA (https://portal.gdc.cancer.gov/) as well as the Genotype-Tissue Expression (GTEx) database (https://toil.xenahubs.net/download/GTEX_phenotype.gz). The Gene transfer format (GTF) files were acquired from Ensembl (http://asia.ensembl.org) for annotation, in order to identify the lncRNAs and mRNAs for further assessment. The R package “edgeR” was utilized to screen for differentially-expressed lncRNAs (DElncRNAs) in melanoma samples as well as samples obtained from normal tissues (26). Sixty-three genes closely related to ferroptosis were downloaded (27) and used to identify ferroptosis-related lncRNAs (frlncRNAs) through a co-expression strategy. The R package “psych” was employed to analyze the relationship between the lncRNAs and the ferroptosis-related genes (28). Any ferroptosis gene correlation coefficients that were > 0.6 and exhibited a P-value < 0.05 were designated as frlncRNAs. For the identification of the DEfrlncRNAs, we intersected the positively correlated frlncRNAs and the up-regulated DElncRNAs to obtain the DEfrlncRNAs that were candidate genes for subsequent analysis.



Patient clinical data acquisition

Clinical and prognostic data of melanoma patients were accessed from the SKCM project associated with TCGA. The information from 458 patients with known survival times was obtained.



Establishment of a prognostic risk score model using DEfrlncRNAs

Univariate Cox analysis was utilized in the identification of possible relationships between the DEfrlncRNA profiles and patient overall survival (OS). This was accomplished through the utilization of the “survival” package and a P-value < 0.05 (29). The prognosis-related DEfrlncRNAs were determined by conducting the least absolute shrinkage and selection operator (LASSO) regression, and the “glmnet” R package was used for the prevention of overfitting (30). Subsequently, multivariate Cox analysis was utilized to assess the DEfrlncRNAs found to be related to prognosis to develop a prognostic DEfrlncRNA signature and to calculate the coefficients. A forest map was created to visualize the data obtained with the multivariate Cox regression analysis. The formula described below was utilized to establish a prognostic risk model:

	

Concerning the variables associated with the formula, Coef represents the multivariate Cox regression analysis coefficient of DEfrlncRNAs, while X indicates the relative expression levels of DEfrlncRNA. The patients were categorized into a high-risk (HR) or a low-risk (LR) group, with the median RS serving as the division between the two groups.



Risk model validation

The model’s predictive value was evaluated with Kaplan-Meier method to assess the differences in survival between the HR and LR groups. In addition, univariate and multivariate Cox regression analyses were carried out to determine if the model was an independent factor in the survival of SKCM patients. To confirm the applicability of the model for use in clinical practice, we used the chi-square test to evaluate if there was any significant relationship between clinicopathological characteristics and the model. The differences in RS that occurred among the groups that presented different clinicopathological characteristics were compared using the Wilcoxon signed-rank test. Box and scatter diagrams were prepared to demonstrate the results of the analysis. Furthermore, the RS was combined with the clinicopathological features of the T and N stages to develop a nomogram that could estimate the 2-, 4-, and 5-year survival of SKCM patients. A calibration curve was utilized to determine if the rate of survival that was predicted was actually in good agreement with the reported rate of patient survival.



Immune cell intratumoral infiltration estimation

To analyze the association that was present between the infiltrating immune cells and the SKCM RS, the CIBERSORT package was utilized to determine the level of immune cell infiltration in the included SKCM samples (31). A permutation number of 1,000 was used. Samples that exhibited a P-value < 0.05 in the results obtained from the CIBERSORT analysis were utilized in additional analyses. In addition, to examine the model’s clinical performance further, we examined the relationships between the expression levels of the immune checkpoints and this model.



Clinical performance of treatment

To evaluate the usefulness of this model for melanoma treatment in clinical practice, we determined the IC50 for 94 SKCM-related drugs according to the Cancer Genome Project (CGP) website data with the “pRRophetic” R package (32). Any differences observed between the HR and LR groups in the IC50s were evaluated using the Wilcoxon signed-rank test, with the subsequent results displayed using box drawings.



Clinical specimens

Tissue samples that were utilized for qRT-PCR assays and immunohistochemical staining were collected from 30 melanoma patients and 20 cases of nevus that were confirmed histologically. The clinical specimens were provided by the Department of Dermatology, Xijing Hospital, Fourth Military Medical University. The protocol used for this study was developed and performed in compliance with the principles of the Declaration of Helsinki. Furthermore, this study was approved by the Ethics Review Board of Fourth Military Medical University. All patients provided written informed consent.



RNA extraction and qRT-PCR

TRIzol reagent (cat. 15596018, Invitrogen, CA, USA) was used to extract total RNA. mRNA was reverse transcribed to cDNA using the PrimeScriptTM RT Master Mix kit (cat. RR036A, TaKaRa, Japan). qRT-PCR was performed using a SYBR Premix Ex TaqTM II kit (cat. RR820A, TaKaRa, Tokyo, Japan). qRT-PCR analysis was conducted on a BIO-RAD Multicolor Real-time PCR Detection System (iQTM5, Bio-Rad, CA, USA). The primer pairs were: LINC01281 forward, 5′- TTAAGGCAGCGAGAAGTGGT -3′ and LINC01281 reverse, 5′- TGGCACTTGAACCTCACAACA -3′; FAM30A forward, 5′- CGTGTTGAGCTTTGCACCCT-3′ and FAM30A reverse, 5′- TGTGGCTCTTCATTCACCCT-3′; LINC00861 forward, 5′- GGACCGATAGGGCGATTAAACT -3′ and LINC00861 reverse, 5′- CCTCCTGGACTCGTGTAAGA -3′; LINC01727 forward, 5′- TACAGAACTGGTTGCTGCCTC -3′ and LINC01727 reverse, 5′- AGCATCCCAGTGAGGTCTGAA -3′; PIK3D-AS1 forward, 5′- CAGCCCACTCCAGTGTCTTC -3′ and PIK3CD-AS1 reverse, 5′- TGGCCTGCTGGAGTTTCATT -3′; β-actin forward, 5′- TCATGAAGTGTGACGTGGACATC -3′ and β-actin reverse, 5′- CAGGAGGAGCAATGATCTTGATCT -3′. Relative quantification was carried out using the ΔΔCT method. The data were presented in the linear form through the use of the formula 2-ΔΔCT. β-actin mRNA served as the internal control.



Immunohistochemical staining analysis

CD8α and PD-L1 expression was measured in melanoma patient tissue samples that were embedded in paraffin. The paraffin-embedded tissues were sectioned on a microtome and mounted on glass microscope slides. The sections were de-paraffinized and then rehydrated through a graded series of ethanol solutions. Antigen retrieval was carried out using Tris-EDTA buffer (0.05% Tween 20, 1 mM EDTA Solution, 10 mM Tris Base, pH 9.0), and then goat serum was applied for 30 mins to inhibit non-specific binding. The tissue sections were incubated in a solution containing antibodies to CD8 (cat. ZA-0508, rabbit monoclonal antibody, 1:1, ZSGB-BIO, China) or antibodies to PD-L1 (cat. ab228415, rabbit monoclonal anti-PD-L1 antibody, 1:200, Abcam, Cambridge, MA, USA) overnight at 4°C. Subsequently, the tissue sections were exposed to an anti-rabbit alkaline phosphatase secondary antibody (cat. cw2069s, 1:1, Cwbio, China). Finally, the sections were exposed to Fast Red solution, counterstained using hematoxylin, and glycerol-mounted coverslips were applied. The protocol used to evaluate the staining has been described previously (33). The proportions of positive-stained cells were determined and then subdivided into 4 grades: 3 (67-100%), 2 (34-66%), 1 (1-33%) and 0 (0%). The staining intensities also were sub-divided into 4 different categories or groups: 3 (strong), 2 (moderate), 1 (weak), and 0 (none). The final scores used to express the level of staining were determined to be the product of the score for the percentage of positively staining cells and the score for the level of staining intensity.



Statistical analysis

Each experiment was carried out a minimum of three times. The data were analyzed statistically using unpaired, two-tailed Student’s t-tests using GraphPad Prism v3.0. One-way ANOVA analysis was utilized to assess any differences that occurred among the multiple groups. Pearson correlation was utilized to determine the presence of any significant associations that occurred between the expression levels of two genes. All data were presented as mean ± S.D. P value < 0.05 was deemed to be significant.




Results


Identification of differentially-expressed ferroptosis-associated lncRNAs

The graphic flow chart briefly displayed the design of the present study in Figure 1A. We retrieved the transcriptome profiles for melanoma and normal controls from the skin cutaneous melanoma (SKCM) project of the TCGA database as well as the GTEx database. Four hundred and seventy-one tumors and 1,000 normal samples were ultimately included in this study. The data were annotated based on the GTF files obtained from Ensembl, which were utilized to determine the presence of differential expression. Subsequently, based on the set cutoff criteria of |fold-change| > 2 and P < 0.05, 4,898 lncRNAs were assessed and 3,519 lncRNAs exhibited differential expression when melanoma tissues were compared to normal tissues (2,962 up-regulated and 557 down-regulated). A volcano map was used to visualize the expression profiles of the DElncRNAs (Figure 1B). Then, the co-expression analysis was performed to compare the known ferroptosis-related genes and the DElncRNAs. Ninety-eight ferroptosis-associated lncRNAs were determined to be positively correlated with canonical ferroptosis-associated genes (Table S1), of which the expression of 68 lncRNAs was significantly up-regulated in melanoma samples compared to the controls (Figure 1C), and these lncRNAs were designated as up-regulated DEfrlncRNAs.




Figure 1 | Presentation of differentially expressed lncRNAs between SKCM samples and samples from normal tissues (log2 fold change>2, adjusted p-value<0.05). (A) Flow chart of the analytical process in this study. (B) A volcano map of lncRNAs that are differentially expressed. Red abd blue dots represent the genes that are significantly up-regulated and downregulated, respectively. (C) A Venn map for the up-regulated ferroptosis-related lncRNAs.





Construction of the DEfrlncRNA predictive signature

We employed the univariate Cox regression method to analyze the 68 up-regulated DEfrlncRNAs, and 32 of them were identified at P < 0.05. A prognostic classifier was established using the LASSO Cox regression model. A vertical dotted line was placed to indicate the value chosen through 10-fold cross-validation (Figures 2A, B). The optimal λ value, which was 0.0294, with log(λ) = -3.53 resulted in 16 non-zero coefficients (Figure 2C). The expression levels of 16 DEfrlncRNAs in the TCGA SKCM database were displayed in Figure 2D. The RS was determined as follows: RS = (-0.025 × LINC00861 expression) + (-0.034 × PIK3CD-AS1 expression) + (-0.050 × FAM30A expression) + (0.089 × LINC02642 expression) + (-0.098 × LINC01482 expression) + (-0.108 × LINC02481 expression) + (-0.113 × LINC01281 expression) + (-0.136 × LINC00996 expression) + (0.110 × LINC02132 expression) + (0.076 × LINC02273 expression) + (0.041 × MDS2 expression) + (0.039 × LINC00402 expression) + (0.035 × AC006369.2 expression) + (0.030 × LINC01727 expression) + (0.013 × LINC02285 expression) + (0.003 × LINC02812 expression). Besides, we employed Pearson correlation analysis to validate the relationship between 16 DEfrlncRNAs and ferroptosis-related genes, which displayed that the expressions of DEfrlncRNAs were in negative correlation with most of the ferroptosis-associated molecules (Supplementary Figure 1).




Figure 2 | A prognostic risk model was established using LASSO regression and Cox regression analyses. (A) Cross-validation was used to tune the parameter screening in the LASSO regression model. (B) The LASSO coefficient profiles for the 32 DEfrLncRNAs. (C) Forest plots of HRs and P-values of selected DEfrLncRNAs using univariate Cox regression analysis. Sixteen of the DEfrLncRNAs were found to be prognostic factors, and all are protective factors in SKCM with HR< 1. (D) Distribution heat map of the 16 DEfrLncRNA expressions, RS, and clinical status (alive or dead) relative to SKCM.





Predictive signature and SKCM patient prognosis correlations

Each patient’s RS was calculated using the formula mentioned above. The patients were subdivided into the HR or the LR group according to the median RS value. The RS values of the HR and LR group were shown in Figure 3A. Higher RS values indicated higher mortality (Figure 3B). The assessment based on the Kaplan-Meier curve revealed that LR patients possessed better OS than HR patients (P < 0.001; Figure 3C). The AUCs for 2-, 4-, and 5-year survival rates were 0.656, 0.672, and 0.707, respectively, which was indicative of acceptable predictive performance (Figure 3C).




Figure 3 | Risk assessment model for prognosis prediction. (A) The RS distribution for the SKCM patients. (B) The number of patients with different RS who were alive or had died. A larger number of deaths were observed in the group with a higher RS. (C) The OS rates in patients with SKCM who were included in the LR and HR groups were evaluated using the Kaplan-Meier method. The ROC curves as well as the AUCs at 2-, 4-, and 5-year survival as the predictive signature. (D) The OS rate for SKCM patients in the first internal cohort, as assessed using the Kaplan-Meier method; ROC curves and AUCs at 2-, 4-, and 5-year survival as the predictive signature. (E) The SKCM patient OS rate in the second internal cohort was determined using the Kaplan-Meier method; the ROC curves and AUCs at 2-, 4-, and 5-year survival as the predictive signature.



We next divided the 458 SKCM patients randomly into two groups (n = 229 per group) and verified the predictive signature for OS in these two groups. The OS rate observed in the HR group was lower than the LR group for the first internal cohort, which was consistent with the results observed in the entire dataset (Figure 3D). Concerning the second internal cohort, the prognosis observed in the HR group was worse compared to that in the LR group (Figure 3E). The ROC curves obtained from the two cohorts revealed a reasonable predictive performance. Concerning the first internal cohort, the AUCs associated with the 2-, 4-, and 5-year survival were 0.701, 0.674, and 0.722, respectively (Figure 3D). The AUCs of the second internal cohort concerning the 2-, 4-, and 5-year survival were 0.609, 0.672, and 0.694, respectively (Figure 3E). Furthermore, chi-square tests were employed to determine the associations between the clinicopathological characteristics and the prognosis of SKCM patients. The clinicopathological characteristics include age, gender, pathologic stage, T/M/N stages, and tumor purity. As revealed by the strip chart and the subsequently constructed scatter diagrams that were generated using the Wilcoxon signed-rank test, the T stage, pathologic stage, age, and tumor purity were markedly associated with the RS (Figure 4A).




Figure 4 | Clinical assessment using the risk assessment model. (A) A heatmap reveals the distribution of tumor purity, T stage, sex, pathologic stage, N and M stages, and age, along with RS. (B) The univariate Cox regression analysis was used to examine the associations among the RS, clinical features, and OS of SKCM patients. (C) Multivariate Cox regression analysis was employed to reveal the associations present among the RS, clinical features, and OS of SKCM patients. *p < 0.05, **p < 0.01, ***p < 0.001.



Cox regression analysis was carried out to assess if the predictive signature was an independent prognostic factor for SKCM patients. The univariate Cox assessment revealed that the RS (P < 0.001), N stage (P < 0.001), age (P < 0.001), T stage (P < 0.001), and pathologic stage (P < 0.001) correlated significantly with OS (Figure 4B). Multivariate Cox analysis further suggested that T stage ( P < 0.001), N stage (P < 0.001), and RS (P < 0.001) were independent prognostic predictors for SKCM patients (Figure 4C).

Furthermore, a nomogram that included the T stage, N stage, and the RS was developed to predict the prognosis of SKCM patients. These values were P < 0.01 in the multivariate Cox regression analysis. The constructed nomogram was able to predict the 2-, 4-, and 5-year prognosis for SKCM patients (Figure 5A). The calibration curves revealed excellent consistency between the predicted survival rates and the observed OS rates (Figure 5B). The OS of the HR group was significantly reduced in comparison to the LR group (Figure 5C). The AUCs for the 2-, 4-, and 5-year survival were 0.697, 0.691, and 0.682, respectively. These results suggested a reasonable predictive performance (Figure 5D). The RS AUC was 0.707. Thus, compared with other clinicopathological variables, nomogram RS exhibited stronger potential in predicting the prognosis of SKCM patients. (Figure 5E).




Figure 5 | Nomogram construction and verification. (A) A nomogram that combined the clinical parameters and RS was applied to estimate the 2-, 4-, and 5-year OS for patients with SKCM. (B) The consistency of the calibration curve tests between the observed rates of OS and the survival rates that were predicted. (C) The OS rates for the nomogram samples for the low and high Nom-risk groups were analyzed using the Kaplan-Meier method. (D) The ROC curves and the AUCs at 2-, 4-, and 5-year survival as the predictive signature. (E) ROC curve of the RS and clinicopathological features.





Immune cell infiltration and immune-related signature differences in the SKCM database between the LR and HR groups

The correlations between 22 different types of infiltrating immune cells and the observed RS were analyzed using Pearson correlation analysis to determine to which extent the immune components were affected by the RS. The RS was observed to positively correlate with the number of infiltrated M0 and M2 macrophage, resting mast cell, activated dendritic cell, resting dendritic cell, eosinophil, neutrophil, activated NK cell, and monocyte levels. Furthermore, they were negatively correlated with the levels of CD8+T cells, M1 macrophages, naive B cells, activated memory CD4+T cells, resting NK cells, and regulatory T cells (Tregs) (Figure 6A). We also assessed the infiltration degree of 22 different types of immune cells in the HR and LR groups (Figure 6B). The numbers of resting mast cells, M2 and M0 macrophages, eosinophils, neutrophils, resting and activated dendritic cells, activated NK cells, and monocytes were increased in the HR group. In addition, the activated CD4+ memory T cells, CD8+T cells, M1 macrophages, naïve B cells, regulatory T cells (Tregs), and resting NK cells exhibited decreases in the HR group. These results suggested that the SKCM RS was related to immune cell infiltration in the microenvironment.




Figure 6 | The difference observed between the HR and LR groups in the immune microenvironment. (A) A correlation heatmap for the 22 different types of immune cells. The degree of correlation is represented by the size of the colored squares. Blue indicates the existence of a negative correlation, while red indicates a positive correlation. The intensity of the color represents the strength of the correlation; a darker color represents a stronger correlation. (B) The CIBERSORT algorithm was employed to determine the level of infiltration that the 22 immune cells exhibited in the LR and HR groups. (C) This figure reveals the correlation between the RS and the immune checkpoint genes. The dot size indicates how strong the correlation is between the RS and the immune checkpoint genes. Larger dots represent stronger correlations, and smaller dots indicate weaker correlations. Furthermore, the dot color and its intensity is indicative of the P-value. A more intense purple color represents a lower P-value, and a more intense green color represents a larger P-value. A P-value<0.05 indicates statistical significance. (D) A distribution heat map that shows the expression of immune checkpoint genes in the LR and HR groups. *p < 0.05, **p < 0.01.



We went on to explore the relationship between the levels of multiple immune checkpoint molecules and the SKCM RS (Figures 6C, D). It was noted that PD-L1 (CD274) was up-regulated in the SKCM LR group. CD274 is a classic immune checkpoint gene that exhibits constitutive expression in tumor cells and can be targeted by clinically approved drugs (34). In contrast, an increased number of infiltrating CD8+ T cells was observed when the SKCM RS decreased. This result indicated that samples from SKCM patients in the LR group presented a relative abundance of CD8+T cells. However, inhibitory receptor overexpression, including PD-L1, constrained the cytotoxic function of CD8+ T cells. Therefore, PD-L1 inhibitors might be potential therapeutic strategies in these patients. We also evaluated the immune-related signature activities between HR and LR groups by gene set variation analysis (GSVA), which displayed that patients in HR group exhibited suppressed natural killer cell-mediated cytotoxicity and B cell receptor signaling pathway activities (Supplementary Figure 2).



The sensitivity to common chemotherapeutic drugs for patients exhibiting different SKCM RS

We also investigated the efficacy of chemotherapy in patients of different RS groups, which was exhibited by a range of common chemotherapeutic drugs used to treat melanoma in the SKCM dataset of the TCGA project. Nilotinib, methotrexate, rapamycin, and cisplatin exhibited higher IC50s in the HR group (Supplementary Figures 3A–D). These findings demonstrate that the model might predict the tumor chemosensitivity of patients with melanoma.



Validation of the lncRNAs in melanoma tissues

To further confirm the potential clinical implications of DEfrlncRNAs in melanoma immunotherapy, qRT-PCR analysis was conducted to determine the expression levels of the top five highly-expressed DEfrlncRNAs in a cohort of 30 melanoma tissues. The levels of the five DEfrlncRNAs were prominently increased in tumors compared with nevi (Figure 7A). We further assessed the expression of PD-L1 and CD8 by immunohistochemistry in these melanoma tissues. As a result, a positive correlation between the levels of the five DEfrlncRNAs and the scores for immunohistochemical staining for PD-L1 and CD8 was observed (Figures 7B, C). These results supported the close association between DEfrlncRNAs and CD8+T cell-dependent anti-tumor immunity.




Figure 7 | (A) The expression of five DEfrlncRNAs in melanoma tissues and nevi. (B, C) Correlation analysis between the five DEfrlncRNAs and PD-L1/CD8α in melanoma tissues. The Spearman correlation was used to calculate the r value. *p < 0.05, **p < 0.01, ***p < 0.001.






Discussion

Numerous promising drugs that target specific molecules have emerged in the treatment of SKCM, like inhibitors of BRAF, MEK, CTLA-4, and PD-1 (35). However, the mutations carried by patients vary due to the high heterogeneity of melanoma, which can lead to different responses to the existing targeted drugs among patients (36). Molecular characteristics of tumors can affect patients’ responses to treatment and even their survival, thus it is necessary to conduct additional investigation of the possible molecular mechanism of melanoma (37).

Previously, numerous investigations have revealed that lncRNAs are implicated in ferroptosis. LncRNA SLCO4A1-AS1 is highly expressed in pancreatic cancer. Knockout of SLCO4A1-AS1 can reduce the expression of SLC7A11 and increase sensitivity to the induction of ferroptosis (38). Cytoplasmic lncRNA p53 RRA influences the transcription of several metabolic genes and can promote ferroptosis through the activation of p53 (39). In lung cancer, lncRNA linc00336 has been shown to protect the tumor cells from ferroptosis by interacting with elavl1 to reduce the intracellular Fe2+ and lipid ROS levels (40). Thus, lncRNA is critical in the regulation of ferroptosis and might serve as a critical target for SKCM treatment and prognosis.

In this work, 16 DEfrlncRNAs were included in the prediction signature, of which several DEfrlncRNAs were reportedly related to the malignant progression and prognosis of various tumors, including linc00402 (41), linc02285 (42), linc00861 (43, 44), pik3cd-as1 (45), fam30a (46), linc01281 (47), and linc00996 (48). Overexpressed lncRNA pik3cd-as1 has been shown to promote LATS1 expression by competitively binding to miR-566, which resulted in the inhibition of hepatocellular carcinoma cell growth, invasion, and metastasis. The present study was the first to demonstrate that the 16 identified DEfrlncRNAs were related to the prognosis of melanoma, despite the underlying molecular mechanisms warrant further clarification.

The proposed classifier was used to accurately predict the SKCM patient survival more effectively compared to each clinicopathological risk factor. When these clinical features were used for stratification, the 16-DEfrlncRNAs classifier continued to be a robust prognostic model. As such, it provided prognostic value that served to complement the clinicopathological variables that were identified. Also, a novel nomogram was constructed for melanoma that utilized the 16 DEfrlncRNA RS as well as clinical features. This nomogram provided predictions that were more accurate for OS than the clinicopathological features that were identified.

To study the associations between tumor-infiltrating immune cells and the observed RS, we used the well-established CIBERSORT to evaluate tumor-infiltrating immune cells. We found that when the two risk groups were compared, the LR group exhibited a greater number of immune cells, such as CD8+ T cells, regulatory T cells (Tregs), M1 macrophages naive B cells, activated CD4+ memory T cells, and quiescent NK cells. These cells are indicators of a good prognosis. For example, melanomas with high infiltrated CD8+T cell content were reportedly associated with improved prognosis of patients (49, 50). In addition, elevated CD8+T cell infiltration could also predict prolonged OS in hepatocellular carcinoma (51). Upon the treatment with vaccines and ipilimumab, patients with melanoma harboring a pre-inflamed TME, like Treg infiltration, PD-L1, and IDO expression, might have a better long-term prognosis. Moreover, the infiltration of naïve B cells was shown to be associated with superior prognosis of patients with melanoma, lung adenocarcinoma, and neuroblastoma in several studies (52–54). As for activated CD4+ T memory cells, it is reported that their infiltration correlated with prolonged PFS and OS in melanoma patients (55). Lastly, a higher number of tumor-infiltrating NK cells was also reported to be associated with a good prognosis in metastatic melanoma (56). Moreover, due to the absence of infiltrated CD8+T in TME in the high RS group, the impaired induction of tumor cell ferroptosis might enable the survival of tumor cells, ultimately leading to tumor progression and worse survival of patients with melanoma. In the present study, we also discovered a correlation that existed between the RS and the immune checkpoint or IC50 sensitivity for different chemotherapeutic drugs. This information might help to employ differentiated therapeutic options between the two groups. For example, patients in the LR group exhibited higher immune checkpoint gene expression compared with those in the HR group, thus the former might be more sensitive to immunotherapy with PD-1/PD-L1 and CTLA-4 as its targets, and conventional chemotherapy drugs like nilotinib, methotrexate, rapamycin, and cisplatin might be more effective for the latter. To conclude, our findings indicated that DEfrlncRNAs might be implicated in anti-tumor immunity in melanoma.

However, our research had several limitations. First, conventional statistical methods were used to construct and evaluate 16-DEfrlncRNA risk prediction models associated with ferroptosis-related genes. Numerous investigations have demonstrated that these methods are feasible. Nevertheless, it is necessary to develop more advanced analytical technologies and methods to establish prognostic models with higher robustness and accuracy. Second, only data from the TCGA database were used to carry out the internal validation. In the future, external validation and validation utilizing data obtained from additional databases and clinical patients should also be conducted to assess the applicability of the predictive features more accurately. Finally, we just preliminarily explored the relationship between DEfrlncRNA and ferroptosis-associated genes. Thus, the precise underlying mechanisms of DEfrlncRNAs in SKCM, as well as the interactions with immune checkpoint and ferroptosis-related molecules, have not been completely elucidated. Therefore, additional investigation is needed to verify these observations.



Conclusion

In conclusion, the DEfrlncRNA risk prediction model related to ferroptosis genes could independently predict the prognosis of melanoma patients with reasonable accuracy. These observations might help optimize the determination of therapeutic options in the treatment of melanoma. Further experimental verification is still needed to clarify the underlying associations between the observed molecular characteristics and functional significance.
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Previous studies find that long noncoding RNA human leukocyte antigen complex P5 (HCP5) is regarded as an oncogene via accelerating cancer cell growth, invasion, metastasis, vascularization, and drug resistance in renal cell carcinoma, gastric cancer, and colorectal cancer. Nevertheless, the effect and regulatory mechanism of HCP5 in laryngeal squamous cell carcinoma (LSCC) remains unknown. In this study, HCP5 expression levels were confirmed to be prominently raised in LSCC cell lines. HCP5 knockdown reduced cell proliferation and migration and invasive ability of LSCC cell lines. Furthermore, miR-216a-5p was confirmed to sponge HCP5, and its expression was prominently downregulated in LSCC cell lines and upregulated in HCP5-silenced LSCC cell lines. miR-216a-5p overexpression downregulated the cell proliferation and migration and invasive ability of LSCC cells. Additionally, the protein level of zinc finger E-box binding homeobox 1 (ZEB1), one target gene of miR-216a-5p, was highly expressed in LSCC cell lines, and its expression level was downregulated by HCP5 knockdown and miR-216a-5p overexpression. An miR-216a-5p inhibitor reversed the effect of HCP5 knockdown on the proliferation and migration and invasive ability of LSCC cells. In conclusion, knocking down HCP5 may be a strategy to suppress the malignant biological function via regulating miR-216a-5p/ZEB1. Therefore, HCP5 may become a prospective therapeutic target for LSCC.
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Introduction

Head and neck cell carcinoma is an invasive malignant tumor that includes oral, hypopharyngeal, and laryngeal cancer, and its incidence ranks sixth among various types of tumors (1). In particular, laryngeal squamous cell carcinoma (LSCC) is the usual cancer type of the larynx, accounting for approximately 90% of all laryngeal carcinomas (2). Surgical excision is an effective treatment method for early LSCC, but this strategy is limited for advanced LSCC (3). Hence, the identification of potential targets involved in the occurrence and metastasis contributes to exploring novel targets for treatment of LSCC.

Long noncoding RNA (lncRNA) has been considered in previous studies to play a key role in the progression, vascularization, and aggressive behavior of cancer (4, 5). In LSCC, dysregulated lncRNA, such as SNHG16, PTCSC3, and XIST, can regulate LSCC cell growth, metastasis, angiogenesis, and chemoresistance (6–8). Human leukocyte antigen complex P5 (HCP5), an lncRNA, is located on human chromosome 6p21.33 (9). Previous studies find that HCP5 is regarded as an oncogene via accelerating cancer cell growth, metastasis, and drug resistance in renal cell carcinoma, gastric cancer, and colorectal cancer (10–12). Additionally, HCP5 expression is confirmed to be prominently increased in oral SCC, which has a key role in promoting cancer cell invasion (13). These studies suggest that HCP5 is an oncogene. Nevertheless, the biological behavior and regulatory mechanism of HCP5 in LSCC remains unknown. At the same time, oral SCC and LSCC belong to head and neck cell carcinoma; hence, we infer that HCP5 also plays an oncogenic role in LSCC. Therefore, this study selected HCP5 to study its function in LSCC and to clarify whether it could be a potential therapeutic target for LSCC.

Therefore, we determined HCP5 expression and roles in LSCC cell lines. We also investigated the regulatory mechanism of HCP5 in LSCC by sponging microRNAs (miRNAs).



Methods


Cell culture and transfection

Human keratinocytes HaCaT and LSCC cell including Tu-686, SNU899, SNU46, Tu-177, and AMC-HN-8 (ATCC, Manassas, VA, USA) were cultured as previously described (14). Negative control miRNA mimic/inhibitor (NC mimic and NC inhibitor), miR-216a-5p mimic/inhibitor, small interference RNAs (siRNAs) targeting RNA sequence of HCP5, and negative control siRNA were synthesized from RiboBio (Guangzhou, China). Each of the products (50 nM) was transfected with Lipofectamine 3000 (Life technologies, Carlsbad, CA, USA). Their sequences are shown as follows: 5′‐GGCAGATTACAATTACAATCAAGDTDT‐3′ (si-HCP5-1), 5′‐GAGATGT CTTTGATTTTTAAAATDTDT‐3′ (si-HCP5-2), and 5′‐ATGATGTTGTCAATGAAATAAAGDTDT‐3′ (si-HCP5-3). The sequence of negative control siRNA was 5′‐TTCTCCGAACGTGTCACGTDTDT‐3′.



Reverse transcription quantitative PCR (RT-qPCR)

HaCaT and LSCC cell lines and transfected Tu-177 and Tu-686 cells were washed with PBS, and then, 1 ml TRIzol reagent (Invitrogen) was used in each well to isolate total RNA. To analyze the expression level of HCP5, a reverse transcription reaction to obtain cDNA was carried out according to the method of the PrimeScript™ RT reagent Kit (TaKaRa, Dalian) using reverse transcription primer olig dT. To analyze miR-216a-5p expression levels, a reverse transcription reaction to obtain cDNA was carried out according to the method of the HyperScript III miRNA 1st Strand cDNA Synthesis Kit (by stem-loop) (NovaBio, Shanghai, China). The QPCR reaction system (20 μl) was prepared according to the instructions of SYBR GREEN qPCR Super Mix (Invitrogen). PCR reaction was performed using the ABI 7500 Real-time PCR system (Applied Biosystems, Foster City, CA, USA). GAPDH and U6 were analyzed as the internal control gene for HCP5 and miR-216a-5p, respectively. The 2−ΔΔct method was used to calculate the relative expression level of HCP5 and miR-216a-5p (15). Primers (5′‐3′) for HCP5 are GACTCTCCTACTGGTGCTTGGT (forward primer, F) and CACTGCCTGGTGAGCCTGTT (reverse primer, R); Primers (5′‐3′) for GAPDH are GCTCATTTGCAGGGGGGAG (F) and GTTGGTGGTGCAGGAGGCA (R). Primers (5′‐3′) for miR-216a-5p are ACACTCCAGCTGGGAAGGGTAATCTCAGCTGGCAA (F) and CTCAACTGGTGTCGTGGA (R). Primers (5′‐3′) for U6 are CTCGCTTCGGCAGCACA (F) and AACGCTTCACGAATTTGCGT (R).



Assessment of cell proliferation

Twenty-four hours after transfection, 1×104 transfected Tu-177 and Tu-686 cells were seeded in 96-well plates. After culture for 0, 24, 48, and 72 h, 10 μl AQueous One Solution reagent (Promega) was added into each well. After cultivation for 4 h, the optical density at an absorbance of 490 nm (OD490 nm) was measured.



Transwell migration/invasion assay

To assess the migrated ability, 1×105 transfected Tu-177 and Tu-686 cells of each group (in serum-free culture medium) were seeded in the upper Transwell chamber (Corning, Corning, NY, USA), and 600 µl culture medium supplemented with 10% serum was put into the lower well. After culture for 24 h, cells on the lower surface of the membrane were stained with crystal violet solution. Photos (100×) were taken, and cells in each photo were counted. For the invasion assay, the upper Transwell chamber was precoated with Matrigel (BD Biosciences, Bedford, MA, USA), and the remaining steps are the same as the migration operation.



Dual‐luciferase reporter gene assay

StarBase 2.0 (16) was used to predict the possible sponged miRNAs of HCP5. TargetScan version 7.1 and StarBase version 2.0 were used to predict the potential target genes of miR-216a-5p. The wild-type HCP5 and ZEB1 3′-UTR (WT-HCP5 and WT-ZEB1) or mutant HCP5 and ZEB1 3′-UTR (Mut-HCP5 and Mut-ZEB1) were cloned into a psi-CHECK2 vector. Thirty nanograms of either WT-HCP5 and Mut-HCP5 or WT-ZEB1 and Mut-ZEB1 were cotransfected with 50 nM of either miR-216a-5p mimics or NC mimic. After 48 h, Renilla and firefly luciferase activity were measured according to the instructions of the Dual‐Luciferase Assay kit (Promega), and their ratio (Renilla/firefly) was used as the relative luciferase activity to evaluate whether miR-216a-5p has binding sites on the predicted sequence of HCP5 and ZEB1 3′-UTR.



Western blot analysis

The total protein (30 μg per lane) was isolated using RIPA buffer. After 10% SDS-PAGE, proteins were transferred onto methanol-pretreated polyvinylidene fluoride membranes. Following this, membrane blocking, primary antibody incubation, and secondary antibody incubation were performed according to conventional methods. The dilution of zinc finger E-box binding homeobox 1 (ZEB1) monoclonal antibody (14-9741-80, Ebioscience, San Diego, CA, USA) and loading control GAPDH monoclonal antibody (MA5-15738, Ebioscience) were 1:1000 and 1:5000, respectively. The dilution of horseradish peroxidase-conjugated secondary antibody goat anti-mouse IgG (G-21040, Ebioscience) was 1:1000. Enhanced chemiluminescent reagent (Thermo Scientific Pierce, Rockford, IL, USA) was used to visualize the protein abundance in the membrane.



Statistical analysis

The GEPIA website was used to analyze HCP5 expression in 44 normal and 519 head and neck squamous cell carcinoma tissues. One-way analysis of variance (ANOVA) followed by Dunnett’s test were used to analyze to statistical difference of all the experimental data by SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). All data in the bar graphs are presented as mean ± standard deviation. *p <.05 was considered statistically significant.




Results


HCP5 was upregulated in LSCC cell lines

To understand the HPC5 expression in LSCC tissues and cells, HCP5 expression in tumor tissues and LSCC cells were measured by GEPIA and RT-qPCR, respectively. HCP5 expression in tumor tissues was prominently higher than that in the normal group (Figure 1A). HCP5 expression was prominently raised in all LSCC cells, particularly in Tu-177 and Tu-686, compared with the expression in HaCaT cells (Figure 1B). Thus, we chose the Tu-177 and Tu-686 cell lines for further experiments.




Figure 1 | HCP5 expression was prominently raised in head and neck squamous cell carcinoma tissues and LSCC cell lines. (A) HCP5 expression in normal and tumor tissues was analyzed by GEPIA *P < 0.05. (B) HCP5 expression was measured by RT-qPCR in LSCC cell lines including Tu-177, Tu-686, SNU899, AMC-HN-8, and SNU46 and normal keratinocytes HaCaT. n=3, ***p <.001, vs HaCaT.





Silenced HCP5 suppressed the proliferation and metastasis in Tu-177 and Tu-686

To study the function of HCP5 in LSCC, HCP5 was silenced by transfecting si-HCP5 (si-HCP5-1/2/3) into both Tu-177 and Tu-686 cells. RT-qPCR results shows that si-HCP5 transfection significantly downregulated the HCP5 expression in both Tu-177 and Tu-686 cells, especially for si-HCP5-3 (Figure 2A). Thus, we chose si-HCP5-3 for further experiments. Next, silenced HCP5 (the si- HCP5 group) significantly reduced the proliferation, migration, and invasion abilities of Tu-177 and Tu-686 compared with the si-NC group (Figures 2B–D).




Figure 2 | Silenced HCP5 inhibited biological behaviors of Tu-177 and Tu-686. (A) HCP5 expression was quantified by RT-qPCR in Tu-177 and Tu-686 after transfection with si-HCP5 or si-NC. (B) The effect of silenced HCP5 on proliferation in Tu-177 and Tu-686 cells were determined by MTS assay. (C, D) The impact of silenced HCP5 on the migration and invasion of Tu-177 and Tu-686 were tested by Transwell assay (100 × magnification). n=3, **p < 0.01 and ***p < .001.





HCP5 served as a sponge for miR-216a-5p

To characterize the downstream mechanisms underlying the inhibitory effect of HCP5 in LSCC cells, the sponged miRNAs of HCP5 were predicted using StarBase 2.0 databases. Among miRNAs, miR-216a-5p was found to be the possible sponged-miRNA of HCP5 (Figure 3A). An miR-216a-5p mimic prominently lessened the relative luciferase activity in the WT-HCP5 group while not affecting that in the mut-HCP5 group (Figure 3B). These results indicate a direct bond between HCP5 and miR-216a-5p. miR-216a-5p expression was prominently lower in LSCC cells than that in HacaT cells, which was not regulated by HCP5 knockdown (Figures 3C, D). All results found that HCP5 only sponged miR-216a-5p in LSCC cells.




Figure 3 | HCP5 served as a sponge for miR-216a-5p. (A) Bioinformatic analysis predicted the binding sites between HCP5 and miR-216a-5p. (B) A dual-luciferase reporter assay indicated that HCP5 directly bound to miR-216a-5p. (C) miR-216a-5p expression in LSCC cell lines and normal keratinocytes HaCaT was measured by RT-qPCR. (D) Effect of silenced HCP5 on the miR-216a-5p expression in LSCC cell was measured by RT-qPCR. n=3, ***p <.001.





Overexpression of miR-216a-5p has inhibitory effects on the proliferation and metastasis in Tu-177 and Tu-686

To study the function of miR-216a-5p in LSCC, miR-216a-5p mimic was transfected into Tu-177 and Tu-686 and it was found that miR-216a-5p expression was prominently improved in LSCC cells (Figure 4A). The proliferation, migration, and invasion abilities of Tu-177 and Tu-686 in the miR-216a-5p mimic group were prominently lower than that in the NC mimic group (Figures 4B–D).




Figure 4 | Overexpression of miR-216a-5p suppressed LSCC biological behaviors. (A) miR-216a-5p expression in Tu-177 and Tu-686 after transfection was quantified. (B) Effect of overexpression miR-216a-5p on proliferation in Tu-177 and Tu-686 were determined by MTS assay. (C, D) Effect of overexpression miR-216a-5p on the migration and invasion in Tu-177 and Tu-686 were assessed by Transwell assay (100 × magnification). n=3, ***p <.001.





Silenced miR-216a-5p can attenuate the effect of si-HCP5 in Tu-177 and Tu-686

To further verify the correlation between miR-216a-5p and HCP5 in LSCC, si-HCP5 and miR-216a-5p inhibitors were cotransfected into Tu-177 and Tu-686. miR-216a-5p expression was prominently inhibited after cotransfection (Figure 5A). The proliferation, migration, and invasion abilities in the si-HCP5+miR-216a-5p inhibitor group were prominently enhanced compared with those in the si-HCP5+NC inhibitor group (Figures 5B–D).




Figure 5 | miR-216a-5p-silenced can attenuate si-HCP5 effect in LSCC cells. (A) miR-216a-5p expression was quantified by qRT-PCR in Tu-177 and Tu-686 cells after cotransfected si-HCP5 and miR-216a-5p inhibitor. (B) The effect of cotransfected si-HCP5 and miR-216a-5p inhibitor on proliferation in Tu-177 and Tu-686 were determined by MTS assay. (C, D) The effect of cotransfected si-HCP5 and miR-216a-5p inhibitor on the migration and invasion of Tu-177 and Tu-686 were assessed by Transwell assay; the presented pictures were captured with 100× magnification. n=3, ***p <.001.





ZEB1 is a regulated target gene for miR-216a-5p

The target site for miR-216a-5p binding was found to be the 3′-UTR of ZEB1 (Figure 6A). An miR-216a-5p mimic significantly decreased the relative luciferase activity in the WT-3′-UTR ZEB1 group, but did not affect MUT-3′-UTR ZEB1 (Figure 6B), which indicates the direct binding between miR-216a-5p with the 3′-UTR of ZEB1. The protein level of ZEB1 was higher in LSCC cells than in HacaT cells (Figure 6C). HCP5 silenced or miR-216a-5p overexpression significantly decreased ZEB1 protein in both Tu-177and Tu-686 cells (Figure 6D). ZEB1 protein was obviously enhanced 48 h after cotransfection of si-HCP5 and miR-216a-5p inhibitor in both Tu-177and Tu-686 cells (Figure 6E).




Figure 6 | ZEB1 is a directly regulated target gene of miR-216a-5p. (A) The direct binding sites between ZEB1 3′-UTR and miR-216a-5p were predicted by bioinformatic analysis. The mutant binding site of ZEB1 was also exhibited. (B) A dual-luciferase reporter assay certified that miR-216a-5p directly binds to ZEB1. (C) Protein levels of ZEB1 in LSCC cell lines was measured by Western blot, respectively. (D) The effect of silenced HCP5 or overexpression of miR-216a-5p on the protein expression of ZEB1 in Tu-177and Tu-686 cells was measured by Western blot. (E) The effect of cotransfected si-HCP5 and miR-216a-5p inhibitor on ZEB1 protein in LSCC cells was quantified by Western blot. n=3, ***p <.001.






Discussion

Tumor metastasis is an important reason for poor prognoses in LSCC patients. Here, we elucidated that HCP5 is prominently upregulated in LSCC cell line, and HCP5 downregulation inhibited proliferation, migration, and invasion, suggesting that HCP5 is an oncogene in LSCC. miR-216a-5p was sponged by HCP5 in LSCC. miR-216a-5p overexpression reduced proliferation, migration, and invasion in LSCC, suggesting that it is a tumor suppressor miRNA. Furthermore, silenced miR-216a-5p reversed the function of HCP5 silencing, suggesting that HCP5 promotes LSCC progression via sponging miR-216a-5p. Moreover, ZEB1 is a regulated target gene for miR-216a-5p. Silencing its expression reversed the effect of HCP5 silencing on ZEB1 expression, suggesting that HCP5 enhanced ZEB1 protein by sponging miR-216a-5p. These results suggest that HCP5 promotes LSCC progression by inhibiting the miR-216a-5p/ZEB1 axis. This study is the first to discover the role and mechanism of HCP5 in LSCC, which enriches the theory of the occurrence and development mechanism of LSCC.

HCP5 closely contributes to tumor initiation and progression. HCP5 is a novelty diagnostic and prognostic biomarker in gastric and bladder cancers (17, 18). In addition, HCP overexpression enhanced chemoresistance in gastric cancer and esophageal carcinoma (19, 20). Besides this, HCP5 was prominently upregulated and acted as an oncogene in pancreatic cancer, bladder cancer, gastric cancer, and cutaneous squamous cell carcinoma (21–24). Consistent with previous reports of other cancers, HCP5 expression was also upregulated in LSCC cells, and HCP5 was an oncogene.

In recent years, increasing evidence has found that abnormal expression and dysfunction of miRNAs also plays important roles in LSCC (25, 26). Here, miR-216a-5p was downexpressed in LSCC cells and acts as an anticancer miRNA in the LSCC. miR-216a-5p expression was elucidated to prominently reduce in breast, pancreatic, colorectal, and small cell lung cancers and reversing its expression significantly suppressed cancer development (27–31). Importantly, miR-216a-5p expression was prominently reduced in esophageal SCC and promotes its indeterminate growth (32). Studies have found that miR-216a-5p acts as an anticancer miRNA, which is consistent with its role in LSCC.

Besides this, lncRNA is elucidated to enhance the expression of targeted genes by sponging with miRNAs (33). HCP5 promotes cancer development by sponging miR-140-5p, miR−138−5p, miR-29b-3p, and miR-143-3p (21–24). In addition, HCP5 can sponge miR-216a-5p in cervical cancer (34). Here, we confirm that HCP5 promotes LSCC progression via sponging miR-216a-5p.

Next, ZEB1 is a directly regulated target gene for miR-216a-5p. ZEB1 expression was prominently upregulated in NSCLC, which can judge the overall survival rate (35). ZEB1 accumulation enhanced the invasion and EMT of liver and gastric cancer cells (36, 37). Importantly, ZEB1 acts as an oncogene and is closely related to EMT and prognosis in LSCC (38, 39). Our study shows that ZEB1 expression was enhanced in LSCC cells, and it was inhibited by silencing HCP5 and promoted by cosilencing HCP5 and miR-216a-5p. These results reveal that ZEB1 is a downstream targeted gene that is regulated by the HCP5/miR-216a-5p axis. Previous conclusions show that lncRNA-SNHG16 can regulate miR-216a-5p/ZEB1 and promote tumor development in cervical cancer tissues, which partly supports our results (40).

This article has several limitations. First, the expression of HCP5 in LSCC tissues and its correlation with clinical features of LSCC were not explored. Second, the effect of HCP5 on LSCC was not performed to verify in vivo. In addition, the downstream signaling pathways regulated by ZEB1 in LSCC need to be found in further exploration. Finally, the clinical application of HCP5 still needs to overcome many problems. The entry of all lncRNA-based therapies into the clinic, such as specificity, delivery mode, and immunogenicity (41), has been hindered. The lncRNA may be taken up by other cells than the target cells, resulting in off-target effects and low specificity. The structural instability of lncRNAs leads to low efficiency of intracellular delivery of lncRNA; in addition, exogenous lncRNAs are prone to lead to tolerance problems (immunogenicity problems).



Conclusion

HCP5 promotes the proliferation, migration, and invasion of LSCC by regulating miR-216a-5p/ZEB1, and HCP5 knockdown exerts the opposite effect (Figure 7), suggesting that HCP5 may be a prospective therapeutic target for LSCC. The therapeutic efficacy of HCP5 on LSCC needs to be validated by more in vivo and clinical investigations.




Figure 7 | miR-216a-5p binds with ZEB1 3′-UTR to inhibit ZEB1 expression. HCP5 enhances the malignant biological function of LSCC cells by sponging miR-216a-5p to promote ZEB1 expression.
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Background

Gastric cancer (GC) is one of the most malignant and lethal cancers worldwide. Multiple microRNAs (miRNAs) have been identified as key regulators in the progression of GC. However, the underlying pathogenesis that miRNAs govern GC malignancy remains uncertain. Here, we identified a novel miR-585-5p as a key regulator in GC development.



Methods

The expression of miR-585-5p in the context of GC tissue was detected by in situ hybridization for GC tissue microarray and assessed by H-scoring. The gain- and loss-of-function analyses comprised of Cell Counting Kit-8 assay and Transwell invasion and migration assay. The expression of downstream microphthalmia-associated transcription factor (MITF), cyclic AMP-responsive element-binding protein 1 (CREB1) and mitogen-activated protein kinase 1 (MAPK1) were examined by Immunohistochemistry, quantitative real-time PCR and western blot. The direct regulation between miR-585-5p and MITF/CREB1/MAPK1 were predicted by bioinformatic analysis and screened by luciferase reporter assay. The direct transcriptional activation of CREB1 on MITF was verified by luciferase reporter assay, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSAs). The interaction between MAPK1 and MITF was confirmed by co-immunoprecipitation (Co-IP) and immunofluorescent double-labelled staining.



Results

MiR-585-5p is progressively downregulated in GC tissues and low miR-585-5p levels were strongly associated with poor clinical outcomes. Further gain- and loss-of-function analyses showed that miR-585-5p possesses strong anti-proliferative and anti-metastatic capacities in GC. Follow-up studies indicated that miR-585-5p targets the downstream molecules CREB1 and MAPK1 to regulate the transcriptional and post-translational regulation of MITF, respectively, thus controlling its expression and cancer-promoting activity. MiR-585-5p directly and negatively regulates MITF together with CREB1 and MAPK1. According to bioinformatic analysis, promotor reporter gene assays, ChIP and EMSAs, CREB1 binds to the promotor region to enhance transcriptional expression of MITF. Co-IP and immunofluorescent double-labelled staining confirmed interaction between MAPK1 and MITF. Protein immunoprecipitation revealed that MAPK1 enhances MITF activity via phosphorylation (Ser73). MiR-585-5p can not only inhibit MITF expression directly, but also hinder MITF expression and pro-cancerous activity in a CREB1-/MAPK1-dependent manner indirectly.



Conclusions

In conclusion, this study uncovered miR-585-5p impedes gastric cancer proliferation and metastasis by orchestrating the interactions among CREB1, MAPK1 and MITF.
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Introduction

GC (GC) is a highly malignant and lethal malignancy worldwide, having over 1 million estimated novel cases annually (1). Although advances were achieved for early diagnosis and therapy in GC, cases of unresectable GC are limited to life-prolonging palliative care options (2). Moreover, the underlying mechanism that governs GC malignancy remains uncertain. Hence, it’s urgent to explore the intrinsic molecular mechanism to find new effective therapeutic targets.

MicroRNAs (miRNAs), a family of critical small non-coding RNAs, directly bind onto 3’-untranslated regions (3’UTRs) of designated transcripts, leading to translational inhibition or obliteration, thus endowing miRNAs with an crucial role in regulating multiple biological processes (3). Multiple miRNAs were found to be essential regulators within GC progression. In particular, we previously discovered that miR-218-5p is highly downregulated within GC tissue-types and displays pivotal inhibition of oncogenesis and the development of GC (4, 5). The gene encoding miR-218-5p is situated within intron of SLIT2 and SLIT3 (6), and the miR-585 gene was delineated within same region based on gene cluster analysis. As different miRNAs affiliated with the same gene cluster mostly display tightly synchronized expression and similar functions (7), we speculate that miR-585-5p might be important for regulating malignancy of GC. Nonetheless, the role of miR-585-5p in tumour pathogenesis is rarely defined. Recently, reports revealed that miR-585 is downregulated and acts as a tumour-suppressive miRNA within colon cancer, non-small-cell lung cancer, glioma and GC (8–11). Hu et al. (11) confirmed that miR-585 downregulation is linked with invasion/TNM stage/lymph node invasion levels and poor prognosis levels. However, the potential role and intrinsic mechanisms governing miR-585-5p function are poorly understood. Microphthalmia-associated transcription factor (MITF) was parsed out as a core-target based on target prediction of miR-585-5p. MITF, a melanocytic lineage-specific transcription factor, has been certified as a master regulator of melanocyte homeostasis and melanoma progression (12). However, the biology of MITF in GC requires further research.

This investigation highlighted that miR-585-5p is downregulated within GC and is associated with poor prognosis, revealing miR-585-5p influence upon suppressing GC proliferative/metastatic properties. Furthermore, this investigation demonstrated that MITF had a straight positive regulation of GC proliferative/metastatic properties. CREB1 activates MITF transcription, and MAPK1 enhances the activity of MITF via phosphorylation at serine 73, boosting the cancer-promoting effect of MITF in GC. MiR-585-5p directly simultaneously inhibits expression of MITF, CREB1 and MAPK1 in a post-transcriptional manner. Consequently, miR-585-5p also indirectly restrains MITF transcription and activity through directly inhibiting the expression of CREB1 and MAPK1. Overall, we report for the first time that miR-585-5p suppresses GC proliferative/metastatic properties by orchestrating the interactions among CREB1, MAPK1 and MITF.



Materials and methods


Clinical samples

The GC tissue microarray for in situ hybridization (ISH) of miR-585-5p was purchased from Shanghai Outdo Biotech: HStmA180Su15 contains 16 cases of unpaired GC tissue-types and 82 cases of paired gastric adenocarcinoma and paraneoplastic tissue-types with one point for each tissue, all with long-term clinical follow-up records. The GC tissue microarray for immunohistochemistry of MITF was purchased from Avilabio: DC-Sto11020 contains 10 unpaired normal tissue-types and 45 paired GC and paraneoplastic tissue-types.



Immunohistochemistry (IHC) and ISH

IHC and ISH staining were performed to quantify expression of the MITF protein and miR-585-5p, respectively. GC tissue microarrays were immuno-stained for MITF (Abcam, # ab270262). The digoxin-labelled nucleic acid probe for miR-585-5p was developed through GenePharma using the reverse complement of the following sequence: 25-CUAGCACACAGAUACGCCCAGA-46. The microarrays were observed/imaged through Pannoramic 250FLASH Scanner (3DHISTECH). IHC and ISH staining were concomitantly assessed through two blinded observers for individual clinical case clinico-pathological profiles. H-scoring was adopted based upon intensity and extent of staining by an experienced pathologist, and graded as: 0, negative staining; 1+, weak staining; 2+, moderate staining; and 3+, strong staining. The H-score was computed by multiplying the different intensities in 4 gradations with each percentage of positive tumour cells: H-score = 1× (% cells 1+) + 2× (% cells 2+) + 3× (% cells 3+). Finally, a score from 0 to 300 points was obtained (13). Median H-score within cohort was applied as a cut-off for distinguishing high- and low-expression.



Transient transfection and lentivirus infection

Bioengineered novel recombinant miR-585-5p mimics, inhibitors and complementing negative controls were procured through Rongqingchang Biotech (China). Cultures including AGS, BGC823 and HGC27 lines at a confluence of 50% were exposed to transfection with miR-585-5p mimics or inhibitors employing Lipofectamine 3000® reagent (Invitrogen™, # L3000015) in line with kit protocols, with mimics-NC or inhibitors-NC, respectively, as controls. Ectopic expression efficiency tests and follow-up experiments were conducted at 48 h following transfection.

Lentivirus expression plasmids for MITF-overexpression, MITF-mutant (S73A), shMITF (Target sequence of shMITF-3: GGTGAATCGGATCATCAAG), CREB1-overexpression, shCREB1 (Target sequence of shCREB1-3: acATTAGCCCAGGTATCTATG), MAPK1-overexpression and shMAPK1 (Target sequence: caAAGTTCGAGTAGCTATCAA) were constructed by GeneChem™ (Shanghai, China). Target cultures were exposed to 1×107 lentivirus transducing units within presence of HitransG P reagents (GeneChem, #REVG005, 1:25). Homologous empty lentiviral vectors acted as negative controls. The cultures were employed following infection and antibiotic selection for 4 weeks.



In vivo tumorigenicity

All animals in this investigation were purchased from the Experimental Animal Center of Fourth Military Medical University. All procedures were conducted in line with ARRIVE guidelines and accepted by the Ethics Committee of Fourth Military Medical University. Parental BGC823 cultures (5×105 cultures in 200 μl of PBS) were subcutaneously inoculated within ventral flank of 6-week-old male Balb/c nude murines (ten murines/cohort). Tumour diameter was quantified every two days, and following successful establishment of orthotopic xenograft tumorigenicity on the 13th day (the tumour diameters reached approximately 3-5 mm), 10 μg of miR-585-5p mimics or normal saline or the negative control was introduced within tumours every 48h for 2 weeks. Ten micrograms of mimics and 1.2 μl of in vivo jetPEI reagents (Polyplus Transfection, #PT-201-50G) were dissolved in 12.5 μl of 10% glucose, and sterile water was added to 25 μl. Ultimately, the two were incubated to form the internal delivery system. Twenty-nine days following subcutaneous tumour injection, all murines were sacrificed, and all tumours were removed, weighed, harvested and paraffin-embedded. Tumour volume (mm3) was determined depending upon longest/shortest diameters as: 

	



Chromatin immunoprecipitation

A SimpleChIP® Enzymatic Chromatin IP Kit® (Cell Signaling Technology™, #9003) was employed for conducting ChIP assay. About 1×107 HGC27 cultures were cross-linked within 1% formaldehyde (Fuyu Fine, Tianjin), at room temperature for 15 minutes. The nuclear protein was extracted in 1× ChIP buffer within 1 M DDT (dithiothreitol) in line with kit instructions. Micrococcal Nuclease (Cell Signaling Technology, #10011) was used for digesting DNA into fragments of 150-900 bp. Following ultrasonication, the supernatants containing cross-linked chromatin were collected by centrifugation at 9,400×g and consequently placed into incubation with anti-CREB1 antibodies at 4°C with gentle rotation overnight. Equal amounts of Normal Rabbit IgG (Cell Signaling Technology™, #2729) and Histone H3 (D2B12) XP® Rabbit mAb (Cell Signaling Technology™, #4620) acted as the negative control and positive control, accordingly. ChIP-Grade Protein G Magnetic Beads® (Cell Signaling Technology™, #9006) were added the next day for 2-hour incubation with gentle rotation. Following the bead-antibody complexes were washed employing 1× ChIP buffer for 3 times on the DynaMag™-2 Magnetic Separation Rack (Invitrogen™, #12321D), the complexes were eluted and de-crosslinked with 5 mg/mL Proteinase K and 5 M NaCl and at 65°C for 2 h. The DNA was subsequently purified and subjected to PCR with the MITF promoter primers MITF ChIP Forward, AGAACTCCAGCCCTAACATC, and Reverse, TCTCATTTTGGTGTTTGGCC.



Electrophoretic mobility shift assay

EMSA was employed for determining direct binding for CREB1 protein to the MITF DNA promotor in vitro employing LightShift™ Chemiluminescent EMSA Kit (Thermo Fisher, #20148). A prokaryotic vector for CREB1 expression was transformed into BL21 Escherichia coli and driven through isopropyl-beta;-d-thiogalactoside (IPTG). Bacterial pellets were lysed, and the recombinant CREB1 protein was purified through Ni-chelating affinity chromatography. Double-stranded DNA probes were synthesized employing the following sequences: MITF-wt-FF (5`6-FAM(FITC)-fluorescently labelled primers forward), TGGATGTCTTTTCTGATGTGAAATTAAA; MITF-wt-R (unlabelled primers reverse), TTTAATTTCACATCAGAAAAGACATCCA; MITF-mut-FF, TGGATGTCTTTCTCAGCATGAAATTAAA; MITF-mut-R, TTTAATTTCATGCTGAGAAAGACATCCA. The binding reactions, including 1 μl of ddH2O, 2 μl of binding buffer (5×), 6 μl of recombinant CREB1 protein and 1 μl of labelled-MITF-wt probes or labelled-MITF-mut probes, proceeded at 25°C for 20 min. The reaction products were added to 1 μl of EMSA/gel-shift loading buffer and segregated through SDS-PAGE. The gel was exposed and photographed employing an FLA-9000 apparatus (FujiFilm, Japan).



Immunoprecipitation

HGC27 cell pellets were lysed within IP lysis buffer (Beyotime, #P0013) harboring protease inhibitors (Boster, #AR1182-1) for 1 h with gentle rotation at 4°C. Supernatant lysates were collected by centrifuging at 12,000 rpm/min. Normal IgG antibody and protein A/G magnetic beads (Thermo Scientific™, #88802) acted for preclearing to lessen nonspecific binding, and then the lysates were incubated with the indicated antibodies. Equivalent protein lysates were premixed with an anti-flag antibody, an anti-HA antibody, or a normal rabbit IgG antibody as the negative control with gentle rotation at 4°C for 120 minutes and then placed into incubation with protein A/G magnetic beads (Thermo Scientific™, #88802) overnight. Resultant complexes were twice-washed with IP lysis buffer and three times with PBS, and the beads were resuspended in an equal volume of 2 × loading buffer and denatured at 100°C for 10 minutes on heat blocks, subsequently subjected to western blot analysis.



Statistical analysis

GraphPad Prism 8.0® software was employed in this case. All quantitative data-points reflected mean ± SEM. Statistical significance among multiple cohort analyses were identified through Analysis of variance (ANOVA) with Tukey’s post hoc test. Student’s t-test was employed for comparing mean variables of two cohorts. Kaplan-Meier method and log-rank t-test for significance were employed for survival analysis.

Detailed information is listed within Appendix S1.




Results


MiR-585-5p is markedly downregulated in human GC tissue-types, predicting poor prognoses

In order to quantify miR-585-5p expression-profile within GC, it was examined in a set of tissue microarray samples employing in situ hybridization. Compared with para-cancerous tissue-types, miR-585-5p expression in primary GC tissue-types was severely downregulated, and staining showed that miR-585-5p was mostly located within cytoplasm of adenocytes in gastric glands (Figure 1A). ISH quantitative analysis of 80 pairs of GC tissue-types and neighboring healthy tissue-types revealed a clear reduction in miR-585-5p levels in GC (Figure 1B). Based on quantitative analysis of miR-585-5p levels by H-scoring, 93 cases of GC (HStmA180Su15) were segregated within high miR-585-5p expression (n=47) and low miR-585-5p expression (n=46) cohorts, and correlation across miR-585-5p level and overall survival was analysed. Kaplan-Meier analyses showed that cases of positive miR-585-5p expression had prolonged overall survival (Figure 1C). Such dataset outcomes suggest that miR-585-5p might participate within GC carcinogenesis/development.




Figure 1 | MiR-585-5p is markedly down-regulated within human GC tissue-types, predicting poor prognoses. (A) In situ hybridization of miR-585-5p within GC tissue/paired paraneoplastic tissue-types on a set of tissue microarray samples. Representative images of miR-585-5p within GC/paired paraneoplastic tissue-types. (B) Quantitative analyses for miR-585-5p expression within 80 paired GC and adjacent non-tumour tissue-types. MiR-585-5p expression levels were identified through multiplying staining intensity score value with score value of positive region. (C) Kaplan-Meier curves highlighting overall survival for GC cases (n = 93) based on different levels of miR-585-5p expression. Scale bar = 100 μm.





MiR-585-5p suppresses the proliferative/metastatic properties of GC at multiple levels

We assessed miR-585-5p expression-profile within multiple GC cell lines, with dataset outcomes demonstrating comparatively low levels of miR-585-5p in AGS and BGC823 cultures but obviously high expression in HGC27 cultures (Supplementary Figure 1). Consequently, loss-of-function experiments to validate miR-585-5p were carried out employing HGC27 cultures and gain-of-function experiments in AGS and BGC823 cultures. MiR-585-5p mimics and inhibitors were utilized to overexpress and knockdown miR-585-5p in GC cultures. Following transient transfection for 48 h, the level of miR-585-5p was increased in AGS and BGC823 cultures and downregulated in HGC27 cultures (Figures 2A, B). Along with the enhancement of miR-585-5p, cell viability declined highly. Transwell assays showed that miR-585-5p upregulation remarkably decreased the migration and invasion of AGS and BGC823 cultures in vitro (Figure 2A). Conversely, inhibition of miR-585-5p dramatically increased cell proliferative, migrative and invasive effects in HGC27 cultures compared with negative controls (Figure 2B). Furthermore, in nude murines with subcutaneous inoculation of BGC823 cultures, tumour growth as well as both the volume and weight of orthotopic xenograft tumours were highly reduced with miR-585-5p intra-tumour therapy, in contrast to normal saline or negative controls (Figures 2C, D). In summary, miR-585-5p plays a pivotal part in regulating the proliferative/metastatic properties of GC at multiple levels.




Figure 2 | MiR-585-5p suppresses the proliferative/metastatic properties of GC at multiple levels. AGS and BGC823 cultures were exposed to transfection with 100 nM miR-585-5p mimics or negative control mimics, and HGC27 cultures were exposed to transfection with 100 nM miR-585-5p inhibitor or negative control. (A, B) MiR-585-5p levels were analysed by RT-qPCR following transfection of miR-585-5p in AGS and BGC823 cultures as well as inhibitor in HGC27 cultures. CCK-8 assays were performed to examine proliferation post transfection. Metastasis ability was evaluated by migration and invasion assays. CCK-8 and Transwell assays indicated that miR-585-5p highly suppresses the proliferative/metastatic properties of GC cultures. (C) BGC823 cultures were inoculated into nude murines subcutaneously. Following successful establishment of xenograft tumorigenicity on the 13th day, miR-585-5p mimics, normal saline or the negative control were introduced within tumours twice a day for two weeks (n=10). MiR-585-5p remarkably hindered stomach tumour growth in vivo. (D) Both the volume and weight of the orthotopic xenograft tumours were highly smaller within miR-585-5p cohort than within control cohort. Data are presented as the mean ± SEM. *P < 0.05, **P < 0.01 , ***P < 0.001 and ****P < 0.0001 in comparison with the NC cohort. Scale bar = 250 μm. ns indicates no significance.





MiR-585-5p directly inhibits MITF expression

The intrinsic mechanism by which miR-585-5p acts in GC development remains to be elucidated. One of the most important modes of miRNA functioning is miRNA-mediated post-transcriptional mRNA transcript repression via binding to 3’UTRs (14). To uncover the exact antitumour mechanism of miR-585-5p in GC, miRWalk 3.0 (http://mirwalk.umm.uni-heidelberg.de/) was employed for predicting target-genes. MITF-3’UTR was found to contain miR-585-5p-binding sites, indicating MITF could act as a target-gene for miR-585-5p. Interestingly, we carefully examined all predicted target-genes and found that among them, two have been reported to be associated with MITF: CREB1 and MAPK1. CREB1 has been widely confirmed to bind to a site of the MITF promotor, upregulating its expression (15). Phosphorylation of MITF by MAPK1 at serine 73 enhances its transcriptional activity (16). To further ascertain promising binding sites, we employed alignments for miR-585-5p seed sequence and 3’ UTR sequences of MITF, CREB1 and MAPK1, combined with another methodology of free energy calculation (Detailed predicted information is provided in Appendix S2). The above analysis implies that MITF might be the core target by which miR-585-5p works in GC progression. Considering that the prediction of CREB1 and MAPK1 suggest the probability of MITF regulation, we sought to determine the role of MITF.

Based on IHC staining, we detected MITF upregulation in GC tissue-types compared to para-cancerous tissue-types (Figure 3A). Validating MITF function within GC, further gain-of-function experiments indicated that MITF overexpression increases the proliferative, migrative and invasive effects of GC cultures but that downregulation has opposing effects (Figures 3B, C). To assess whether miR-585-5p directly inhibits MITF translation, we constructed 3’UTR reporter genes for MITF-containing miR-585-5p binding sites as reporter-genes for binding-site mutations (Figure 4A) and co-exposed to transfection miR-585-5p mimics into 293T and BGC823 cultures. Luciferase activity outcomes demonstrated ectopic overexpression of miR-585-5p impaired activity of the MITF-3’UTR-wt reporter, though there was no notable activity shifts within mutated reporter (Figure 4B). Furthermore, RT-qPCR and western blot analyses were carried out employing GC cultures to explore the regulatory MITF function by miR-585-5p. Upregulation of miR-585-5p led to transcriptomic/proteomic MITF downregulation (Figure 4C). Decreased levels of miR-585-5p led to dramatic proteomic MITF upregulation; however, no significant change in MITF mRNA was found within miR-585-suppressed HGC27 cultures (Figure 4D).




Figure 3 | MITF is upregulated in human GC tissue-types and exacerbates GC proliferative/metastatic properties. (A) IHC staining for MITF in GC tissue-types and paired paraneoplastic tissue-types upon a series of tissue microarray samples. Representative images of MITF in GC and paired paraneoplastic tissue-types. (B) Western blot for detecting enforced expression of MITF in HGC27 cultures following infection with MITF lentiviruses. MITF overexpression resulted in elevated proliferation and migratory behaviours in HGC27 cultures. (C) Blocking efficiency of shMITF lentivirus infection in AGS and BGC823 cultures was tested by western blotting. Based on the detected efficiency, shMITF-3 lentivirus was used for follow-up functional experiments. Loss of MITF dampened proliferative/metastatic properties in AGS and BGC823 cultures, as demonstrated by CCK-8 and Transwell assays. Datasets reflected mean ± SEM. **P < 0.01, ***P < 0.001 and ****P < 0.0001 in comparison with NC cohort. Scale bar = 100 μm or scale bar = 250 μm.






Figure 4 | MiR-585-5p inhibits GC malignant development by negatively regulating MITF expression. (A) Diagram of potential binding sites for miR-585-5p within MITF 3’UTR. Mutation was generated within binding site. (B) Direct recognition of the MITF-3’UTR by miR-585-5p via luciferase reporter assay. 293T and BGC823 cultures were co-exposed to transfection with wild-type or mutant MITF fused with firefly luciferase reporters and miR-585-5p or negative control. Luciferase activity was assayed at 48 h following transfection. MiR-585-5p highly repressed luciferase function within wt-MITF luciferase reporters though not mutant reporters. (C) Upregulated levels of miR-585-5p led to transcriptomic/proteomic MITF downregulation. (D) Inhibition of miR-585-5p resulted in opposite changes in MITF protein levels but no significant change in mRNA levels. (E) Overexpression of MITF without miR-585-5p-binding sites. MITF (Δ3’UTR) antagonized inhibition of proliferative/metastatic phenotypes of AGS and BGC823 GC cultures driven through miR-585-5p. Datasets reflected mean ± SEM. *P < 0.05, **P< 0.01, ***P < 0.001, ****P < 0.0001 and ns suggested nil significance in comparison with NC cohort. Scale bar = 250 μm. ns indicates no significance.



Given the crucial role of MITF in GC development, we wondered whether MITF contributes to the miR-585-mediated GC phenotype. To clarify whether miR-585-5p regulates GC cell growth and metastasis inhibition through MITF, we adopted an MITF antagonism-of-function strategy employing the MITF expression vector without miR-585-binding sites in miR-585-5p-co-expressing AGS and BGC823 cultures and found that MITF overexpression reverses the in vitro inhibitory effect of miR-585-5p on proliferative/metastatic properties in GC (Figure 4E).



MiR-585-5p inhibits MITF transcription by directly targeting CREB1

In our previous study, bioinformatic analysis demonstrated CREB1 to act as an underlying target for miR-585-5p. Multiple studies have confirmed that CREB1 directly activates transcription of the MITF gene (17). Consequently, we evaluated whether CREB1 is an imperative intermediate bridging miR-585-5p and MITF. To explore presumed miRNA-mRNA interactions between miR-585-5p and CREB1, the entire CREB1 3’UTR harboring potential miR-585 binding sites and the corresponding mutant CREB1 3’UTR were fused to a reporter vector downstream of the firefly luciferase gene (Figure 5A). The resulting plasmid was exposed to transfection into 293T and BGC823 cultures along with miR-585-5p mimics and a transfection negative control. As expected, miR-585-5p overexpression highly interfered with the luciferase activity of the CREB1-wt reporter, and the inhibitory effect was antagonized by transfection of the CREB1-mut reporter (Figure 5B). Moreover, cellular CREB1 levels were robustly reduced by introduction of miR-585-5p into AGS and BGC823 cultures (Figure 5C). Conversely, the use of miR-585-5p inhibitors in HGC27 cultures promoted proteomic CREB1 augmentation though not at transcriptomic level (Figure 5D). Taken together, such results show that CREB1 is directly targeted by miR-585-5p.




Figure 5 | MiR-585-5p directly targets CREB1. (A) Potentially conserved miR-585-5p binding site within CREB1 3’UTR. Mutation was generated within binding site. (B) Luciferase reporter assay for miR-585-5p and CREB1. MiR-585-5p markedly impeded luciferase activities of the reporter harbouring the wt-MITF-3’UTR. (C) Elevated miR-585-5p resulted in CREB1 downregulation. (D) Inhibiting miR-585-5p led to proteomic upregulation for MITF though no significant change within mRNA level. (E) CREB1 overexpression reversed the anti-proliferation, anti-migrative and anti-invasive effects of miR-585-5p in AGS and BGC823 cultures. An expression vector dislodged with the miR-585-binding sites, CREB1 (Δ3’UTR), was used to enhance CREB1 expression. Datasets reflected mean ± SEM. ***P < 0.001, ****P < 0.0001 and ns indicate no significance in comparison with NC cohort. Scale bar =250 μm.



To determine whether the suppressive effects on GC phenotypes exerted by miR-585-5p are related to CREB1, we first specified the role of CREB1 in GC. CREB1 overexpression lentivirus was used to infect HGC27 cultures, and exogenous CREB1 overexpression potently stimulated cell proliferative, migrative and invasive effects in vitro (Supplementary Figure 2A). In contrast, CREB1 knockdown in AGS and BGC823 cultures employing shRNA lentiviruses exhibited opposite effects on GC phenotypes (Supplementary Figure 2B). In order to increase clarity on the functional links across miR-585-5p/CREB1, we applied a CREB1 gain-of-function approach in miR-585-expressing AGS and BGC823 cultures, and found that CREB1 (Δ3’UTR) upregulation partly rescued inhibitory effects of miR-585-5p on GC cell proliferative/metastatic properties (Figure 5E). Collectively, Such dataset outcomes suggest that miR-585-5p might regulate proliferative/metastatic properties in a CREB1-dependent manner.

As an important transcription factor, CREB1 binds to the cAMP response element (CRE) consensus motif situated across -140 and -147 bp from the transcription site of the MITF promoter to enhance its expression (15). Multiple studies have affirmed the positive regulation of MITF transcription by CREB1 in malignant melanoma (18–20). However, whether CREB1 directly activates MITF transcription in GC is still unclear. Therefore, we predicted the interactive mode of the CREB1 protein and MITF promotor region employing the JASPAR database (http://jaspar.genereg.net/), and the highest scoring CREB1 binding site, i.e., TCTGATG (-1357 to -1351), was selected via bioinformatics analysis (Figure 6A). To confirm the hypothesis that MITF is a key target-gene of CREB1 in GC, ChIP-PCR was performed, and nucleic acid electrophoresis analysis showed that the CREB1 protein bound directly to the MITF promotor at the indicated sites in HGC27 cultures (Figure 6B). Subsequently, a probe for this binding site was designed and synthesized, and EMSA was carried out. Such dataset outcomes demonstrated proteomic CREB1 strongly binds to the MITF-wt probe; however, the interaction was highly but not completely hindered, which further confirms that CREB1 might bind to this site but that it is not the only binding site (Figure 6C). Additionally, the CREB1 expression vector was co-exposed to transfection with the MITF full-length promoter reporter gene or the binding-site mutant reporter gene into 293T cultures. CREB1 highly upregulated the transcriptional activity of the MITF wild-type promoter; the regulatory effect was inhibited but still existed within presence of the -1357 to -1351 binding site mutation, suggesting that CREB1 regulates MITF transcriptional expression through this binding site but not the only binding site (Figure 6D).




Figure 6 | CREB1 positively enhances MITF transcription. (A) Graphical representation for MITF promotor. Blue region indicates predicted CREB1-binding site. Mutations were created within binding site. (B) Amplification of binding area for MITF promoter from ChIP DNA in HGC27 cultures. Histone H3 and normal rabbit IgG acted as positive and negative control, respectively. Nucleic acid electrophoresis for PCR products highlighted CREB1 protein binds directly onto MITF promotor at the indicated sites. (C) EMSA for identification of CREB1-binding sites within MITF promotor. The purified recombinant CREB1 protein was induced and obtained from Escherichia coli BL21. CREB1 was incubated with a biotin-labelled DNA probe, followed by chemiluminescent EMSA. Mutant probe acted as a negative control and the unlabelled probe as cold competitor. Red arrow indicates CREB1 DNA-binding complex. The use of the MITF-mut probe hindered the DNA-protein (CREB1) complex band shift. (D) Reporter gene analyses for transcriptional activation capacity by MITF promoter. Constructs with an intact or mutant MITF promoter resulted in enhanced luciferase activity in CREB1-overexpressing 293T cultures. The MITF-mut promoter highly suppressed luciferase activity in contrast with the MITF-wt promoter, indicating that the region from -1357 to -1351 bp is a CREB1-responsive region but not the only one. (E) MITF mRNA and protein levels in CREB1-overexpressing HGC27 cultures. CREB1 overexpression remarkably promoted MITF expression. (F) MITF mRNA and protein levels in CREB1-knockdown AGS and BGC823 cultures. Downregulated CREB1 inhibited MITF expression. (G) Downregulated MITF expression in HGC27-CREB1 cultures blocked cell proliferative, migrative and invasive effects driven through CREB1 overexpression. An shMITF-resistant reconstitution, MITFΔ, was employed for rescuing MITF expression, recovering increased malignant ability of cultures. Datasets reflected mean ± SEM. **P < 0.01, ***P < 0.001 and ****P < 0.0001 in comparison with NC cohort. Scale bar = 250 μm.



A CREB1 overexpression lentivirus was used to infect HGC27 cultures, and shCREB1 lentivirus was applied to knockdown CREB1 in AGS and BGC823 cultures. Upregulated CREB1 obviously upregulated transcriptomic/proteomic MITF expression (Figure 6E), whereas downregulating CREB1 resulted in dramatically decreased MITF expression (Figure 6F). Based on the finding that CREB1 accelerates proliferative/metastatic properties in GC cultures, this investigation probed the possibility whether CREB1 functions in an MITF-dependent manner. Hence, we infected CREB1-overexpressing HGC27 cultures with shMITF lentivirus or shNC lentivirus and carried out CCK-8 and Transwell assays. Overall, knockdown of MITF diminished the CREB1-mediated promotion of cell growth and metastasis in GC (Figure 6G). In addition, upregulation of MITF rescued the dampened tumour proliferative/metastatic properties driven by shRNA-mediated silencing of CREB1 (Supplementary Figure 3). These findings suggest that CREB1-induced MITF overexpression promotes GC proliferative/metastatic properties. In summary, such dataset outcomes verify that miR-585-5p inhibits MITF transcription through direct targeting of CREB1.



MiR-585-5p suppresses MITF activity by directly targeting MAPK1

Based on the previous prediction of MAPK1 as a target-gene of miR-585-5p, this investigation examined if miR-585-5p is able to regulate MAPK1 in GC. The luciferase reporter system validated that miR-585-5p could be directly-bound onto MAPK1-3’UTR at the indicated sites (Figures 7A, B). Moreover, the transcriptomic/proteomic MAPK1 downregulation occurred by ectopic expression of miR-585-5p in AGS and BGC823 cultures (Figure 7C). Consistently, miR-585-5p inhibitors led to elevated expression of MAPK1 (Figure 7D). It is widely recognized that MAPK1 plays has pivotal parts within development and progression of various cancers, including GC (21–23). However, whether MAPK1 is implicated within miR-585-mediated tumour proliferative/metastatic properties remains uncertain. Resistance-of-function experiments were conducted via overexpression of MAPK1 with or without miR-585-5p-binding sites, showing that MAPK1 reverses the anti-proliferative, anti-migrative and anti-invasive capacities of miR-585-5p in AGS and BGC823 GC cultures (Figure 7E). Overall, dataset outcomes suggest MAPK1 is a functional target of miR-585-5p within GC malignant phenotype.




Figure 7 | MiR-585-5p directly targets MAPK1. (A) Potentially conserved miR-585-5p binding site within MAPK1 3’UTR. Mutation was generated within binding site. (B) Verification of MAPK1 as a miR-585-5p target via luciferase reporter assays. MiR-585-5p highly inhibited the luciferase activities for reporter harbouring the wt-MITF-3’UTR though not mut-MITF-3’UTR. (C) Elevated miR-585-5p resulted in MAPK1 transcriptomic/proteomic downregulation. (D) Inhibiting miR-585-5p drove proteomic MAPK1 upregulation, though no significant change in mRNA. (E) MAPK1 (Δ3’UTR) overexpression reversed the anti-proliferative, anti-migrative and anti-invasive influence by miR-585-5p in AGS and BGC823 cultures. Datasets reflected mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns indicates no significance in comparison with NC cohort. Scale bar =250 μm.



The transcriptional and MITF functional activity is founded upon post-translational modifications and the availability of cooperating partners. MAPK1 was confirmed to phosphorylate the MITF protein at serine 73, enhancing its activity (16, 24). However, whether this effect exists in GC is indeterminate. To assess the interplay between MAPK1 and MITF, we overexpressed HA-tagged MAPK1 and flag-tagged MITF mutants (S73A) or wild-type MITF at similar levels in HGC27 cultures and used immunoprecipitation to evaluate the interaction. The MAPK1-MITF interaction was confirmed by blotting complexes containing endogenous MITF precipitated with flag-specific antibodies and probing for MAPK1. Conversely, an anti-HA antibody was used for precipitation, and the isolated complexes were blotted with an anti-MITF antibody. The interaction was partly abolished when the S73A mutant protein was used (Figure 8A), and an endogenous interaction assay studying GC cultures demonstrated that MAPK1 interacts with MITF and that serine 73 is a crucial site. Furthermore, immunofluorescence was employed to determine the cellular distributions of the two proteins, and the superimposition of green fluorescence indicating MAPK1 over red fluorescence indicating MITF validated the association between MAPK1 and MITF (Figure 8B).




Figure 8 | MAPK1 enhances the cancer-promoting characteristics of the MITF protein via phosphorylation at serine 73. (A) Endogenous immunoprecipitation was performed to verify interaction between MAPK1 and the MITF protein or the MITF(S73A) protein in HGC27 cultures. MAPK1 and MITF or MAPK1 and MITF (S73A) were co-expressed in HGC27 cultures. When the MITF protein was immunoprecipitated by an anti-flag antibody, the indicated proteins were detected by immunoblotting. The same was true for immunoprecipitation of the MAPK1 protein via an anti-HA antibody. Normal rabbit IgG acted as negative control. (B) Intracellular colocalization between MAPK1 and MITF was observed by immunofluorescence staining of parental HGC27 cultures. (C) MAPK1 phosphorylated the MITF protein at serine73. The MITF protein was immunoprecipitated by an anti-flag antibody employing NC(MAPK1)+MITF, MAPK1+MITF and MAPK1+MITF(S73A) coexpressing HGC27 cultures. Serine phosphorylation levels were detected by immunoblot employing an anti-phosphorylation (serine) antibody. Upregulated MAPK1 enhanced serine phosphorylation of MITF protein, whereas MAPK1 knockdown restrained this effect. Mutation of serine 73 of the MITF protein antagonized MAPK1-mediated phosphorylation. (D) CCK-8, Transwell migration and invasion assays within indicated cultures. MAPK1 overexpression notably enhanced the proliferation-promoting and metastasis-promoting effects of MITF but not mutant MITF (S73A). Datasets reflected mean ± SEM. ****P < 0.0001 in comparison with NC cohort. Scale bar = 75 μm, scale bar = 125 μm or scale bar = 250 μm.



Interestingly, we found that MAPK1 overexpression or silencing had no significant influence on MITF levels at either the mRNA or protein level (Supplementary Figures 4A, B), suggesting that MAPK1 might only be implicated within phosphorylation of MITF but not in its degradation. To assess MAPK1 phosphorylation of the MITF protein at serine 73, we conducted combinatorial expression of NC(MAPK1) + MITF, MAPK1 + MITF and MAPK1 + MITF(S73A) in HGC27 cultures. Phosphorylated MITF was analysed by employing an anti-phosphorylation (serine) antibody to detect the immunoprecipitated MITF protein, showing that overexpressing MAPK1 strongly increased global MITF phosphorylation in GC cultures but that overexpressing the S73A mutant did not. In contrast, MAPK1 silencing attenuated the phosphorylation level of MITF, and S73A mutants sustained low-level phosphorylation, suggesting that serine 73 is a principle site for phosphorylation (Figure 8C). Collectively, the above results reveal that MAPK1 binds to MITF and phosphorylates serine 73 in GC cultures. In order to increase clarity regarding MAPK1 function in MITF serine phosphorylation, HGC27 cultures were engineered to express elevated levels of MAPK1 and MITF or mutant MITF (S73A) alone or in combination. We also overexpressed wild-type MITF or the S73A mutant in HGC27 cultures with downregulated MAPK1 to comprehensively assess the functional effect of MAPK1-mediated phosphorylation on MITF serine73. CCK-8 and Transwell assays showed that compared with NC + NC cultures, MAPK1 or MITF alone enhanced proliferative/metastatic properties, and the MAPK1 + MITF co-expressing cultures exhibiting the most strongly enhanced malignant phenotypes. However, MAPK1+MITF (S73A)-overexpressing cultures presented highly dampened proliferative and metastatic capacities relative to MAPK1 + MITF co-expressing cultures, which indicated that MAPK1 overexpression notably enhances the cancer-promoting characteristics of MITF but not of the MITF (S73A) mutant (Figure 8D). Taken together, our findings indicate that MAPK1 enhances the cancer-promoting characteristics of the MITF protein via serine 73 phosphorylation. In summary, results indicated miR-585-5p suppresses MITF activity by directly targeting MAPK1.




Discussion

This investigation revealed miR-585-5p is markedly downregulated in GC tissue-types and that cases of positive miR-585-5p expression have better clinical outcomes than cases of negative miR-585-5p expression. Furthermore, we identified for the first time the melanocyte master regulator MITF as promoting carcinogenesis in GC and acting as a direct and essential mediator of miR-585-5p-impeded malignant phenotypes. Such dataset outcomes demonstrated that overexpression of miR-585-5p highly inhibits proliferative/metastatic properties of GC by directly targeting MITF, CREB1 and MAPK1. Moreover, CREB1 directly regulates MITF transcription, and MAPK1 directly phosphorylates MITF at serine73. This interaction network shows that miR-585-5p directly or indirectly regulates MITF expression and activity by simultaneously repressing target molecules, accounting for the anti-tumour role of miR-585-5p in inhibiting GC growth and metastasis. In summary, our study supports that miR-585-5p suppressed GC proliferative/metastatic properties through CREB1/MAPK1/MITF pathway (Figure 9).




Figure 9 | A new miR-585-5p/(CREB1/MAPK1/MITF) signalling pathway inhibits GC (GC) proliferative/metastatic properties. MiR-585-5p was downregulated in GC development, resulting in increased CREB1, MAPK1 and MITF expression. Expression of CREB1, MAPK1 and MITF was upregulated. In particular, upregulated CREB1 activated MITF transcription, further promoting MITF upregulation. MAPK1 phosphorylates the MITF protein at serine 73, which activates MITF pro-cancerous activity, promoting GC proliferative/metastatic properties.



MiRNAs, an abundant class of endogenous noncoding RNAs, have been confirmed to be ectopically expressed in malignant gastric tissue-types. Dysregulated miRNAs are important in regulating proliferative/metastatic properties of GC (25, 26). The gene encoding miR-585-5p is located at 5q35.1 within intron of SLIT3, together with miR-218-5p (6). Notably, miR-218-5p was previously identified as a tumour suppressor in GC by our research cohort (4, 5), and we tentatively proposed that miR-585-5p has a similar expression pattern and phenotypic effects as miR-218-5p in GC, considering that the two miRNAs belong to the same gene cluster. MiR-585 has been previously characterized to be a tumour suppressor in non-small-cell lung cancer (9), triple-negative breast cancer (27), cervical cancer (28), glioma (10), tongue squamous cell carcinoma (29), and colorectal cancer (30), among others. However, few studies have determined the specific role of miR-585 in GC. Some reports have identified that miR-585 exhibits relatively low expression in GC tissue-types, predicting poor prognosis (11, 31), but the molecular mechanisms implicated are far from clear. Several studies report that miR-218 directly targets MITF to exert its biological functions (32–34), and we accordingly screened for potential targets of miR-218-5p and miR-585-5p; MITF was co-pinpointed by bioinformatic prediction algorithms. However, inconsistent with existing studies, our findings showed that miR-218-5p overexpression had no impact on MITF expression (Supplementary Figure 5) but that miR-585-5p was affirmed to directly target and regulate MITF in a post-transcriptional manner. Herein, we focus on miR-585-5p implications and its downstream molecular mechanisms in GC. We not only reconfirmed decreased expression of miR-585 in GC but, more importantly, highlighted that miR-585-5p hinders GC proliferative/metastatic properties by directly or indirectly adjusting MITF expression and biological activities at different levels of gene expression regulation. In addition, we identified that miR-585-5p simultaneously targets CREB1 and MAPK1 mRNAs, downregulating transcriptomic/proteomic expression. Functionally, miR-585-5p overexpression inhibits GC cell proliferative, invasive, and migrative properties by targeting CREB1 and MAPK1 in resistance-of-function analyses. In agreement with our results, Hu et al. (11) reported that miR-585 is downregulated in both GC tissue-types and cultures and that ectopic overexpression highly suppresses the malignant phenotype of GC by directly targeting MAPK1, with no evidence that miR-585-5p directly regulates CREB1. Additionally, miR-585 binds to the 3’UTR of F-box protein 11 (FBOX11), and overexpression of miR-585 inhibits the GC cell proliferation and migration driven through FBXO11 (31). Taken together, our findings indicate that miR-585-5p expression is often decreased in GC, which is of great value in GC treatment via suppression of tumour growth and metastasis. Such dataset outcomes illustrate for the first time that the anti-tumour effect of miR-585-5p in GC is due to direct simultaneous inhibition of MITF, CREB1 and MAPK1 expression.

MITF, widely identified as one of the most classic and pivotal regulators in malignant melanoma, has been associated with phenotypic switching between predominantly invasive and proliferative behaviours of melanoma. Notably, MITF has been reported as a tumour suppressor in inhibiting tumour growth and metastasis in GC (35, 36). Several bodies of proof partly support that MITF plays an oncogenic function within GC development. For instance, miR-876-5p suppresses GC cell viability/migrative properties though induces apoptosis by targeting MITF (36). Li et al. (35) inferred that CSE1L silencing promotes apoptosis and inhibits tumour growth and metastasis by decreasing MITF expression. Nevertheless, whether MITF is aberrantly expressed and has a pathogenic function within GC, remains largely elusive. This investigation detected MITF expression in GC tissue-types for the first time, revealing that MITF was upregulated in GC tissue-types in comparison with peri-carcinomatous tissue-types. Within subsequent gain- and loss-of-function analyses, we observed that MITF overexpression conspicuously promotes HGC27 cell proliferation, invasion and migration but that MITF downregulation highly suppresses the malignant phenotypes of AGS and BGC823 cultures. Hence, in contrast to the controversial context-dependent regulation of MITF within tumorigenesis and progression of melanoma, our findings show that MITF acts straightforwardly as an oncogene in GC. In terms of the underlying mechanisms driving de novo MITF expression in GC, MITF was proven to be a direct target of miR-585-5p. Such dataset outcomes suggest that the high ectopic expression of the MITF protein in GC tissue-types might be due, at least in part, to inhibitory regulation by miR-585-5p. Collectively, we report that MITF is not only a potent marker predicting prognosis but as a direct downstream target of miR-585-5p, also a pro-proliferative and pro-metastatic gene in GC.

Although the direct post-transcriptional miRNA-mRNA regulatory interaction matters greatly in regulating MITF protein expression, many transcription factors govern MITF transcriptional expression (17). As previously illustrated, we have shown that CREB1 and MITF are both the downstream targets of miR-585-5p, and it has been widely demonstrated that CREB1, a canonical bZIP transcription factor, identifies the CRE motif ‘-TGACGTCA-’ within MITF promotor (15), thus enabling varied cAMP levels to influence MITF expression (37, 38). This idea is further perpetuated by various studies showing that CREB1 directly upregulates MITF expression in human melanocytes or melanoma cultures (39–41). Nevertheless, there is a paucity of evidence regarding whether CREB1 directly activates MITF transcription in GC. This investigation is the first to confirm in GC cultures that CREB1 directly binds to the newly identified MITF promotor sites -1357 to -1351 bp, positively regulating MITF transcription. As expected, MITF mRNA and protein levels increase in response to CREB1 overexpression, whereas CREB1 knockdown results in highly decreased MITF expression. Further resistance of function showed that the deficiency of MITF in CREB1-overexpressing HGC27 cultures counteracted the pro-proliferation and pro-metastasis effects due to CREB1, underscoring that CREB1-dependent MITF upregulation is crucial to stimulate GC development. Interestingly, our results showed that the -TCTGATG- (-1357 to -1351) site might not be the only binding site for CREB1 within MITF promotor, and there is a possibility that other sites also contribute to CREB1 binding. Considering the widely confirmed CREB1 binding site TGACGTCA (-140 to -147 bp) within MITF promotor, we speculate that the two candidate sequences might both act immensely within transcriptional regulation of MITF. However, this should be further explored in GC cultures. Together with our data from ChIP, EMSA and luciferase reporter assays, we determined that CREB1 positively regulates MITF transcription in GC.

In addition to transcriptional and post-transcriptional regulation of MITF expression, regulation of MITF activity contributes to its function in tumours. Phosphorylation is a prerequisite modification for modulating MITF activity, and the MITF protein has been reported to be phosphorylated by MAPK1 at Ser73, by P90RSK at Ser409, by GSK3 at Ser69, Ser298, Ser397, Ser401, and Ser405, and by P38MAPK at Ser307. Hemesath et al. (42) first reported that MAPK1-mediated MITF phosphorylation at Ser73 enhances MITF-dependent transactivation in melanocytes, and Ser73 phosphorylation by MAPK1 is proposed to be required for recruitment of the P300/CBP transcriptional coactivator within transactivation domain of MITF (16). Phosphorylation at MITF Ser73 is predominantly responsible for MITF activation to promote malignant phenotypes in melanoma (24, 43); however, this interaction has not been reported in GC. Hence, we conducted IP and double-labelling immunofluorescence of HGC27 cultures, showing endogenous interaction between MAPK1 and MITF protein in GC, and the effect of MAPK1 phosphorylation on MITF was determined employing anti-phosphoserine antibodies. Consistent with previous studies, the S73A mutant counteracted the above effects, indicating that the serine 73 site is required for MAPK1-mediated phosphorylation of the MITF protein. The results of subsequent functional assays demonstrated that phosphorylation of serine 73 is important to facilitate MITF-enhanced GC proliferative/metastatic properties. Nonetheless, our results show that MAPK1 does not affect MITF protein levels, which is incompatible with the proposal that S73-phosphorylated MITF is a prerequisite for MITF degradation. As an E2 SUMO conjugating enzyme, UBC9 was found to be responsible for the degradation of MITF in response to S73 phosphorylation (44). Moreover, Azam et al. (45) reported that sargaquinoic acid increases phosphorylation of MAPK1 and MITF (Serine73), ultimately inducing proteasomal degradation of MITF, in melanoma cultures. Controversially, both Hemesath et al. (42) and Wellbrock et al. (46) found that the S73A mutation has no effect on MITF protein stability, in line with our results. Considering the tumour heterogeneity between melanoma and GC, together with our results, it is reasonable to speculate that MAPK1 promotes GC proliferative/metastatic properties via phosphorylation of MITF (Serine73), enhancing its activity instead of stability.

Additionally, accumulating lines of evidence have shown that kinase-regulated CREB1 phosphorylation activates CREB1-dependent transcription and acts as an essential cascade in oncobiology (47). Leduc et al. reported that ERK1 instead of ERK2 was necessarily required for CREB1 phosphorylation and activation in mouse pancreatic beta cells (48). Chen et al. illustrated that MAPK1 could activate CREB1 to bind to the promotor of miR-212-3p. But no specific evidence have certificated the direct interaction between CREB1 and MAPK1. Our study demonstrated that CREB1 and MAPK1 act through different approaches to promote MITF-mediated GC progression, with one enhancing MITF transcriptional expression and the other promoting phosphorylation of MITF proteins. However, our study did not address the possible regulation of CREB1 by MAPK1 in GC. Therefore, detailed analysis regarding the relationship between MAPK1 and CREB1 is needed for further investigation in GC. Besides, although the direct regulation of miR-585-5p targeting on MITF, CREB1 and MAPK1 were confirmed, miR-585-5p inhibitor did not result in significant change within mRNA levels. The results reflected that the inhibition of miR-585-5p might only make a difference to translational process instead of the stability or degradation of mRNAs of these 3 targets. And further exploration is desired for the seemingly contradictory results.

Overall, this investigation not only revealed the tumour-inhibiting role of miR-585-5p in GC proliferative/metastatic properties but also defined the mechanism of miR-585-5p downstream signalling through MITF regulation in multiple aspects of gene expression. We identified another two targets of miR-585-5p that regulate MITF: CREB1 activates MITF transcription upregulating MITF expression, and MAPK1 phosphorylates MITF (Ser73) activating MITF pro-cancerous activity. Ultimately, miR-585-5p suppresses GC development by simultaneously targeting MITF in both direct post-transcriptional and indirect transcriptional (CREB1/MITF) or post-translational (MAPK1/MITF) manners. Accordingly, miR-585-5p/MITF-based targeted therapy might be a promising strategy for cases of GC.

In conclusion, this study uncovered miR-585-5p suppressed GC proliferative/metastatic properties by orchestrating the interactions among CREB1, MAPK1 and MITF. And miR-585-5p/MITF-based targeted therapy might represent a potential therapeutic strategy.
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Objectives

Osteosarcoma is a malignant bone tumor with poor outcomes affecting the adolescents and elderly. In this study, we comprehensively assessed the metabolic characteristics of osteosarcoma patients and constructed a hexosamine biosynthesis pathway (HBP)-based risk score model to predict the prognosis and tumor immune infiltration in patients with osteosarcoma.



Methods

Gene expression matrices of osteosarcoma were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. GSVA and univariate Cox regression analysis were performed to screen the metabolic features associated with prognoses. LASSO regression analysis was conducted to construct the metabolism-related risk model. Differentially expressed genes (DEGs) were identified and enrichment analysis was performed based on the risk model. CIBERSORT and ESTIMATE algorithms were executed to evaluate the characteristics of tumor immune infiltration. Comparative analyses for immune checkpoints were performed and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to predict immunotherapeutic response. Finally, hub genes with good prognostic value were comprehensive analyzed including drug sensitivity screening and immunohistochemistry (IHC) experiments.



Results

Through GSVA and survival analysis, the HBP pathway was identified as the significant prognostic related metabolism feature. Five genes in the HBP pathway including GPI, PGM3, UAP1, OGT and MGEA5 were used to construct the HBP-related risk model. Subsequent DEGs and enrichment analyses showed a strong correlation with immunity. Further, CIBERSORT and ESTIMATE algorithms showed differential immune infiltration characteristics correlated with the HBP-related risk model. TIDE algorithms and immune checkpoint analyses suggested poor immunotherapeutic responses with low expression of immune checkpoints in the high-risk group. Further analysis revealed that the UAP1 gene can predict metastasis. IHC experiments suggested that UAP1 expression correlated significantly with the prognosis and metastasis of osteosarcoma patients. When screening for drug sensitivity, high UAP1 expression was suggestive of great sensitivity to antineoplastic drugs including cobimetinib and selumetinib.



Conclusion

We constructed an HBP-related gene signature containing five key genes (GPI, PGM3, UAP1, OGT, MGEA5) which showed a remarkable prognostic value for predicting prognosis and can guide immunotherapy and targeted therapy for osteosarcoma.





Keywords: osteosarcoma, metabolism, hexosamine biosynthesis pathway, tumor immune microenvironment, immunotherapy



Introduction

Osteosarcoma (OS), a malignant bone tumor affecting the adolescents and elderly, shows a poor outcome because of high metastatic rates. The prevalence of OS indicates that it is the most common malignant bone tumor with a 4.7 per million incidence rate (1). Additionally, more than 30% of these patients show metastases at initial diagnosis. Although OS with an integrated treatment plan shows a 5-year survival rate of 70%, once the patient develops metastasis or the treatment fails, the overall survival rate drops significantly to 20-30% (2). Tracing back to the source, the primary cause of treatment failure and mortality in patients with OS is the high metastatic potential in combination with the high tumoral heterogeneity. The complicated etiology and the high degree of heterogeneity make the prognostic prediction for OS difficult. Moreover, it is also imperative that novel prognostic models be developed for OS, due to limited treatment strategies.

Recent research has shown that cancer is a metabolic disorder. In 1920s, Otto Warburg discovered that tumor cells are mainly dependent on glycolysis even in the presence of abundant oxygen, or the Warburg effect (3). With the development of biochemical and molecular biological techniques, research on the metabolic characteristics of tumor cells has constantly updated the understanding of the phenomenon and mechanism underlying tumor-related metabolic changes across the different stages of tumorigenesis (4). For examples, androgen receptor-mediated metabolic reprogramming in prostate cancer promotes the metabolic conversion in cancer cells to oxidative phosphorylation, further leading to increased dependence of oxidative phosphorylation and lipogenesis (5). In breast cancer, notably, the inhibition of glycolysis promotes the transformation of the breast cancer stem cells from a quiescent, mesenchymal-like state to an epithelial-like state, referred to as epithelial-mesenchymal transition (6). However, interestingly, glucose not only generates energy through metabolic pathways such as glycolysis but also is metabolized by the hexosamine biosynthesis pathway (HBP), leading to the synthesis of uridine diphosphate N-acetyl-glucosamine (UDP-GlcNAc) and plays an important role in the post-translational modification of proteins (7). Cancer cells upregulate the flux of the HBP pathway and expression of UDP-GlcNAc by increasing the uptake of glucose and glutamine, further promoting signaling pathways related to tumorigenesis through protein N-linked and O-linked glycosylation processes (8). Therefore, targeting the metabolic characteristics of cancer is a promising new strategy for tumor treatment. However, the correlation of metabolism reprogramming with prognosis in OS remains poorly understood.

The tumor immune microenvironment (TIME) comprises tumor cells, immune cells, interstitial cells and extracellular components. TIME reflects the characteristics of immune infiltration in the tumor microenvironment and plays an important role in the occurrence and development of tumors (9). Immune cells in the TIME may have anti- or pro-tumor functions, while these two types of cells play different roles across stages of tumor progression and have been proven to be important in predicting the prognosis of OS patients (10). Moreover, immunotherapy represented by immune checkpoint inhibitors (ICIs) significantly extend the overall survival of patients with advanced cancer (11). Therefore, evaluating the TIME characteristics in the development of OS is helpful to improve the prognosis of the patients through individualized immunotherapy.

In this study, we comprehensively assessed the metabolic characteristics of OS patients according to metabolic pathways and further constructed an HBP-based risk score model to predict the prognosis and tumor immune infiltration. Our findings provide new clues for examining the potential molecular mechanisms underlying the link between metabolic reprogramming and tumor immune infiltration, which may help guide the targeted therapy and immunotherapy for OS.



Methods


Collection of gene expression datasets

Clinical data and gene expression matrices of OS were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET, https://ocg.cancer.gov/programs/target/projects/osteosarcoma) and Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) databases. A total of 86 OS samples with complete survival data acquired from the TARGET database provided by the National Cancer Institute were defined as the training cohort. The GSE21257 dataset was uploaded by Marieke L Kuijjer (12), comprising 53 samples and the corresponding survival data were defined as the verification cohort following integration.



Gene set variation analysis (GSVA) and survival curves

GSVA was performed for evaluating the pathway-based prognostic signature in OS (13). As for the definition of metabolic pathways, a total of 114 pathways was screened (14) from The Kyoto Encyclopedia of Genes and Genomes (KEGG). The metabolic pathway score of each OS sample was calculated using the R package “GSVA”. Furthermore, the “survival” R packages was used to calculate the impact of metabolic pathway scores on survival using the coxph() function, and P< 0.05 were considered statistically significant.



Construction of the prognostic HBP-related gene signature

In this study, 7 genes involved in the HBP pathway were used as candidate prognostic biomarkers for prognosis prediction in OS. Based on R package “glmnet”, these candidate biomarkers were used to obtain an optimal prognostic signature for OS following the LASSO-Cox regression analysis (15). Lastly, we built an optimal prognostic model with 5 genes by selecting the penalty parameter λ, correlated to the minimum 10-fold cross-validation of the model. The HBP-related prognostic risk score formula for each patient was as follows:

	

while coefi is the coefficient of gene i, and expri is its relative expression. For the Target-OS dataset, the median value of risk scores in all patients was defined as the cut-off and the patients were then divided into two groups — “high-risk” and “low-risk”. The same cut-off value was used for the GEO21257 dataset. In addition, this risk model was tested for survival prediction ability using the R package “ROCR” by analyzing the 1, 3, and 5-year receiver operating characteristic (ROC) values both in the training and verification cohorts.



Identification of DEGs and functional enrichment analysis

DEGs were identified using the R package “limma”. Genes with a fold-change greater than 1.5 and P-value less than 0.05 were defined as significant DEGs between the high- and low-risk groups. The R package “ggplot2” was used to visualize these results. Gene ontology (GO) and Reactome pathway enrichment analysis were performed for these DEGs using the Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov) tool, and FDR< 0.05 was considered statistically significant.



Immune landscape analysis and prediction of immunotherapy responses

Using an online analytical platform CIBERSORT (https://cibersortx.stanford.edu/), the compositional proportion of immune infiltrating cells in the OS tissues was calculated based on the characteristic gene set of 22 immune cell subtypes (16). According to the relative abundances of 22 immune infiltrating cells, the differences in immune cell infiltration between the high-risk and low-risk groups were analyzed. The ESTIMATE algorithm was utilized to calculate the immune score, stromal score, ESTIMATE score and tumor purity according to the relative abundances of immune infiltrating cells and stromal cells in OS patients. The expression of six common immune checkpoints (PD-1, CTLA-4, TIM3, LAG3, TIGIT and BLTA) were compared according to clusters and risks (17). Furthermore, to predict the immune benefits of ICI therapy, the T-cell exclusion, dysregulation and TIDE scores were calculated using to the TIDE online algorithm (http://tide.dfci.harvard.edu/). P value < 0.05 was regarded as a statistically significant difference between high- and low-risk groups using independent Student’s t-test.



Construction of predictive nomogram

Nomogram or the alignment diagram is used to visualize the relationship among different variables in the prediction model by constructing a multi-factor regression model and integrating scores according to the contribution of each influencing factor to the outcome events. In the present study, all independent prognostic factors and clinical data were included to construct the prognostic nomogram for prediction of 3- and 5-year overall survival of patients in the Target-OS dataset. Calibration curves were plotted to evaluate the performance of the nomogram.



Screening key metastasis-associated genes

To screen the key genes in the risk model, the metastatic status was compared between the high- and low-risk groups using the Chi-square test. The ROC curve for metastatic prediction using each HBP-related gene was visualized both in the training and verification cohorts. Genes with AUCs greater than 0.65 were considered the key genes for the prediction of metastasis in OS patients.



Immunohistochemical analysis

In the present study, the protein expression of UAP1 in OS tissues was assesed by immunohistochemistry (IHC) staining. A total of 56 OS tissues with corresponding clinical follow-up information were obtained from The First Affiliated Hospital of Sun Yat-sen University. All the patients signed an informed consent form. The slides were incubated with anti-UAP1 following the manufacturer’s instructions. The IHC staining scores for UAP1 were assessed by two independent pathologists. Based on the percentage of positively stained cells, the score was calculated as — 1 for 0-25%; 2 for 26-50%; 3 for 51-75%; and 4 for 75-100%. The score of staining intensity was ranged from 0 to 3. The final IHC staining score for each tissue was obtained by multiplying the scores of positively stained cells and the scores of staining intensity. All patients were divided into two groups base on UAP1 expression to plot the overall survival curve and lung metastasis-free survival curve, using P< 0.05 as the significance threshold.



Drug sensitivity analysis

The gene expression dataset and the drug sensitivity information for NCI‐60 cancer cell lines were obtained from CellMiner (https://discover.nci.nih.gov/cellminer). After data integration, a Pearson correlation analysis between drug sensitivity and the expression of prognostic HBP-related candidate hub genes was conducted. P-value < 0.05 with correlation ≥ 0.30 was considered statistically significant.



Western blot analysis

Seven human OS cell lines, U2OS, SAOS2, HOS, 143B, SJSA1, MG63 and G292, were obtained from American Type Culture Collection (ATCC). All cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY, USA) at 37°C and 5% CO2. The protein samples extracted from different OS cells were resolved by SDS-PAGE and transferred subsequently onto polyvinylidene fluoride membranes, and blocked in 5% skim milk at room temperature for 1 h. The membranes were incubated with the primary antibody against UAP1 (Mouse monoclonal, 67545-1-Ig; Proteintech) at 4°C for 6 h, following which, these were incubated with secondary antibodies at room temperature for 1 h. Finally, the immunoreactive signals on the membranes were visualized using an enhanced chemiluminescence kit.



Cell CCK-8 assay

Four antitumor drugs including cobimetinib, copanlisib, selumetinib, and tamoxifen were purchased from MedChemExpress (Shanghai, China). For the CCK-8 assay, OS cells in the logarithmic growth phase were plated in 96-well plates and treated with different concentrations of drugs. After 72 h of drug induction, 10 µL CCK-8 solution was added to the cells and incubated for 2.5 h. The optical density (OD) at 490 nm was measured on a microplate reader. The IC50 value was calculated on the GraphPad Prism 9 software by non-linear regression analysis.




Results


Overexpression of the HBP pathway is related to poor prognosis in OS

To detect the distinct metabolism pathways associated with prognosis, GSVA was conducted for 114 metabolic pathways obtained from KEGG. Eight metabolic pathways were screened in the Target-OS (Figure 1A), including primary bile acid biosynthesis, caffiene metabolism, transsulfuration, nicotinate and nicotinamide metabolism, hexosamine biosynthesis, porphyrin and chlorophyll metabolism, folate biosynthesis and ADP-ribosylation. In the GSE21257 cohort (Figure 1B), nine metabolic pathways were associated significantly with prognosis, including nicotinamide adenine metabolism, aldosterone biosynthesis, cortisol biosynthesis, folate one carbon metabolism, thromboxane biosynthesis, estradiol biosynthesis, retinol metabolism, hexosamine biosynthesis and selenocompound metabolism. The HBP pathway was commonly observed for both datassets and predicted poor prognosis of OS patients. Kaplan-Meier survival analyses of HBP pathway in the Target-OS cohort (Figure 1C) and the GSE21257 (Figure 1D) cohorts showed that patients with low GSVA scores showed better overall survival than those with high scores (P = 0.044 in Target-OS; P = 0.015 in GSE21257). These results demonstrated that the HBP pathway plays a major role in OS, particularly in the prognosis of OS patients.




Figure 1 | Identification of the HBP pathway associated with overall survival in OS patients. (A, B) The heatmaps of survival-associated metabolic signatures in Target-OS (A) and GSE21257 (B) cohorts. (C, D) Survival analyses of the HBP pathway for Target-OS (C) and GSE21257 (D) cohorts show considerable differences between the high and low GSVA score group.





Construction of the HBP-related five-gene signature for prognosis prediction for OS

To assess the prognostic prediction value of the HBP pathway in OS, a risk signature model was constructed (Figures 2A, B). Five genes with the best lambda value were selected following LASSO analysis for establishing the risk model, including PGM3, OGT, MGEA5, UAP1 and GPI. A risk score was assigned to each patient according to the constructed prognostic model (Risk score = 0.0026*GPI expression + 0.017*MGEA5 expression + 0.042*OGT expression + 0.057*PGM3 expression + 0.008*UAP1 expression) and patients in the Target-OS (Figure 2C) and the GSE21257 (Figure 2E) cohorts were categorized into high- and low-risk groups. The levels of gene expression in the HBP-related gene signature and the survival data for each patient in the Target-OS (Figure 2C) and GSE21257 (Figure 2E) cohorts were visualized on a heatmap. The constructed risk model showed promising predictive ability over a period of 5 years in both cohorts according to ROC analysis, the AUCs for 1-, 3-, and 5 years in the Target-OS cohort was 0.78, 0.63, and 0.70, respectively (Figure 2D), while the corresponding values in the GSE21257 cohort were 0.74, 0.75, and 0.77 (Figure 2F). Moreover, the survival heatmap of all tumor types from The Cancer Genome Atlas (TCGA) datasets showed significant correlation between HBP-related genes and the overall survival of patients (Figure 2G).




Figure 2 | Identification of HBP-related 5 genes with prognostic value in OS patients. (A, B) The adaptive LASSO Cox regression for the prognostic value of HBP-related genes. (C–F) The risk score distribution, survival status, heatmap and time-dependent ROC curve of HBP-related gene signature in Target-OS (C, D) and GSE21257 (E, F) cohorts. (G) The survival heatmap of HBP-related genes across all tumor types from The Cancer Genome Atlas (TCGA). The red frame and blue frame represent statistical significance in Kaplan-Meier survival analyses.





Functional characteristics of DEGs based on the HBP-related risk model

Further analyses were conducted to reveal how the HBP-related risk model impacted OS patients’ prognoses. First, the levels of gene expression in the high- and low-risk groups were compared to screen DEGs. As shown in Figure 3A, 3135 DEGs were identified, among which 2412 were upregulated and 723 were downregulated in the Target-OS cohort. In the GSE21257 cohort, 1238 DEGs were identified, of which 937 were upregulated and 301 were downregulated (Figure 3B). The intersection of the Venn diagram shows the number of overlapping genes between both cohorts, and 76 genes were commonly identified (Figure 3C). GO function enrichment analysis indicated that DEGs were enriched in innate immune response, identical protein binding, beta-amyloid binding, inflammatory response (Figure 3D). The Reactome pathway enrichment analysis indicated that DGEs was closely associated with the immune system, innate immune system, adaptive immune system, neutrophil degranulation, initial triggering of complement and classical antibody-mediated complement activation (Figure 3E). Therefore DEGs were strongly associated with immunodeficiency in OS, thereby likely contributing to a poor prognosis in these patients.




Figure 3 | Differential expression analysis and enrichment analysis of the HBP-related prognostic model. (A, B) Volcano map of DEGs between the high- and low-risk groups in Target-OS (A) and GSE21257 (B) cohorts. (C) Venn diagram of the intersection DEGs between the Target-OS and GSE21257 cohorts. (D, E) Functional annotation of the 76 DEGs in GO function (D) and REACTOME pathway enrichment analysis (E).





Differential immune cell infiltration correlates with the HBP-related risk model

The proportions of different immune cells types were calculated by CIBERSORT and correlations among immune cells were relatively weak, indicating weak interactions among immune cells in OS (Figures 4A, C). After organizing the immune infiltration patterns in patients in the Target-OS (Figure 4B) and GSE21257 (Figure 4D) cohorts, the high- and low-risk groups showed significantly different immune cell infiltration profiles. The infiltration of resting CD4 memory T cells, resting NK cells and activated NK cells differed significantly between the high- and low-risk group in the Target-OS cohort (Figure 4E). Moreover, in GSE21257, the infiltration of plasma cells, resting CD4 memory T cells, follicular helper T cells, gamma delta T cells and Neutrophils differed significantly (Figure 4F).




Figure 4 | The landscape of immune cell infiltration in high- and low-risk OS patients. (A–D) Correlation matrix and relative proportion of all 22 immune infiltration cell proportions based on CIBERSORT in the Target-OS (A, B) and GSE21257 (C, D) cohorts. (E, F) Boxplots visualize the differences of all 22 immune cells between the high- and low-risk groups. “*” represents P < 0.05 and “**” represents P < 0.01.





Immune infiltration characteristics and immunotherapeutic responses correlate with the HBP-related risk model

The ESTIMATE algorithm was used to evaluate the immune status and patients in the high-risk group showed lower stromal, immune, and ESTIMATE (Figures 5A, B) scores. Moreover, the efficacy of immunotherapy evaluated by TIDE analysis showed that patients in the high-risk group were more likely to have no response to immunotherapy as compared to those in the low-risk group (Figure 5C). Moreover, the TIDE score and T-cell exclusion score were significantly higher in the high-risk group while the T-cell dysfunction score was low (Figure 5D). We assessed the association between risk stratification and several immune checkpoints, including PD-1, CTLA-4, TIM3, LAG3, TIGIT and BTLA. High TIM3 expression was observed in low-risk patients both in Target-OS (Figure 5E) and the GSE21257 (Figure 5F) cohorts.




Figure 5 | Association between the HBP-related prognostic risk model and immune microenvironment along with immunotherapy prospects. (A, B) Stromal, immune and ESTIMATE scores calculated by ESTIMATE algorithm between the high- and low-risk groups. (C) Distributions of responders and non-responders predicted by TIDE immunotherapy analyses in high and low risk groups among all patients in Target-OS and GSE21257 cohorts. (D) Distribution of TIDE scores in high- versus low-risk group. (E, F) Violin plots visualizing significantly different immune checkpoint (TIM3) between high- and low-risk patients. “*” represents P < 0.05 and “**” represents P < 0.01.





The HBP-related risk model is independent prognostic factor and can predict metastasis in OS

By integrating risk score, age, gender, and metastasis status, a quantitative method was developed to create a nomogram model for predicting the overall survival of patients in the Target-OS cohort (Figure 6A and Table 1). As shown in the calibration plot, a good performance was achieved in predicting 3- and 5-year survival probabilities (Figure 6B). In the Target-OS cohort, higher fraction of metastasis was observed (Chi-square = 1.575, P = 0.210) among OS patients in the high-risk group (30.2%) than those in the low-risk group (18.6%) (Figure 6C), and consistent results were obtained in the GSE21257 cohort (Chi-square = 3.847, P = 0.049) (Figure 6E). On comparing the ROC curves of expressions of HBP-related genes for predicting metastasis, UAP1 expression showed a high AUC score in both cohorts (AUC=0.68, Figure 6D; AUC=0.68, Figure 6F), indicating that it was better for predicting metastasis relative to the other genes in the HBP-related gene signature. Thus, we further analyzed the protein expression of UAP1 in OS tissues by IHC staining (Figure 6G). Patients with high UAP1 expression had worse overall survival and lung metastasis-free survival rates relative to other patients as evidenced by the results of the Kaplan-Meier analysis (Figure 6H), indicating that UAP1 was a promising biomarker for predicting prognosis and metastasis in OS patients.




Figure 6 | Prognosis prediction validation of HBP-related risk model for OS patients. (A) Nomogram for predicting the probability of 3-, and 5-year overall survival for OS patients. (B) Calibration plot of the nomogram for predicting the probability of overall survival at 3-, and 5 years. (C, E) Distributions of patients with metastasis and non-metastasis between high- and low-risk groups in Target-OS (C) and GSE21257 (E) cohorts. (D, F) ROC curves for evaluating the predictive efficacy of HBP-related genes for metastasis in the Target-OS (D) and GSE21257 (F) cohorts. (G, H) Survival analysis showed a different survival portion between high and low UAP1 expression in osteosarcoma patients for overall survival (G) and lung metastasis free survival (H).




Table 1 | Univariate and multivariate Cox proportional hazard model for overall survival based on the Target-OS cohort.





Prediction of drug sensitivity targeting UAP1 and verification on OS cells

Finally, we analyzed the correlation between UAP1 expression and antitumor drug sensitivity using the CellMiner database. Among the FDA-approved antitumor drugs, UAP1 expression correlated positively with the IC50 of axitinib, lenvatinib, simvastatin, temsirolimus, and zoledronate (Figures 7A). Cancer cells with higher UAP1 expression were more sensitive to cobimetinib, copanlisib, selumetinib and tamoxifen (Figures 7B). Next, we verified the antineoplastic effect of different concentrations of cobimetinib, copanlisib, selumetinib and tamoxifen on the proliferation of OS cell lines. 7 cell lines were selected and divided into two groups according to the level of UAP1 protein expression (Figure 7C), while the low-UAP1 group comprises U2OS, SAOS2 and HOS, and the high-UAP1 group comprises 143B, SJSA-1, MG63 and G292. In the CCK-8 assay, higher IC50s of cobimetinib (P = 0.03) and selumetinib (P = 0.04) were observed in the OS cells with low UAP1 expression (Figures 7D, F). Moreover, the IC50s of copanlisib (P = 0.29) and tamoxifen (P = 0.67) among different OS cells showed no statistical differences (Figures 7E, G).




Figure 7 | Prediction of drug sensitivity targeting UAP1 and in-vitro cell verification. (A, B) Correlation analysis between the UAP1 expression and drug sensitivity in the NCI-60 cell lines. (C) The level of UAP1 protein expression in OS cell lines, as detected by western blotting. (D–G) IC50 of antineoplastic drugs including cobimetinib (D), copanlisib (E), selumetinib (F) and tamoxifen (G) in OS cell lines according to the CCK-8 assay. “*” represents P < 0.05.






Discussion

In the occurrence of malignancy, tumor cells show some unique malignant characteristics, including uncontrolled proliferation, continuous angiogenesis, tissue invasion and migration. Numerous studies have been conducted on such characteristics and recent studies showed that metabolic reprogramming in tumor cells endows energy and material requirements, thus promoting these malignant features (18). Therefore, researchers have included metabolic reprogramming as a new feature of malignant transformation. To reveal the metabolic reprogramming characteristics in OS, RNA-sequencing data from Target-OS and GSE21257 cohorts were assigned GSVA scores based on 114 metabolic signaling pathways screened from The KEGG database (14). According to the Cox regression analysis, our results indicated that dysregulation in the HBP pathway correlated significantly with the prognosis of OS patients.

The HBP pathway is an important branch of cellular glucose metabolism which impacts the functional macromolecular structures in cancer (19, 20). One downstream metabolite of this pathway, UDP-GlcNAc, is an essential molecule that promote carcinogenesis (21). Here, we constructed an HBP-related prognostic model for OS. The HBP-related prognostic risk score included the expression of GPI, PGM3, UAP1, OGT and MGEA5. GPI catalyzes the production of fructose-6-phosphate through its enzymatic activity in glycolysis. Recently, secreted forms of GPI have been reported frequently in musculoskeletal tumors (22). Anti-apoptotic properties have been observed in cells with high GPI expression owing to resistance to ER stress (23, 24). PGM3 is the enzyme that converts N-acetylglucosamine-6-phosphate to N-acetylglucosamine-1-phosphate. In breast cancer, inhibition of PGMs using the inhibitor FR054 can induce apoptosis by activating the unfolded protein response and promoting the accumulation of intracellular ROS (25). In a study on pancreatic cancer, the upregulation of PGM3 correlated significantly with gemcitabine resistance, while inhibiting PGM3 significantly suppressed the malignant phenotype of tumor cells and enhance the drug sensitivity of gemcitabine by modulating the EGFR-Akt pathway (26). UAP1 is a the rate-limiting enzymes for the production of UDP-GlcNAc, which is an important donor substrate for subsequent glycosylation. UAP1 is overexpressed in prostate cancer cells and correlates negatively with Gleason score. What’s more, UAP1 protects tumor cells from ER stress, thereby conferring advantages for tumor growth (27). UAP1 expression is upregulated in lung adenocarcinoma and correlates positively with larger tumor sizes and advanced TNM stages (28). OGT, a glycosyltransferase, is responsible for catalyzing the O-GlcNAc glycosylation reaction. In breast cancer, reducing intracellular O-GlcNAcation by inhibiting OGT attenuates the expression of the transcription factor FoxM1, further resulting in the downregulation of downstream target genes and inhibiting tumorigenesis (29). Inhibition of OGT also mediate the degradation of HIF-1α by downregulating O-GlcNAcation, further leading to ER stress and inducing apoptosis (30). MGEA5 or OGA is a hexosaminidase responsible for the removal of O-GlcNAc from target proteins. OGA is upregulated in several cancers and drives aerobic glycolysis and tumor growth by inhibiting the catalytic activity of PKM2 (31). However, in another separate study, inhibiting OGA in colorectal cancer cells promoted the level of O-GlcNAcation, thus promoting the expression and activity of β-catenin and E-cadherin and further induce EMT phenotype of cancer cells and promote tumor metastasis (32).

Based on the HBP-related risk model, functional enrichment analysis was performed to investigate the potential underlying molecular mechanisms. DEGs were screened according to risk score grouping and further functional GO and Reactome enrichment analysis were performed. Interestingly, DEGs were significantly enriched in pathways and functions related to immunity. Therefore, we sought to further examine the different immunological characteristics of the high- versus low-risk group. We assessed the proportion of 22 infiltrating immune cells using the CIBERSORT algorithm, which showed the enrichment of M0 macrophages and M2 macrophages in OS patients. Both in the Target-OS and GSE21257 cohorts, a significant increase in the infiltration of resting CD4+ memory T-cells was seen in the high-risk group. Significant difference was obtained by comparative analysis of tumor immune scores including the ESTIMATE, stromal and immune score. The HBP-related prognostic model was closely correlated to tumor immune infiltration in OS patients, which may guide the designing of immunotherapeutic strategies for these patients

Immunotherapy activates or promotes the function of the immune system through targeted drugs and kill cancer cells through the body’s self-defense mechanism. Many solid tumors have been successfully treated with immunotherapy, resulting in a paradigm shift in cancer treatment (33). Therefore, understanding the TIME characteristics can further help develop effective immunotherapy strategies for different cancers. The behavior of immune cells and responses to immunotherapy are intricately linked to various metabolic mechanisms (34). In this study, the HBP-related gene signature could predict the immunotherapeutic effect, as evidenced by the results of the TIDE algorithm, which is commonly utilized for predicting the therapeutic responses of patients undergoing treatment with ICIs (35). The results suggested that patients with higher risk scores had higher TIDE and T-cell dysfunction scores along with lower T cell exclusion score, which implied that higher risk scores were suggestive of less likelihood for the benefits in patients with ICIs owing to immune evasion. Moreover, patients in the low-risk group had higher expression of TIM3, a common inhibitory immunoreceptor identified in cancer during the past decades (36, 37). Overall, these results showed that the HBP-related risk model could guide the immunotherapy for OS patients, and those with lower risk scores may benefit from ICI treatment.

Based on the Cox proportional hazards regression models, univariate and multivariate analyses were performed to identify the prognostic value of the HBP-related risk model for OS patients in the Target-OS cohort. According to the results, our OS risk scoring model shows promising prognostic utility. Moreover, the ROC curves of our HBP-related genes for predicting metastasis and IHC analysis showed that UAP1 expression was a good prognosis predictor not only for overall survival but also for metastasis. Finally, we perform the correlation analysis and experimental verification to investigate the sensitivity of UAP1 to FDA-approved antineoplastic drugs based on the CellMiner database. The results suggested that OS cells with higher UAP1 expression were more sensitive to cobimetinib and selumetinib. In summary, the HBP-related risk model contributes to guide targeted therapy for metabolic reprogramming, and may even help overcome cancer immunotherapy resistance by reversing tumor T-cell exclusion in OS.



Conclusions

In conclusion, we constructed an HBP-related gene signature containing five key genes (GPI, PGM3, UAP1, OGT and MGEA5) with a remarkable prognostic value for predicting prognosis in OS. Furthermore, significant differences in immune infiltration and immunotherapeutic response were identified between the high- and low-risk patients, which may help guide the development of immunotherapy and targeted therapy for OS.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.



Ethics statement

This study was reviewed and approved by the Ethics Committee of The First Affiliated Hospital of Sun Yat-sen University (Approval number: [2021] 755). Written informed consent was obtained from all participants for their participation in this study.



Author contributions

JS, TL, and XT contributed to the conception and design of the study. ZS, CW, and RP performed the analyses and wrote the manuscript. HL, JC, and JT contributed to parts of the experiments. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by grants from The National Natural Science Foundation of China (Grant No. 82060491).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.1028263/full#supplementary-material

Supplementary Figure 1 | Prognostic value of metabolism pathways in OS patients based on forest plots. (A, B) Prognostic value of metabolism pathways in Target-OS (A) and GSE21257 (B) cohorts.

Supplementary Figure 2 | Relationship between the HBP-related risk model and immune checkpoints in OS patients. (A, B) Violin plots visualizing expression of the immune checkpoints (BTLA, CTLA4, LAG3, PDCD1, TIGIT) between the high- and low-risk groups in Target-OS (A)and GSE21257 (B) cohorts.



References

1. Zhu, T, Han, J, Yang, L, Cai, Z, Sun, W, Hua, Y, et al. Immune microenvironment in osteosarcoma: Components, therapeutic strategies and clinical applications. Front Immunol (2022) 13:907550. doi: 10.3389/fimmu.2022.907550

2. Moukengue, B, Lallier, M, Marchandet, L, Baud'huin, M, Verrecchia, F, Ory, B, et al. Origin and therapies of osteosarcoma. Cancers (Basel) (2022) 14(14):3503. doi: 10.3390/cancers14143503

3. Koppenol, WH, Bounds, PL, and Dang, CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer (2011) 11(5):325–37. doi: 10.1038/nrc3038

4. Pavlova, NN, and Thompson, CB. The emerging hallmarks of cancer metabolism. Cell Metab (2016) 23(1):27–47. doi: 10.1016/j.cmet.2015.12.006

5. Ahmad, F, Cherukuri, MK, and Choyke, PL. Metabolic reprogramming in prostate cancer. Br J Cancer (2021) 125(9):1185–96. doi: 10.1038/s41416-021-01435-5

6. Wang, Z, Jiang, Q, and Dong, C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med (2020) 17(1):44–59. doi: 10.20892/j.issn.2095-3941.2019.0210

7. Chatham, JC, Nöt, LG, Fülöp, N, and Marchase, RB. Hexosamine biosynthesis and protein O-glycosylation: the first line of defense against stress, ischemia, and trauma. Shock (2008) 29(4):431–40. doi: 10.1097/SHK.0b013e3181598bad

8. Lee, JB, Pyo, KH, and Kim, HR. Role and function of O-GlcNAcylation in cancer. Cancers (Basel) (2021) 13(21):5365. doi: 10.3390/cancers13215365

9. Hinshaw, DC, and Shevde, LA. The tumor microenvironment innately modulates cancer progression. Cancer Res (2019) 79(18):4557–66. doi: 10.1158/0008-5472.CAN-18-3962

10. Zhou, Y, Yang, D, Yang, Q, Lv, X, Huang, W, Zhou, Z, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun(2020) 11(1):6322. doi: 10.1038/s41467-020-20059-6

11. Bagchi, S, Yuan, R, and Engleman, EG. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu Rev Pathol (2021) 16:223–49. doi: 10.1146/annurev-pathol-042020-042741

12. Buddingh, EP, Kuijjer, ML, Duim, RA, Bürger, H, Agelopoulos, K, Myklebost, O, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res (2011) 17(8):2110–9. doi: 10.1158/1078-0432.CCR-10-2047

13. Hänzelmann, S, Castelo, R, and Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics (2013) 14:7. doi: 10.1186/1471-2105-14-7

14. Rosario, SR, Long, MD, Affronti, HC, Rowsam, AM, Eng, KH, and Smiraglia, DJ. Pan-cancer analysis of transcriptional metabolic dysregulation using the cancer genome atlas. Nat Commun (2018) 9(1):5330. doi: 10.1038/s41467-018-07232-8

15. Friedman, J, Hastie, T, and Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw (2010) 33(1):1–22. doi: 10.18637/jss.v033.i01

16. Newman, AM, Liu, CL, Green, MR, Gentles, AJ, Feng, W, Xu, Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12(5):453–7. doi: 10.1038/nmeth.3337

17. He, X, and Xu, C. Immune checkpoint signaling and cancer immunotherapy.  Cell Res (2020) 30(8):660–9. doi: 10.1038/s41422-020-0343-4

18. Martínez-Reyes, I, and Chandel, NS. Cancer metabolism: looking forward. Nat Rev Cancer (2021) 21(10):669–80. doi: 10.1038/s41568-021-00378-6

19. Lam, C, Low, JY, Tran, PT, and Wang, H. The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett (2021) 503:11–8. doi: 10.1016/j.canlet.2021.01.010

20. Taparra, K, Tran, PT, and Zachara, NE. Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes. Front Oncol (2016) 6:85. doi: 10.3389/fonc.2016.00085

21. Akella, NM, Ciraku, L, and Reginato, MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol (2019) 17(1):52. doi: 10.1186/s12915-019-0671-3

22. Nakajima, K, and Raz, A. Autocrine motility factor and its receptor expression in musculoskeletal tumors. J Bone Oncol (2020) 24:100318. doi: 10.1016/j.jbo.2020.100318

23. Tsutsumi, S, Hogan, V, Nabi, IR, and Raz, A. Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Res (2003) 63(1):242–9.

24. Fu, M, Li, L, Albrecht, T, Johnson, JD, Kojic, LD, and Nabi, IR. Autocrine motility factor/phosphoglucose isomerase regulates ER stress and cell death through control of ER calcium release. Cell Death Differ (2011) 18(6):1057–70. doi: 10.1038/cdd.2010.181

25. Ricciardiello, F, Votta, G, Palorini, R, Raccagni, I, Brunelli, L, Paiotta, A, et al. Inhibition of the hexosamine biosynthetic pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis (2018) 9(3):377. doi: 10.1038/s41419-018-0405-4

26. Ricciardiello, F, Gang, Y, Palorini, R, Li, Q, Giampà, M, Zhao, F, et al. Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-akt pathway modulation. Oncogene (2020) 39(20):4103–17. doi: 10.1038/s41388-020-1260-1

27. Itkonen, HM, Engedal, N, Babaie, E, Luhr, M, Guldvik, IJ, Minner, S, et al. UAP1 is overexpressed in prostate cancer and is protective against inhibitors of n-linked glycosylation. Oncogene (2015) 34(28):3744–50. doi: 10.1038/onc.2014.307

28. Wang, X, Chen, X, and Liu, H. Expression and bioinformatics-based functional analysis of UAP1 in lung adenocarcinoma. Cancer Manag Res (2020) 12:12111–21. doi: 10.2147/CMAR.S282238

29. Caldwell, SA, Jackson, SR, Shahriari, KS, Lynch, TP, Sethi, G, Walker, S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene (2010) 29(19):2831–42. doi: 10.1038/onc.2010.41

30. Ferrer, CM, Lynch, TP, Sodi, VL, Falcone, JN, Schwab, LP, Peacock DL,, et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell (2014) 54(5):820–31. doi: 10.1016/j.molcel.2014.04.026

31. Singh, JP, Qian, K, Lee, JS, Zhou, J, Han, X, Zhang, B, et al. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene (2020) 39(3):560–73. doi: 10.1038/s41388-019-0975-3

32. Yehezkel, G, Cohen, L, Kliger, A, Manor, E, and Khalaila, I. O-Linked β-n-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of n-acetyl-β-D-glucosaminidase silencing on cell phenotype and transcriptome. J Biol Chem (2012) 287(34):28755–69. doi: 10.1074/jbc.M112.345546

33. Roma-Rodrigues, C, Mendes, R, and Baptista, PV. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci (2019) 20(4):840. doi: 10.3390/ijms20040840

34. Xia, L, Oyang, L, Lin, J, Tan, S, Han, Y, Wu, N, et al. The cancer metabolic reprogramming and immune response. Mol Cancer (2021) 20(1):28. doi: 10.1186/s12943-021-01316-8

35. Jiang, P, Gu, S, Pan, D, Fu, J, Sahu, A, Hu, X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med (2018) 24(10):1550–8. doi: 10.1038/s41591-018-0136-1

36. Kandel, S, Adhikary, P, Li, G, and Cheng, K. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett (2021) 510:67–78. doi: 10.1016/j.canlet.2021.04.011

37. Das, M, Zhu, C, and Kuchroo, VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev (2017) 276(1):97–111. doi: 10.1111/imr.12520



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Su, Wang, Pan, Li, Chen, Tan, Tian, Lin and Shen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 07 October 2022

doi: 10.3389/fimmu.2022.998140

[image: image2]


A novel hypoxia- and lactate metabolism-related signature to predict prognosis and immunotherapy responses for breast cancer by integrating machine learning and bioinformatic analyses


Jia Li 1†, Hao Qiao 2†, Fei Wu 1†, Shiyu Sun 1, Cong Feng 1, Chaofan Li 1, Wanjun Yan 1, Wei Lv 1, Huizi Wu 1, Mengjie Liu 1, Xi Chen 1, Xuan Liu 1, Weiwei Wang 1, Yifan Cai 1, Yu Zhang 1, Zhangjian Zhou 1*, Yinbin Zhang 1* and Shuqun Zhang 1*


1 Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2 Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China




Edited by: 

Jian Song, University Hospital Münster, Germany

Reviewed by: 

Lei Li, University of Otago, New Zealand

Xiqing Li, Henan Provincial People’s Hospital, China

*Correspondence: 

Shuqun Zhang
 shuqun_zhang1971@163.com

Yinbin Zhang
 23227119@qq.com

Zhangjian Zhou
 zhouzhangjian@xjtu.edu.cn


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology


Received: 19 July 2022

Accepted: 23 September 2022

Published: 07 October 2022

Citation:
Li J, Qiao H, Wu F, Sun S, Feng C, Li C, Yan W, Lv W, Wu H, Liu M, Chen X, Liu X, Wang W, Cai Y, Zhang Y, Zhou Z, Zhang Y and Zhang S (2022) A novel hypoxia- and lactate metabolism-related signature to predict prognosis and immunotherapy responses for breast cancer by integrating machine learning and bioinformatic analyses. Front. Immunol. 13:998140. doi: 10.3389/fimmu.2022.998140




Background

Breast cancer is the most common cancer worldwide. Hypoxia and lactate metabolism are hallmarks of cancer. This study aimed to construct a novel hypoxia- and lactate metabolism-related gene signature to predict the survival, immune microenvironment, and treatment response of breast cancer patients.



Methods

RNA-seq and clinical data of breast cancer from The Cancer Genome Atlas database and Gene Expression Omnibus were downloaded. Hypoxia- and lactate metabolism-related genes were collected from publicly available data sources. The differentially expressed genes were identified using the “edgeR” R package. Univariate Cox regression, random survival forest (RSF), and stepwise multivariate Cox regression analyses were performed to construct the hypoxia-lactate metabolism-related prognostic model (HLMRPM). Further analyses, including functional enrichment, ESTIMATE, CIBERSORTx, Immune Cell Abundance Identifier (ImmuCellAI), TIDE, immunophenoscore (IPS), pRRophetic, and CellMiner, were performed to analyze immune status and treatment responses.



Results

We identified 181 differentially expressed hypoxia-lactate metabolism-related genes (HLMRGs), 24 of which were valuable prognostic genes. Using RSF and stepwise multivariate Cox regression analysis, five HLMRGs were included to establish the HLMRPM. According to the medium-risk score, patients were divided into high- and low-risk groups. Patients in the high-risk group had a worse prognosis than those in the low-risk group (P < 0.05). A nomogram was further built to predict overall survival (OS). Functional enrichment analyses showed that the low-risk group was enriched with immune-related pathways, such as antigen processing and presentation and cytokine-cytokine receptor interaction, whereas the high-risk group was enriched in mTOR and Wnt signaling pathways. CIBERSORTx and ImmuCellAI showed that the low-risk group had abundant anti-tumor immune cells, whereas in the high-risk group, immunosuppressive cells were dominant. Independent immunotherapy datasets (IMvigor210 and GSE78220), TIDE, IPS and pRRophetic analyses revealed that the low-risk group responded better to common immunotherapy and chemotherapy drugs.



Conclusions

We constructed a novel prognostic signature combining lactate metabolism and hypoxia to predict OS, immune status, and treatment response of patients with breast cancer, providing a viewpoint for individualized treatment.





Keywords: breast cancer, hypoxia, lactate metabolism, immunotherapy, immune microenvironment (IME), machine learning, bioinformatics



Introduction

Breast cancer (BC) is the most common cancer among women, with an annual incidence rate of 0.5% (1). Developing comprehensive treatment strategies has significantly improved outcomes for patients with BC. Immune checkpoint inhibitors (ICI) are revolutionizing cancer treatment but are relatively restricted to the triple-negative histological subtype (2). However, many BC patients have poor outcomes owing to recurrence, metastasis, and chemotherapy resistance (3). It is still challenging to develop effective biomarkers to identify patients with BC and poor prognoses while guiding treatment.

Hypoxia is a typical tumor microenvironment (TME) feature in nearly all solid tumors. Many features of cancer can cause hypoxia, including uncontrolled tumor proliferation, tumor micro-vessel abnormalities, diffusion geometry deterioration, and tumor-associated anemia (4, 5). Extensive reviews have shown that hypoxia can regulate tumor proliferation, angiogenesis, aggressiveness, metastasis, and radiotherapy resistance (6–8). Hypoxia can also influence genetic instability, proteomic changes, genetic hypoxia-resistance, and stem cell phenotype maintenance (9–13). Moreover, hypoxia can profoundly impact large-scale proteomic changes via several transcription factors, especially hypoxia-inducible factor 1 [HIF-1] (14). A significant portion of intratumoral lactate accumulation can also be induced by HIF-1-mediated metabolic reprogramming (15).

Lactate is the product of anaerobic glycolysis. It is closely related to the development, maintenance, progression, TME, metastasis, and treatment resistance of cancers (16–18). Lactate accumulation in intratumoral tissue is primarily a consequence of HIF-1-mediated metabolic reprogramming; however, several HIF-1-independent mechanisms also produce lactate, such as MYC activation (19). Alterations in lactate metabolism are associated with cell invasion, migration, angiogenesis, drug resistance, and immune escape. In gastric cancer, abnormal lactate metabolism can lead to acquired resistance via the NF-κB pathway (20). In BC, lactate generated by tumor cells induces programmed death-ligand 1 (PD-L1) in tumor cells, causing tumor-specific antigens to evade immune cells, thereby promoting growth (21). Enhanced lactate exposure can affect the phenotype of MCF7 cells and promote tamoxifen resistance (22). Furthermore, high lactate levels could increase cancer stemness and lead to worse clinical outcomes in patients with BC (23).

As the main features of TME, both hypoxia and lactate can regulate the anti-tumor immune response. Hypoxia attenuates anti-tumor immunity by increasing the pro-tumorigenic M2 phenotype, intratumoral accumulation of immunosuppressive regulatory T cells, and stimulation of adenosine receptors (12, 24, 25). Lactate inhibits CD8+ and CD4+ effector T cell function but increases T helper 1 cell differentiation and interferon-γ (IFNγ) production (26–30). Hypoxia can also upregulate PD-L1 by binding HIF-1 to the hypoxia response element in the PD-L1 proximal promoter (31, 32). Recent research reported that lactate could regulate programmed cell death protein 1 (PD-1) specifically in effector regulatory T (eTreg) cells, thereby leading to treatment failure of ICIs; suppression of lactate metabolism in Treg cells enhances sensitivity to ICIs in resistant tumors (33).

The role of hypoxia and lactate metabolism in diverse cancers has been further demonstrated by genomic studies in recent years. The effect of hypoxia on prognosis, treatment guidance, and immune infiltration assessment has been reported in many tumors, such as cervical cancer, head and neck squamous cell carcinoma, and BC (34–36). Simultaneously, lactate metabolism was related to the outcomes and immune microenvironment in skin cutaneous melanoma, kidney renal clear cell carcinoma, and BC (37–39). In BC, prognostic models have been developed solely using lactate metabolism-related genes (LMRGs) or hypoxia-related genes [HRGs] (39–41). However, considering the heterogeneity of BC and the complex interactions between hypoxia and lactate metabolism, these alone cannot fully identify the relevant characteristics of BC. Hence, landscape assessment of the fundamental combination of hypoxia and lactate metabolism on BC prognosis, TME, and ICIs therapy remains necessary.

In this study, we simultaneously considered the impact of lactate metabolism and hypoxia on BC by applying both LMRGs and HRGs in constructing a hypoxia-lactate metabolism-related prognostic model (HLMRPM) that could accurately predict BC prognoses, immune status, and therapy response.



Methods


Data collection

RNA sequencing and clinical data of 1113 BC cases were obtained from The Cancer Genome Atlas (TCGA) data portal, along with 113 normal tissue samples (https://portal.gdc.cancer.gov/). The University of California Santa Cruz (UCSC) Xena provided data on genotype-tissue expression [GTEx] (https://xenabrowser.net/datapages/), a comprehensive public resource for studying normal tissue-specific gene expression and regulation. We retained 1033 patients with overall survival (OS) time longer than 30 days. The microarray dataset GSE20685 (N = 327) was downloaded from the Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/). For immunotherapy response predictions, two immunotherapeutic cohorts were included in our study: The IMvigor210 cohort (advanced urothelial cancer with atezolizumab intervention) was downloaded from the website based on the Creative Commons 3.0 license (http://research-pub.Gene.com/imvigor210corebiologies) (42); the GSE78220 (metastatic melanoma with pembrolizumab treatment) was downloaded from the GEO (43). The main abbreviations were list in Table S1.

The predefined gene sets included in our research were acquired from the Molecular Signatures Database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (44). We used the terms “lactic” and “hypoxia” as the search keywords in the MSigDB database. Five priority LMRG sets were eventually determined: GOBP lactate metabolic process, HP increased serum lactate, HP lactic acidosis, HP lactic aciduria, and HP severe lactic acidosis. Seven priority HRG sets were eventually determined: hallmark hypoxia, winter hypoxia metagene, harris hypoxia, Buffa hypoxia, Mizukami hypoxia down, Mizukami hypoxia up, and reactome cellular response to hypoxia. After deleting duplicates, 284 LMRGs and 493 HRGs were identified for subsequent analysis [Table S2].



Identification of differentially expressed genes, differentially expressed LMRGs and differentially expressed HRGs

We analyzed differentially expressed genes (DEGs) using the R package “edgeR” in R (| log2 fold change [FC]|>1 and P < 0.05). We then identified differentially expressed LMRGs (DELMRGs) and HRGs (DEHRGs) by intersecting DEGs with LMRGs and HRGs, and visualizing them using the Venn diagram with the R package “VennDiagram”. The relationship between DELMRGs and DEHRGs in BC was assessed using the R package “corrr”. The protein-protein interaction (PPI) network was constructed using the STRING database (https://string-db.org/) and Cytoscape (v3.9.0). The web-based tool Metascape (http://metascape.org/) could perform gene annotation and functional enrichment analysis and be used for annotating DELMRGs and DEHRGs.



Construction of hypoxia-lactate metabolism-related prognostic model

Using Cox regression analysis, prognostic DEHRGs and DELMRGs were identified (P < 0.05). We further divided the prognostic genes into favorable genes, where high RNA expression correlates with longer survival time, and unfavorable genes, where high RNA expression correlates with shorter survival times. To construct a robust HLMRPM, we used the random survival forest (RSF) algorithm to reduce the dimensions of genes using the R packages “randomForestSRC” and “randomSurvivalForest” (45). RSF is a non-parametric tree-based ensemble learning method that can automatically select and rank variables (46, 47). Genes ranked in the top 15 lists of variable importance (VIMP) and minimal depth were reserved as the most important prognostic hypoxia-lactate metabolism-related genes (HLMRGs). The stepwise multivariate Cox regression analysis constructed the HLMRPM [risk score = (0.6139585 ×ESRP1) + (-0.3698120 ×MAFF) + (0.1682696×SLC2A1) + (-0.2963183 × DARS2) + (0.2690044 ×TH)]. Each patient had a risk score and was grouped into a high- or low-risk group based on the medium-risk score.

Furthermore, the prognostic prediction value of the model was investigated in the TCGA and GSE20685 cohorts. Kaplan–Meier survival analysis was performed using the R package “survminer” to compare OS between the two risk groups. Receiver operating characteristic (ROC) curves were constructed using the R package “timeROC” to assess prediction efficiency. Finally, univariate and multivariate Cox regression analyses were done to determine the independent prognostic value of the HLMRPM.



Stratified analysis and independent prognostic analysis

Stratified analysis was used to assess the prognostic value of HLMRPM in different subgroups stratified by clinical features. We assessed HLMRPM accuracy using ROC curves. We performed univariate and multivariate Cox regression analyses with the risk score, age, stage, and T, N, and M stages to evaluate the independent prognostic factors for BC.



Construction of the prognostic nomogram

To calculate the 1-, 3-, and 5-year OS probabilities, a nomogram was constructed using independent prognostic factors. ROC curves, C-index, and calibration curves were used to evaluate the performance of the nomogram. We further measured the net benefit of the nomogram and clinical features alone with decision curve analysis (DCA).



Functional enrichment analysis

To analyze the typical functional features of the two risk groups, we analyzed the DEGs between the two groups and then annotated them with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) using the R package “ClusterProfiler” (48). Gene set enrichment analysis (GSEA) was also used to explore variations in pathway activities between the two risk groups (P < 0.05 and false discovery rate (FDR) < 0.25) (49). Annotated gene sets “c2.cp.kegg.v7.5.1. symbols.gmt” were downloaded from MSigDB. We further used the R package “ClusterProfiler” to visualize the results.



The correlations between the risk score and stem cell-like features

Tumour stemness can be measured with RNA stemness score based on mRNA expression (RNAss) and DNA stemness score based on DNA methylation pattern (DNAss) (50). Spearman correlation test was used to examine the association between the risk score and RNAss.



Assessment of the TME, immune cell infiltration, and immunotherapy response

The immune cell abundance identifier (ImmuCellAI) can predict the response to ICIs by assessing the abundance of immune cells, especially different T cell subsets (51). ImmuCellAI was used to assess the abundance of infiltrating immune cells according to the “ssGSEA” algorithm. Furthermore, we used the ESTIMATE algorithm with the R package “estimate” to assess the proportions of TME components (52), resulting in four indices: tumor purity, immune, stromal, and ESTIMATE scores. A higher score indicates a larger proportion of components in the TME. We further performed the “Cibersort” algorithm to analyze the infiltration levels of immune cell types (53).

We compared the expression of well-known immune checkpoint genes (ICGs) between the two risk groups. Immunophenoscore (IPS) is a machine-learning-based system that calculates z-scores based on four immunogenicity-related cell types (54). IPS and an online tool called TIDE were used to predict patient response to ICIs (http://tide.dfci.harvard.edu/) (55, 56).

The IMvigor210 and GSE78220 cohorts were further used to validate the predictive power of the HLMRPM for ICIs response. Patients who achieved complete remission (CR) or partial response (PR) or stale disease (SD) were classified as responders and compared with non-responders who showed signs of progressive disease (PD).



Assessment of the sensitivity to chemotherapy drugs in two risk groups

To assess the association between the risk score and drug sensitivity, we used the R package “pRRophetic” and the CellMiner database. The R package “pRRophetic” was used to calculate the half-maximal inhibitory concentrations (IC50) of common chemotherapy drugs (57, 58). Wilcoxon signed-rank tests were used to compare IC50 values between the two risk groups. We further predicted the potential target drugs (approved by the FDA and those in clinical tests) that could target the five HLMRGs in the HLMRPM using the CellMiner database (https://discover.nci.nih.gov/cellminer) (59, 60).



Verification of five HLMRGs in databases

We verified HLMRG expression using other online public databases. We analyzed HLMRG expression in BC tissues and normal tissues from TCGA and GTEx. In addition, we performed a survival analysis of five HLMRGs in the TCGA cohort. We further assessed immunohistochemical images and staining intensity of HLMRGs in BC and normal tissues from the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/). In the HPA database, four categories of high, medium, low, and not detected were used to evaluate expression levels. These categories included a scoring system based on the proportion of positive-stained cells (>75, 25–75, or <25%) and staining intensity (strong, moderate, weak, or negative). We further aggregated the staining intensities of the five HLMRGs in breast cancer and normal tissues from the HPA database. The biological functions of the five HLMRGs were assessed using the Gene Set Cancer Analysis (GSCA) database (http://bioinfo.life.hust.edu.cn/GSCA/#/). We also evaluated the association of these five genes with immune cell infiltration.



Statistical analysis

Statistical analyses were performed using the R software (version 4.0.5). The Wilcoxon signed-rank test was used to compare the differences between the two groups. All tests were two-sided; a p-value of less than 0.05 was considered statistically significant; and the significance levels were set at * P ≤ 0.05, ** P ≤ 0.01, and *** P≤ 0.001.




Results


Identification of DEGs, DELMRGs, and DEHRGs in breast cancer

There were 20948 DEGs in BC compared with normal tissues, including 17466 upregulated and 3482 downregulated genes. The volcano plot showed 20948 DEGs (Figure 1A). The Venn diagram showed that there were 145 DEHRGs and 38 DELMRGs, two of the genes were shared (Figure 1B). Figure 1C showed a strong positive correlation between DEHRGs and DELMRGs in BC. The PPI network revealed intrinsic correlations between the DEHRGs and DELMRGs (Figure 1D). Functional enrichment analyses in the Metascape database revealed that DEHRGs and DELMRGs were closely associated with hypoxia and metabolic processes (Figures 1E–G). The workflow of this study is illustrated in Figure 2.




Figure 1 | Identification of the differential expressed HRGs and LMRGs. (A) The volcano plot of the DEGs. (B) The Veen diagram of the DEGs, HRGs, and LMRGs. (C) The relationship of the DEHRGs and DELMRGs in breast cancer. (D) The PPI network of the DEHRGs and DELMRGs in the string database. (E–G) The function of the DEHRGs and DELMRGs in the Metascape database.






Figure 2 | The flow of the study.





Construction of the HLMRPM and assessment of its predictive ability

To identify DEHRGs and DELMRGs with prognostic value, we performed a univariate Cox regression analysis and obtained 33 DEGs with significant effects on patient prognosis, including 7 DELMRGs and 26 DEHRGs (Figure 3A). Seventeen unfavorable DEGs with HR > 1 in breast cancer and seven favorable DEGs with HR < 1 in breast cancer were used for further analysis (Figure 3B). Finally, 15 genes (ACOT7, B4GALNT2, CDKN1C, DARS2, ESRP1, IRS2, MAFF, MRPL13, SEC61G, SHCBP1, SLC2A1, TFRC, TH, TIMM17A, and VIM) were retained and ranked in the top 15 by the minimal depth and VIMP (Figure 3C). Using multivariate Cox regression, the five genes comprise the HLMRPM: risk score = (0.6139585 × ESRP1) + (-0.3698120 × MAFF) + (0.1682696 × SLC2A1) + (-0.2963183 × DARS2) + (0.2690044 ×TH) (Figure 3D and Table S3). Patients were then categorized into high- and low-risk groups based on their median risk scores. The high-risk patients suffered from poor outcomes (Figure 3E). The area under curves (AUCs) of HLMRPM in predicting the 1-, 3-, and 5-year OS were 0.785, 0.671, and 0.638 in the TCGA cohort (Figure 3F). The risk score, clinical events, and five HLMRG expressions between the two risk groups were illustrated in Figure 3G.




Figure 3 | Construction and evaluation of the HLMRPM. (A) Univariate Cox regression analysis of the DEHRGs and DELMRGs in the training cohort. (B) The veen diagram indicated the favorable and unfavorable genes. (C) The genes were ranked by the minimal depth and VIMP. (D) The forest graph showed the results of stepwise multivariable cox proportional hazards regression analysis. (E) The OS curve of the two risk groups in TCGA cohort. (F) The time-dependent ROC curves of the HLMRPM in TCGA cohort. (G) The risk score, clinical event, and the model genes between the two risk groups in TCGA cohort. (H) The OS curve of the two risk groups in GSE20685 cohort. (I) The time-dependent ROC curves of the HLMRPM in GSE20685 cohort. (J) The risk score, clinical event, and the model genes between the two risk groups in GSE20685 cohort.



In the GSE20685 cohort, the high-risk patients suffered poor outcomes (Figure 3H). The 1-, 3-, and 5-year AUCs were 0.583, 0.627, and 0.669, respectively (Figure 3I). The risk score, clinical events, and five HLMRG expressions between the two risk groups were similar to the TCGA cohort (Figure 3J).



Stratified analysis and independent prognostic analysis

To further verify the ability of HLMRPM to accurately and independently predict the outcome of patients with BC, we performed stratification analysis, Cox regression analysis, and ROC curves. We assigned patients to different subgroups according to age (>60 vs. ≤60 years), ER stage (negative vs. positive), HER2 stage (negative vs. positive), PR stage (negative vs. positive), stages (stage1-2vs. stage3-4), American Joint Committee on Cancer (AJCC) T stage (T1-2 vs. T3-4), AJCC N stage (N0-1 vs. T2-3), and AJCC M stage (M0 vs. M1). We then conducted Kaplan–Meier survival analysis. We found that high-risk patients consistently showed significantly worse outcomes in many subgroups, including age ≤60 years, ER-positive, PR-positive, HER2-negative, stage1-2, stage3-4, T1-2, T3-4, N0-1, N2-3, and M0 stages (Figures 4A–P). These results demonstrated the universal applicability of the HLMRPM.




Figure 4 | Kaplan–Meier survival analysis between the two risk groups in subgroups stratified by clinical characteristics: including age [>60 years vs. ≤60 years] (A, B), ER stage [negative vs. positive] (C, D), HER2 stage [negative vs. positive] (E, F), PR stage [negative vs. positive] (G, H), stages [stage1-2 vs. stage3-4] (I, J), AJCC T stage [T1-2 vs. T3-4] (K, L), AJCC N stage [N0-1 vs. T2-3] (M, N), and AJCC M stage [M0 vs. M1] (O, P), respectively.



Furthermore, we performed univariate and multivariate Cox regression analyses on risk score, age, stage, T, N, and M stage in the TCGA cohort. Based on univariate Cox regression analysis, the hazard ratio (HR) and 95% confidence interval (CI) of the risk score, age, stage, T, N, and M stage were 1.679 (1.399–2.015), 1.029 (1.013–1.046), 1.029 (1.013–1.046), 1.819 (1.394-2.373), 1.753 (1.409–2.180), and 3.644 (1.759–7.552), respectively (P < 0.05) (Figure 5A). After multivariate Cox regression analysis, the HR and 95% CI of the risk score, age and N stage were 1.659 (1.378–1.998), 1.031 (1.014–1.049), and 1.570 (1.075–2.292) (P < 0.05), respectively (Figure 5B).




Figure 5 | Nomogram to evaluate the OS probability of BC patients. The univariate (A) and multivariate (B) Cox regression analyses in TCGA cohort. (C) The nomogram for predicting the 1-, 3- and 5-year OS probabilities. (D) Calibration curves of the nomogram to predict 1-, 3- and 5-year OS probabilities. (E) ROC curves of the nomogram. (F) DCA curves of the nomogram at 1-, 3- and 5-year indicated its net clinical benefits. (G) DCA curves of the nomogram and only clinical characteristics (combination of age and N stage).





Establishment of a predictive nomogram

Clinical nomograms are widely used in predicting patient survival by computing set points based on nomogram scores. A nomogram was constructed based on independent prognostic markers (risk score, age, and N stage) to quantitatively predict the 1-, 3-, and 5-year OS rates in patients with BC (Figure 5C). The C-index of the nomogram is 0.794. The calibration curves for the nomogram showed an ideal prediction accuracy (Figure 5D). The AUC values of the nomogram were 0.896, 0.788, and 0.725 at 1, 3, and 5-year, respectively (Figure 5E). The DCA curve was used to render clinical validity to the nomograms (61). Figure 5F demonstrated that the nomogram could provide many short- and long-term net clinical benefits. Figure 5G demonstrated that the nomogram could bring more net clinical benefits than clinical characteristics alone. Taken together, the nomogram based on HLMRPM could predict both short- and long-term OS in patients with BC, which could assist in clinical management.



Functional enrichment analyses of the two risk groups

To clarify the biological function characteristics of the two risk groups, we conducted GO, KEGG, and GSEA analyses. Using the R package “edgeR”, 20854 DEGs were identified between the two risk groups, with 20218 up-regulated and 636 down-regulated genes in the high-risk group (Figure 6A). GO analyses of the DEGs showed significant enrichment of immune-related biological processes, including regulation of angiogenesis (Figure 6B). Similarly, KEGG pathway analysis showed enrichment of immune-related pathways in the low-risk group, including the IL-17 signaling pathway and PPAR signaling pathway. In contrast, chemical carcinogenesis and microRNAs in cancer were activated in the high-risk group (Figure 6C). GSEA further verified that signatures related to cell cycle, mismatch repair, mTOR signaling, DNA replication, oocyte meiosis, and Wnt signaling pathways were significantly enriched in the high-risk group, indicating the proliferative status of high-risk patients (Figure 6D). The results also showed that immune-related pathways were enriched in the low-risk group, such as the T/B cell receptor signaling pathway, cytokine-cytokine receptor interaction, leukocyte transendothelial migration, natural killer cell-mediated cytotoxicity, and chemokine signaling pathway (Figure 6E). These results showed the different immune activity and proliferative status in the two risk groups, which might account for the different survival rates.




Figure 6 | Functional enrichment, stemness, and m6A modification-related analyses between the two risk groups. (A) The volcano plot of the DEGs between the high-risk and low-risk groups. (B) The GO analysis of the DEGs. (C) The KEGG analysis of the DEGs. The pathways enriched in the high-risk (D) and low-risk (E) groups according to the GSEA. (F) The relationship between risk score and RNAss. (G) Differences in RNAss between the two risk groups. (H) The relationship between risk score and DNAss. (I) Differences in DNAss between the two risk groups.





Tumor stemness analyses

Stemness-related biomarkers in tumor cells were closely associated with drug resistance, cancer recurrence, and proliferation (62). We found that the risk score was positively correlated with RNAss and DNAss, and the two stemness-related biomarkers were higher in the high-risk group than in the low-risk score (p < 0.001) (Figures 6F–I). These results suggested that a high-risk score might indicate more active tumor-initiating cells.



Different immune landscapes of two risk groups

Functional enrichment analysis revealed different degrees of immune function enrichment in the two risk groups. To investigate the characteristics of the tumor immune microenvironment (TIME) in the two risk groups, we estimated the expression of immunomodulators (54), immune checkpoint genes, and infiltration level of tumor-infiltrating immune cells. We found that expression of MHC-I constituents and MHC-II components were significantly elevated in the low-risk group (Figure 7A), indicating enhanced antigen presentation and processing capacity in low-risk patients. Key chemokines and their receptors included B2M, CCL17, CCL22, CCL3, CCL4, CCL5, CCR2, CCR4, CCR5, CXCL1, and CXCL16, CXCR3, CXCR6, and XCL2 were also significantly upregulated in the low-risk group (Figure 7B), suggesting that additional anti-tumor immune cells might be recruited in low-risk patients.




Figure 7 | Different immune landscapes of the two risk groups. (A) Differences in MHC molecules between the two risk groups. (B) Differences in chemokines and receptors between the two risk groups. (C) Differences in tumor purity, immune, stromal, and estimated scores between the two risk groups. (D) Correlation between the tumor purity, immune, stromal, and estimated scores with the risk score. (E) Differences in infiltration fractions of 22 immune cell subsets between the two risk groups according to the CIBERSORTx. (F) Differences in infiltration fractions of 24 immune cell subsets between the two risk groups according to the ImmuCellAI database. Statistical significance at the level of ns>0.05, *≤0.05, **≤0.01, ***≤0.001 and ****≤0.0001.



Furthermore, association analyses of immune components were performed, including ESTIMATE, Cibersortx, and ImmucellAI. The results of the ESTIMATE algorithm showed that the stromal, immune, and ESTIMATE scores were significantly higher in the low-risk group than in the high-risk group, while tumor purity was markedly increased in the high-risk group (Figure 7C). There was also a significant positive correlation between risk score and stromal, immune, and ESTIMATE scores, alongside a negative correlation with tumor purity (Figure 7D). High tumor purity is associated with cancer development and poor prognosis (63). CIBERSORTx can reveal the infiltration of immune cells in the TME. Moreover, M1 macrophages, CD8+ T cells, naïve B cells, resting mast cells, resting dendritic cells, activated natural killer (NK) cells, and monocytes were abundant in the low-risk group. In contrast, M2 macrophages, M0 macrophages, and resting NK cells were more predominant in the high-risk group (Figure 7E). As T cells have many subsets with specific functions, we assessed the abundance of infiltrated immune cells using the ssGSEA algorithm in the ImmuCellAI database (51). Several cell types, namely CD4+, CD8+, NK, NK T (NKT), Tc, Tcm, Tfh, and gamma delta T cells (Tgd) were markedly enriched in the low-risk group. In contrast, many immunosuppressive cell types were prevalent in the high-risk group, including B cells, naïve CD8, iTregs, macrophages, monocytes, neutrophils, dendritic cells (DC), natural regulatory T cells (nTregs), Tem, and type 1 regulatory T cells (Tr1) (Figure 7F). These results indicated that HLMRPM could predict TIME, and high-risk patients usually had lower immune infiltration and elevated immunosuppressive cells. These might partly explain the significant difference in prognosis between subgroups.



Prediction of response to immunotherapy in BC patients

Studies have shown that blocking immune checkpoint pathways could be a promising way to achieve anti-cancer immunity and high expression of ICGs related to a better response to ICIs (64). Therefore, we assessed the expression of 44 ICGs in the two risk groups. The results showed that nearly all ICGs were significantly higher in the low-risk group, such as BTLA, CD28, CD40, CD27 and PDCD1 (Figure 8A). We further evaluated the response of immunotherapy to TIDE and IPS. The results of TIDE showed that low-risk patients respond better to ICIs than high-risk patients (53.3% vs. 39.1%, P < 0.001) (Figure 8B). In addition, we found that the risk score was lower in responders than in non-responders, indicating a correlation between risk score and immunotherapy efficacy (Figure 8C). The susceptibility of patients to ICIs was further assessed using IPS. The results demonstrated that the low-risk group had higher IPS in any CTLA4 and PD-L1 stratification than the high-risk group, indicating that the relative probabilities of responding to ICIs in the low-risk group were higher than those in the high-risk group (Figures 8D–G).




Figure 8 | The assessment of immunotherapy response between the two risk groups. (A) Comparisons of the 44 ICGs in the two risk groups. (B) Comparisons of the proportions of non-responders and responders to ICIs between the two risk groups. (C) Differences in risk score between the responders and non-responders. (D–G) Differences in the IPS between the two risk groups stratified by CTLA4 and PD-1. (H) The proportion of patients with response to anti-PD-1/L1 immunotherapy in patients with high or low risk score in IMvigor210 cohort. (I) Survival analyses for patients with high or low risk score in IMvigor210 cohort. (J) The proportion of patients with response to anti-PD-1/L1 immunotherapy in patients with high or low risk score in GSE78220 cohort. (K) Survival analyses for patients with high or low risk score in GSE78220 cohort. Statistical significance at the level of ns>0.05, *≤0.05, **≤0.01, ***≤0.001 and ****≤0.0001.



To further test the capability of our model on immunotherapeutic benefit prediction, we utilized two common real-world immunotherapy cohorts (anti-PD-L1 in the IMvigor210 cohort and anti-PD-1 in the GSE78220 cohort). As shown in Figures 8H–I, in the IMvigor210 cohort, patients with a low-risk score showed a high proportion of response to anti-PD-L1, although there was no statistical difference (low versus high, 45.3 verse 42.7%, Chi-square test, p=0.737), and survival rate showed no difference in patients with high and low-risk groups. In the GSE78220 cohort, the frequency of CR/PR was also higher in the low-risk group (low versus high, 71.4 versus 35.7%, Chi-square test, p = 0.13); furthermore, the survival rate showed a significant difference in patients with high and low-risk groups (Figures 8J–K).

As a result, the two risk groups based on HLMRPM responded differently to immunotherapy, and patients with low risk might be sensitive to immunotherapy and attain more satisfactory clinical outcomes.



HLMRPM predicts efficacy of chemotherapy response

To further enhance the clinical value of HLMRPM for treating BC, we predicted the efficacy of chemotherapy and potential agents for BC patients with “pRRophetic” and CellMiner database. We first calculated the IC50 for common chemotherapeutic agents against BC with the “pRRophetic” algorithm and compared the IC50 between the two risk groups. The IC50 value was the opposite of the sensitivity of the drugs. We found that low-risk patients were more sensitive to cytarabine, docetaxel, sorafenib, temozolomide, tamoxifen, roscovitine, and sunitinib than high-risk patients. Simultaneously, high-risk patients were more sensitive to gefitinib, methotrexate, and TMethotrexate (P < 0.05) (Figures 9A–J).




Figure 9 | The sensitivity of chemotherapeutic agents and the prediction of potential drugs. (A–J) Comparison of the IC50 values of chemotherapy and targeted agents in the two risk groups, including cytarabine, docetaxel, sorafenib, temozolomide, tamoxifen, roscovitine, sunitinib, gefitinib, methotrexate, and TMethotrexate. (H) Sensitivity correlation analyses of the HLMRGs and potential drugs according to the CellMiner database.



Moreover, 19 drugs targeting HLMRGs are available for treating BC according to CellMiner. TH was negatively associated with sensitivity to mithramycin, depsipeptide, actinomycin D, dinaciclib, bortezomib, and doxorubicin. MAFF was positively related to dabrafenib, PLX-4720, and vemurafenib, but negatively related to AFP464, dexrazoxane, and aminoflavone. ESRP1 was positively correlated with SR16157 and negatively correlated with staurosporine and midostaurin. SLC2A1 was positively correlated with kahalide F but negatively related to lapachone and tic10. The sensitivity to vorinostat was positively correlated with DARS2 (Figure 9H; Table S4). Based on these findings, the risk score can guide patients in receiving more appropriate drug treatment.



Multi-omics validation of the nine HLMRGs

To identify the role of the five HLMRGs in BC, we analyzed their mRNA expression, protein expression, function, and immunity. Figures 10A–E showed that, based on GTEx and TCGA databases, all five HLMRGs were differentially expressed between BC and normal samples. DARS2, ESRP1, SLC2A1, and TH were increased in BC, whereas MAFF was increased in normal tissues. Survival analysis indicated that high expression of DARS2, ESRP1, SLC2A1, and TH were related to poor prognosis, while high expression of MAFF was linked to better prognosis (Figures 10F–J).




Figure 10 | Validation of five selected HLMRGs. (A–E) Comparisons of the five HLMRGs between the BC and normal tissues combined with GTEx data. (F–J) Survival curve analysis of five HLMRGs based on TCGA. (K) Immunohistochemical staining for five HLMRGs in the normal breast tissue and BC. (L–P) Relationship between NARS2, ESRP1, MAFF, SLC2A1, and TH levels and immune cell infiltration based on ssGSEA. Statistical significance at the level of ***≤0.001.



We further verified the expression of the five HLRPGs using immunohistochemical images from the HPA database. We found that protein expressions of DARS2, ESRP1, SLC2A1, and TH were markedly high in BC tissues, whereas protein expression of MAFF was low in BC tissues (Figure 10K). We further summarized the immunohistochemistry staining characteristics of the five HLRPGs, and the results was coincident with above (Figure S1).

We further explored the associated functions of HLMRGs. We observed that DARS2, ESRP1, TH, and SLC2A1 might have an activation role in the apoptosis, cell cycle, DNA damage, and TSCmTOR signaling pathways while inhibiting the EMT, hormones AR and ER (Figure S2). Considering that HLMRPM was associated with TIME, we further explored the association between HLMRGs and the level of immune cell infiltration. The results showed that ESRP1 was most negatively correlated with DC and CD8+ cell infiltration. Other HLMRGs were also associated with the degree of immune cell infiltration (Figures 10L-P). These results demonstrated that the nine HLMRGs might have a critical role in the TIME and oncogenesis of BC, especially ESRP1.




Discussion

Hypoxia and lactate metabolism are essential components of TME and are closely related to the occurrence and metastasis of cancer, drug resistance, immune infiltration, and inflammation (4, 5, 15–18, 27). In this study, we constructed an HMLRPM using rigorous bioinformatics and machine learning to predict prognosis, function, and therapy response in patients with BC.

Based on the HLMRPM-related risk score, all patients were classified into either high- or low-risk group. Multidimensional verification and evaluation of the model was conducted, resulting in the model being capable of independently and stably predicting BC prognoses. Gene enrichment analysis showed differing immune-related pathway activities between the two groups. The low-risk group was significantly enriched with gene sets reflecting positive immune function, such as cytokine-cytokine receptor interaction, T/B cell receptor signaling pathway, and chemokine signaling pathway, revealing that increased immune activity might be related to the better prognosis of low-risk patients.

Further analyses showed significant differences in immune cell infiltration between the two risk groups. ESTIMATE is an algorithm used to estimate immune cells, stromal cells, and tumor purity (52). We found that the low-risk group had higher stromal, immune, and ESTIMATE scores than the low-risk group. Previous studies have demonstrated that immune and stromal cells are prognostic factors for tumors (65, 66). TME is composed of tissue-resident cells, recruits tumor-infiltrating immune cells, and plays a crucial role in tumor progression and metastasis (67, 68). Cibersortx and ImmuCellAI were used to assess the proportion of immune cells. The results showed that the low-risk group had many anti-tumor cells, such as CD8+, CD4+, and activated NK cells. In contrast, many immunosuppressive cell types such as macrophages M0 and M2 are prevalent in high-risk patients. Infiltration of immune cells is a critical determinant of tumor prognosis and progression (69, 70). In BC, tumor-infiltrating lymphocytes (TILs) modulate the response to chemotherapy and improve clinical outcomes. Macrophage infiltration can result in angiogenesis, enhanced tumor cell mobility, and poor survival in BC (71). Tregs may induce immune tolerance and facilitate immune escape and tumor metastasis (72, 73). Our findings are confirmed by these studies, namely, that the prognosis of high-risk groups with increased immunosuppressive cell infiltration is poor.

ICIs are critical in treating multiple cancer types (74). However, previous research has shown that only 12.6% of cancer patients respond to ICIs (75). Developing predictive biomarkers for ICI treatment has always been important for screening treatment populations to achieve precise treatment. Many predictive biomarkers of ICI therapy have been developed, such as PD-L1 expression and CD8 infiltration (76, 77). Our study used existing biomarkers and related databases to evaluate the treatment response to ICIs in the two risk groups. We found that the expression of most immune checkpoints was significantly increased in the low-risk group, indicating that low-risk patients could better respond to ICIs (78). Furthermore, TIDE and IPS consistently showed that low-risk patients responded better to immunotherapy treatment. These results showed that low-risk patients had more anti-tumor immune infiltrating cells and a better immunotherapy response. The estimated results from two immunotherapy cohorts indicated the potential association between risk score and the curative effect of immunotherapy. This might impact the survival and prognosis of BC patients, and the model might act as a biomarker for ICI therapy in BC.

The essential roles of these five HLRPGs have been studied in various cancer types, including BC. Epithelial splicing regulatory protein 1 (ESRP1) may be a new drug resistance biomarker and therapeutic target for patients with small cell lung cancer [SCLC] (79). ESRP1 can increase intracellular GSH levels and the metastatic lung potential of BC (80). ESRP1 is also associated with epithelial-mesenchymal transition and chemoresistance in multiple cancers (81, 82). DARS2 has been identified as a hepatocellular carcinoma (HCC) oncogene that promotes HCC cell cycle progression and inhibits HCC cell apoptosis (83). In lung adenocarcinoma cells, DARS2 is involved in proliferation, invasion, and apoptosis and shows promise as a therapeutic target (84). MAFF could promote tumor invasion and metastasis through IL11 and STAT3 signaling (85). SLC2A1 overexpression correlates with the suppression of CD8+ T cells and B cells in gastric cancer (86). In LUAD and HCC, SLC2A1 plays a significant prognostic role and is associated with tumor immunity (87, 88). TH expression in neuroblastoma predicts poor survival and is an independent prognostic factor (89). Our study found that ESRP1 was the most potent biomarker among the five HLMRGs. It is significantly upregulated in BC and is related to epithelial-mesenchymal transition. Moreover, it was negatively correlated with anti-tumor immune infiltration cells.

However, our study has several limitations. First, our research is based on analyzing existing databases; therefore, further validation of HLMRPM in a large cohort is needed. Moreover, an in-depth characterization of the mechanisms of the discovered HLMRGs needs to be conducted through cell and animal experiments.



Conclusions

In summary, our study combined hypoxia-lactate metabolism-related genes to construct a prognostic signature for BC using machine learning and bioinformatics. The HLRPM could identify high-risk populations, predict immune infiltration, immunotherapy, and chemotherapy sensitivity. Validation of HLMRGs demonstrate the potential biomarker value of HLMRGs, which could assist in selecting the appropriate treatment population and improving the prognosis of patients with BC.
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Background

TNBC, whose clinical prognosis is poorer than other subgroups of breast cancer, is a malignant tumor characterized by lack of estrogen receptors, progesterone hormone receptors, and HER2 overexpression. Due to the lack of specific targeted drugs, it is crucial to identify critical factors involved in regulating the progression of TNBC.



Methods

We analyzed the expression profiles of TNBC in TCGA and the prognoses values of GLDC. Correlations of GLDC and tumor immune infiltration were also identified. CCK8 and BrdU incorporation assays were utilized to determine cell proliferation. The mRNA and protein levels were examined by using Real-time PCR and Western blot analysis.



Results

In the present study, we analyzed the mRNA expression profiles of TNBC in TCGA and found that GLDC, a key enzyme in glycine cleavage system, was significantly up-regulated in TNBC tissues and higher expression of GLDC was correlated with a worse prognosis in TNBC. Moreover, the expression of GLDC was negatively correlated with macrophage and monocyte and positively correlated with activated CD4 T cell and type 2 T helper cell in TNBC. Overexpression of GLDC facilitated the proliferation of TNBC cells, whereas GLDC knockdown had the opposite effects. Additionally, miR-30e acts as a functional upstream regulator of GLDC and the inhibitory effects of miR-30e on cell proliferation were mitigated by the reintroduction of GLDC.



Conclusions

These results imply that miR-30e-depressed GLDC acts as a tumor suppressive pathway in TNBC and provides potential targets for the treatment of TNBC.





Keywords: TNBC, GLDC, proliferation, miR-30e, tumor immune



Introduction

Breast cancer is the most common cancer in women and remains the second leading cause of cancer death among women worldwide (1). Triple-negative breast cancer (TNBC), defined by a lack of expression of both estrogen (ER) and progesterone receptor (PR) as well as human epidermal growth factor receptor 2 (Her2), is the most aggressive subgroup of breast cancer and accounts for 12–18% of all invasive breast cancers (2). Due to the lack of therapeutic targets, the clinical prognosis of TNBC is also worse than other subgroups of breast cancer. Therefore, it is of enormous therapeutic interest to explore the key molecules involved in affecting the development and diagnosis of TNBC and elucidate the regulatory mechanisms.

Glycine Decarboxylase (GLDC) is a key enzyme in glycine cleavage system, which can convert glycine into a carbon unit. Abnormal regulation of glycine decarboxylase is related to the occurrence of various human tumors, but roles of GLDC in different cancers are not always consistent (3). Liu et al. demonstrated that rapamycin complex 1 (mTORC1) signal inhibits GLDC acetylation by inducing the transcription of deacetylase SIRT3 (SIRT3) and GLDC acetylation inhibits glycine catabolism, pyrimidine synthesis and glioma (4). A report has shown that the expression of GLDC is significantly increased in MYCN amplified neuroblastoma tumors and cell lines, and GLDC plays a key role in maintaining the proliferation of neuroblastoma cells (5). In lung cancer, it has been reported that GLDC induces significant changes in glycolysis and glycine/serine metabolism, leading to changes in pyrimidine metabolism, thereby regulating the proliferation of non-small cell lung cancer cells. Clinically, abnormal activation of GLDC is associated with poor survival in patients with lung cancer (6). However, other studies have shown that GLDC inhibits the metastasis and is positively correlated with the overall survival by acting as a tumor suppressor in HCC (7, 8). Until now, roles of GLDC in TNBC are not clear and need to be determined.

In this research, we examined the regulatory roles and clinicopathologic significance of GLDC in TNBC and determined the underlying mechanism. Our results showed that GLDC was significantly increased in TNBC tissues and higher expression of GLDC was correlated with a worse prognosis. The expression of GLDC was closely correlated with several types of immune cells and GLDC facilitated the proliferation of TNBC cells. Moreover, miR-30e negatively regulated the expression of GLDC by acting as a functional upstream regulator. The findings elucidate an important regulatory mechanism and might provide potential therapy targets for TNBC.



Material and methods


Materials

MDA-MB-231 was purchased from the American Type Culture Collection (ATCC). MiR-30e mimics and the miR-30e inhibitor (anti-miR-30e) were synthesized in Ribobio (Guangzhou, China). The primary antibody for Rabbit anti-GLDC was bought from Abcam (ab97625, 1:500). Goat anti-Rabbit IgG was got from Cell Signaling Technology (7074, 1:5000). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were purchased from hyclone and Gibco (Thermo Fisher Scientific), respectively. Bromodeoxyuridine (BrdU) incorporation assay kit was got from Roche Diagnostics (IN, USA).



Cell viability assay

Cell viability was examined by using the cell counting kit-8 (CCK-8). Briefly, 3000 cells/well were cultured in 96-well plate at 37°C for 24 hours. Then 10 μl of CCK-8 was added to each well in the plate. After 2 hours, we utilized a microplate reader (Thermo Scientific, Rockford, IL, USA) to determine the absorbance at 490nm.



Bromodeoxyuridine incorporation assay

Cell proliferation was determined by using a 5-bromo-2’-deoxyuridine (BrdU) kit to detect the BrdU incorporation. We first cultured the cells into a 96-well plate at a density of 5000 cells/well. After 12 hours, 10 μl BrdU labeling solution was added into each well and we incubated the plates at 37°C for 24 hours. Then 200 μl anti-BrdU peroxidase solutions were added to label cells for 1.5 hours at room temperature. Finally, we washed the sample with washing solution and then added 100 μl tetramethylbenzidine substrate solutions to each well at room temperature for 30 minutes. A microplate reader (Thermo Scientific) was utilized to determine the absorbance at 450nm.



Real-time PCR and Luciferase reporter assay

Real-time PCR and Luciferase reporter assay were performed as our previous descriptions (9). Primers for GLDC and β-actin were designed and listed as follows: GLDC forward, 5’−CTGCTGTGCTACTGACCTTTT−3’ and reverse, 5’−CCAGGCATCATTCTCACCAAG−3’; β-actin forward, 5’−CATGTACGTTGCTATCCAGGC−3’ and reverse, 5’−CTCCTTAATGTCACGCACGAT−3’. Specific primers and Taqman probes for microRNA analysis were purchased from Applied Biosystems. The mRNA levels of beta-Actin and snRNA U6 were used as the internal normalization control, respectively. The kit for Dual-Luciferase Reporter Assay System was obtained from Promega Corporation and the experiment was performed as the protocol provided by the supplier.



Western blot analysis

We performed western blot to determine the protein levels of target proteins. Briefly, the cell lysates were quantified with the BCA methods. The protein extracts (50 μg) were separated by SDS PAGE electrophoresis and then transferred to PVDF membranes. The membranes were blocked by 5% non-fat milk and then incubated with primary antibodies at 4°C for 12 hours. After washing five times with PBS-T for 30 min, the membranes were incubated with secondary antibodies for 1 hours at room temperature. PBS-T was used to wash the membranes again for five times. Then the membranes were incubated with the ECL luminescence solution (Thermo Scientific) and the immunoreactive bands were acquired. Image J software was utilized to determine the optical density of the bands.



Statistical analysis

Statistical analysis was performed by using GraphPad Prism v.9.0. The data for statistical analyses was obtained from at least three independent experiments and presented by mean ± standard error of the mean (SEM). Student’s t-test or one-way ANOVA followed by Dunnett’s test was appropriately applied for identifying the statistical significance. The Kaplan-Meier method was used to analyze the cumulative survival rate. The P-value was 0.05 or less was regarded as the statistically significant difference.




Results


Identification of differentially expressed genes in TNBC tissues and functional analysis

We first analyzed the mRNA expression profiles of TNBC in TCGA to determine the critical factors involved in affecting the progression of TNBC. As shown in Figure 1A, volcano plots were used to assess the gene expression variation and the overall distribution of differentially expressed genes (1148 upregulated genes and 1686 downregulated genes) between the TNBC tissues and normal breast tissue. 100 differential genes (containing 50 upregulated genes and 50 downregulated genes) are selected to draw the heat map (Figure 1B). Moreover, GO analysis and KEGG pathway analysis were performed by using all differentially expressed mRNAs. We found the biological processes (BP) enriched by GO analysis were regulation of ion transmembrane transport, hormone levels, mitotic relevant events. Molecular function (MF) of GO terms was enriched in signaling receptor regulator and activator activities, receptor ligand activity, G protein−coupled receptor activity, and growth factor activity. Cellular component (CC) of GO terms was enriched in collagen−containing extracellular matrix, cell−cell junction, and transmembrane transporter complex (Figure 1C). As shown in Figure 1D, the enriched KEGG pathways were shown. The results showed that some pathways directly related to affect the progression of cancer, such as cell cycle, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and PPAR signaling pathway, were enriched. Moreover, we found that Glycine, serine, and threonine metabolism was enriched by KEGG pathway analysis. GLDC, which acts as a key enzyme in glycine cleavage system, was obviously up-regulated in TNBC tissues (Figure 1E). The consistent result that the expression of GLDC was increased in breast cancer, especially in TNBC tissues, was obtained by utilizing the UALCAN database (Figure 1F). These results indicate that GLDC might participate in regulating the progression and development of TNBC.




Figure 1 | Identification of differentially expressed genes in TNBC tissues. (A) The overall distribution of differentially expressed genes by volcano plots. (B) The heat map of 100 differential genes. (C): The biological processes, molecular function, and cellular component enriched by GO analysis. (D) The enriched KEGG pathways. (E, F) The expression of GLDC was significantly up-regulated in TNBC tissues compared with normal breast tissues by analyzing TCGA (E) and the UALCAN database (F).





The expression profiles of GLDC and its prognoses values in TNBC tissues

To confirm changes of GLDC in TNBC tissue, we also analyzed its expression from a GEO dataset (GSE76250). The results showed that the expression of GLDC was significantly higher in the TNBC tissues compared with their paired adjacent normal tissues (Figure 2A). We further examined the expression levels of GLDC in the TNBC tissues based on the clinicopathological variables. We found that the expression of GLDC is higher in the patients younger than 55 years (age ≤ 55) than the patients older than 55 years (age>55) (Figure 2B). GLDC expression in patients with ki67 ≤ 30% was lower than that with ki67>30% (Figure 2C). However, there are no significant differences on the expression of GLDC between positive lymph nodes and no positive lymph nodes (Figure 2D). Furthermore, the prognoses values of GLDC in TNBC were also examined by utilizing the Kaplan-Meier Plotter (10). We found that patients with the high levels of GLDC were associated with the shorter recurrence free survival (RFS) (median RFS time (months), 22.37 (high levels of GLDC) and 43 (low levels of GLDC) months, respectively; P < 0.001) and the worse distant metastasis free survival (DMFS) (median DMFS time (months), 26.63 (high levels of GLDC) and 38.6 (low levels of GLDC) months, respectively; P < 0.05) than the patients with low GLDC expression in TNBC (Figures 2E, F). In addition, we also examined the prognoses values of GLDC in other types of breast cancer. We found that there were no significant differences on the RFS and DMFS between the low levels of GLDC and the high levels of GLDC in Luminal A, Luminal B and HER2 positive types of breast cancer (Figures 2G–L). The results imply that GLDC might be considered as a potential predictive molecule of prognosis for TNBC.




Figure 2 | The expression profiles of GLDC and its prognoses value in TNBC tissues. (A) The expression of GLDC was significantly higher in the TNBC tissues compared with their adjacent normal tissues (n=33). (B) The expression of GLDC is higher in the patients younger than 55 years (age ≤ 55) than the patients older than 55 years (age>55). (C) GLDC expression in the patients with ki67 ≤ 30% was less than that with ki67>30%. (D) No significant differences were detected on the expression of GLDC between positive lymph nodes and no positive lymph nodes. (E, F) TNBC patients with high levels of GLDC were associated with the shorter RFS (E) and the worse DMFS (F). (G, H) There were no significant differences on the RFS (G) and DMFS (H) between the low levels of GLDC and the high levels of GLDC in Luminal A breast cancer. (I, J) No significant differences were detected on the RFS (I) and DMFS (J) between the two groups in Luminal B breast cancer. (K, L) There were no significant differences on the RFS (K) and DMFS (L) between the two groups in HER2 positive breast cancer.





The relationship between GLDC and tumor immune infiltration

Previous studies have shown that tumor immune microenvironment plays an important role in affecting tumor growth. The immune cells and immune-related signaling pathways are involved in regulating the progression of cancer and the response to cancer therapy (11, 12). Therefore, we future examined whether GLDC was correlated with the tumor immune infiltration in TNBC. As shown in Figures 3A, B, we analyzed the infiltration abundance of immune cells in TNBC patients based on the levels of GLDC. The results showed that activated CD4 T cell, central memory CD4 T cell, and type 2 T helper cell were significantly enriched in the group with high expression of GLDC in TNBC, whereas high levels of macrophage, neutrophil, CD56 bright natural killer cell and plasmacytoid dendritic cell were acquired in the TNBC patients with low GLDC expression. Moreover, we further examined the relationship between GLDC expression and immune cell types. We found that the expression of GLDC was negatively correlated with macrophage, plasmacytoid dendritic cell, and monocyte, while GLDC expression was positively correlated with activated CD4 T cell and type 2 T helper cell (Figure 3C). By analyzing the relationship between GLDC and four immune checkpoint molecules (CTLA4, PD-1, PD-L1, and PD-L2), no significant correlations were acquired between GLDC and the four immune checkpoint molecules in TNBC (Figure 3D). These results imply that GLDC likely has the regulatory effects on tumor immune microenvironment in TNBC.




Figure 3 | The relationship between GLDC and tumor immune infiltration. (A) The infiltration abundance of immune cells based on the levels of GLDC in TNBC patients. (B) High levels of macrophage, neutrophil, CD56 bright natural killer cell and plasmacytoid dendritic cell and low levels of activated CD4 T cell, central memory CD4 T cell, and type 2 T helper cell were acquired in the group with low expression of GLDC in TNBC. (C) The expression of GLDC was negatively correlated with macrophage, plasmacytoid dendritic cell, and monocyte and positively correlated with activated CD4 T cell and type 2 T helper cell. (D) No significant correlations were observed between GLDC and the four immune checkpoint molecules in TNBC. *P < 0.05, **P < 0.01, ***P < 0.001, and ns indicates P>0.05.





GLDC facilitates cell proliferation in TNBC cells

We then examined the effects of GLDC on the growth of TNBC cells. Overexpression of GLDC were established in MDA-MB-231 (a cell line of TNBC). As shown in Figure 4A, the overexpression efficiency was verified by real-time PCR. We found that cell viability was significantly increased by GLDC overexpression (Figure 4B). Overexpression of GLDC facilitated BrdU incorporation into newly synthesized DNA (Figure 4C). Consistently, the expression of GLDC was positively correlated with the expression of PCNA and MKI67 (two markers of cell proliferation) in TNBC tissues (Figures 4D, E). Furthermore, we also knocked down the expression of GLDC in TNBC cells to confirm its physiological function (Figure 4F). The results showed that the cell viability was mitigated by the knockdown of GLDC (Figure 4G). GLDC knockdown significantly repressed BrdU incorporation (Figure 4H). The results indicate that GLDC positively regulated the proliferation of TNBC cells.




Figure 4 | Cell proliferation is promoted by GLDC in TNBC cells. (A) Real-time PCR was utilized to determine the overexpression efficiency. (B, C) Overexpression of GLDC increased cell viability (B) and facilitated BrdU incorporation (C). (D, E) GLDC expression was positively correlated with the expression of PCNA (D) and MKI67 (E) in TNBC tissues. (F) Knockdown efficiency was determined by Real-time PCR. (G, H) Knockdown of GLDC mitigated cell viability (G) and repressed BrdU incorporation (H). *P < 0.05.





GLDC is negatively regulated by miR-30e in TNBC

By using the UALCAN database, we found that there was no significant difference on the promoter methylation level of GLDC between TNBC and normal breast tissues (Figure 5A). It is widely accepted that microRNAs play important roles in affecting the expression of target genes. To determine the mechanism of GLDC up-regulation in TNBC, we examined whether microRNAs might participate in regulating the expression of GLDC in TNBC. The result showed that miR-30e, a potential binding microRNA of GLDC, was negatively correlated with the expression of GLDC in the same TNBC tissues (GSE59595) (r=-0.5581, P=0.0014) (Figures 5B, C). As shown in Figure 5D, the mutated UTR, which was utilized in the luciferase reporter assay, was constructed based on the potential binding site of miR-30e conserved in the 3′UTR of GLDC. Results of luciferase reporter assay showed that the luciferase activity of the WT (wild type) group was significantly reduced by the treatment with miR-30e, whereas there was no detectable change on the luciferase activity of the MT (mutant type) group (Figure 5E). Moreover, miR-30e obviously mitigated the mRNA and protein expression of GLDC in TNBC cells (Figures 5F, G). Treatment with anti-miR-30e led to the increased expression of GLDC at both mRNA and protein levels (Figures 5H, I). These results indicate that miR-30e acts as a functional upstream regulator of GLDC in TNBC.




Figure 5 | GLDC is negatively regulated by miR-30e in TNBC. (A) There was no significant difference on the promoter methylation level of GLDC between TNBC and normal breast tissues. (B) The schematic diagram of the protocol utilized for identifying the potential functional regulator of GLDC. (C) The expression of GLDC was negatively correlated with miR-30e expression in the same TNBC tissues. (D) The potential binding site of miR-30e conserved in the 3′UTR of GLDC. (E) Treatment with miR-30e led to the decreased luciferase activity of the WT (wild type) group. (F, G) MiR-30e significantly depressed the mRNA (F) and protein (G) expression of GLDC in TNBC cells. (H, I) Treatment with anti-miR-30e led to the increased expression of GLDC at both mRNA (H) and protein (I) levels. *P < 0.05.





The inhibitory effects of miR-30e on cell proliferation are attenuated by GLDC

We then examined the roles of miR-30e in cell proliferation in TNBC. Our results showed that the expression of miR-30e was negatively correlated with PCNA expression in the same TNBC tissues (Figure 6A) and high levels of miR-30e were associated with better overall survival (OS) (median OS time (months), 115.73 (high levels of miR-30e) and 95.13 (low levels of miR-30e) months, respectively; P = 0.02 (Figure 6B). Treatment with anti-miR-30e increased cell viability and promoted BrdU incorporation, which was attenuated by the knockdown of GLDC (Figures 6C, D). Moreover, the inhibitory effects of miR-30e on cell proliferation were attenuated by the restoration of GLDC in TNBC cells (Figures 6E, F). These results imply that miR-30e inhibits the proliferation of TNBC cells, at least in part, by targeting GLDC.




Figure 6 | The inhibitory effects of miR-30e on cell proliferation are mitigated by GLDC. (A) The expression of miR-30e was negatively correlated with PCNA expression in the same TNBC tissues. (B) High levels of miR-30e were associated with better overall survival. (C, D) Treatment with anti-miR-30e increased cell viability (C) * indicates p < 0.05 compared with anti-NC+siControl group, # indicates p < 0.05 compared with anti-miR-30e+siControl group and promoted BrdU incorporation. (D), which was attenuated by the knockdown of GLDC. (E, F): Restoration of GLDC depressed the regulatory effects of miR-30e on cell viability (E) * indicates p < 0.05 compared with NC+Vector group, # indicates p < 0.05 compared with miR-30e+Vector group and BrdU incorporation (F).






Discussion

TNBC, as the most aggressive subgroup of breast cancer, is lack of specific targeted drugs and the prognosis is far less than expected. Until now, pathological processes of TNBC remain largely unknown and still need to be determined. In the present study, our results showed that GLDC, which was significantly up-regulated in cancer tissues, facilitated cell proliferation and was negatively correlated with the RFS and DMFS in TNBC. The expression of GLDC was negatively correlated with macrophage and monocyte and was positively correlated with activated CD4 T cell and Type 2 T helper cell. Moreover, GLDC serves as a downstream target of miR-30e in TNBC and attenuated the inhibitory effects of miR-30e on cell proliferation. The results imply an important underlying mechanism of GLDC-regulated cell proliferation and tumor immune infiltration in TNBC.

An important finding of this research is that GLDC promotes cell proliferation and could be considered as a potential predicting factor for prognosis in TNBC. Although GLDC has been demonstrated to participate in regulating the development of tumors in some types of cancers, its roles in different cancers are controversial and not always consistent. Previous studies have shown that GLDC overexpression or its gene alternative splicing enhances cellular transformation and tumorigenesis and is correlated with poorer survival in non-small cell lung cancer (NSCLC) (6, 13). Inhibition of GLDC transcript represses cell proliferation and colony formation in NSCLC and prostate cancer cells (14, 15). GLDC knockdown mitigates cell proliferation and tumorigenicity via causing G1 arrest in MYCN-amplified neuroblastoma cells (5). Knockdown of glycine decarboxylase represses the growth of the tumor by regulating mitochondrial protein lipoylation in hepatocellular carcinoma (HCC) (16). On the contrary, it is reported that GLDC negatively regulates the migration and invasion of HCC cells in vivo and in vitro (7). The overall survival is better in the group with high expression of GLDC in HCC and overexpression of GLDC obviously facilitates cell autophagy and depresses intrahepatic metastasis (8). However, roles of GLDC in TNBC are still unknown. In the present study, our results showed that GLDC, significantly upregulated in cancer tissues, was correlated with a worse prognosis related to RFS and DMFS in TNBC. Overexpression of GLDC promoted cell proliferation, whereas GLDC knockdown had the opposite effects. Furthermore, it is widely accepted that tumor immune microenvironment is involved in affecting the development of cancers and the response to cancer therapy (12). Our results showed that several immune cells were significantly enriched or decreased in the TNBC patients with high levels of GLDC. The expression of GLDC was negatively correlated with macrophage and monocyte, while GLDC expression was positively correlated with activated CD4 T cell and type 2 T helper cell in TNBC. These results imply that GLDC likely serves as an oncogenetic factor in the progression of TNBC by regulating cell proliferation and tumor immune microenvironment.

Another important finding of this research is that miR-30e acts as a functional upstream regulator of GLDC in TNBC. It is known to all that dysregulation of microRNAs is a critical cause in the initiation and progression of various diseases. MicroRNAs are involved in regulating several cellular physiological functions of cancer cells, such as cell proliferation, survival and metastasis, by affecting the expression of target genes. MiR-30e, a multifunctional microRNA, has been reported to be involved in regulating the development of tumors. Previous studies have shown that miR-30e acts as a tumor suppressor and inhibits cell proliferation and metastasis in some cancers, including hepatocellular carcinoma (17), squamous cell carcinoma of the head and neck (18), colorectal cancer (19). However, other studies have reported that miR-30e promotes the progression and malignant processes of cancers, for instance, esophageal cancer (20), lung adenocarcinoma (21). Roles of miR-30e in breast cancer are also controversial. MiR-30e represses tumor growth, bone metastasis and chemosensitivity to paclitaxel in breast cancer (22, 23). Conversely, Overexpression of miR-30e-decreased expression of Tumor Suppressor Candidate 3 (TUSC3) leads to increased proliferation and migration of breast cancer cells (24). To date, the precise effects of miR-30e on TNBC are still inconclusive. Our results showed that miR-30e was positively associated with overall survival and negatively regulated cell proliferation in TNBC. The inhibitory effects of miR-30e on cell proliferation were attenuated by the restoration of GLDC. The results indicate that miR-30e-repressed GLDC defines a potentially suppressive pathway in TNBC. Although we have demonstrated that GLDC mitigated by miR-30e regulates cell proliferation and tumor immune infiltration in TNBC, the regulatory mechanisms remain unknown and will be determined in future studies. Additionally, we will further validate the regulatory effects of GLDC in TNBC and explore the possibility of GLDC as a potential therapeutic target for TNBC by utilizing more clinical samples and in vivo studies.



Conclusion

In summary, this research implies that GLDC, increased in the TNBC tissues, facilitates cell proliferation and is correlated with the poor prognosis in TNBC as an oncogenetic factor. Moreover, miR-30e acts as a functional upstream regulator of GLDC in TNBC. The findings demonstrate the important regulatory effects of GLDC in TNBC, which might provide potential targets for improving the molecular therapy of TNBC.
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Background

TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas.



Methods

Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied.



Results

The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway.



Conclusion

Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.
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Introduction

Gliomas are the most commonly occurring malignant adult brain tumors and include a diverse set of primary brain tumors like low-grade and high-grade gliomas (1–3). Glioblastomas account for 70~75% of all gliomas, while low-grade gliomas account for 20~25% of all gliomas (4, 5). Despite the low cases compared to glioblastomas, the low-grade gliomas can progress to glioblastomas and develop resistance to chemotherapy (6). Hence, low-grade gliomas could be lethal and malignant. Currently, multiple treatment strategies like chemotherapy, radiotherapy, and surgery are available that can improve the prognostic outcomes of glioma patients. However, the prognosis of gliomas is still grim, as the 1-year survival rate of glioma patients is inferior to 30%, and the 5-year progression-free survival (PFS) for World Health Organization (WHO) grade II and III gliomas (7, 8) is 50%. Various factors and mechanisms, including genetic and epigenetic alterations, contribute to the pathogenesis of glioma (9). Despite the efforts made to understand the mechanisms associated with glioma development, the molecular pathogenesis of gliomas remains unknown (10). Therefore, a comprehensive investigation of glioma pathogenesis and identifying critical biomarkers could be instrumental in accelerating and improving the diagnosis and treatment of gliomas.

A protein-coding gene called TP53I13 is suspected to be a tumor suppressor. TP53I13 overexpression is suggested to impede tumor cell growth. A report indicated that TP53I13 expression could be upregulated by Adriamycin-induced genotoxic stress and/or p53/TP53-dependent ultraviolet irradiation (11). Interestingly, upregulated level of TP53I13 helps to confirm that N4-Erucoyl spermidine could play a significant role in inhibiting hematological tumors (12). Therefore, an increase in TP53I13 expression could impede tumor growth in hematological cancers. Based on previous studies, it is likely that overexpression of TP53I13 in most normal tissues suppresses tumor formation. Therefore, it is compelling to postulate that a decrease in TP53I13 levels could reduce the protection against tumors.

Gliomas, however, lack a clear understanding of the role of TP53I13. For this reason, data from CGGA (http://www.cgga.org.cn) and TCGA (https://tcga-data.nci) databases were used to investigate the role of TP53I13 in gliomas. An analysis of bioinformatics revealed higher TP53I13 expression in tumor tissues. Correlation analysis between TP53I13 expression and patient survival revealed that TP53I13 overexpression was related to poor patient survival. This result suggests that a low TP53I13 level could indicate better survival outcomes. Therefore, we hypothesize that the occurrence and progression of glioma could be related to the high TP53I13 expression. As a result, we used publicly available databases, like TCGA and CGGA, to investigate the correlations between several clinical parameters and TP53I13 expression in this study. To further assess the fundamental mechanisms of TP53I13 in glioma, we evaluated the relationships between lymphocytes and TP53I13 expression in cells using TCGA, CGGA, and TIMER databases. In addition, multiplex immunohistochemistry (mIHC) was used to validate the results. A gene set enrichment analysis (GSEA), STRING, and GeneMANIA were used to investigate TP53I13 functions in gliomas. Based on the results, TP53I13 expression appears to be closely correlated with body metabolism and a number of important pathways. Accordingly, TP53I13 plays a significant role in the development of gliomas, and it can be used as a biomarker for glioma prognosis prediction.



Materials and methods


Data acquisition

From the TCGA and CGGA databases, clinical and transcriptomic data of glioma patients were retrieved. Glioma RNAseq data (mRNA_seq325 and mRNA_seq693) was retrieved from CGGA database. From the CGGA database, 1018 glioma samples were retrieved (Table 1), and 696 samples were retrieved from TCGA database (Table 2) for further analysis.


Table 1 | Correlation between TP53I13 expression and different clinical factors based on CGGA.




Table 2 | The relationship between TP53I13 expression and different clinical factors based on TCGA.



Tissues from 183 glioma patients were collected from Nantong University Affiliated Hospital (Table 3). Samples with missing information were removed. To study the relationships between the TP53I13 expression and WHO grades, all tissues were divided into seven similar sets of tissue microarray chips (explained as tissue microarray chips 1~7, Supplementary Table 1). The independent prognostic value of TP53I13 was investigated on samples obtained from CGGA and Nantong University Affiliated Hospital (Supplementary Tables 2-3).


Table 3 | MIHC analysis between TP53I13 expression level and different clinical characteristics based on samples from Nantong University Affiliated Hospital.





GEPIA

The Genotype-Tissue Expression (GTEx) high-throughput RNA sequencing data were analyzed and visualized using the Gene Expression Profiling Interactive Analysis (GEPIA) web-based bioinformatics tool (13, 14). TP53I13 expression levels in tumor and normal samples were analyzed using GEPIA. Patient survival analysis based on TP53I13 expression levels in glioma tissues was also provided by GEPIA.



Immunohistochemistry

For tissue microarrays, the tissues were dewaxed, and antigen retrieval was performed. After eliminating endogenous enzymes in the tissues with 3% peroxidase solution, 5% bovine serum albumin was incubated for 20 minutes at room temperature. An overnight incubation with primary antibody was performed on the tissues. Following the primary antibody booster incubation, the tissues were incubated with the secondary antibody booster for 30 minutes. 3,3’-Diaminobenzidine was used to detect the tissues after 30 minutes of incubation with secondary antibody. After dehydrating, sealing, and observing the tissues, hematoxylin was applied to counterstain the tissues. The immunohistochemical staining was carried out on tissues obtained from the biological sample bank of Affiliated Hospital of Nantong University.



Multiplex immunohistochemistry

mIHC employs chromogenic and fluorogenic methods, widely used in cancer immunology (15). mIHC was performed on tissue sections. The tissues were labeled with primary antibodies against TP53I13, CD68, CD163, CD66b, and S100A4, followed by incubation with suitable secondary antibodies. The details of all antibodies used are listed in Supplementary Table 4. The antigens were fixed by heating, followed by cooling, and tyramide signal amplification, which labeled the tissue section with fluorescent immunostains for each marker. For the evaluation and detection of the makers, an automated Vectra 3.0 quantitative pathology imaging system was utilized.



LinkedOmics analysis

LinkedOmics (http://linkedomics.org/) is a novel and unique tool for inclusive analysis of all 32 TCGA cancer-related datasets (16). The web-based database can be used to generate plots for single genes, and the outcomes are displayed in the form of scatter plots, heatmaps, or volcano plots (17). In this study, the LinkedOmics platform was used to explore genes that correlated with TP53I13 (both negatively and positively) to determine the molecular mechanism associated with TP53I13.



Protein-protein interaction analysis

An analysis of PPIs was carried out with the Search Tool for Retrieval of Interacting Genes (STRING) database (http://string-db.org). In order to identify hub genes, the PPI network model was visualized using Cytoscape software.



Gene set enrichment analysis

An in-depth analysis of TP53I13 biological functions was carried out using GSEA. C2.cp.kegg.v7.1.symbols.gmt was used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. C5.all.v7.4.symbols.gmt was selected for Gene Ontology enrichment analysis.



Single-cell analysis of TP53I13 expression levels in glioma

To further investigate the levels of TP53I13 expression in glioma patients, we retrieved the GSE138749 dataset from the single cell TIME (scTIME) database (http://sctime.sklehabc.com/unicellular/home) and the GSE148842 dataset from the Tumor Immune Single-cell Hub (TISCH) (http://tisch.comp-genomics.org/) database. ScTIME includes 49 datasets, including information on 39 cancers for two species, humans and mice. scTIME also provides a series of single-cell analysis modules, including immune cell composition, correlation analysis of immune cell types, signature points specific to immune cell types, cell-cell communication, etc. In TISCH, cell types are categorized at the single-cell level, and TME is exploited in a wide range of cancers. 10X genomics was used to examine the data.



Evaluation of Link between immune infiltration and TP53I13 expression

The data obtained from TCGA and CGGA databases were analyzed using CIBERSORT, quanTiseq, xCell, and TIMER. To investigate the correlation between TP53I13 expression and immune infiltration, especially lymphocytic infiltration, CIBERSORT was employed to identify numerous immune infiltrating lymphocytes strongly correlated with TP53I13 expression. To further validate the above analysis, we used quanTiseq, xCell, and TIMER. Infiltrating immune cells are identified by using the TIMER database (https://cistrome.shinyapps.io/timer/).



Cell culture and transfection

Glioma cell lines U87 and U251 were used as in vitro models for analysis. Cell invasion, cell migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed on these cells. Three different small interfering RNA (siRNA) sequences targeting TP53I13 (siRNA 1-3) and NC (siRNA-NC) were designed using Invitrogen’s online software BLOCK-iTTM RNAi Designer and synthesized by Oligobio (OLIGOBIO, Beijing, China). Cells were transfected with Lipofectamine™ 3000 transfection reagent (Invitrogen, Carlsbad, USA). The siRNA sequence with the highest efficiency to interfere with the TP53I13 expression was selected for further analysis.

The siRNA target sequences are as follows:

TP53I13 siRNAs: TP53I13 si1: GGGAATCCCTGGTAGGGAGAGTAAT, TP53I13 si2 GGAATCCCTGGTAGGGAGAGTAATG, and TP53I13 si3 GGCTGTGTCTGTTCAAGTCAGGCTT.



Transwell assay

A transwell assay was used to test U-87’s and U-251’s migration and invasion abilities. Briefly, 5 × 10 (4) cells were seeded on chambers coated (for invasion) or uncoated with Matrigel (BD Biosciences, San Jose, CA) (for migration). Lower chambers were added DMEM medium containing serum and upper chambers were filled with serum-free medium. A 24 hour incubation was followed by the fixation of the cells with 4% paraformaldehyde and staining with 0.1% crystal violet. Cell counts were observed under light microscope.




Results


Relationship between TP53I13 expression and TME in glioma patients

TME includes various cells and extracellular components, which significantly affect the immunotherapeutic response and clinical outcomes (18, 19). Stremitzer et al. (2020) have identified a significant relationship between tumor immune microenvironment and patient survival (20). In this study, Expression Data (ESTIMATE: R package) and CIBERSORT were used to score the tumor purity, interstitial cells and immune cells of TCGA glioma samples. According to the “PAM” method, samples were divided into groups with low and high immunity levels. Low immune group members had significantly lower ESTIMATE, immune and stoma scores than high immune group members. As compared to the hypoimmune group, tumor purity was lower in the high immune group (P=0.001). Figures 1A, B shows this. A significant connection was observed between immune cells and the high-expression group, indicating a correlation between the high-expression group, tumor microenvironment, and tumor-infiltrating immune cells. The relationship between TP53I13 expression levels in high- and low-immunity groups was assessed, and high TP53I13 expression was observed in the high-immunity group compared to the low-immunity group, consistent with TME analysis of glioma data (Figure 1C). TP53I13 expression is related to the immune microenvironment of gliomas, as shown by the findings.




Figure 1 | (A) Immune cell score, stromal cell score, combined scores of immune and stromal cells, and tumor purity in the high- and low-immunity groups. (B) The relationships between the immune score and different immunity groups. (C) The differences in TP53I13 expression in the high- and low-immunity groups.





TP53I13 expression in various tumor types

TP53I13 expression in various tumors and neighboring tissues were retrieved from GTEx and TCGA databases. On the other hand, tumor tissues expressed TP53I13 at a higher level than normal tissues. The expression of TP53I13 was detected in various cancer types such as glioblastoma tissues (Figure 2A), cholangiocarcinoma (CHOL), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), Kidney renal clear cell carcinoma (KIRC), skin cutaneous melanoma (SKCM), low-grade glioma (LGG), bladder urothelial carcinoma (BLCA), and thymoma (THYM). Survival analysis revealed overall survival (OS) was good in TP53I13 expressing tumors including Pancreatic ductal adenocarcinoma (PAAD; P = 5.9e-03) and Pheochromocytoma and paraganglioma (PCPG; P = 4.5e-02). On the contrary, poor survival was observed TP53I13 expressing tumors including like Uveal Melanoma (UVM; P = 3.6e-03), LGG (P = 1.9e-17), KIRC (P = 3.8e-06), kidney chromophobe (KICH; P = 1.5e-02), and glioblastoma (GBM; P = 2.6e-02) (Figure 2B).




Figure 2 | (A) Pan-cancer analysis of TP53I13 in different tumors based on GTEx and TCGA databases *, P<0.05; ***, P<0.001. (B) The hazard ratio for overall survival in 33 tumors expressing TP53I13. (C) The hazard ratio for disease-specific survival in 33 tumors expressing TP53I13. (D) TP53I13 expression based on the GEPIA database. (E) Representative immunohistochemistry (IHC) analysis shows high and low TP53I13 expression. ns, no significance.



TP53I13 expression in cancers like PAAD (P = 1.4e-02) and uterine corpus endometrial carcinoma (UCEC; P = 3.3e-02) had good disease-specific survival (DSS). TP53I13 expression in cancers like GBM (P = 4.8e-02), KICH (P = 3.2E-02), KIRC (P = 6.9e-08), LGG (P = 1.4e-16), and UVM (P = 8.1e-03) had poor DSS (Figure 2C). The intersection survival analysis of DSS and OS revealed that TP53I13 has prognostic value in GBM, KICH, KIRC, LGG, and UVM.



Prognostic value of TP53I13 expression in glioma

TP53I13 expression was assessed in various tumors. Gliomas like LGG and GBM exhibit significant expression of TP53I13. To learn more about TP53I13’s prognostic value in gliomas, we conducted our study. GEPIA was used to investigate TP53I13 expression, and the results reveal that TP53I13 expression was low in normal tissues compared to gliomas such as LGG and GBM (Figure 2D). Similar results were obtained using immunohistochemical analysis (Figure 2E). Further, TP53I13 expression was studied in tissue samples obtained from Nantong University Affiliated Hospital, and the results revealed that TP53I13 expression was higher in tumor tissues than in normal tissues (Supplementary Figure 1A). A TCGA and CGGA database containing glioma samples was examined for TP53I13 mRNA expression. As shown in Figures 3A, B, according to the TCGA and CGGA data, high levels of TP53I13 were associated with lower overall survival (OS). Similar results were obtained in glioma patient samples from Nantong University Affiliated Hospital, where high TP53I13 expression was associated with poor survival (Supplementary Figure 1B). TP53I13 was evaluated for its ability to predict one-, three-, and five-year survival using ROC curves. TCGA’s data on 1-, 3-, and 5-year survival rates for glioma patients showed AUCs of 0.806, 0.852, and 0.785, respectively (Figure 3C). One-, three-, and five-year survival rates for CGGA in glioma patients were 0.704, 0.706, and 0.639, respectively (Figure 3D). We evaluated TP53I13’s prognostic value in glioma patient samples retrieved from TCGA regarding 1-year survival, 3-year survival, and 5-year survival. AUCs for one-year, three-year, and five-year DSS rates for glioma patients were 0.799, 0.844, and 0.791, respectively (Figure 3E). One-, three-, and five-year PFI survival rates of glioma patients were 0.768, 0.786, and 0.783 respectively, according to the AUC (Figure 3F). Furthermore, prognostic variables were assessed with Cox regression analysis. Multivariate Cox analysis identified low PRS type, low grade, less age, high 1p/19q codeletion status, high chemotherapy, high IDH mutation level, and low TP53I13 expression as independent prognostic factors that predicted OS (Figure 3G). We also investigated the independent prognostic value of TP53I13 on 159 glioma samples obtained from the Affiliated Hospital of Nantong University. A combination of WHO grade, age, sex, and TP53I13 was an independent prognostic factor in glioma patients, based on the results of the study (Supplementary Figure 1C). In order to improve survival prediction mapping for glioma patients, we integrated TP53I13 expression levels with other prognostic factors (Figure 3H). The nomograms were also calibrated to determine their accuracy. Figure 3I show that the curves showed good consistency with the predicted results.




Figure 3 | (A) Kaplan–Meier curve for overall survival (OS) of glioma patients with the TP53I13expression based on the TCGA database. (B) Kaplan–Meier curve of the OS of glioma patients with TP53I13 expression level based on the CGGA database. ROC curves for 1-, 3-, and 5-year OS analysis based on TP53I13 expression levels in glioma patient samples obtained from (C) TCGA (D) CGGA databases. (E) ROC curves for 1-, 3-, and 5-year DSS analysis of TP53I13 expression in glioma patient samples obtained from TCGA. (F) ROC curves for 1-, 3-, and 5-year PFI analysis of TP53I13 expression glioma patient samples obtained from TCGA. (G) Multivariate Cox regression analysis of the TP53I13 expression and clinical characteristics. (H) Nomogram for OS integrating TP53I13 expression level, WHO grade, 1p/19q codeletion status, IDH mutation status, sex, and age. (I) The calibration curve for predicting 1-, 3-, and 5-year OS in glioma patients.





TP53I13 expression in different subgroups of patients with glioma

We analyzed the CGGA and TCGA databases for relationships between TP53I13 expression and glioma subgroups. Additionally, the expression of TP53I13 was examined in patients with distinct WHO grades and codeletions of 1p/19q, as well as patients with IDH mutations. From the CGGA database, two datasets were analyzed, mRNAseq_325 and mRNAseq_693. According to CGGA and TCGA samples, TP53I13 expression increased as WHO grade increased (Figures 4A-C). Similar results were observed using IHC, where an increase in TP53I13 expression was observed with an increase in WHO grade (Figures 4D-F). Further, seven tissue microarrays were carried out using the same method under the same experimental conditions, which included tissue samples from all the glioma patients for further analysis. Higher tumor grades had a worse prognosis, and TP53I13 expression increased as the glioma progressed in all the glioma patients (Figure 4G). We further investigated the relationships between TP53I13, MKI67, and vimentin (VIM) expression levels. Figure 4H shows poor correlation betweenTP53I13 and MKI67 (Ki-67 proliferation index) (R = 0.300, P <0.001) but TP53I13 had a significant correlation with VIM (vimentin invasion index) (R = 0.720, P<0.001). (Figure 4I). The results reveal that enhanced TP53I13 expression was linked to malignant clinicopathological features in glioma patients.




Figure 4 | TP53I13 Expression in subgroups of glioma patients based on IDH mutation status, WHO grade, and 1p/19q codeletion status. Boxplot shows a correlation between TP53I13 expression and WHO grade based on (A) the CGGA mRNAseq_325 dataset, (B) the CGGA mRNAseq_693 dataset, and (C) the TCGA database. (D-F) IHC of TP53I13 in glioma tissues of different WHO grades. (G) Quantification of TP53I13 staining in glioma tissues of different WHO grades. (H) The relationship between TP53I13 and a proliferation marker (Ki-67). (I) The relationship between TP53I13 and invasion markers (vimentin).



According to CGGA and TCGA glioma patient samples, IDH wild-type patients expressed higher levels of TP53I13 than IDH mutant patients (Supplementary Figures 2A-C). TP53I13 expression was also reduced in patients with 1p/19q codeletions compared with patients without (Supplementary Figures 2D-F).



Multifactorial survival analysis of TP53I13 expression

Survival analysis between TP53I13 expression and IDH mutation (Figure 5A), chemotherapy (Figure 5B), 1p/19q codeletion status (Figure 5D), and radiotherapy (Figure 5C) was performed. As shown in Figure 5A, patients harboring IDH mutation expressed high TP53I13 levels (red and green) and had poor survival outcomes, further confirming that TP53I13 could be a potential prognostic biomarker for gliomas. As shown in Figure 5B, in glioma patients with high TP53I13 expression (red and green), poorer survival outcomes were observed similarly to IDH mutation status. As shown in Figure 5C, high TP53I13 expression (red and green) was related to a poor survival outcome. Taking these results together, it appears that glioma patients with low TP53I13 expression could have a higher survival rate. As shown in Figure 5D, the patients with 1p/19q codeletion expressed a high level of TP53I13 and had poor survival outcomes.




Figure 5 | Kaplan–Meier curves of glioma patients (data obtained from CGGA) classified based on TP53I13 expression and (A) IDH mutation, (B) chemotherapy, (C) radiotherapy, and (D) 1p/19q codeletion status.





Prognostic value of TP53I13 in glioma patients

Further study of the potential prognostic value of TP53I13 in gliomas, a survival analysis including OS and DSS was conducted on patients divided based on their clinical characteristics. Overall survival (OS) analysis revealed significant correlation between high TP53I13 expression in females (P < 0.001) (Supplementary Figure 3G), males (P < 0.001) (Supplementary Figure 3H), patients without 1p/19 co-deletion (P < 0.001) (Supplementary Figure 3F), patients harboring IDH mutation (P = 0.028) (Supplementary Figure 3D), WHO grades 3 and 4 (P < 0.001), and WHO grade 2 (P = 0.038) (Supplementary Figure 3A), (Supplementary Figure 3B), and poor survival outcome. The results of the DSS analysis were consistent with the OS outcomes. Significant correlation was observed between high TP53I13 expression and WHO grade 2 (P = 0.031) (Supplementary Figure 4A), WHO grades 3 and 4 (P < 0.001) (Supplementary Figure 4B), patients harboring IDH mutation (P = 0.024) (Supplementary Figure 4D), patients without 1p/19 co-deletion (P < 0.001) (Supplementary Figure 4F), females (Supplementary Figure 4G), and male (Supplementary Figure 4H) and poor survival outcomes. Patients with TP53I13 show better prognosis than those with IDH mutations, WHO grades, or 1p/19q codeletion status. Therefore, these results suggest that TP53I13 can be used as a biomarker for predicting glioma and can predict survival outcomes in patients with glioma.



Investigating differentially expressed genes (DEmRNAs, DElncRNAs, and DEmiRNAs)

Based on the above results, glioma patients’ outcomes can be predicted using TP53I13 as a biomarker. In glioma samples, TP53I13 expression appears to be lower than in paracancerous or cancerous tissues. Therefore, we confirmed this conjecture by identifying the DEmRNAs, DElncRNAs, and DEmiRNAs in glioma tissues with high and low TP53I13 expression and adjacent normal tissue using samples from the TCGA database. The threshold for lncRNA was set as |log fold change [FC]| > 0.5, and P < 0.05 was set as a threshold for the miRNA and mRNA. DElncRNA, DEmRNA, and DEmiRNA distribution was shown on a volcano plot (Figures 6A-C). There are 15 genes with differential expression in glioma and normal tissues with high and low levels of TP53I13, as shown by a heatmap. (Figures 6D-F).




Figure 6 | Volcano plots and heatmaps of DElncRNAs, DEmiRNAs, and DEmRNAs in glioma samples with low and high TP53I13 expression levels. The volcano plots illustrate the (A) DElncRNAs, (B) DEmiRNAs, and (C) DEmRNAs. Heatmaps of 15 significant Differentially expressed genes (DEGs) closely correlated with (D) DElncRNAs, (E) DEmiRNAs, and (F) DEmRNAs.





Molecular mechanism and biological function of TP53I13

In order to examine the molecular mechanism of TP53I13 in gliomas as well as its relationship to other genes involved in glioma, the mRNA sequence data retrieved from TCGA database was analyzed using the functional module of LinkedOmics. The volcano plot reveals genes co-expressed with TP53I13 using Pearson correlation (Supplementary Figure 5A). The genes negatively and positively linked to TP5313 are highlighted by dark green and dark red dots, respectively. As shown in Supplementary Figure 5B-C, the heatmap shows the top 50 differentially expressed genes genes that negatively and positively correlated with TP53I13 expression. STRING and GeneMANIA were used to investigate the function of the PPIs with TP53I13 levels in gliomas. Based on PPI network analysis, the top 20 genes that tightly correlated with TP53I13 were identified (Supplementary Figure 5D). Cytoscape was used to analyze the hub genes, and the results revealed a significant correlation between TP53I13 and TP53, TP53BP2, TP53I3, TP53INP1, GADD45B, UFL1, and PROSC (Supplementary Figure 5E). The results show that these top genes were associated with transcriptional dysregulation in cancers. Further, the top 20 TP53I13-interacting proteins were identified using GeneMANIA software, and the proteins tightly interconnected with AP1M2, AP1M1, TBX22, SPSB3, C19orf43, SMARCC22, FABP2, MAPK3, NAALADL1, FZD6, and SCRN2 (Supplementary Figure 5F).

TP53I13’s biological function was analyzed using KEGG and GO pathways enriched in the TCGA dataset. The pathways enriched by TP53I13 were body metabolism, negative regulation of excitatory synapse, cell cycle phase transition, negative regulation of synaptic transmission, regulation of integrin-mediated signaling pathway, protein processing, tumor necrosis factor-mediated signaling pathway, neurotransmitter receptor complex, nucleotide excision repair DNA gap filling, bladder cancer, cytosolic DNA sensing pathway, calcium signaling pathway, DNA replication, ERBB signaling pathway, GnRH signaling pathway, MAPK signaling pathway, p53 signaling pathway, pentose phosphate pathway, and WNT signaling pathway (Figures 7A, B).




Figure 7 | Gene set enrichment analysis was conducted to elucidate the biological function of TP53I13 in glioma. (A) Gene Ontology enrichment analysis. (B) Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis.





Analysis of TP53I13 mutation in gliomas

Tumor-specific mutations cause amino acid substitutions, which leads to mutated “neoantigens” and kill the tumor cells (21). A further examination of the relationship between TP53I13 mutations and the TME was conducted based on the median expression of TP53I13 between high- and low-immunity groups. In Figure 8A, the top 30 TP53I13 expression genes with significant mutations are shown. IDH1 was the top mutated gene in both low- and high-immunity groups and has been previously identified to be involved in tumorigenesis and cancer progression (22). Additionally, the study found that hyperimmune individuals showed more gene mutations than hypoimmune individuals, suggesting that glioma patients have more gene mutations, which are necessary for hyperimmune infiltration. An overview of the mutation profiles in glioma is shown in Figure 8B. As shown in Supplementary Figure 6A, we evaluated the connection between TP53I13 expression and copy number variations (CNVs) using TIMER. The results show that in GBM, the infiltration of DC and CD4+ T cells were lower with chromosome arm-level gain of TP53I13, while in LGG, infiltration of B cells and DC were higher with chromosome arm-level deletion of TP53I13. Different immunological subgroups’ TP53I13 expression was assessed, as seen in Supplementary Figures 6B, C. GBM cells expressed the highest level of TP53I13, while LGG cells expressed the highest level of TP53I13, indicating a better prognosis of glioma. Together these results suggest that TP53I13 expression altered immune activity in the TME.




Figure 8 | (A) Waterfall plot shows the mutation distribution of the top 30 commonly mutated genes. (B) The cohort summary diagram shows the variants distribution by variant type, classification, and SNV category. The bottom (left to right) showcases the mutation burden for each sample (variation classification type). The stacked bar chart reflects the top 10 mutated genes.





Analysis of TP53I13 expression in glioma at the single-cell level

For evaluating the link between the glioma patients and TP53I13 expression at the single-cell level, scTIME and TISCH databases were analyzed. Data retrieved from the scTIME database showed that TP53I13 levels were higher in macrophages than in other cells except those with clonal mutations (Supplementary Figure 6D). Similar results were obtained from the TISCH database. As shown in Supplementary Figure 6E, high TP53I13 expression was observed. Furthermore, TP53I13 was shown to be expressed at higher levels in AC-like malignant cells and malignant cells according to the TSICH database, which further emphasized the malignancy of glioma severity and the necessity to find a biomarker for glioma treatment.



Relationship between tumor immune infiltrating lymphocytes and TP53I13 expression

The proportion of 22 types of immune cells in glioma samples retrieved from CGGA and TCGA databases was sorted and analyzed by CIBERSORT to explore the relationship between TP53I13 expression and tumor immune microenvironment. Analysis conducted on samples retrieved from the TCGA database revealed a significant increase in the proportion of neutrophils, resting memory CD4+ T cells, regulatory T-cells (Tregs), and M2 macrophages in the high-immunity group of glioma patients (Figure 9A). From the CGGA database, regulatory CD8+ T cells, memory B cells, macrophages, plasma cells, and T cells were found to be significantly increased. As a result of the treatment, resting NK cells, resting mast cells, and resting monocytes were all significantly reduced, as were naive CD4+ T cells, resting memory CD4+ T cells, and resting activated mast cells. (Figure 9B).




Figure 9 | Relationships between TP53I13 expression and different tumor immune lymphocytes (A) using the CIBERSORT algorithm on samples obtained from TCGA database, (B) using the CIBERSORT algorithm on samples obtained from CGGA database, (C) using the quanTiseq algorithm on samples obtained from on TCGA database, (D) by using the xCell algorithm on samples obtained from on TCGA database, and (E) by using the TIMER algorithm on samples obtained from on TCGA database. *P < 0.05, **P < 0.01, ***P < 0.001.



An algorithmic approach combining quanTiseq, xCell, and TIMER was employed to determine whether TP53I13 expression correlates with tumor immune lymphocytes. In glioma patients who had high levels of TP53I13 expression, the levels of M2 macrophages increased significantly, according to the quanTiseq algorithm (Figure 9C). The analysis performed using the xCell algorithm shows that the levels of M1 and M2 macrophages, common lymphoid progenitors, CD4+ Th2 cells, and neutrophils decreased in the low-immunity group compared to the high-immunity group (Figure 9D). Further, high-immunity groups showed significant growth in myeloid dendritic cells, neutrophils, macrophages, and CD4+ T cells based on the TIMER algorithm. (Figure 9E). The mIHC results confirm the relationship between TP53I13 and macrophage markers such as (CD68 and CD163), neutrophils (CD66b), and fibroblasts (S100A4) (Figure 10A). Our results reveal a significant positive correlation between TP53I13 expression and macrophages, neutrophils, and fibroblasts. Together, these analyses show that the high levels of macrophages, neutrophils, and fibroblasts in the high-immunity group facilitate tumor migration and development. By comparing the median expression levels of TP53I13 in the samples, two groups were formed. According to the results, CD68+ expression in the low expression group of TP53I13 was lower than that in the high expression group of TP53I13 (Figure 10B). Further, in the TP53I13 low expression group, compared with the TP53I13 high expression group, the number of CD68+CD163+, S100A4, and CD68b+ cells decreased (Figures 10C-E). A high expression level of CD68+ and CD68+CD163+ led to a poor prognosis compared to a low expression level of CD68+ and CD68+CD163+ (Figures 10F, G). However, the prognostic value of CD66b+ was not remarkable (Figure 10H).




Figure 10 | Investigation of correlations between TP53I13 and macrophages, neutrophils, and CAFs markers on samples from Nantong University Affiliated Hospital. (A) mIHC of TP53I13 and different macrophage markers (CD68, CD163), neutrophils marker (CD66b), and CAFs marker (S100A4). (B-E) The relationships between the TP53I13 expression and CD68+, CD68+CD163+, S100A4, and CD66b+. (F-H) Survival analysis of TP53I13 high- and low-expression and CD68+, CD68+CD163+, and CD66b+. *P < 0.05, **P < 0.01.



Further, we investigated the link between immune cell infiltration and the TP53I13 protein expression with radiotherapy status and tumor types in glioma patients using TIMER, CIBERSORT, quanTiseq, and the xCell algorithm. Regardless of the algorithm used, patients who underwent radiotherapy and expressed high TP53I13 levels had a high level of macrophages. It is interesting to note that radiotherapy has the lowest survival rate among patients with high expression levels of TP53I13, which may be associated with the increase in macrophage levels (Figure 5, Supplementary Figure 7).

According to a previous report, checkpoint blockade therapy induced immune cell infiltration in the TME (23). As a result, we explored different genes involved in immune checkpoints in relation to TP53I13 (Supplement Figure 8A). Results showed that major immune checkpoint genes, such as CD44 (R = 0.51), LGALS9 (R = 0.51), LAIR1 (R = 0.51), CD274 (R = 0.39) and TNFRSF14 (R=0.69), are directly related to TP53I13 expression. Immunohistochemical localization shows that TP53I13 significantly correlates with CD274 (Supplementary Figure 8B).

Finally, the AUC values of Siglec15, CTLA-4, PD-L1 and TP53I13 were compared, and the ROC curve was calculated to evaluate whether TP53I13 could predict the immune infiltration of glioma. The results showed that TP53I13 had higher predictive power than other markers (AUC = 0.822, 95%CI = 0.802-0.842) (Supplementary Figures 9A-D).



Knockdown of TP53I13 expression alters with cell migration and invasion, apoptosis, and cell cycle

To investigate the biological function of TP53I13, the U87 and U251 cells were transfected with siRNA-NC and TP53I13-specific siRNAs (si-1, si-2, and si-3). qRT-PCR results reveal that siRNA1 was the most effective in silencing the expression of TP53I13 after 48 h of treatment (Figure 11A). Cell migration and cell cycle were analyzed using the transwell assay and flow cytometry, respectively. TP53I13-siRNA1 transfected U87, and U251 cells showed diminished cell migration and invasion ability and increased apoptosis rate (Figures 11B-E). In cells knocked down for TP53I13, the percentage of S phase cells increased and the percentage of G2/M phase cells decreased (Figures 11F-I). Glioma cells with knockdown of TP53I13 expression exhibit reduced migration and invasion abilities and induce apoptosis.




Figure 11 | TP53I13 promotes glioma cell migration and invasion in vitro. (A) Validation of siRNA interference efficiency in knockdown of TP53I13 expression in U87 and U251 cells by RT-PCR (B-E) Transwell migration and invasion assay in the NC and TP53I13 knockdown cells, and quantitative analysis of cell numbers. (F-I) Flow cytometry was performed on the NC and TP53I13 knockdown cells to detect the cell cycle and to quantify the percentage of cells at different phases. **p ≤ 0.01, *** p ≤ 0.001 and ***p ≤ 0.0001. ns, no significance.






Discussion

Gliomas are classified as low- and high-grade by the World Health Organization (WHO). It is a lethal disease with a high CNV burden (24, 25). Moreover, it has been shown that focal lesions of the glioma (LGG or GBM) have a widespread influence, even in the hemisphere contralateral to the site of the lesion (26). The complicated pathogenesis of gliomas, the invasive behavior of this tumor, and the vigorous proliferative ability of the cells makes it challenging to treat gliomas (27, 28). Currently, few treatment choices are available for glioma patients, like surgery, radiation, and chemotherapy (29, 30). However, due to the low success rate, the outcomes of these therapies remain frustrating (31). Targeted immunotherapy is a novel treatment strategy for the treatment of glioma patients (32). Thus, identifying a new targeted therapeutic approach for treating glioma is the need of the hour.

When overexpressed, tumor protein p53 inducible protein 13 (TP53I13) plays a tumor suppressor role, thereby preventing tumor development. Genotoxic stressors, such as Adriamycin and/or UV irradiation, that increase the levels of TP53I13 in a p53/TP53-dependent manner (33). In a previous study, downregulation of TP53I13 was reported in adipose tissue in obese individuals, and its expression was reported in monocytes, macrophages, and adipocytes (34). In the presence of N4-Eru, elevated levels of TP53I13 serve as a tumor suppressor in T-cell acute lymphoblastic leukemia (ALL) cells (Jurkat cells) (12). During the early stages of AD, the methylation levels of TP53I13 are high (35). A significant role in the TME might be played by the upregulation of TP53I13 expression in cancer and infiltrating immune cells.

In our study, data on glioma patients were retrieved from the CGGC and TCGA databases. It has been shown that TP53I13 expression is higher in patients with gliomas. A significant correlation was found between TP53I13 expression and tumor grade, chemotherapy, co-delete of 1p and 19q, and IDH mutations. These results indicate that a high TP53I13 expression could be malignant to the cells. These results were further verified by immunohistochemistry and were consistent with bioinformatics analysis. Glioma patients’ TP53I13 levels were directly associated with prognosis in Multivariate Cox analysis. TP53I13 expression is also associated with a poor prognosis in glioma patients. Therefore, it would seem that TP53I13 could be a potential therapeutic target and prognostic biomarker for gliomas. Further, the mechanism associated with TP53I13 in glioma was investigated. It is likely that the levels of TP53I13 expression may vary in tumor and paracancerous groups; hence, we explored this conjecture by analyzing DElncRNAs, DEmRNAs, and DEmiRNAs in glioma samples. Further, the top 50 genes which negatively and positively correlated with TP53I13 were identified and analyzed to understand the molecular mechanisms associated with TP53I13. PPI analysis revealed that significant correlation betweenTP53 and TP53I13. A previous study reported that TP53 mutations and polymorphisms are frequently reported in glioma patients, which is the primary risk factor in gliomas (36). Studies have shown that knockdown of TP53-induced regulator of glycolysis and apoptosis (TIGAR) sensitizes glioma cells to hypoxia, irradiation, and temozolomide (37, 38). In mIDH1 mouse glioma model experiments, after TP53 and ATRX knockdown, glioma patients with IDH1-R132H exhibited increased DNA damage repair (DDR) activity and enhanced genomic stability (39). Therefore, a combination of DDR inhibitors and radiation might be an innovative therapeutic approach for treating glioma patients harboring IDH1-R132H mutation along with ATRX and TP53 inactivating mutations (39). Studies have shown that mutations in TP53 mutation are reported in 94% of glioma patients harboring IDH-mutation and patients without 1p/19q codeletion and is an important regulator of glioma progression (40, 41). Considering the close correlation between TP53I13 and TP53, it is likely that TP53I13 knockdown may increase sensitivity to radiation in glioma patients and decrease the progression of the disease. As a result of these results, TP53I13 may become a potential biomarker for the treatment of gliomas in the future.

In order to determine how TP53I13 functions biologically, GO and KEGG pathway enrichment analyses were performed. The results showed a correlation betweenTP53I13 and different signaling pathways, including cell cycle, DNA replication, protein processing, and body metabolism. High TP53I13 expression enriched pathways like ERBB, GNRH, MAPK, P53, and WNT signaling pathways, bladder cancer, tumor necrosis factor-mediated signaling pathway, embryonic development, and normal adult homeostasis (42). A study revealed that dysregulation of WNT signaling pathways is associated with the pathogenesis of various diseases (43). Therefore, high TP53I13 expression resulting in poor survival outcomes may be associated with these pathways. In order to better understand TP53I13’s role in the pathogenesis of gliomas, in vivo models need to be validated. There is evidence that immune infiltration and tumor microenvironment play a crucial role in cancer pathogenesis (44, 45). Therefore, CIBERSORT, quanTiseq, xCell, and TIMER were used to investigate the correlation between TP53I13 expression and various tumor-infiltrating immune cells. The results show a positive correlation between TP53I13 and macrophages. Macrophages are one of the most important immune cells and alter the tumor immune microenvironment by modulating the levels of angiogenic and immunosuppressive molecules (46, 47). Cytokines and chemokines secreted by macrophages are essential in regulating the immune response in complex tissue microenvironment (48). A study reports that glioma cells can activate macrophages, which further activates tumor cells (49). Additionally, macrophages account for 30–50% of the glioma TME and are found mainly in glioma cells (50). Further, macrophages aid in the growth of glioma cells, which could explain the increased malignancy and poor prognosis of high-grade glioma patients (51). In addition to macrophages, neutrophils also play a role in tumor metastasis (3). In addition, neutrophils express high Ki-67 levels, which is a marker for the degree of malignancy of the tumors. Using bioinformatics analysis and mIHC, we have identified a close relationship between TP53I13 and neutrophils. Further TP53I13 expression was higher in neutrophils, which suggests that TP53I13 may promote tumor metastasis via neutrophils. Mounting evidence has shown that cancer-associated fibroblasts (CAFs) produce a variety of cytokines or metabolic products with immunogenic functions that can promote tumor invasion and metastasis. CAF can also alter the tumor matrix, which forms a barrier for drug or therapeutic immune cell infiltration, thereby preventing the influx of drugs and immune cells into the tumor tissue, which reduces the tumor therapeutic effect (52). S100A4 is a CAF marker; hence, the correlation between TP53I13 and S100A4 was evaluated. The results show an increased TP53I13 expression in CAF, elevated TP53I13 expression in CAF may be associated with poor prognostic outcomes in glioma patients.

This study has enhanced the understanding of TP53I13 expression in glioma patients. However, the study had several limitations. First, the sample size is one of the limitations of our study. The number of samples used was few; hence, additional samples are required to validate our findings further. Second, TP53I13 functions and mechanisms in glioma need to be further explored.

Nevertheless, with a detailed bioinformatics analysis, we laid the groundwork for understanding TP53I13’s role in gliomas. Additionally, Nantong’s Affiliated Hospital provided 183 patient samples, confirming TP53I13’s prognostic value in predicting glioma outcomes. As a result, our research becomes even more valuable.



Conclusion

Finally, highTP53I13 expression was observed in glioma patients, resulting in poor prognosis and immune infiltration. In conclusion, our results suggest that TP53I13 may serve as a potential diagnostic and treatment biomarker for glioma patients.
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Chronic active Epstein–Barr virus infection (CAEBV) is common in Asian countries and characterized by recurrent or persistent infectious mononucleosis-like symptoms. Here, we describe a rare case of CAEBV-associated generalized myositis with extranodal NK/T-cell lymphoma, who initially presented with swelling and muscle soreness in the extremities and was diagnosed as polymyositis at the initial stage. CAEBV-associated generalized myositis is different from polymyositis and other types of myositis. Furthermore, it is prone to lymphoma with poor prognosis.
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Introduction

Chronic active Epstein–Barr virus EBV infection (CAEBV) is a rare disease of progressive lymphocyte proliferation associated with chronic activation of EBV. Its incidence is closely related to elevated EBV DNA levels and EBV-positive lymphocytes infiltrating organs, which occur more often in children and young adults. Adults are less common and have a worse prognosis (1). Studies show that the median age of CAEBV is 19 years in the United States, and there is a lower median age in Asia at about 11.3 years. Its clinical manifestations vary by region: Lymphadenopathy and splenomegaly are the most common in the United States, whereas fever and hepatitis are the most common in Asia. Some patients can progress to life-threatening complications, such as hemophagocytic syndrome, interstitial pneumonia, and malignant lymphoma (2–4). However, CAEBV-related generalized myositis with systemic muscle involvement as the main manifestation is very rare and mainly reported in case reports, has a very poor prognosis, and lacks specific treatment measures (5). CAEBV-related generalized myositis disease is easy to misdiagnose as idiopathic myositis (polymyositis or dermatomyositis) in the early stage, but the pathogenesis, treatment response, and prognosis of the two are completely different. Here, we report one patient with a CAEBV-associated generalized myositis complicated with extranodal NK/T cell lymphoma. There is only one case report of CAEBV-associated generalized myositis combined with T cell lymphoma, whereas cases combined with extranodal NK/T cell lymphoma have not been reported yet. This paper aims to strengthen clinicians’ further understanding of such diseases through the report of this patient.



Case report

A 66-year-old woman was admitted to our hospital in August 2020 due to “low fever, limb muscle soreness, weakness, and slowly progressive weight loss (about 10 kg). Laboratory tests showed that that the blood routine was basically normal, creatine kinase (CK): 847U/L, lactate dehydrogenase (LDH): 386 U/L, and EBV-IgG and IgA were positive in peripheral blood. EB virus DNA was 7.43*103 copies/mL, and 16 myositis profile antibodies (including JO-1) were negative. MRI and electromyography tests indicated myositis. The detailed laboratory and auxiliary findings are shown in Table 1. Therefore, the diagnosis of this patient was (1) polymyositis and (2) EBV infection. After glucocorticoids, tacrolimus immunotherapy, and ganciclovir antiviral therapy, the patient’s body temperature returned to normal, but muscle pain persisted. Later, the myalgia was aggravated by glucocorticoid reduction, and the symptoms improved after glucocorticoid addition (40 mg) and replacement of the immunosuppressant (cyclophosphamide). After 9 months, the patient developed fever again, generalized muscle pain, and new skin erythema of the lower extremities. The laboratory tests showed CK 444 U/L and LDH 402 U/L. The peripheral serum EBV DNA was 5.88*105 copies/mL, EBV-T DNA was 1.20*105 copies/mL, EBV-B DNA was 4.66*104 copies/mL, EBV-NK DNA was 1.73*105 copies/mL. Further PET-CT showed systemic myositis with inflammatory hyperplasia of lymph nodes in the right neck, bilateral axilla, and bilateral inguinal areas. Bone marrow routine and biopsy showed no obvious abnormality. Muscle biopsy showed that the patient had striated muscle tissue with chronic inflammatory cell infiltration, and immunohistochemistry confirmed inflammatory myopathy, and the immunophenotypes were CD4(-), CD8(-), CD68(-), CD20 (weakly positive), MxA(-), MAC(+), p62(-), Dysferlin(+), R-Dystrophin(+) (Figure 1). Skin biopsy confirmed that the patient’s lesions were consistent with EBV(+) lymphoproliferative disease. According to the categorization of CAEBV: the case belonged to CAEBV infection involving skin expression (A2-A3). At this point, the patient was clearly diagnosed with CAEBV-associated generalized myositis infection. After the patient refused allogeneic hematopoietic stem cell transplantation, high-dose glucocorticoid (40 mg) combined with thalidomide (100 mg) therapy was given, and the patient’s symptoms were relieved, but the symptoms were still repeated. Unfortunately, after 4 months, the patient developed general weakness (especially in both lower extremities), and multiple subcutaneous painful nodules (maximum 4*3 cm) of different sizes developed all over the body with clear borders and different textures of hardness and softness (Figure 2). Further subcutaneous nodule pathological biopsy was confirmed as extranodal NK/T cell lymphoma (nasal type), and the immunophenotype was CD20(-), CD3(+), CD5(-), CD10(-), CD79a(-), CD43(+), Ki-67 (80%+), CD56 (diffuse strong +), EBER (partial +), GranzymeB(+), TIA-1(+), P53 (partial +), CD2(+), CD4(-), CD7(+), CD8(-), CD21(-), CD23(-), Bcl-2(-), Bcl-6(-), and C-Myc (20%+) (Figure 3). The patient’s peripheral serum EBV DNA was 5.88*105 copies/mL, EBV-T DNA was 1.20*105 copies/mL, EBV-B DNA was 4.66*104 copies/mL, and EBV-NK DNA was 1.73*105 copies/mL. Therefore, the final diagnosis of the patient was CAEBV infection–related generalized myositis combined with extranodal NK/T cell lymphoma (nasal type). P-GEMOX (gemcitabine 1.1 d1, oxaliplatin 130 mg d1, peaspargase 3750 U d2) regimen chemotherapy was given once, and PD-1 was added later, but the nodule progressively enlarged with severe pain, and the patient died within 4 months.


Table 1 | The clinical characteristics and treatment of patients with three hospitalizations.






Figure 1 | Muscle biopsy pathology analysis demonstrated chronic inflammatory cell infiltration in striated muscle tissue (HE stains, original magnification×100) (A). MGT (B). MHC-I (small peribundle fiber upregulation) (C). MAC-1 (non-necrotic fiber membrane deposition) (D).






Figure 2 | Subcutaneous limb nodules of both lower limbs (A). Subcutaneous limb nodules of right upper limb (B).






Figure 3 | The pathology of subcutaneous nodule biopsy suggested diffuse infiltration of heterogeneous lymphoid cells in adipose tissue (HE stains, original magnifcation×100) (A). CD56 (diffuse and strong +) (B). TIA-1 (+) (C). Granzyme B (+) (D). EBER (partial +) (E). CD3 (+) (F).





Discussion

EBV virus is a double-stranded DNA herpes virus. More than 99% of normal people has been infected with EBV and persisted for life in the form of asymptomatic infection (6). Very few patients have primary infection or EBV reactivation, which develops into an incurable disease. Some of these patients develop fulminant mononucleosis and die within days or weeks of onset. Some develop a chronic course with persistent or intermittent infectious mononucleosis-like symptoms and tissue infiltration by EBV-positive T, NK, or lesser B cells (7). This chronic course of EBV infection was first proposed by Irelizier et al. in 1978, and was defined as CAEBV disease (8). The clinical manifestations are usually fever, persistent lymphadenopathy, splenomegaly, and EBV hepatitis.

Internationally, clinicians believe that the diagnosis of CAEBV is currently defined by the following criteria: (1) infectious mononucleosis-like disease persists for more than 3 months; (2) elevated EBV DNA titers in peripheral blood; (3) EBV infiltrated tissues of organs; (4) tissue infiltration of EBV viral protein and/or RNA; and (5) exclusion of underlying malignancy, autoimmune disease, or immunodeficiency (9, 10). Clinically, CAEBV often accumulates in the liver, spleen, and lymph nodes and presents an indolent clinical course, but once the disease progresses, it is life-threatening. At present, some scholars have proposed CAEBV with muscle infiltration as the main clinical manifestation based on case reports. Up to now, seven articles and nine cases of CAEBV with myositis as the main clinical manifestation have been reported, involving cardiac mechanism, eye muscle, skeletal muscle, etc. Only one patient was stable after rituximab treatment, and the rest died (5, 11–16). These cases suggest that CAEBV with myositis as the clinical manifestation has a worse prognosis. CAEBV with myositis as the main clinical manifestation is more rare, and it still lacks sufficient recognition and attention in clinical practice. It is often misdiagnosed as idiopathic myositis (polymyositis/dermatomyositis), but the prognosis is very different. Polymyositis is dominated by CD8+ T cells, whereas dermatomyositis is dominated by CD4+ T cells (17) and has a characteristic myositis antibody profile. However, in CAEBV patients, the clonal proliferation of EBV-infected cells is mainly CD4-, CD8- T cells (double negative T cells). CAEBV patients often die from fulminant infection, interstitial pneumonia, hemophagocytic syndrome, or progression to lymphoma. At present, only one case of CAEBV with systemic myositis as the clinical manifestation progressing to lymphoma was reported from Japanese scholars, and this patient progressed to T-cell lymphoma (5). The case we report here had fever, a common clinical symptom of CAEBV, and systemic myositis as the main clinical symptom. The difference, however, is that the patient we report had infiltrated T, B, and NK cells and eventually developed extranodal NK/T-cell lymphoma. This is unprecedented in previous case reports. The same as other case reports is that the patient in this case did not respond well to conventional hormones or antiviral and immunosuppressive agents. Even though this patient underwent chemotherapy and PD-1 immunotherapy in the lymphoma stage, it still failed to prevent the deterioration of the disease. This suggests that we should be highly vigilant in the clinical practice of patients with EBV activation.

Currently, there is no specific treatment for CAEBV-related generalized myositis, which may be closely related to its unknown etiology. CAEBV patients often have impaired T and NK cell activity (18, 19), and there are certain geographical differences. In Europe and the United States, EBV often infiltrates B cells, whereas in Southeast Asia, more T cells or NK cells infiltrate, and the prognosis is also worse (3, 4). Some scholars also suggest that the pathogenesis of CAEBV is related to gene mutation, and find that compound heterozygous mutation in perforin (20), MAGT1 mutation (21), and GATA2 mutation (22) may be involved in the occurrence of CAEBV. Somatic DDX3X mutation was found in NK or T cell infiltrating CAEBV (2). So far, no single gene mutation has been verified in CAEBV. Some scholars propose that allogeneic hematopoietic stem cell transplantation is the only way to cure CAEBV (23), but there is insufficient evidence. There are case reports of disease stabilized with rituximab, but adequate clinical support is also lacking (14). CAEBV-related generalized myositis is a clinically rare and intractable disease, and more clinical data and basic research are needed.

This paper reports the first case of CAEBV-related generalized myositis that progressed to extranodal NK/T cell lymphoma, suggesting that CAEBV-related generalized myositis is easily misdiagnosed as idiopathic myositis at first and can involve all T, NK, and B cells. It can rapidly progress to NT/T cell lymphoma and has an extremely poor prognosis. For such patients, early screening and early pathological biopsy are recommended, and physicians should be alert to the possibility of rapid progression to lymphoma. However, the report of this case also has limitations. Neither T nor NK cell activity was detected nor whole-genome sequencing performed, which failed to provide relevant information. It also suggests that we encounter such diseases, and gene sequencing may offer a deeper understanding of the disease.
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Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer-related deaths globally, posing a serious threat to human health and life (1, 2). Until now, mainstay curative treatments have included surgical resection, liver transplantation, radiofrequency ablation (RFA), transarterial chemoembolization (TACE), transarterial embolization (TAE), and systemic treatment with molecular-targeted agents. Despite great breakthroughs, current treatments have failed to deliver satisfactory outcomes, with an overall 5-year survival rate of only 12% (3–5). This failure is attributed to high heterogeneity, frequent recurrence, and drug resistance of HCC (6, 7). In addition, owing to the lack of reliable biomarkers, most patients progress to the intermediate and advanced stages of HCC at the time of diagnosis, regrettably missing the optimal treatment window. Therefore, deepening the understanding of the molecular mechanism to develop new therapeutic strategies and identifying biomarkers that can be effectively monitored at an early-stage is crucial in the fight against HCC.

The development of HCC is a multifactorial process. In recent years, immunotherapy has attracted extensive attention and has emerged as the next-generation therapy since the approval of immune checkpoint inhibitors (ICIs). However, studies have shown that its efficacy is closely related to the state of the tumor immune microenvironment (TIME). Essentially, anti-tumor immune efficacy mainly depends on the status and function of the immune cells in the TIME. Thus, it is necessary to elucidate the immune microenvironment of HCC to select appropriate ICIs (7). Angiogenesis not only delivers oxygen and nutrients to the growing tumor but also transports tumor cells to the metastatic site (8). Epithelial-mesenchymal transition (EMT) is a complex phenotypic event that directly affects changes in the characteristic features of HCC, such as occurrence, migration, invasion, metastasis, and even drug resistance (9, 10). Following primary tumor growth, angiogenesis and EMT, tumors are more prone to invasion and metastasis, which plays a key role in limiting patient outcomes overall. Therefore, there is an urgent need to explore invasive-metastatic cascade response of HCC (11, 12). Dysregulation of tumor cell metabolic activity may impair anti-tumor response, whereas metabolic reprogramming secures energy and substrates for the tumor (13, 14). Even more disastrous is drug resistance to chemotherapeutic agents in HCC. According to reports, mortality due to drug resistance accounts for more than 90% of cancer-specific mortality (15). In short, the above-mentioned issues are key barriers to the successful treatment of HCC.

Non-coding RNAs (ncRNAs) are endogenous RNAs accounting for the majority (98%) of the transcribed genome. They were once regarded as “dark matter” because of their lack of ability to encode proteins. After years of exploration, they have been found to act as important signaling molecules in the regulation of key cellular pathways (16–18). They are abundant and stable and mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Approximately 30% of genes in the human body are regulated by miRNAs, which are the most abundant and studied group of ncRNAs (19). miRNAs regulate gene expression by binding to DNA, RNA, or proteins, which further regulates various biological functions (20). LncRNAs are linear RNAs with a transcript length of > 200 nucleotides, they have more diverse modes of action than miRNAs as the roles of spatial and temporal lncRNAs in cell physiology and pathology have gradually become clear. They can act as signals, decoys, scaffolds, or guides. Even the same kind of lncRNAs can function via different mechanisms (21–23). Emerging evidence indicates that circRNAs are novel ncRNAs that are related to many pathological diseases. In contrast to the standard splicing of linear RNAs, circRNAs are closed-loop structures produced by back-splicing (24). CircRNAs exhibit high abundance, diversity, sequence conservation among species, stability, tissue specificity, and tumor stage-dependent characteristics (25, 26). They exert their functions by binding to RNA-binding proteins, sponging miRNAs, translating into peptides or proteins, regulating gene transcription, and competing with canonical splicing (26, 27). To date, studies have found that these functional molecules mediate intercellular communication, which plays a non-negligible role in the TIME, angiogenesis, EMT, invasion, metastasis, metabolism, and drug resistance (14, 28–30). ncRNAs can also be detected as circulating molecules in the serum/plasma/urine, indicating that they are of great significance in early diagnosis and prognosis. In addition, small-molecule modulators that target ncRNAs are of great use. Hence, ncRNAs hold great promise as potential biomarkers or therapeutic targets (31). Herein, we summarize the latest findings on ncRNAs (miRNAs, lncRNAs, and circRNAs) that affect various aspects of HCC, including TIME, angiogenesis, EMT, invasion, metastasis, metabolism, and drug resistance. The potential uses of ncRNAs in cancer diagnosis/prognosis and the therapeutic activity of small-molecule modulators that selectively target ncRNAs are also summarized.



Regulatory mechanisms of ncRNAs in HCC


Regulation of TIME

Immune cells are complex, heterogeneous cells with different developmental stages and functional subpopulations. ncRNAs present in the TIME can regulate immune cells and influence the development of tumor immune responses. The molecular mechanisms by which ncRNAs regulate immune cellular subpopulations in TIME and tumor immune response development are described in detail in this section (Figure 1).




Figure 1 | Regulation of ncRNAs to tumor immune microenvironment.




T cells


CD8+ T cells

CD8+ T cells are key players that perform anti-tumor immune functions in the TIME and characteristic markers of good prognosis in HCC. They mediate target cell apoptosis by secreting perforin and granzyme or by expressing Fas ligand (FasL) (32, 33). Single-cell RNA sequencing indicated that the effector CD8+ T cells in advanced HCC patients were depleted and weakened in cytotoxicity compared to those in early-stage of HCC, which may lead to impaired anti-tumor function (34). Unfortunately, high expression of activation/depletion markers (notably PD1, TIM3, and LAG3) on the surface of CD8+ T cells shifts high-density cytotoxic T cells towards immune exclusion (35). This phenomenon raises a prerequisite condition for the application of immune checkpoints, that is, how to convert “cold tumors” into “hot tumors”, which is also a pressing issue to be addressed. Some studies have found that targeting ncRNAs can alter CD8+ T cell activity and restore anti-tumor immune function in the tumor microenvironment (TME). Since then, considerable research has been conducted that ncRNAs regulate the anti-tumor effects of CD8+ T cells.

Currently, multiple lncRNA biomarkers obtained by invasive procedures show a great capability in mediating the interaction between tumor cells and CD8+ T cells, which has generated great research interest. Tim-3 is a negatively regulated T-cell-dependent immune responses’ immune checkpoint that serves as a perfect target for next-generation immunotherapy owing to its precision and specificity. A previous study reported that Lnc-Tim3, which is highly expressed in tumor-infiltrating CD8+ T cells, specifically bond to Tim-3 and blocked the interaction with Bat3. This phenomenon inhibits downstream Lck/NFAT1/AP-1 signal transduction, thereby exacerbating CD8+ T lymphocyte exhaustion (36). Other clinical studies found that the expression of NEAT1 was upregulated in peripheral blood mononuclear cells (PBMCs) from patients with HCC and could interfere with Tim-3 expression by binding to miR-155. Downregulation of NEAT1 inhibits apoptosis in CD8+ T cell and enhances cytolytic activity, thereby inhibiting tumor growth (37).

CircMET is a widely studied circRNA that is aberrantly expressed in HCC tumors (38). Mice subcutaneously implanted with Hep1-6-circMET had a smaller tumor burden and a higher density of tumor-infiltrating CD8+ T cells than those implanted with Hep1-6-control cell lines. This indicates that circMET is detrimental to CD8+ T cell infiltration, and in-depth studies revealed that it achieved its goal through the miR-30-5p/Snail/dipeptidyl peptidase-4 (DPP4) axis. Based on the combined clinical approach of DPP4 inhibitor and anti-PD1 blocking immunotherapy, it further validated that the DPP4 inhibitor sitagliptin can enhance CD8+ T cell trafficking and increase infiltration levels, thereby improving the efficacy of PD1 blockade immunotherapy, supporting the clinical application of combining DPP4 inhibitors with anti-PD1 blocking immunotherapy.



CD4+ T cells

CD4+ T cells should not be underestimated because they perform multiple functions in the adaptive immune system. They are not only able to kill tumor cells directly (cytotoxic CD4+ T cells) but are also well-known for their indirect role in the TIME as T helper (Th) cells. They can coordinate the enhancement of other anti-tumor effector cell functions, such as CD8+ T cell function and macrophage phagocytosis. Differentiation into various subpopulations, such as Th1, Th2, Th17, and regulatory T (Treg) cells, is induced in different cytokine environments, with different on anti-tumor effects (39, 40). Since the study of Treg cells requires an in-depth review of available information, it was singled out for discussion. ncRNAs are an integral part of gene expression networks, which dynamically regulate CD4+ T cells’ differentiation and plasticity. Dysregulation of certain ncRNAs in cancer cells can increase the levels of immunosuppressive factors, which in turn contributes to immune privilege (41).

Interestingly, lncRNA AC099850.3 exerts oncogenic effects via the PRR11/PI3K/Akt signaling pathway. An immune infiltration analysis revealed that T follicular helper cells and CD4+ memory T cells were activated while CD8+ T cells and monocytes were suppressed when AC099850.3 was up-regulated, explaining the oncogenicity of AC099850.3 (42). LncRNA MAIT is mainly expressed in CD4+ T cells from HCC tumor tissues and paracancerous tissues. It is not only positively correlated with the level of CD4+ T cell infiltration, but also with immunosuppressive molecules, such as PD-1, PD-L1, and CTLA4 (43). miR-26b-5p targeting proviral integrations of moloney virus 2 (PIM2) can affect the secretion of tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6), and interleukin-2 (IL-2) in CD4+ T cells (44). Th17 cells mediate pro-inflammatory functions by secreting cytokines (such as IL-17, IL-21, and L-22), and they participate in many organ-specific autoimmune diseases. Furthermore, ncRNA functions are being actively explored in Th17 cells in the TIME. miR-132 expression is much higher in CD4 IL-17+ cells than in CD4 IL-17- cells. miR-132 mediates Th17 cell differentiation by promoting IL-22 expression, which in turn enhances hepatic stellate cell (HSC) activation and induces tumor migration (45).



Regulatory T cells (tregs)

Tregs, a regulatory subpopulation of infiltrating CD4+ T cells, are recognized as a major suppressive component of the immune system. They are extremely important for the formation of an immunosuppressive microenvironment in HCC (46, 47). Tregs are critical in maintaining self-tolerance and immune homeostasis and are co-opted by tumor cells to evade immune surveillance. They are up-regulated in tumor tissues and peripheral blood from patients with HCC or mice than in healthy individuals (48). High FOXP3 expression on the cell surface is a distinctive feature of these cells (47, 49). Several studies have reported that the biological behavior and function of Tregs are partially dependent on the regulation of ncRNAs. ncRNAs affect the expression of immune-related cytokines and growth factors (e.g., IL-2) by regulating the secretion of chemokines (e.g., CCL22), which further affects the function and differentiation of Tregs that accumulate in the TIME (50, 51). Several studies have provided evidence suggesting that miR-34a, miR-15a, miR-16-1, lnc-EGFR, and lncRNA FENDRR play a crucial role in affecting Tregs in the HCC microenvironment.

CCL22 is a chemokine required for Tregs to exceed CD8+ T cells. As early as 2012, miR-34a strongly supported the idea that ncRNAs affect the immunosuppressive function of TIME by regulating the secretion of CCL22. Yang et al. found that elevated activity of tumor growth factor-β (TGF-β) suppressed miR-34a expression and dose-dependently enhanced production of CCL22 in PVTT-1 cells. This blocks the strong binding of CCL2 to CCR4 on the surface of Tregs, resulting in attenuated Treg cell recruitment and immune escape suppression (52). Similarly, miR-15a and miR-16-1 directly target NF-κB to impair CCL22 transcription. Subsequently, activated NF-κB/CCL22 signaling attenuates the hepatic recruitment of Tregs. Such biological activity also upregulates CD80 expression in Kupfer cells (KCs) and CD28 in Tregs, facilitating communication between KCs and Tregs (53). A study confirmed the existence of a forward-feedback loop lnc-EGFR-EGFR-NF-AT1/AP1-lnc-EGFR in Tregs as a facilitating mechanism for HCC (54). In addition, loss of GADD45B can upregulate the number of Tregs. However, the tumor suppressor lncRNA FENDRR targets GADD45B as a miR-423-5p sponge to suppress the secretion of immune-related factors TGF-β, vascular endothelial growth factor (VEGF), IL-2, and IL-10, thereby suppressing Treg-mediated immune escape (55).




B cells

B lymphocytes are derived from pluripotent stem cells in the bone marrow. They play a dual role in tumor immunity by supporting or suppressing anti-tumor immunity (56). B cells may act as antigen-presenting cells to enhance humoral and cellular responses to tumors. However, the strong prognosis of tumor-infiltrating B cells (TIL-Bs) in cancer reject this idea. Therefore, it is difficult to determine the specific role of B cells (57). One claim is that miRNAs may influence the differentiation of the regulatory B cells (Bregs). Similar to Tregs, Bregs produce high levels of IL-10 and suppress the host immune response, thereby exerting a pro-tumor effect (58). An increased frequency of CD19+ Tim-1 cells and tumor growth have been observed in young miR-15a/16-/- mice transplanted with HCC cells. This phenomenon depends on the efficiency of microRNA cluster of miR-15a/16 that enhances STAT3 activity. Then STAT3 activation contributes to IL-10 production by CD19 Tim-1 cells, and finally promotes Bregs’ activity (59). Pseudogenes are a special type of lncRNAs. The expression of pseudogenes RP11-424C20.2 correlates with the level of tumor-infiltrating immunocytes, including B cells (60). It linked high levels of B cells with worse outcomes for thymoma (THYM) patients. Necessarily, further studies are needed to explore how other ncRNAs exert regulatory effects on B cells and their specific mechanisms.



Natural killer cells

NK cells can exert their effects as an essential component of innate immunity even without prior stimulation, which constitutes the first line of host immunological defense against cancer cell invasion. NK cells lead to target cell apoptosis by secreting perforin and granzyme, expressing FasL, and mediating antibody-dependent cellular cytotoxicity (ADCC) (61, 62). Changes in the phenotypes and functions of NK cells have been detected both in patients with aggressive human liver cancer and transgenic mouse models (63, 64). Single-cell RNA sequencing and flow cytometry of innate lymphoid cells (ILCs) revealed that NK cells lose their cytotoxic profile as they transition into NK-like-ILC3 cells (65). Several therapies of NK cell-mediated ADCC have been evaluated in clinical trials. Undoubtedly, NK cells are promising candidates for the development of advanced cancer immunotherapy. Evidence collected so far suggested that multiple ncRNAs mediate interactions between NK and HCC cells.

CD69 is an NK cell activation marker that mediates NK cell cytotoxicity. When transferred to NK cells, miR-92b causes CD69 downregulation and cytotoxic damage (66). Chen et al. found that miR-137, miR-149-5p, and miR-561-5p are associated with the innate immune response, especially miR-561-5p. Additional evidence has shown some differences in chemotaxis and function among different NK cell subsets. miR-561-5p attenuated the anti-tumor response by downregulating CX3CL1 messenger RNA (mRNA) to reduce the function of CX3CR1 NK cells (67).

Recent studies have found that the LINC00638 is mainly enriched in eight signaling pathways, in which NK cell-mediated cytotoxic pathway is highly correlated with immune infiltration. In HCC tumor tissues, overexpression of ULBP1 can recruit NK cells to the tumor and leads to immune escape when accompanied by PD-L1 expression. Mechanistically, LINC00638 can achieve this goal by acting as a sponge for miR-4732-3p and eliminating the inhibition of ULBP1 expression (68).

Notably, attention has gradually been focused on circRNAs in HCC immunity regulation. One of the most well-known examples is circUHRF1 (hsa_circ_0048677). Highly expressed circUHRF1 sponges miR-449c-5p to upregulate the expression of the downstream target gene, T-cell immunoglobulin mucin 3 (TIM-3), thereby reducing the secretion of TNF-α and IFN-γ, which ultimately promote the immune escape of HCC cells (69). Moreover, the downregulation of hsa_circ_0007456 reduces NK cell susceptibility and attenuates their binding by the downstream miR-6852-3p/ICAM-1 axis, thus promoting the immune escape of HCC cells (70).



Tumor-associated macrophages

Macrophages are key mediators of tissue homeostasis. They can directly kill tumor cells by phagocytizing massive pathogens (71). Additionally, they are vital antigen-presenting cells that activate endogenous anti-tumor T cell responses. They are highly plastic and can be classified into two subtypes: classical pro-inflammatory activation (M1-like macrophages) and alternative anti-inflammatory activation (M2-like macrophages) (72). The tumor recruits them into the TIME and induces the formation of TAMs, which are crucial for promoting the immunosuppressive microenvironment, tumor cell invasion, angiogenic switch, and immune escape of malignant cells.

Previous studies have shown roles of miRNAs in M1/M2 macrophage polarization, which mediates the onset and growth of HCC. Zhao et al. reported that the CpG island deletion (ΔCpG) of the miR-144/miR-451a promoter induces chromatin conformational remodeling. It increases the expression of miR-144/miR-451a while decreasing the expression of hepatocyte growth factor (HGF) and macrophage migration inhibitory factor (MIF), conferring the paracrine activation of macrophage M1-like repolarization (73).

Many studies have revealed the mechanism of action of lncRNAs in TAM polarization regulation. Overexpression of PART1 promotes macrophage M2-like polarization by affecting the miR-372-3p/TLR4 axis (74). Similarly, promoting competitive adsorption of miR-147a by lncRNA HMMR-AS1 in a hypoxic environment affected ARID3A-mediated macrophage polarization (75). In addition, it has been found that LINC00662, lncRNA TUC339, lncRNA MALAT1, PCED1B-AS1, lnc-Ma301, and lncRNA cox-2 can promote the differentiation of TAMs into the M2 phenotype and inhibit the anti-tumor response (76–81).

Other important studies have confirmed the crucial role of circRNAs in orchestrating macrophage polarization in HCC progression. The use of macrophage-specific CD39-knockout mice showed that circTMEM181 upregulates CD39 expression in macrophages and CD73 expression in HCC cells. The cooperation between CD39 and CD73 triggers eATP-adenosine activation, thereby promoting immunosuppression (82). Hsa_circ_0110102 may act as a sponge for miR-580-5p to regulate target gene function. It regulates the secretion of CCL2 into the TME by decreasing PPARα expression. The release of pro-inflammatory cytokines from macrophages was inhibited by modulating the COX-2/PGE2 pathway. Thus, hsa_circ_0074854 may be a potential prognostic predictor or therapeutic target for HCC (83). Besides, the knockdown of hsa_circ_0074854 can inhibit M2 macrophage polarization both in vitro and in vivo. Mechanistically, the downregulation of hsa_circ_0074854 inhibits macrophage M2 polarization by interacting with human antigen R (HuR), thereby inhibiting the migration and invasion of HCC cells (84).



Other immune cells

In addition to the above-mentioned immune cells, ncRNAs exert regulatory effects on other immune cells, such as tumor-associated neutrophils (TANs) and dendritic cells (DCs). TAN is the most abundant circulating leukocyte in humans that mediates tumor growth and progression. It has two distinct phenotypes-N1 (anti-tumor) and N2 (pro-tumor), exhibiting functional heterogeneity in response to different stimuli (85). Therefore, it is a potent modulator of TIME. The deregulation of miR-223 may play a role in a range of liver diseases by affecting neutrophil infiltration. In addition, miR-223 expression positively correlates with the differentiation of granulocyte-monocyte progenitor cells into granulocytes (86). As antigen-presenting cells, DCs can induce primary immune responses (87). Wu pointed out that lncRNA ASB16-AS1 negatively correlated with dendritic cells and neutrophils as validated in five HCC cell lines (88). The mechanism by which ncRNAs regulate immune cells in the TIME is still in its infancy and needs to be supported by further studies.




Regulation of tumor angiogenesis

In the tumor growth environment, there is a dynamic imbalance between pro- and anti-angiogenic factors. As a hypervascular tumor, HCC tends to induce the secretion of proangiogenic factors such as VEGF, angiopoietin-1 (ANGPT1), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). This phenomenon contributes to angiogenesis, enabling tumors to receive adequate nutritional support and expel metabolic waste and carbon dioxide, leading to continuous tumor growth and progression (8, 89). Overexpression of VEGF contributes to vascular network development, endothelial cell proliferation, and tube formation (90, 91). Current anti-angiogenesis drugs, such as bevacizumab and ramucirumab, mostly target the VEGF signaling pathways. Accumulating evidence suggests that ncRNAs regulate tumor progression by interacting with VEGF in HCC. A previous study showed that miR-195 is negatively correlated with angiogenesis which directly inhibits VEGF levels and VEGF receptor 2 signaling in endothelial cells (92). Another study showed that the lncRNA PAARH positively correlated with vascular invasion in HCC tissues, upregulated VEGF expression and microvascular density. PAARH facilitated the recruitment of HIF-1α to the VEGF promoter, which caused high VEGF expression (93). In addition to VEGF, ncRNAs interact with other growth factors. By targeting ANGPT1, miR-375 suppresses proangiogenic activity and miR-3682-3p weakens angiogenesis both affecting tumor progression (94, 95).

ncRNAs promote angiogenesis through crosstalk with cancer-associated endothelial cells (ECs), affecting tube formation (30). It has been shown that miR-210 targets SMAD4 and STAT6 to stimulate EC tubulogenesis in vitro and angiogenesis in vivo. STAT6 alleviates the inhibitory effects of IL-13 on human coronary artery EC migration and tube formation; however, the mechanism of action of SMAD4 on ECs remains unknown (96). In contrast, ncRNAs inhibit the permeability of ECs to mediate cancer cell proliferation, which are potential targets for anti-angiogenic therapies. For example, miR-638 can disrupt endothelial tight junctions and enhance the permeability of FITC-dextran by downregulating VE-cadherin and ZO-1 expression in non-cancerous regions of the liver (97). Another study has explained the specific mechanism by which circRNA-100,338 regulates endothelial permeability. CircRNA-100,338 affects cell permeability and vasculogenic mimicry (VM) capability by interacting with NOVA2 and inhibits HCC growth by binding to IFN-α (98).

Collectively, ncRNAs can regulate angiogenic activity through different pathways (Figure 2). ncRNAs may be emerging targets for anti-angiogenic therapies. The clinical benefits of multi-kinase inhibitors (such as Sorafenib and Lenvatinib) that target VEGF and its receptors have not been as good as initially expected, perhaps partly because of the off-target effect of anti-tumor agents (99). Synergistic biological effects exist between antiangiogenic agents and ICIs, and their toxicity profiles do not overlap (99). Based on these characteristics, some experts have focused on promoting the ncRNA-targeting combinations of ICI inhibitors with Sorafenib or other anti-angiogenic drugs, which could contribute through the aforementioned mechanism.




Figure 2 | Regulatory mechanisms of ncRNAs to tumor angiogenesis.





Regulation of EMT

EMT is indispensable at all life stages from embryonic development to death, and it is essential for the acquisition of the invasive and metastatic characteristics of malignant tumors. Featured with reversibility, plasticity, and heterogeneity, EMT can alter multiple phenotypic changes including the loss of cell polarity, dissolution of intracellular junctions, and basement membrane detachment (9, 10). Epithelioid cell markers, such as β-catenin, E-cadherin, ZO-1, and claudin-1, were negatively correlated with the EMT process, while mesenchymal-like cell markers, such as Snail, twist, vimentin, N-cadherin, ZEB, and α-SMA, were positively correlated with the EMT process. Besides, certain signaling pathways facilitate the EMT process, such as the Wnt/β-catenin signaling pathway. An increasing number of studies have shown that ncRNAs act as mediators affecting the EMT process in tumor cells (28).

ZO-1 regulates cell material transport and maintains epithelial polarity. Circ-0004277 competitively binds to HuR and blocks the binding of ZO-1 and HuR, thereby stimulating EMT progression and promoting HCC (100). LncRNA TP53TG1 is a tumor suppressor gene that negatively correlates with N-calmodulin and vimentin, and positively correlates with E-cadherin and claudin-1 at the protein and RNA levels (101). Snail acts as a major player in EMT, whereas HOTAIR negatively regulates the EMT process (102). The results confirmed that HOTAIR-sbid, a HOTAIR deletion mutant, can impair the interaction between Snail and EZH2, thus affecting the capacity of Snail to convey EZH2 to specific epithelial target sites (i.e., HNF4α, E-calmodulin, and HNF1α). The design of such dominant-negative mutants opens new perspectives for highly specific future RNA therapeutics to counteract tumor progression (103). A recent investigation showed that the tumor-suppressive function of circPABPC1 is manifested by promoting the degradation of β1 integrin (ITGB1), a pivotal member of the integrin family, thereby reducing cell adhesion between cells and the extracellular matrix (104). In contrast, lncRNA TP53TG1 interacts with peroxiredoxin-4 (PRDX4) to promote its ubiquitin-mediated degradation, subsequently downregulating the levels of proteins involved in the Wnt/β-catenin pathway, thereby slowing down the EMT process (101). Notably, a growing body of information is available on different ncRNAs, such as miR-1246, lncRNA DLGAP1-AS1, and circMTO1, which regulate the Wnt/β-catenin pathway to affect the EMT process (105, 106). In addition, miR-92a-3p inhibits the PTEN/Akt/Snail pathway, miR-612 inhibits the Sp1/Nanog signaling pathway, and lncRNA LL22NC03-N14H11.1 activates the H-RAS/MAPK pathway to induce mitochondrial fission, all of which can explain the key role of ncRNAs in EMT progression (107–109).

Furthermore, scientists have elucidated how ncRNAs regulate the EMT process in HCC from some new perspectives. In addition to the Sp1/Nanog signaling pathway mentioned above, Liu et al. found that miR-612 regulates the EMT process through direct downstream target HADHA-mediated lipid reprogramming. Mechanistically, miR-612 affects invadopodia formation through HADHA-mediated alterations in the β-oxidation of fatty acids, cholesterol biosynthesis, and cell membrane fluidity (110). Evidence also indicates that cell cycle-related genes are involved in the regulation of ncRNAs in EMT; for example, miR-186 induces apoptosis by directly targeting cyclin-dependent kinase 6 (CDK6) (111). In conclusion, ncRNAs are key factors regulating the EMT process in HCC (Figure 3); however, their regulatory functions and underlying mechanisms remain to be elucidated.




Figure 3 | Regulatory mechanisms of ncRNAs to epithelial-mesenchymal transition.





Regulation of tumor invasion and metastasis

Tumor invasion and metastasis are complex processes of multi-stage evolution and hallmarks of malignancy, and can lead to a low survival rate in patients with distal metastasis. Even more problematic is that the current clinical situation is not conducive for detecting dormant cancer cells and micro-metastasis. This further exacerbates the difficulty of treatment, which requires a deeper understanding of tumor invasive and metastatic mechanisms. The processes remodeling the extracellular microenvironment that ncRNA-induced, such as angiogenesis and EMT, are niches for tumor metastasis. Those have been described in detail in the previous two sections. Further, malignant cells’ ability to distant movement is a favorable niche for tumor metastasis (112). Research on ncRNAs in the complex invasive-metastatic cascade response has provided new insights into the molecular mechanisms involved in hepatocellular carcinoma.

Upregulation of miR-1251-5p in tissues of HCC patients is significantly associated with clinical stage, high tumor lymph node metastasis (TNM), and poor prognosis. miR-1251-5p overexpression promoted cell invasion in vitro, whereas miR-1251-5p silencing inhibited HCC cell invasion in vivo. A-kinase anchor protein 12 (AKAP12) exerts anti-tumor effects by acting as a scaffolding protein in signal transduction. The luciferase report showed that miR-1251-5p could directly target AKAP12 for oncogenic effects, and this mechanism was validated by AKAP12 knockdown rescuing the miR-1251-5p knockdown-attenuated cell invasion (113). miRNAs have been studied for a long time and there is now a wealth of data on their broad and critical role in tumor metastasis through target genes and signaling pathways, such as miR-195, miR-122, miR-103a-3p (92, 114, 115). LncRNAs regulate the expression of target genes by mediating miRNA activity. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a widely studied lncRNA in cancer and is important for cancer-related pathway regulation. The luciferase reporter assay confirmed that MALAT1 negatively regulates miR-200a expression and is involved in the proliferation and invasion of Hep3B cells under hypoxia (116). It is well established that lncRNA is a key regulator of tumorigenesis. Liu’s research cascaded the exact correlation of this lncRNA to hepatocyte invasion and metastasis and revealing downstream regulatory pathways. The potential miRNA binding site of lncRNA BACE1-AS, miR-377-3p, was identified by a raw letter prediction and experimentally confirmed method. Further, the analysis showed that miR-377-3p negatively regulates CELF1, an RNA-binding protein that is a relative marker of malignancy (117). MMP9, a member of the zinc-dependent endopeptidase family, is a vital role in metastasis, especially in degrading ECM. Mouse xenograft models and mouse lung metastasis models confirmed the pro-tumor growth and lung metastasis role of circUBAP2. It negatively regulates HCC by acting as a competing endogenous RNAs(ceRNAs) for miR-194-3p and inhibiting MMP9 (118). In conclusion, complex biochemical and biological alterations in the tumor cells themselves and the associated stroma contribute to this aggressive phenotype. The involvement of ncRNAs in this process also expands the hope for finding new regulatory key nodes and therapeutic strategies for metastatic tumors.



Regulation of tumor metabolism

Vasculature-restricted glucose and oxygen delivery is insufficient to supply uncontrolled proliferation of cancer cells. Therefore, cancer cells undergo metabolic reprogramming as a survival strategy. Cancer cells generate energy through aerobic glycolysis and lactic acid fermentation in a process rather than the TCA cycle to meet the energy demand of rapid cancer cell proliferation. This process is known as the Warburg effect. In this way, additional substrates and energy requirements can be provided for the biosynthesis of macromolecules (14, 119, 120). Several ncRNAs have been shown to rewire glycolytic networks (14). Zheng et al. found that LINC01554 negatively regulates the key rate-limiting enzyme pyruvate kinase isozyme M2 (PKM2) in the aerobic glycolysis pathway of HCC. However, whether this mechanism is due to ubiquitin-mediated degradation or as a scaffold remains to be further investigated. In contrast, LINC01554 inhibits the PI3K/Akt/mTOR signaling pathway, which is a central signaling pathway coordinating glucose uptake, glycogen synthesis, and tumorigenesis (121). Consistent with LINC01554, circRPN2 also facilitates glycolytic reprogramming through the Akt/mTOR pathway (122). In addition, it inhibits aerobic glycolysis by regulating the miR-183-5p/FOXO1 axis. Moreover, studies have verified that lncRNA TUG1, lncRNA RAET1K, and circFBLIM1 play a role in metabolic reprogramming by regulating glycolysis (123–125).

In addition to their roles in glycolytic metabolism, miR-21 and miR-122 play central roles in hepatic lipid metabolism and cholesterol synthesis relying on a complex lipogenic transcriptional network (126, 127). miR-21 regulates lipid metabolism through at least three pathophysiological pathways in a zebrafish model. One of the approaches is that miR-21 promotes hepatic lipid accumulation via the PTS (PI3K/Akt, TGF-β/SMAD3, STAT3) signaling networks. As for miR-122, free fatty acid (FFA) increases miR-122 secretion and transportation by activating retinoic acid-related orphan receptor alpha (ROR-α). In turn, miR-122 reduces the mRNAs levels of genes (Agpat1 and Dgat1) involved in triglyceride synthesis.

Amino acid metabolic remodeling is another powerful proponent of cancer cell malignant activities. Mechanism can be attributed to the interaction between lncRNA and rate-limiting enzyme of amino acid synthesis pathway. Chen et al. found that LINC01234 bound to the promoter of ASS1 to inhibit its transcriptional activation, thereafter leading to increased aspartate levels and activation of rapamycin pathway targets (128). As the understanding of tumor cell metabolism in TME continues to advance, people have discovered multiple strategies to target tumor metabolism. Currently, fatty acid synthesis inhibitors (FAS), especially targeting fatty acid synthase (FASN), have been focused on as potential strategies for cancer treatment. The molecular mechanisms by which the ncRNAs mentioned in this section affecting HCC metabolism are summarized in Figure 4.




Figure 4 | Regulatory mechanisms of ncRNAs to tumor metabolism.





Regulation of drug resistance

For unresectable HCC, the main treatment approaches include chemotherapy (e.g., Cisplatin and 5-Fluorouracil) and molecular targeted therapies (e.g., multi-kinase inhibitors, monoclonal antibodies, and ICIs). Multidrug resistance (MDR) is inevitable in tumor cells with their rapid development. Statistics indicate that only 30% of HCC patients show an increase in overall survival (OS) by 3 months after treatment with Sorafenib (129). Moreover, Sorafenib resistance was observed within 6 months of treatment, with adverse events of varying degrees, such as gastrointestinal reactions, hand-foot syndrome, and hypertension (130, 131). To further understand the emerging function and mechanism axis of ncRNAs in HCC, chemoresistance has become a hot research topic.

Aberrantly expressed miRNAs are universal features of HCC. From the perspective of clinical medication (Sorafenib, 5-Fluorouracil, Cisplatin), researchers have systematically elaborated on miRNAs modulating HCC drug resistance as well as the underlying mechanisms (132). Glucose metabolism has been implicated in the maintenance of Sorafenib resistance in HCC cells (133). Activation of the PI3K/Akt signaling pathway enhances glycolysis, and the expression of downstream glycolysis genes cause reactions in Sorafenib-resistant HCC cells. Studies verified that both miR-30a-5p and miR-32-5p were abnormally expressed in drug-resistant tissues, and may be targets for reversing Sorafenib resistance in HCC. miR-30a-5p induces MDR to activate the PI3K/Akt signaling pathway by upregulating CLCF1, while miR-32-5p activates the PI3K/Akt signaling pathway by downregulating PTEN (133, 134). Intravenous injection of miR-199-modified vehicle suppress mTOR signaling (135, 136). Overactivation of the mTOR signaling pathway promotes tumorigenesis and tumor progression, which significantly sensitizes HCC cells to Doxycycline (137).

Autophagy plays a dual role in drug resistance. Few lncRNAs influence Sorafenib-induced chemoresistance and sensitivity through autophagy mechanism. A previous study showed that Rutin treatment reduced the number of autophagosomes in Sorafenib-resistant cells, while reducing the expression of the lncRNA BANCR (BANCR knockdown increases the sensitivity of Sorafenib-resistant cells to Sorafenib). The lncRNA BANCR inhibits autophagy through the BANCR/miRNA-590-5P/OLR1 axis (138). Another study reported that the lncRNA CRNDE has the opposite effect as it enhances the stability of ATG4B primarily by isolating miR-543, thereby triggering autophagy (139). The autophagy mechanism of drug resistance is regulated not only by lncRNAs but also by circRNAs. Li et al. identified 968 dysregulated circRNAs in Cisplatin-resistant HCC tissues and reported that circARNT2 competes with miR-155-5p to upregulate PDK1-induced autophagy, ultimately enhancing the sensitivity of HCC cells to Cisplatin (140).

In addition to autophagy, circRNAs function through many other mechanisms. For instance, circMED27, circMEMO1, circFOXM1, circFN1, and circRNA-SORE act as ceRNAs targeting corresponding miRNAs to affect the drug resistance or sensitivity of HCC cells to chemotherapy drugs (140–144). Existing studies have confirmed the molecular mechanisms associated with resistance to the first-line chemotherapy drug, Oxaliplatin (OXA), in which cancer stem cells (CSCs) play an important role (145, 146). The lncRNA DUBR is highly expressed in liver CSCs and functions as one of the factors that promote OXA resistance. Liu et al. found that the specificity protein 1 (SP1)-induced lncRNA DUBR upregulates CIP2A expression via the E2F1 protein, promoting stemness and OXA resistance. They also identified another mechanism by which lncRNA DUBR acts as a ceRNA to upregulate CIP2A, which in turn stabilizes the E2F1 protein, thereby activating the Notch1 signaling pathway (147). Additionally, circMRPS35-encoding peptide is significantly induced by chemotherapeutic agents and promotes Cisplatin resistance, suggesting that circMRPS35 may be a possible mediator of Cisplatin resistance (148). Interestingly, emerging evidence suggests that ncRNAs are involved in the resistance to immune checkpoint blockers. A newly reported example is that where circUHRF1 can impair the function of NK cells and induce an exhausted phenotype that cannot secrete IFN-γ and TNF-α. Hence, circUHRF1 could be regarded as a therapeutic target for anti-PD1 immunotherapy and drug resistance (69). In conclusion, clarifying the mechanisms of drug resistance (Figure 5) and targeting these dysregulated ncRNAs would be a fatal step forward in HCC treatment.




Figure 5 | Regulatory mechanisms of ncRNAs to drug resistance.






Clinical significance of ncRNAs in HCC

Most HCC patients are often diagnosed too late or have a high recurrence rate, that is why exploring predictive/prognostic biomarkers in early-stage of HCC is relevant for physicians to develop precise treatment strategies (149). Evaluation of tissues from liver biopsies and surgical specimens are both invasive approaches that too painful for the patient. α-fetoprotein (AFP) is the “gold standard” but with suboptimal sensitivity and specificity of only 39-64% and 76-91% (150, 151). Moreover, AFP appears as an unanticipated false positive that is elevated in some patients with chronic liver diseases (e.g., cirrhosis, viral hepatitis, etc.). More reliable biomarkers are urgently needed to monitor and diagnose HCC and improve patient prognosis. The secretion of circulating ncRNAs has been identified in biological fluids (e.g., serum, plasma, and urine) of patients (the process is shown in Figure 6), where changes in levels or expression indicate cancer status. Owing to their abundance, accessibility, non-invasiveness, easy reproducibility, and disease specificity, ncRNAs are considered ideal non-invasive diagnostic biomarkers for HCC (152). As a non-invasive liquid biopsy, ncRNAs have entered the spotlight for the development of diagnostic markers in oncology. Several ncRNAs in body fluids have been the most promising biomarkers to date. This section summarizes the main diagnostic/prognostic markers currently under investigation.




Figure 6 | Procedure of ncRNAs as non-invasive biomarkers.




ncRNAs act as diagnostic biomarkers


miRNAs

In recent years, several research groups have evaluated the potential of miRNAs as diagnostic, prognostic, and therapeutic responsiveness biomarkers for liver disease using clinical trial databases or clinical trials. In addition, the clinical utility of circulating miRNAs in patients with HCC has been explored, such as miR-21, miR-122, miR-96, miR-194/192, and miR-484; more information is summarized in Table 1. The plasma oncogenic factor miR-21 has been explored as a biochemical marker for HCC considering its important role in HCC progression. The potential of miR-21 as a biomarker for HCV patients complicated by HCC was explored by collecting trials registered in the clinicaltrial.gov database, enrolling a total of 100 participants aged 31-67 years in Egypt (NCT05449847). miR-21 can differentiate between uncomplicated and complicated HCV patients. It has been suggested that multiple miRNAs or a combination of miRNAs with the already widely used AFP may be more desirable diagnostic modalities. For instance, the combination of miR-21, miR-122, and miR-96 in serum showed a much higher diagnostic accuracy in the cirrhotic group than AFP or miR-21 alone (153). A combination of miRNAs has shown a higher area under the curve (AUC) value of 0.924. Thus, miR-21 was not only superior to AFP alone, but also showed better differentiation in combination with AFP. Studies have confirmed that miR-221 is also upregulated in patients with HCC. The AUC of the combination with AFP for diagnosis is 0.945, sensitivity is 93.33%, specificity is 77.78%, accuracy is 90.9%, and thus the combination has a better performance than individual detection (164). Clinical trials of miR-221 have also been conducted, and details can be found by querying NCT02928627. Shohda identified liver-specific miR-484 as an early diagnostic marker for HCC. miR-484 has shown great sensitivity in distinguishing HCC from non-HCC, with an AUC of 0.67. Moreover, miR-484 signatured across various stages of HCV-mediated hepatic disease progression, revealing promising performance in staging, prognosis, and early diagnosis (157).


Table 1 | Diagnostic biomarkers of ncRNAs for HCC.





LncRNAs

LncRNA UCA1 and lncRNA WRAP53 act as natural p53 single transcripts and are effective in regulating the expression of corresponding sense genes. The role of lncRNA UCA1 in bladder cancer and breast cancer has been previously identified, while the role for HCC remains elusive. In a study, both lncRNAs were found to be highly expressed in the sera of HCV patients with HCC, with AUC-ROC of 0.76 and 0.87, respectively. Interestingly, the combination of lncRNA UCA1, lncRNA WRAP53, and AFP resulted in a high diagnostic sensitivity of 100%, strongly confirming the diagnostic efficacy of the combination of miRNA and AFP (176). To validate these two lncRNAs as potential biomarkers for HCC diagnosis, a clinical trial has been published, enrolling a total of 80 participants. This work is nearing completion and we will wait to see the results of the validation (NCT05088811). In another study, Huang discussed the diagnostic efficacy of eight lncRNAs alone and in combination with AFP, in which the combination of LINC00152 and AFP in serum had the highest accuracy in predicting HCC. The AUC and sensitivity of LINC00152 alone are limited and correspond to an increase when used in combination with AFP. Next, researchers have investigated the diagnostic ability of the combinations of various lncRNAs and AFP, and the combination of LINC00152, UCA1, and AFP has shown the most reliable predictive ability, with an AUC of 0.912, sensitivity of 82.9%, and specificity of 88.2% (168). The expression of SENP3-EIF4A1 in patients with HCC was significantly lower than that in healthy controls, with an AUC of 0.8028 obtained by ROC analysis. Simultaneously, its expression is associated with tumor size, tumor stage, and lymph node metastasis (169). The ROC curve showed that LINC00853 exhibited excellent discriminatory ability in the diagnosis of all-stage HCC (AUC = 0.934, 95% CI = 0.887-0.966). On comparing the diagnostic performance with that of AFP with a 14-fold cut off value, LINC00853 showed sensitivity, specificity, and positive predictive values of 93.75%, 89.77%, and 76.92% respectively. These parameters all far exceed the sensitivity of 9.38%, specificity of 72.73%, and positive predictive value of 11.11% exhibited by AFP for diagnosis of early-stage HCC (170). The combination of lncRNA PVT1, uc002mbe.2, and AFP also far exceeded either the lncRNA or AFP assessed alone. Surprisingly, this combination distinguished patients with HCC from healthy controls, regardless of whether the patients were infected with HBV (177).



CircRNAs

Compared to miRNA and lncRNA, the number of studies on circRNA as a diagnostic biomarker is relatively few. Plasma circSMARCA5 can differentiate liver disease progression with high accuracy (AUC = 0.938, sensitivity of 0.853, specificity of 0.711). More excitingly, it has significant implications in diagnosing HCC patients with low AFP levels, especially for those with serum levels below 200 ng/ml, and is a better serum predictor for patients with poorly diagnosed AFP (184). Circ_104075 is highly expressed in patients with HCC and levels decreased after curative surgery. It is positively correlated with stage of HCC and was able to predict the development of disease. It has an AUC of 0.973, sensitivity of 96.0%, and specificity of 98.3%, surpassing the classical protein biomarkers AFP, α-fetoprotein-L3 (AFP-L3), and des-carboxy-prothrombin (DCP) (187). Likewise, circRNA applies to this combination. Circ-CDYL, the most significantly upregulated circRNA in a ncRNA network from a validated tumor tissue, interacts with the target genes encoding hepatoma-derived growth factor (HDGF) and hypoxia-inducible factor asparagine hydroxylase (HIF1AN). These proteins are highly and specifically expressed in early-stage of HCC. Compared with early-stage HCC patients, the combination of Circ-CDYL, HDGF, and HIF1AN increased the AUC, sensitivity, and specificity to 0.73, 75.36%, and 66.67% respectively. These results confirmed that the diagnostic efficiency of circ-CDYL or circ-CDYL in combination with HDGF and HIF1AN was higher than that of AFP alone, however this does not apply to advanced HCC (180). Along with the proliferation of research on circRNAs, circRNAs that can be used as diagnostic biomarkers also containing circTMEM45A, hsa_circ_0051443, hsa_circ_0000976, hsa_circ_0007750, and hsa_circ_0139897 (181–183).




ncRNAs act as prognostic biomarkers

HCC is known for its high recurrence rate and poor prognosis. In addition to their diagnostic values, circulating ncRNAs have been identified as valid prognostic markers. When changes occur in the human body, the altered levels of these ncRNAs can be used as a feature and a “beacon” for cancer prognosis. Studies on the application of ncRNAs as prognostic biomarkers in hepatocellular carcinoma are summarized in Table 2.


Table 2 | Prognostic biomarkers of ncRNAs for HCC.




miRNAs

Differentially expressed serum/plasma miRNAs are helpful in the prognosis of HCC. Circulating miR-21 has long been shown to be an oncogenic factor, with its high serum levels predicting poor prognosis. Extensive studies have associated it with poor survival, high levels of recurrence, and an increased risk of disease progression. According to Lee’s study, miR-21 not only correlates with OS and progression-free survival (PFS), but also relates to multiple prognostic factors such as tumor, nodes, and metastases (TNM) stage, T stage, and portal vein thrombosis (149) (188). When using the TNM stage system, miR-21 expression was higher in stages III and IV than in stages I and II; when using the BCLC staging system, miR-21 expression was higher in late BCLC stages C-D than in early BCLC stages 0-B (149). Another study showed that elevated miR-484 in serum could predict HCV-induced liver lesion progression and is strongly associated with shorter OS and PFS (189). In addition, increased levels of miR-122 in serum, predict a longer survival rate (196). By testing blood samples from 50 each of HCC patients, cirrhotic patients and healthy volunteers, miR-122 was found to be less expressed in HCC patients, while miR-21 and miR-96 were opposite. The expression of all three affected the survival time of patients. Interestingly, the combination of the three was better than each miRNA alone in predicting the survival time of patients (153). Unlike the majority of reports published, miR-21 were measured in whole blood samples rather than in serum or plasma in Pelizzaro’s study (191). In a study, a KM survival analysis showed that high expression of miR-4454 and miR-4530 was significantly associated with improved OS (193). The above evidence confirms that miRNAs are potential prognostic markers of HCC.



LncRNAs

LncRNA MVIH, a microvascular invasion-associated lncRNA, is highly expressed in HCC. Sheng et al. first identified the relationship between up-regulated lncRNA MVIH expression and specific clinicopathological characteristics. Kaplan-Meier’s analyses of correlations between lncRNA MVIH expression and RFS and OS of 215 HCC patients after hepatectomy indicated that lncRNA MVIH is an independent risk factor for RFS and OS (200). The expression of lncRNA X91348 in patients with HCC was significantly lower than that in healthy individuals. A total of 107 HCC patients and 82 age- and sex-matched healthy volunteers were included in this study. Clinicopathological characteristics such as tumor size, HBsAg, and Child-Pugh could be observed influence the expression of X91348. The relationship between X91348 expression and survival was assessed after 5 years of follow-up. A median follow-up rate of 31.02 ± 15.11 months for patients with HCC was obtained, and the OS of patients with high X91348 expression was longer than that for patients with low expression. In conclusion, X91348 has a satisfactory prognostic ability (199). LINC00853 serves not only as a diagnostic biomarker but also as a prognostic marker in this cohort. High LINC00853 expression predicted lower OS in modified Union for International Cancer Control (mUICC) stage II and was independent of other stages of HCC (170). High expression of HOTTIP in the blood is an independent prognostic factor for tumor recurrence after liver transplantation, suggesting a short OS (204). Higher serum levels of circulating lncRNA-ATB could be associated with OS, PFS, TNM stage, tumor size, C-reactive protein (CRP), T stage, and portal vein thrombosis (149, 195). Moreover, a variety of lncRNAs have been investigated in Table 2.



CircRNAs

Stably expressed in the plasma, hsa_cic_0005397 has an intact closed-loop structure. According to a survival analysis based on follow-up data, hsa_cic_0005397 may serve as an independent prognostic marker for OS, as evidenced by the positive correlation between tumor size and TNM stage (178). Regarding circRNAs, the high expression of circUHRF1 in the plasma is associated with large tumor size and high microvascular invasion, which indicates the potential of circUHRF1 in predicting poor prognosis (69). Clinically, high expression of circ-FOXP1 and Circ-ZEB1.33 in serum is strongly associated with large tumors, advanced TNM, and poor prognosis (207, 209). In vitro experiments have also confirmed that circ-ZEB1.33 and circETFA affect tumor cell proliferation by regulating the cell cycle, likely serving as a novel prognostic marker (206). Circ_0000437 expression was positively correlated with TNM classification, differentiation degree, tumor size, and Barcelona Clinic Liver Cancer (BCLC) stage; hsa_circ_0003998 expression positively correlated with serum AFP level, tumor diameter, and microvascular invasion, whereas hsa_circ_0064428 expression was negatively correlated with patient’s survival, tumor size and metastasis. To date, fewer circRNAs derived from plasma or serum have been used as prognostic markers compared with those obtained from tissues. In summary, the prognostic information for circRNAs derived from body fluids remains to be explored.

In summary, ncRNAs can be valuable biomarkers for the diagnosis and prognosis of HCC. However, the current problem is that studies about ncRNAs are scarce as diagnostic and prognostic biomarkers (especially those derived from blood and urine) (149). The heterogeneity of tumors in different populations is a significant challenge for their application. Therefore, future multicenter and large-scale diagnostic/prognostic nested case–control studies are required to validate their utility. Fortunately, institutions have begun to validate the potential of certain ncRNAs as markers clinically, such as miR-21, miR-221, lncRNA UCA1, and lncRNA WRAP53 in the clinical trials NCT05449847, NCT02928627, NCT05088811 mentioned above. Although some trials are not yet completed, these are “milestones” for ncRNAs as clinical biomarkers for HCC. It is also believed that more hospitals, research institutions and companies will be involved in the exploration and development of clinical biomarkers.




Methods for detecting ncRNAs in clinical samples

Detecting tumors in their early stage is a long-standing goal of researchers. In the past few years, the study of ncRNAs in body fluids as potential biomarkers has grown exponentially. However, no ncRNAs have yet been able to be used clinically to detect hepatocellular carcinogenesis and predict prognosis. The limitations of circulating ncRNA measurement techniques are the main reason for this dilemma. There are several main assays available, corresponding to different advantages and limitations, to detect miRNA as an example: (1) qRT-RCR has the advantage of being widely available and highly sensitive, but has the disadvantage of having several biological and technical limitations. First, it is limited to quantifying only a defined set of miRNAs and cannot be used for high-throughput analysis. Second, because of the low abundance in biofluids, genomic DNA contamination needs to be removed prior to the reverse transcription step (210, 211). (2) Assessing the relative number of miRNAs by comparing the fluorescence intensity emitted by microarrays with hundreds of thousands of probes with labeled miRNAs has the advantage of high throughput, but the resulting disadvantage of a fixed range and the inability to detect new unannotated miRNAs. Therefore, this is only suitable for preliminary screening (212, 213). (3) Next Generation Sequencing (NGS) based on deep sequencing to detect circulating miRNAs not only overcomes the shortcomings of microarrays that can only detect known miRNAs, but also greatly increases in the detection order of magnitude. The cost of sequencing is reduced, while more information can be harvested. However, bioinformatics expertise is required for interpretation, and the technology is expensive with long turnaround time (214, 215). For ncRNAs, firstly their short sequences, showing higher levels of homology pose a significant challenge for accurate identification. Secondly, the low abundance predicts that the detection needs to span four orders of magnitude dynamic range with high sensitivity and accuracy requirements. Then, different detection methods correspond to different strengths and weaknesses, requiring researchers to break through and validate with newer studies. Notably, further efforts are required in this field.




Therapeutic potential of ncRNAs in HCC

Protein-like targets with stable structures and conformations have occupied an absolute leadership position in human diseases as mainstream targets for drug development (216). However, less than 2% of RNAs are translated into proteins, and most proteins are “non-druggable” (217, 218). With the elucidation of the mechanisms by which ncRNAs affect diseases, the feasibility of targeting RNA continues to be demonstrated. ncRNA can regulate signaling pathways and affect different enzymes and genes. Having such a large and fine regulatory mechanism, ncRNAs are therefore at the core of a multi-target regulatory network. Data show that representative small-molecule drugs, such as Bisphenol-A, Mitoxantrone, and Enoxacin, act against different cancers by targeting ncRNAs, thus providing new insights for drug development (216).

As shadow pioneers of ncRNAs, many small-molecule modulators that target miRNAs have been found to exhibit therapeutic activity against HCC (shown in Figure 7). Several small-molecule modulators that block miRNA biogenesis by directly binding to Drosha/Dicer-binding sites in pri/pre-miRNAs have been identified. For example, Douglas reported the first small-molecule modulator of miR-122 (the most abundant miRNA in the liver), demonstrating that small-molecule modulators of miRNA function have therapeutic potential. They found that two small-molecule inhibitors (NSC 158959 and NSC 5476) accelerated the processing and maturation of pri-miR-122 to miR-122 and were able to reduce hepatitis C virus replication (219). miR-525 confers invasive properties to HCC cells, while 5′-azido-neomycin B binds the Drosha processing site in pre-miR-525 to inhibit the production of mature miR-525 and salvage the expression of ZNF395 (220). Shi et al. screened AC1MMYR2, a small-molecule inhibitor of miR-21, using a high-throughput approach. They found that it blocks miR-21 maturation. AC1MMYR2 can reverse EMT and inhibit tumor growth, invasion, and metastasis without causing significant tissue cytotoxicity (221). Similarly, phenyl oxazole derivatives CIB-3b, a regulator of miR-21 biogenesis, interferes with TRBP2 to induce dissociation from Ago2 and Dicer (222).




Figure 7 | Small-molecule modulators exhibiting therapeutic activity against HCC that target miRNAs.



Many natural products and their derivatives act as novel pathways for cancer therapy by specifically targeting ncRNAs (223). Gomisin M1 is a natural dibenzocyclooctadiene lignan isolated from Schisandra chinensis. Its derivatives are thought to be novel TRBP2 modulators that promote the binding of TRBP to Dicer and regulate miR-497-5p, miR-146a-5p, and miR-10b-5p maturation, thereby inhibiting HCC cell proliferation, migration, and invasion (224). Solamargine, a natural alkaloid extracted from Solanaceae plants, downregulates the expression of lncRNA HOTTIP and lncRNA TUG1 and subsequently upregulates the expression of miR-4726-5p that directly targets MUC1. The combination of Solamargine and Sorafenib significantly showed a significantly synergetic effect on MUC1 protein expression, providing a potential strategy for HCC treatment (225). Moreover, Solamargine can induce apoptosis and autophagy in HCC cells through the LIF/miR-192-5p/CYR61/Akt signaling pathway or by stimulating the TIME (226). Sanguinarine is a potent activator of miR-16 expressing wild-type or mutated p53. In Zhang’s research, Sanguinarine activated miR-16-2 expression by increasing p53 occupancy on the miR-16-2 promoter and decreased the expression of miR-16 target genes Bcl-2 and cyclin D1. This effect was validated by anti-miR-16 inhibitor treatment silencing (223).

In addition, we aimed to elucidate the potential mechanisms underlying the anti-cancer properties of various natural active compounds derived from traditional Chinese herbal medicines from the perspective of epigenetic modifications. Notoginsenoside R1 reduces miR-21 expression and subsequently inhibits the PI3K/Akt pathway, thereby exerting anti-HCC activity (227). Oroxin B, a flavonoid monomer compound in the traditional Chinese medicine Oroxylum indicum (L.) Vent has a same role (228). Tanshinone IIA may induce hepatoma cell death by downregulating miR-30b transcription and subsequently upregulating PTPN11 levels, which in turn stimulates the SHP2 pathway (229).

In conclusion, RNA-targeted small-molecule modulators have been emerging for almost 20 years, but the FDA has not yet approved miRNA therapies for HCC (230). It is true that miRNAs, which are the pioneers of ncRNAs, still less for lncRNAs and circRNAs. For small-molecule modulators targeting ncRNAs, the feasibility of their therapeutic application in HCC has been proven, but there is still a long way to go before they can become drugs. Their development is facing several hurdles, such as, first, identify specific RNA targets and binding sites and elucidating their mechanisms of action. These challenges all require the development of new design strategies (high-throughput screening, small-molecule microarray screening, structure-based designing, phenotype-based screening, etc.) to screen ncRNAs (216). Second, multi-targeting of endogenous RNAs may be risky for a therapeutic process, and the resulting off-target effects need to be addressed (231). Third, appropriate in vivo and in vitro models need to be established to confirm the structure-function relationships, potency, and specificity. In conclusion, small-molecule modulators targeting ncRNAs can greatly broaden the range of druggable targets, thus representing a new frontier for drug development. Continued research may lead to breakthrough discoveries while addressing the above-mentioned issues.



Conclusion

HCC is a multifactorial, multistage malignancy for which it is difficult to obtain satisfactory survival with current treatment options. ncRNAs play an important role in the initiation and progression of HCC and are associated with clinical diagnostic and prognostic properties. This review article focuses on the oncogenic or tumor-suppressive properties of ncRNAs, detailing how ncRNAs regulate key processes (TIME, angiogenesis, EMT, invasion, metastasis, metabolism, and drug resistance) in HCC and their specific mechanisms. Further, we discuss the promising approaches and potential roles of ncRNAs in the field of cancer diagnosis and therapy. Although ncRNAs have shown unique advantages as biomarkers and potential therapeutic targets, they still face challenges. For instance, there remains a vast uncharted territory in ncRNA research, and exploring the emerging role requires advances in next-generation sequencing technologies. Standardized and efficient techniques for rapid and large-scale extraction of ncRNAs have not yet been established. Meanwhile, improved targeting methods and delivery systems are needed to detect and reduce off-target effects. In terms of experimental techniques, off-target effects in knockdown, FISH, and pull-down technologies are difficult to avoid or eliminate completely. Moreover, while the current research on ncRNAs is still carried out at the cellular or animal level, research in clinical settings needs to be advanced to validate key ncRNA functions. Finally, ncRNA-based therapies require interdisciplinary cooperation among various fields, including immunology, molecular biology, pharmacology, and nanotechnology. These findings and challenges reveal the unexpected complexity of ncRNA regulatory mechanisms, which provides many answers but raises more questions. It is believed that, in the near future, ncRNAs can be developed as promising tools for targeted therapies alone or in combination with other therapies.
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CUL7, a gene composed of 26 exons associated with cullin 7 protein, is also an E3 ligase that is closely related to cell senescence, apoptosis, and cell transformation and also plays an important role in human cancer. However, there is no systematic pan-cancer analysis has been performed to explore its role in prognosis and immune prediction. In this study, the expression of CUL7 in colon adenocarcinoma (COAD) was investigated to determine its prognosis value. First, based on the Cancer Genome Atlas (TCGA), Genotypic-Tissue Expression Project(GTEx), Cancer Cell Line Encyclopedias(CCLE), and TISIDB database, the potential role of CUL7 in different tumors was explored. Subsequently, the expression of CUL7 in COAD was explored and verified by Immunohistochemistry (IHC). Furthermore, the mutation frequency of CUL7 in COAD was analyzed, and the prognostic value of CUL7 in COAD was discussed. In addition, the nomogram was constructed, and its prognostic value was verified by follow-up data from Jiangmen Central Hospital. Finally, PPI network analysis explored the potential biological function of CUL7 in COAD. The results show that CUL7 is upregulated in most tumors, which is significantly associated with poor survival. At the same time, CUL7 is correlated with the clinical stage and immune landscape of various tumors. In colorectal cancer, CUL7 was overexpressed in tumor tissues by IHC with a mutation frequency of about 4%. CUL7 is an independent prognostic factor for colorectal cancer. The nomogram constructed has effective predictive performance, and external databases proved the prognostic value of CUL7. In addition, PPI network analysis showed that CUL7 was closely related to FBXW8, and further pathway enrichment analysis showed that CUL7 was mainly involved in ubiquitin-mediated proteolysis. Therefore, our study provides a comprehensive understanding of the potential role of CUL7 in different tumors, and CUL7 might be a prognostic marker for COAD.




Keywords: CUL7, pan-cancer, COAD, prognosis, tumor immunity



Introduction

Cancer is widely acknowledged to be a genomic disease, and recent advancements in sequencing and informatics have cemented genomics’ standing as a cornerstone of cancer research, playing a vital role in cancer molecular research (1, 2). Research into cancer driver mutations and finer molecular subtypes is also evolving (3, 4). As more and more molecular studies of tumors from other organs are conducted, it is progressively becoming clear that some genes, like TP53, have similar effects in many cancers and that their mutations can cause basal-like breast cancer, endometrial cancer, and ovarian cancer as a result (5, 6). On the other hand, some genes, such as NOTCH, have been found to play a role in tumors of different organs, but with dissimilar effects (7–9). This leads us to the conclusion that pan-cancer analysis, which looks at similarities and differences across diverse cancer types, has developed into a potent method for acquiring new information about cancer biology (10). We mainly focused on COAD out of all the cancer types we studied since it is one of the top causes of cancer-related death globally as well as the current research being done into its treatment (11, 12). It is undeniable that the prognosis of COAD is still unsatisfactory and still plays an important role in the world’s health burden (13).

Cullin 7 (CUL7), also known as KIAA0076, p193, or p185, is a gene composed of 26 exons related to the CUL7 protein, and CUL7 is also an E3 ligase, which can promote the dissolution of the proteasome (14). In terms of cell division, Okabe et al. found that CUL7 is closely related to the proteasomal degradation of cyclin D1, which is mainly dependent on the phosphorylation of cyclin D1 residue T286 by ERK2 MAP kinase, which enables cyclin D1 ubiquitin change (15). Through the regulation of cellular protein D1, CUL7 is closely related to cellular senescence, apoptosis, and cellular transformation (16). CUL7 is found to be significantly expressed in breast, lung, hepatic, ovarian, and other malignancies and is connected to the development and incidence of several cancers (17). By mediating the degradation of HPK1, Wang and his colleagues discovered that CUL7/Fbxw8f ubiquitin ligase can play a significant role in the development of pancreatic cancer (18). Zhi et al. found that CUL7 can also be used as a biomarker for prognosis in colorectal cancer (CRC). However, even though there have been many studies involving the role of CUL7 in tumors, the complete mechanism of CUL7 remains to be studied. Therefore, research into the CUL7 gene’s aberrant expression in malignancies has significant therapeutic implications.



Material and methods


CUL7 expression spectrum

We retrieved RNA sequencing information, survival data, and clinicopathological characteristics linked to 33 cancer types from TCGA of the online database UCEC (https://xena.ucsc.edu). The GTEX database (http://commonfund.nih.gov/GTEx) was used to retrieve RNA sequencing information for normal tissues. From the CCLE database (portals.broadinstitute.org), expression data for each tumor cell line was extracted. The mutation MAF data and corresponding clinical information of COAD were obtained from the TCGA database. The somatic mutations of COAD patients were downloaded and visualized by the MAFTools software package in R software, and the mutation frequencies of COAD patients were displayed by a horizontal histogram.



Survival analysis

Kaplan-Meier survival analysis was performed to investigate the differential survival outcomes between the high and low CUL7 expression groups according to the median CUL7 expression level. Univariate Cox regression models were used to determine the favorable or unfavorable prognostic value of CUL1 including overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). The R packages “survminer” and “survival” were used to carry out the KM analysis, while “survival” and “forestplot” were used to create the forestplot of Cox regression. Forest plots were created using the “Forestplot” software to show each variable (P-value, HR, and 95%CI) for both the univariate and multivariate Cox regression analyses. A nomogram was developed using the “rms” package to predict the 1-, 3-, and 5-year overall recurrence rate based on the results of multivariate Cox proportional hazards analysis. The nomogram offers graphical data for these factors, and the points assigned to each risk factor may be used to determine the prognosis risk for patients.



Diagnostic value of CUL7

Each sample provided by TCGA was mined to select tumor stages and analyze the association of the remaining CUL7 expression, which was visualized using “ggplot2”. To assess the diagnostic precision of CUL7, a ROC curve analysis based on sensitivity and specificity was performed using the “pROC” tool. Area under the curve (AUC) values ranged from 1.0 (perfect diagnosis) to 0.5. (no diagnostic value).



The role of CUL7 was analyzed by TISIDB

TISIDB is a web-based platform for tumor immunoassays that comprises a wide variety of heterogeneous data types from the TCGA database (http://cis.hku.hk/TISIDB/index.php). We used the TISIDB database to analyze the correlation between CUL7 expression and immune and molecular subtypes. Small lift charts were used to show how the analysis of CUL7 expression relates to immune and molecular subtypes in human cancers.



Correlation analysis of CUL7 expression in TME

The environment in which tumor cells develop and survive is known as the tumor microenvironment (TME). Stromal cells, immune cells that surround the tumor cells, and the actual tumor cells are among their many constituents. The quantity of stromal cells and immune cells in the tumor microenvironment affects the growth and development of cancer cells. StromalScore, ImmuneScore, and ESTIMATEScore, which combines ImmuneScore and StromalScore, are all computed using the R package “ESTIMATE”. After that, we examined the relationship between CUL7 and the stromal and immunological scores using R’s Spearman correlation analysis.



Correlation analysis of CUL7 expression with tumor mutation burden and microsatellite instability

For each tumor sample, Spearman’s rank correlation coefficient was utilized to compute TMB independently. TMB is a biomarker that reflects a mutation in tumor cells. When repeating units are inserted or deleted, the length of the microsatellite changes in comparison to that of the surrounding normal tissue. This is known as microsatellite instability (MSI). To examine the relationship between CUL7, MSI, and TMB, the Spearman rank correlation coefficient was employed.



Correlation analysis of CUL7 expression with immune infiltrating cells

To explore the correlation between CUL7 and immune cells, we used “immunedeconV”, which includes several recent algorithms, such as TIMER, xCell, MCP-counter, EPIC, and QUANTIseq. R software V4.0.3 was used for statistical analysis, and the rank-sum test was used to detect the differences between the two groups of data. P-value <0.05 was considered statistically significant.



Correlation analysis between the expression of CUL7 expression and some genes

The chemical change of DNA known as DNA methylation interacts with histone alterations to affect gene activity. M6A is a prominent RNA modification type that is essential for the development of cancer. Programmed death receptors and their ligands are immune checkpoints. On immune cells, they are a cluster of chemicals that are expressed. Cancer is one of many illnesses that is influenced by immune checkpoint molecule dysfunction and abnormal expression. The substances that activate immune checkpoints, which suppress the immune function of the T-cells, are analyzed by tumor cells, allowing them to survive. Copper may provide a vulnerability in the fight against cancer because of its critical involvement in the genesis, severity, and course of the disease. The correlation between CUL7 and the genes for immune stimulator and chemokine receptor proteins was also examined. We used the R package “RColorBrewer” to map the correlations between CUL7 expression and DNA methylated transferase, m6A, immune stimulants, chemokines, and copper death-related genes, as demonstrated by heat maps.



PPI network construction and functional enrichment

GeneMANIA (www.genemania.org) was used to construct gene-gene interaction networks. And perform GO/KEGG analysis.



Tissue samples

100 pairs of COAD tissues and corresponding peritumoral normal tissues from COAD patients who had surgical resection at Jiangmen Central Hospital in Guangdong Province, China, between 2016 and 2017 were gathered for this study. None of the patients received radiotherapy, chemotherapy, or immunotherapy before the operation. Patients and volunteers both signed informed consent forms. The Jiangmen Central Hospital’s Medical Ethics Committee gave its approval to all operations (decision no. JXY202228).



Immunohistochemistry

The test procedure was based on our earlier publication (19). Sections of COAD tissues were deparaffinized and rehydrated. To block endogenous peroxidase activity, the antigen was retrieved by submersion in citrate buffer (pH 6.0) for 15 minutes at 95°C before incubation with 0.3% hydrogen peroxide for 15 min at room temperature. Sections were treated with phosphate-buffered saline (PBS) rinsing and 5% normal goat serum (Thermo Fisher Scientific, Inc. USA) blocking for 30 minutes at room temperature before being treated with a primary anti-CUL7 antibody (1:100; Abcam, USA) and incubated overnight at 4°C. All sections were subjected to the peroxidase-anti peroxidase detection technique before being counterstained, dried off, and mounted on a coverslip at room temperature. Yellow particles in the cytoplasm and/or nucleus were used to estimate the proportion of colorectal cells that were positive. The strength of the staining was graded as either negative (–), weakly positive (+), medium (+++), or very positive (+++). The intensity score, which ranges from 0 to 3, was multiplied by the proportion of positive cells, which ranges from 0 to 300, to obtain the H-score. The H-score was computed by two skilled pathologists using a double-blind method.



Statistical analysis

All analyses were performed by R software 4.0.3. By using the Wilcoxon rank sum test, CUL7 in tumor tissues and normal samples were compared. The Pearson correlation test was used to determine associations between the expression of CUL7 and several targets, such as TMB, MSI, immunological checkpoint genes, M6A genes, copper death genes, DNA methylation genes, immune stimulators, chemokines, and immune infiltrating cells. R values less than 0.05 were deemed significant. “ggplot2”, “ggpubr”, “limma”, “survival”, “survminer”, “fmsb”, “ggExtra”, “clusterProfiler”, “ESTIMATE”, “RColorBrewer”, “enrichplot”, and “forestplot” are some of the R programs that were utilized for the analysis.The relationship between CUL7 expression and the clinicopathological features was analyzed using the chi-square test. Numerical data were expressed as the mean ± SD. The log-rank test was used to compare the results of the Kaplan-Meier method-based survival analysis. Cox regression, both univariate and multivariate, was used to assess the variables. Statistics were judged significant at a P-value < 0.05.




Results


Expression of CUL7 in pan-cancer

Firstly, we obtained the CUL7 expression data of 33 tumors from the TCGA database, and analyzed the CUL7 expression score, as shown in Figure 1A. CUL7 was highly expressed in BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KIRC, LIHC, LUAD, LUSC, PRAD, READ, and STAD, and low in KICH. For further analysis, when we combined data from TCGA and GTEx databases and found that CUL7 is highly expressed in BRCA, CHOL, COAD, DLBC, ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC, PAAD, PRAD, READ, SKCM, STAD, and THYM. Low expression was found in ACC, CESC, KICH, LAML, LGG, OV, THCA, and UCEC (Figure 1B). In TCGA paired analysis, CUL7 was found to be highly expressed in BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD, and THCA (Figure 1C). We downloaded the expression of various cell lines from the CCLE database and used box plots to present the expression of CUL7 in different cell lines (Figure 1D).




Figure 1 | Differential expression of CUL7. (A) CUL7 expression in 33 tumors in TCGA. (B) CUL7 expression in 33 tumors in TCGA and GTEx. (C) Differential expression of CUL7 in paired tumors and adjacent normal tissues in TCGA. (D) CLU7 expression in various cancer cell lines from the CCLE database. Ns, non-significant, *P < 0.05; **p < 0.01; ***P < 0.001).





Prognostic value of CUL7 in pan-cancer

We looked at the relationship between CUL7 expression and several survival outcomes for each cancer, including OS, DFI, PFI, and DSS, to better understand the prognostic value of CUL7 in pan-cancer. Analysis using the Cox proportional hazards model revealed that CUL7’s expression level was substantially greater than COAD (HR=1.606, P=0.01), GBM (HR=1.390, P=0.01), LGG (HR=2.083, P<0.001), PAAD (HR=0.498, P<0.001). P=0.01), PCPG (HR=8.281, P=0.049), SARC (HR=1.384, P=0.04), and UVM (HR=0.445, P=0.017). These results indicated that CUL7 was a high-risk gene in COAD, GBM, LGG, PCPG, SARC, and a low-risk gene in PAAD and UVM (Figure 2A). Kaplan-Meier survival analysis showed that high CUL7 expression was associated with poor OS in COAD (Figure 2B), GBM (Figure 2C), LGG (Figure 2D), and PCPG (Figure 2E), SARC (Figure 2F).




Figure 2 | Relationship between OS and CUL7 expression. (A) Forest plot of univariate Cox regression analysis of OS. (B–F) Kaplan-Meier diagram of COAD, SARC, GBM, LGG, and PCPG.



In addition, the analysis of DSS data (Figure S1A) showed that the high expression of CUL7 was significantly associated with poor prognosis in COAD (HR=1.647, P=0.029), GBM (HR=1.471, P=0.007), LGG (HR=2.832, P<0.001), PCPG (HR=16.418, P<0.001), and COAD (HR=1.647, P=0.029). P=0.033), SARC (HR=1.355, P=0.014) and THCA (HR=30.871, P=0.049) patients, while CUL7 low expression was associated with poor prognosis in PAAD (HR=0.497, P=0.021) and UVM (HR=0.501, P=0.021). P=0.044) patients. Kaplan-Meier survival studies showed that high CUL7 expression was associated with poor DSS in COAD (Figure S1B), GBM (Figure S1C), SARC (Figure S1F), LGG (Figure S1D), and PCPG (Figure S1E). We further analyzed the relationship between gene expression and DFI and PFI.

In DFI, the high expression of CUL7 was associated with the poor prognosis of CESC (HR=2.237, P=0.010), COAD (HR=3.842, P<0.001), and PRAD (HR=3.005, P=0.014) patients (Figure S2A). Kaplan-Meier survival studies showed that high CUL7 expression was associated with poorer DFI in COAD (Figure S2B).

In PFI, the high expression of CUL7 was significantly associated with the poor prognosis of CESC (HR=1.563, P=0.017), COAD (HR=1.631, P=0.003), LGG (HR=2.227, P<0.001), LIHC (HR=1.302, P=0.015), PRAD (HR=1.752, HR=1.752), COAD (HR=1.631, P=0.003). P=0.021) and TGCA (HR=2.929, P=0.029) patients, while the low expression of CUL7 in PAAD (HR=0.435, P=0.002) patients was associated with poor prognosis (Figure S3A). Kaplan-Meier survival studies showed that high CUL7 expression was associated with poor PFI in COAD (Figure S3B), LGG (Figure S3C), LIHC (Figure S3D), and THYM (Figure S3E), whereas low CUL7 expression was associated with poor PFI.



Diagnostic value of CUL7 in cancer

In the correlation examination of tumor stage based on TCGA, the results showed that the expression of CUL7 in stage III was increased in COAD, KIRP, LIHC, MESO, TGCT, and THCA, stage II was increased in PAAD, and stage IV was increased in READ. This implies that CUL7 could be useful clinically for the detection of malignancy (Figure 3). The receiver operating characteristic (ROC) curve was used to assess the diagnostic accuracy of the gene features. Different AUC cutoff values were considered to indicate high diagnostic accuracy (AUC: 0.9-1.0), relative diagnostic accuracy (AUC: 0.7-0.9), or low diagnostic accuracy (AUC: 0.5-07). The results showed that the diagnosis accuracy of CHOL and LIHC were high while that of BLCA, CESC, COAD, DLBC, ESCA, HNSC, KICH, KIRC, LUAD, LUSC, PAAD, READ, SKCM, STAD, THCA, and THYM were relative. ACC, BRCA, GBM, and PRAD had low diagnostic accuracy (Figure S4).




Figure 3 | Correlation between CUL expression and tumor pathological grades (Stage I, II, III, IV). (A) COAD, (B) KIRP, (C) LIHC, (D) MESO, (E) PAAD, (F) READ, (G) TGCT, (H) THCA.





Correlation between CUL7 and different immune cells in pan-cancer

To analyze the correlation between CUL7 and immune cells, different algorithms were used. The correlation between the degree of immune cell infiltration and CUL7 expression was significant for the majority of cancer types. The results of the MCPCOUNTER (Figure S5A) algorithm showed that Neutrophil was correlated with 22 kinds of cancer, and endothelial cells with 20, whereas the results of the QUANTISE1 algorithm (Figure S5B) showed that NK cells were correlated with 22 kinds of cancer. XCELL algorithm(Figure S5C) found that Myeloid dendritic cell activated was correlated with 22 kinds of cancer, while Macrophage M1 was correlated with 21, Plasmacytoid dendritic cell with 10, and Macrophage M2, Macrophage and Myeloid dendritic cells were associated with 19 types of cancer.



Correlation of CUL7 with TMB and MSI

TMB is a quantifiable biomarker used to reflect the number of mutations in cancer cells. Each tumor sample’s TMB was determined using the Spearman rank correlation coefficient, and the association between gene expression and TMB was examined (Figure 4A). CUL7 gene expression level was significantly positively correlated with LGG, LUAD, and THYM. However, it was negatively correlated with BRCA and COAD. Spearman rank correlation coefficient was used to analyze the correlation between CUL7 expression and MSI (Figure 4B). The results were as follows: CUL7 expression level was significantly positively correlated with BLCA, CHOL, KIRC, LIHC, LUAD, LUSC, and TGCT, and negatively correlated with DLBC.




Figure 4 | Relationship between CUL7 and TMB and MSI based on TCGA database. (A) Correlation between CUL7 and TMB. (B) Correlation between CUL7 and MSI.





Relationship between CUL7 and tumor microenvironment

To explore the association of CUL7 with the TME of immune cells, stromal cells, and tumor cells, ESTIMATE R-package was used to determine immune and stromal scores for each cancer type. CUL7 expression was negatively correlated in BLCA, BRCA, KIRC, KIRP, LAML, LIHC, LUAD, LUSC, MESO, OV, PCPG, PRAD, SARC, SKCM, STAD, TGCT, THYM, and UCEC (Figure S6). CUL7 expression was negatively correlated with the Stromal score in BLCA, BRCA, KIRC, LAML, LUAD, MESO, PCPG, PRAD, and SKCM, and positively correlated with the stromal score in NSC, LGG, TGCT, and THYM (Figure S7).



Correlation between CUL7 and immune and molecular subtypes

The TIMIB database was used to classify the correlation between CUL7 expression and immune subtypes and molecular subtypes. To examine and explain the mechanism of CUL7, the violin map with a significant correlation between CUL7 expression and immunological subtypes and molecular subtypes was chosen. Among the immune subtypes (Figure S8), CUL7 expression was significantly correlated with BLCA (P= 6.74E-04), BRCA (P= 2.77E-06), COAD (P= 5.51E-08), ESCA (P= 5E-02), GBM (P= 2E-02), HNSC (P= 2.58E-04), KIRP (P= 6.53E-03), L GG (P = 7.9E-06), LUSC (P = 1.5E-02), PRAD (P = 5.32E-03), READ (P = 1E-02), SARC (P = 5.58E-05), SKCM (P = 2.21E-03), STAD (P = 9.63E-03), TGCT (P =2).87E-09) and UCEC (P = 2.78E-02). Among the molecular subtypes (Figure S9), CUL7 expression was correlated with BRCA (P= 1.31E-03)/COAD (P= 8.27E-03)/GBM (P= 1.1E-03)/HNSC (P= 6.23E-04)/KIRP (P= 5.46E-04)/LGG (P= 1.05E-40)/OV (P= 7.96E-03)/PCPG (P= 7.87E-03)/PRAD (P= 1.6E-07)/SKCM (P= 2.6E-02)/STAD (P= 1.75E-03)/UCEC (P= 1.54E-10).



CUL7 expression in COAD and Somatic mutation

In the above prognostic analysis, we found that the high expression of CUL7 in OS/DSS/DFI/PFI had a poor prognosis in COAD. We further analyzed GES44076 (Figure 5C), and the results showed that CUL7 is highly expressed in COAD. We selected cancer tissues and adjacent normal tissues from 100 patients with rectal cancer in Jiangmen Central Hospital for IHC analysis and found that cul7 was highly expressed in cancer tissues (Figures 5A, B).




Figure 5 | Differential expression of CUL7 (A) Immunohistochemical (IHC) staining of non-neoplastic muscle tissues and matched muscle cancer tissue sections. (n = 100; Scale bars, 500 μm and 200 μm). (B) The Scatter plot indicated the H-score of Gankyrin IHC staining intensity. (C) CUL7 expression in GSE44076. Ns, non-significant, ***P < 0.001; ****P < 0.0001).



Somatic mutations in the COAD cohort showed that APC (73%), TP53 (54%), TTN (53%), and CUL7 (4%) had higher mutation rates (Figure 6A). CUL7 mutation distribution is shown in Figure 6B.




Figure 6 | The somatic mutation landscape of CUL in COAD. (A) Oncoplot showing the somatic landscape of the COAD tumor cohort. Genes are sorted according to mutation frequency. (B) CUL7 gene mutation distribution map.





CUL7-related central genes

A PPI network with 20 nodes was built in the Genemania database to comprehend the association between CUL7 expression in COAD (Figure 7A). By way of physical interactions, co-expression, prediction, colocalization, genetic interactions, pathways, and common protein domains, nodes in the network demonstrated that certain genes were linked to CUL7. The gene most significantly associated with CUL7 is FBXW8. At the same time, 20 genes were analyzed by GO/KEGG. GO results analysis (Figure 7B) showed that in BP, mainly enriched to proteasome-mediated ubiquitin-dependent protein catabolic process and Proteasomal protein catabolic process. In CC, Mainly enriched to Cullin-ring Ubiquitin ligase complex and Ubiquitin ligase complex. In MF, It was mainly enriched to ubiquitin protein ligase binding and ubiquitin-like protein ligase binding. KEGG analysis (Figure 7C) showed that Ubiquitin mediated proteolysis, Oocyte Meiosis, Human immunodeficiency virus 1 infection, and Cell cycle were mainly enriched.




Figure 7 | PPI network and functional enrichment analysis of CUL7. (A) PPI network of CUL7. (B) GO analysis of related genes. (C) KEGG analysis of related genes.





Prognosis of CUL7 in COAD

We conducted a prognosis analysis of CUL7 in COAD, and constructed prognosis models for OS, DFS, and PFS respectively. According to the results of OS analysis (Figure 8), CUL7, Age, T stage, and TNM stage were found to be independent factors combined with Univariate and multiple factors (Figure 8A). Nomogram was constructed to show the correlation between CUL7 expression and 1-, 3-, and 5-year survival probability (Figures 8B, C). The results indicated that higher CUL7 expression predicted lower survival probability. In DFS analysis (Figure S10), CUL7, Age, and T stage were found to be independent factors, and a nomogram was constructed to show the correlation between CUL7 expression and 1-, 3-, and 5-year survival probability. The results indicated that higher expression of CUL7 predicted lower survival probability. In the PFS analysis (Figure S11), CUL7, T stage, and TNM stage were found to be independent factors, and the nomogram was constructed to show the correlation between CUL7 expression and 1-, 3- and 5-year survival probability, suggesting that higher expression of CUL7 predicted lower survival probability. Based on the above analysis results, we speculate that CUL7 has a good predictive role in COAD. We collected the clinical data of 100 rectal cancer patients and performed OS analysis. It was discovered that a worse prognosis was linked to increased CUL7 expression (Figure 9). Next, the risk factors of OS in 100 rectal cancer patients were analyzed by univariate and multivariate Cox regression analysis. TNM stage (P = 0.006) and high CUL7 expression (P = 0.001) were risk variables linked to poor outcomes for individuals with rectal cancer, according to multivariate Cox regression analysis (Table 1).




Figure 8 | Kaplan-Meier overall survival (OS) analysis of COAD patients with high and low expression levels of CUL7. (A) mono-factor and multi-factor analysis. (B) Nomogram of multi-factor analysis results. (C) Calibration diagram.






Figure 9 | Kaplan-Meier overall survival (OS) analysis of COAD patients with high and low expression levels of CUL7.




Table 1 | Cox regression analysis of five years overall survival in 100 COAD patients.






Discussion

Colon adenocarcinoma (COAD) is the second or third leading cause of cancer death in adults over 20 years of age worldwide, and is prone to recurrence and metastasis, with a 5-year survival rate of less than 15% (20). Although anti-COAD treatment methods are diverse, including surgery, chemotherapy, local ablation therapy, targeted therapy, immunotherapy, and palliative care (21), the strong invasiveness, high metastases, and high recurrence rate make the therapeutic effect of COAD not satisfactory. The overall survival rate has not been significantly improved (22). Early diagnosis and intervention are important to reduce disease morbidity and improve prognosis. With the development of precision medicine, the search for predictive biomarkers is welcomed by oncology researchers (23). Biomarker studies on COAD are increasing year by year. For example, Sun et al. found in a mouse model that miR-195-5p can be used as a predictive biomarker to judge the outcome of colorectal cancer (CRC) patients with certain accuracy (24). Additionally, IRS and miR-21 were discovered by Schetter and his team to be independent predictors of colon cancer (25). It is undeniable that colon cancer and rectal cancer are often clinically linked and studied as CRC. Independent biological predictors of COAD itself still need to be explored. Tumor cells exist in a dynamic environment and interact with tumors, called the tumor microenvironment (TME), which plays an important role in the growth, invasion, metastasis, and escape of tumor cells (26). The research on the relationship between TME and tumor cells has become a core issue and a hot spot in anti-tumor therapy (27). Combining molecular and TME research may provide new directions for improving cancer treatment.

CUL7, a new gene reported in 2013, is closely related to the occurrence of hepatocellular carcinoma (HCC) (28). There are currently two scenarios for the mechanism of action of CUL7 in cancer. The vast majority of studies have shown that the high expression of CUL7 mainly affects the E3 ubiquitin pathway by forming Cullin (CUL)-RING E3 ubiquitin ligase (CRL), inhibiting the expression of cyclins, thereby promoting the proliferation of cancer cells and reducing apoptosis (17, 29, 30). However, Jung et al. pointed out that CUL7 may also directly interact with the P53 pathway to affect the occurrence and development of cancer (31). Some studies have also pointed out that the anticancer drug 3,3’-diindolylmethane (DIM) can interact with the TME of gastric cancer cells through E3 ubiquitin ligase (32). A review investigating the role of ubiquitination in tumorigenesis indicated that P53 ubiquitination significantly modulates the TME (33). Unfortunately, neither the E3 ubiquitin ligase nor the p53 pathway has been reported for their role and CUL7 in COAD patients.

Given the above characteristics, we conducted a comprehensive and in-depth evaluation system to analyze the correlation of CUL7 expression with cancer progression and tumor stage through Kaplan-Meier survival analysis, combined with the study of changes in immune cells. At the same time, we also studied the interaction between CUL7 and drugs to provide new therapeutic targets for prediction, diagnosis, and clinical treatment.

In the TCGA dataset of this study, the expression of CUL7 was significantly increased in most tumor tissues including COAD compared with normal tissues, while the expression was decreased in some cancers such as ACC, KICH, and LAML, suggesting CUL7 may have oncogenic or tumor suppressor effects. Subsequent analyses of the HPA dataset showed similar results. Kaplan-Meier (KM) survival curves showed that higher CUL7 was associated with worse overall survival (OS) and poor prognosis, in particular, disease-specific survival (DSS) and disease-free interval (DFI) in the COAD subgroup) were lower, suggesting that abnormal excess CUL7 is a risk factor for COAD and may be an early predictor of cancer.

The quantity of somatic mutations per megabase in the tumor genome sequence is known as tumor mutational burden (TMB), and TMB prediction helps identify patients who may benefit from immunotherapy (34). Numerous studies have demonstrated that TMB can be used as a biological predictor to predict the response of cancer patients to immune checkpoint inhibitors (ICIs), and the regulation of TMB is significantly associated with improved survival after ICI response (35–38). In COAD, the regulation of TMB has also been shown to be significantly associated with ICI response (39). Microsatellite instability (MSI) refers to a hypervariable phenotype in which tumor DNA mismatches lead to changes in the length of microsatellite (MS) sequences (40). As predictors also associated with ICI response, Long et al. analyzed 32 tumor types and MSI sequences including COAD, bladder urothelial carcinoma (BLCA), ovarian carcinoma (OV), and rectal adenocarcinoma (READ), among others. Yes, 25 tumors were found to be consistent with MSI (41). In our study, the expression of CUL7 was negatively correlated with TMB and MSI. Higher CUL7 expression was associated with lower levels of TMB and MSI, both of which are very sensitive to ICI inhibitors. Therefore, this will provide a potential therapeutic target for clinical treatment.

In addition to this, we also investigated the correlation of CUL7 expression with TME. The results showed a contradictory relationship between different tumors and a negative trend between CUL7 expression and TME score composed of the stromal score, immune score, and estimated score in COAD patients. Our study showed that the expression of CUL7 was negatively correlated with immune factors such as B cell population (including B cell, B cell plasma, B cell naïve, and B cell memory), plasmacytoid dendritic cell, and NK cell. Although there is no other literature supporting the negative correlation between CUL7 and the above immune factors, we found that CUL7 and CUL3 have similar roles through the co-expression network. Studies have shown that high expression of CUL3 is associated with the increase of E3 ubiquitin ligase or inhibition of the p53 pathway, and they are negatively correlated with the effects of B cells, plasmacytoid dendritic cells, and NK cells (42–47). It suggests that our findings have a certain credibility. In our study, according to the enrichment analysis, the high expression of CUL7 in COAD is mainly related to the decrease of cyclin caused by the action of E3 ubiquitin ligase, which is consistent with the mechanism of CUL7 in tumors mentioned above.

However, this study still has some limitations. First, although bioinformatics analysis has provided us with some important insights into CUL7 in malignancies, we have also validated the cancer-promoting role of CUL7 in COAD by molecular biology approaches, further in vitro or in vivo biological experiments to validate our results and improve treatment outcomes. In addition, the information we investigate and integrate comes from databases, and there may be data biases that require additional model validation experiments to confirm.

Overall, our findings reveal a critical involvement of CUL7 in tumorigenesis and metastasis. CUL7 is considered a potential new target for cancer therapy because they are upregulated in a variety of cancers. Our findings suggest that high expression of CUL7 is associated with poor survival and early clinical stage. At the same time, we found that CUL7 was highly expressed in COAD through IHC, and the prognosis was poor in COAD. Expression was negatively correlated with TMB and MSI, and changes in immune cells and signaling pathways brought potential therapeutic targets for clinical treatment. Future prospective studies focusing on CUL7 expression and tumor immune milieu will help to provide conclusive answers, allowing the development of immune-based anticancer therapies.
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Background

RCSD1 is a cytoskeletal regulator that has been confirmed to undergo genetic mutations in hematological tumors, but the mechanisms of RCSD1 in pan-cancer and its impact on patient prognosis have not been studied.



Methods

Using TCGA, GEPIA, UALCAN, Kaplan-Meier plotters, Linkedomics, String, cBioPortal, TISIDB, TCIA and TIMER database methods, we investigated the expression of RCSD1 in human tumors and its relationship to clinical prognosis, functional analysis of co-expression networks, mutation status, and immune infiltration in cancers, especially lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC).



Results

The expression of RCSD1 is low in most tumors compared with normal tissues, and its high expression is associated with good patient survival. The RCSD1 co-expression network is mainly involved in the regulation of immune response. In human cancer, RCSD1 plays an important role in the tumor microenvironment (TME) and is significantly associated with the expression of immune infiltrating cells (TIL) in lung cancer.



Conclusions

As a prognostic biomarker of generalized cancer, RCSD1 is associated with immune infiltration.
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Introduction

Worldwide, tumor is a major factor in human death (1). Since most cancers are already advanced at the time of diagnosis, conventional surgery and chemoradiation do not achieve ideal therapeutic outcomes (2).Tumor immunotherapy has become a new means of cancer treatment, and has made important progress in recent years (3). To find new potential tumor therapeutic targets, bioinformatics analysis using public information databases is a more efficient approach (4, 5). Through the pan-cancer analysis of the genes, we have identified novel potential tumor immunotherapy targets that may improve patient survival in the future.

The RCSD1 (RCSD domain protein 1) gene encodes the protein kinase substrate CAPZIP (CAPZ interacting protein), which is mainly found in immune cells and muscle cells and can interact specifically with CAPZ (6, 7). Under certain conditions, CAPZIP phosphorylation activation plays an important role in the assembly of the cytoskeleton (7, 8). Previous studies have stated clearly that the gene fusions of RCSD1 can occur in leukemias (9, 10). Genetic alterations in RCSD1 result in altered cellular function affecting cytoskeletal regulation, which may be a significant procedure in leukemogenesis. However, the impact of RCSD1 on other human malignancies is unclear yet.

In our study, we used a variety of databases to analyze RCSD1 expression, prognostic value, molecular functional networks, genetic alterations, and potential relationships with tumor immune microenvironment in pan-carcinomas. In addition, we explored the relationship between RCSD1 and clinical case parameters of lung cancer, immune cells, and tumor immunotherapy. The purpose of this study was to explore the role of RCSD1 in human cancer, thereby providing insights into new anti-tumor strategies.



Methods


TCGA

TCGA (https://portal.gdc.cancer.gov/), a web sites that incorporate clinical data, genomic variation, and other data for cancers (tumors including subtypes) are a major source of data for cancer researchers. RNA expression profile data of lung cancer patients were downloaded from the TCGA database. (Data from a total of 594 LUAD patients, containing 535 tumor cases and 59 normal cases, were collected, and relevant clinical data was obtained for 522 cases. Then data from 551 LUSC patients, including 502 tumor cases and 49 normal cases, were also received, and the related clinical data were obtained for 504 cases.) Then, we detected the proportion of immune infiltrating cells in different expression groups of RCSD1 in the TCGA dataset using R package “CIBERSORT” (11). The correlation between immune cell infiltration level and RCSD1 expression was also analyzed.



GEPIA

Gene Expression Profiling Interactive Analysis (GEPIA) is an RNA sequencing data platform (http://gepia.cancer-pku.cn/) including 9736 tumor tissues and 8587 normal tissues from the TCGA and GTEx databases (12). Click on the “Box Plots” module in the GEPIA database to retrieve the difference of RCSD1 gene expression in various tumors and normal tissues. Meanwhile, we searched its effect on patient outcomes [disease-free survival (DFS) and overall survival (OS)] in the “Survival” module, and explored the relationship between RCSD1 and various pathological stages in the “Stage Plot” module. Using GEPIA, we identified 100 genes associated with RCSD1. In addition, we explored the relationship between RCSD1 and immune cell biomarkers.



TIMER

TIMER web server (https://cistrome.shinyapps.io/timer/) is a website for comprehensive analysis of gene expression and tumor-infiltrating immune cells (TIICs) in TCGA cancers (11, 13, 14). We used the “Exploration” module in the TIMER database, clicking on “Gene_DE”, and entered “RCSD1” to retrieve the differences in RCSD1 expression between tumor tissues and normal tissues, analyzed the correlation between RCSD1 and its co-expressed genes. Then we assessed the correlation between RCSD1 and molecular markers of tumor immune infiltrating cells and immune cells. The association between RCSD1 copy number variation (CNV) and immune cell infiltration was then investigated, and the effect of RCSD1 and immune cell expression on patient survival was investigated using Kaplan-Meier curves.



UALCAN

UALCAN database (http://ualcan.path.uab.edu/index.html) is available for online analysis of differential gene expression in cancer and normal tissue from the TCGA RNA sequencing data and clinical data of 31 malignancies (15, 16). We downloaded the expression of total and phosphorlated proteins of RCSD1 in pan-cancer from the “CPTAC module” in the UALCAN database. In addition, we examined the correlation between clinical data and RCSD1 gene expression.



Kaplan-Meier plotter

Kaplan-Meier plotter (http://kmplot.com/analysis/) (17) is an open portal tool for prognostic analysis. To determine the relationship between RCSD1 expression and pan-cancer patient outcomes (Relapse Free Survival and Overall Survival rates), we used the Kaplan-Meier plotter database.



TISIDB

TISIDB (http://cis.Hku.hk/TISIDB/) is a powerful website that contains a large amount of tumor immunity-related data and facilitates a comprehensive study of tumor-immune interactions (18). Here, we used the “Subtype” module to analyze the relationship of RCSD1 expression with pan-cancer immune subtypes and immune molecular subtypes, searched the correlation of RCSD1 and six immune characteristics (lymphocytes, immunomodulators, chemokines) in lung cancer.



cBioPortal database

The cBioPortal for Cancer Genomics (https://www.cbioportal.org) is an open-source resource for interactive exploration of multidimensional cancer genomics datasets (19, 20). In this study, the “Mutations” module and the “Cancer types summary” module were used to determine the mutation status and site of RCSD1 in tumors, explore the relationship between the RCSD1 gene mutation and DFS, DSS (disease-specific survival), PFS (progression-free survival) and OS in COAD (Colon adenocarcinoma) and PCPG (Pheochromocytoma and Paraganglioma) patients, analyze the correlation between cancer-infiltrating immune cells and RCSD1 expression.



String database

The String database (https://string-db.org/) can be searched for the interactions between proteins (21). We change “max number of interactors to show” to “no more than 50 interactors” to gain the top 50 proteins with the interaction with RCSD1, preserving the protein interaction network maps and correlation data for subsequent correlation analysis.



Gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis

In the pan-cancer analysis part, GO analysis was used to explore the biological processes (BP), cell components (CC) and molecular functions (MF) of RCSD1-related genes. The GO analysis describes the possible molecular functions, the cellular environment, and the biological processes associated with the RCSD1 gene product. We studied the potential mechanisms of RCSD1-related genes using KEGG pathway enrichment analysis. Next, the GO and KEGG analysis of lung cancer was performed by the R software package ClusterProfiler.



Linkedomics

LinkedOmics (http://www.linkedomics.org/login.php) (22) can analyze and compare cancer multi-omics data within and across tumor types. We first select “TCGA_LUAD” in “STEP-1”, then enter “RCSD1”, and finally select the statistical method. The Pearson correlation coefficient was used to identify co-expressed genes for RCSD1, and heatmaps and volcano plots are used to illustrate the results. In addition, we explored the GO analysis and KEGG pathways of RCSD1 and its co-expressed genes, using a gene set enrichment analysis (GSEA).



The Cancer Immunome Atlas

The Cancer Imaging Archive (TCIA) (http://www.cancerimagingarchive.net) provides the results of a comprehensive immunogenomic analysis from the TCGA and other datasets (23, 24). To investigate the prognostic value of RCSD1 in tumors and its correlation with the immune micro-environment, we downloaded LUAD, LUSC patient data from the TCIA website and analyzed the effect of immunotherapy with high and low RCSD1 expression groups using R software.




Results


RCSD1 gene expression in pan-cancer patients

In this study, we applied the Timer database to analyze the expression levels of RCSD1 in different cancer types. As shown in Figure 1A, the expression level of RCSD1 in the tumor tissues of BLCA (Bladder Urothelial Carcinoma), BRCA (Breast invasive carcinoma), COAD, KICH (Kidney Chromophobe), KIRP (Kidney renal papillary cell carcinoma), LUAD, LUSC, PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma), STAD (Stomach adenocarcinoma), THCA (Thyroid carcinoma), and UCEC (Uterine Corpus Endometrial Carcinoma) is lower than the corresponding normal tissues. Only CHOL (Cholangiocarcinoma) and KIRC (Kidney renal clear cell carcinoma) tumors had higher RCSD1 expression than normal tissues. We then used the GEPIA database to find that RCSD1 expression in 15 human tumors was lower than that in normal tissues (Figure 1B). Results from the CPTAC datasets showed that the total RCSD1 protein expression was lower in primary COAD, LIHC (Liver hepatocellular carcinoma) and LUAD tissues than in normal tissues. However, the total RCSD1 protein expression was higher in the GBM (Glioblastoma multiforme), PAAD (Pancreatic adenocarcinoma), KIRC, and UCEC primary tissues than in the normal tissues (Figure 1C). Meanwhile, BRCA, LUAD and KIRC were selected to study phosphoroprotein expression of RCSD1 in tumors. We can see that the expression of the RCSD1 phosphorylated proteins in LUAD and BRCA was lower than that in the normal tissues (Figures S1A–L). In KIRC, RCSD1 phosphoprotein levels at S68, S105, S105S108, and S284 were poorly expressed in tumors and RCSD1 phosphoproteins at S116S120, S216, S267S268, and S298 were highly expressed in tumors(Figures S1M–T). Next, we explored whether RCSD1 expression varied across different stages of the same tumor. As we can see, the RCSD1 expression levels differ significantly in the BLCA, SKCM (Skin Cutaneous Melanoma), STAD and THCA tumor pathological stage (Figure 1D).




Figure 1 | Expression level of the RCSD1 gene in different human tumors and pathological stages. (A) Expression status of the RCSD1 gene in different cancer was analyzed by TIMER database. (B) RCSD1 expression level in different cancers verified using GEPIA database. (C) Expression levels of total RCSD1 protein between normal and primary tissues of COAD, GBM, LIHC, LUAD, PAAD, KIRC and UCEC were extracted and analyzed in the CPTAC dataset. (D) The RCSD1 gene expression levels at the major pathological stages of BLCA, SKCM, STAD, and THCA using GEPIA database. *, P <0.05; **, P <0.01; ***, P <0.001.





The prognostic value of RCSD1 in pan-cancer

Using GEPIA, we found that low RCSD1 expression was associated with poor OS in HNSC (Head and Neck squamous cell carcinoma), KIRC, THYM, LUAD, SARC (Sarcoma), and SKCM (Figures 2A–F); low RCSD1 expression in both LGG (Brain Lower Grade Glioma) and UVM (Uveal Melanoma) was associated with better OS (Figures 2G, H). Meanwhile, the analysis results showed that high RCSD1 expression was associated with better RFS in CHOL and UCS (Uterine Carcinosarcoma) patients (Figures 2I, J), and instead, high RCSD1 expression was associated with poor RFS in LGG (Figure 2K). We then performed the survival analysis using Kaplan-Meier plotter, found that high expression of RCSD1 was associated with better OS of BRCA, CSCC (Cervical squamous cell carcinoma), SARC, READ, UCEC, HNSC, KIRC, LUAD, and THYM (Figures 3A–I), while high expression of RCSD1 was correlated with poor OS of TGCT and ESCC (Esophageal squamous cell carcinoma) (Figures 3J, K). Meanwhile, poor RFS of TGCT, SARC, OV (Ovarian serous cystadenocarcinoma) and UCEC were correlated with low expression of RCSD1 (Figures 3L–O), and poor RFS of ESCC, ESCA (Esophageal carcinoma), HNSC and KIRP was significantly associated with high expression of RCSD1 (Figures 3P–S).




Figure 2 | Relationship between RCSD1 expression and patient survival using GEPIA. Relationship between RCSD1 expression and OS of (A) HNSC patients, (B) KIRC patients, (C) THYM patients, (D) LUAD patients, (E) SARC patients, (F) SKCM patients, (G) LGG patients, and (H) UVM patients. Relationship between RCSD1 expression and RFS of (I) CHOL patients, (J) UCS patients, and (K) LGG patients. OS, Overall Survival; RFS, Disease Free Survival.






Figure 3 | The relationship between the expression of RCSD1 and the prognosis of tumor patients was shown with Kaplan–Meier survival curves. OS of (A) BRCA, (B) CSCC, (C) SARC, (D) READ, (E) UCEC, (F) HNSC, (G) KIRC, (H) LUAD, (I) THYM, (J) TGCT and (K) ESCC. RFS of (L) TGCT, (M) SARC, (N) OV, (O) UCEC, (P) ESCA, (Q) ESCC, (R) HNSC and (S) KIRP. OS, Overall Survival; RFS, Relapse Free Survival.





Gene alteration of RCSD1 in pan-cancer

Next, we explored the gene mutations of RCSD1 in different tumors. Figure 4A shows the type of RCSD1 gene mutation in the 32 cancers from the TCGA database. We can see that the RCSD1 gene can undergo multiple mutations, including mutations, structural variation, amplification, deep deletion, and multiple alterations. Among them, the CHOL patients had the highest frequency of RCSD1 gene change (13.89%), which were all amplified. The frequency of previous genetic alterations in BLCA patients was 9.98%, containing 0.97% mutations, 0.24% structural variant and 8.76% amplifications. The frequency of gene alterations in LUAD patients was 5.83%, including 1.24% mutations, 0.18% structural variant, 4.24% amplification and 0.18% deep deletion. The gene alteration frequency in LUSC patients was 4.93%, including 1.03% mutations and 3.9% amplifications (Figure 4A). Then we observed the genetic alteration status of RCSD1 (NM_052862) in different tumor samples of the TCGA cohorts and found that the somatic mutation frequency of RCSD1 reached 0.8%. Figure 4B shows the specific mutation case on each domain. R173Q alteration in the tumor domain, which was detected in 2 cases of SKCM and 1 case of COAD, induced a Missense Mutation of the RCSD1 gene (Figure 4B). Alterations in the RCSD1 gene may affect the clinical survival outcomes in different types of cancer cases. For example, in the COAD group, the disease-free survival was significantly shortened in the RCSD1 gene alteration group (p=8.791e-3) (Figure 4C), and in PCPG group, patients in the unaltered group had better OS than the altered group (p=8.559e-3) (Figure 4D).




Figure 4 | Mutation status of RCSD1 analyzed using the cBioPortal tool. (A) Frequency of RCSD1 mutations in different tumors. (B) Mutation site of RCSD1. Association of RCSD1 mutations with prognosis of patients with (C) COAD and (D) PCPG.





Enrichment analysis of RCSD1-related genes in pan-cancer

First, we demonstrated the relationship between RCSD1 and 50 proteins that interact with it using String database (Figure 5A). Then, the 100 genes with the association with RCSD1 were searched in the GEPIA database. Among them, the 10 genes were all positively associated with RCSD1, namely IKZF1, DOCK2, NCKAP1L, ARHGAP30, DOCK8, FLI1, VAV1, AKNA, ARHGAP9 and PTPRC (Figure 5B). The association of RCSD1 with the above 10 genes in different tumors was further analyzed using the Timer database (Figure 5C). And then the 50 genes obtained from String and 100 genes downloaded from GEPIA were crossed using Venn plots as the following: P2RY8, ARHGAP25 and IKZF1 (Figure 5D). Thereafter, we performed GO and KEGG analysis of these 150 genes. GO analysis is divided into three parts: GO_MF, GO_BP and GO_CC. In the case of GO_BP, the RCSD1-related genes are implicated in the immune response processes, such as “T cell activation”, “Lymphocyte differentiation”, “Mononuclear cell differentiation”, “Lymphocyte proliferation”, and “Mononuclear cell proliferation” (Figure 5E). In terms of GO_CC, the RCSD1-related gene product is located at focal adhesion, cell leading edge and cell-substrate junction while performing function (Figure 5F). And in the GO_MF analysis, we learned that the RCSD1-related genes mostly have the GTPase-regulator activity, the nucleoside-triphosphatase regulator activity and the GTPase activator activity (Figure 5G). KEGG pathway analysis revealed that these 150 genes were mainly associated with cellular immunoregulatory processes such as “Rap1 signaling pathway”, “Plate activation”, “Yersinia infection”, “Chemokine signaling pathway”, “Fc epsilon RI signaling pathway”, and “T cell receptor signaling pathway” (Figure 5H).




Figure 5 | RCSD1 co-expression network. (A) RCSD1-binding proteins. (B) The correlation of top 10 RCSD1-correlated genes, including AKNA, ARHGAP30, ARHGAP9, DODK2, DODK8, FLI1, IKZF1, NCKAP1L, PTPRC and VAV1. (C) Correlation of RCSD1 with the 10 genes in human tumors. (D) VENN plots showing the cross-analysis of correlated genes. (E) GO_BP analysis. (F) GO_CC analysis. (G) GO_MF analysis. (H) KEGG pathway analysis.





Association between RCSD1 expression and pan-cancer immune subtypes and immune molecular subtypes

From the previous gene enrichment analysis, it is known that RCSD1 may be involved in cellular immune regulation and cellular metabolism-related processes. Therefore, we then analyzed the relationship between RCSD1 expression and immune subtypes by the TISIDB website. The results showed that RCSD1 expression was significantly different among the different immune subtypes (Figure 6). Immune subtypes were classified into six types, including C1 (Wound healing), C2 (IFN-gamma dominant), C3 (Inflammatory), C4 (Lymphocyte depleted), C5 (Immunologically quiet) and C6 (TGF-b dominant). Among them, the RCSD1 expression of the C4 subtype was relatively low in ACC, BLCA, BRCA, CESC, COAD, ESCA, KIRP, LIHC and STAD; in both LUAD and LUSC, RCSD1 is highly expressed in C3 and C6 subtype, but it has lower expression in C1 and C4 subtype (Figures 6L, M). For different molecular subtypes of cancers, a significant connection with RCSD1 expression existed in ACC, BRCA, COAD, ESCA, HNSC, KIRP, LGG, LIHC, LUSC, OV, PCPG, PRAD, STAD and UCEC (Figure S2). In LUSC, secretory subtype expressed the highest RCSD1 and the lowest RCSD1 in primitive subtype (Figure S2I).




Figure 6 | The relationship between RCSD1 expression and pan-cancer immune subtypes. (A) in ACC, (B) in BLCA, (C) in BRCA, (D) in CESC, (E) in COAD, (F) in ESCA, (G) in HNSC, (H) in KIRC, (I) in KIRP, (J) in LGG, (K) in LIHC, (L) in LUAD, (M) in LUSC, (N) in OV, (O) in PAAD, (P) in READ, (Q) in SARC, (R) in SKCM, (S) in STAD, (T) in TGCT.





Relationship between RCSD1 expression and clinical parameters in lung cancer patients

The relationship between RCSD1 expression and the clinical data of lung cancer patients was analyzed using the UALCAN database. We concluded that, firstly, compared with normal tissues, the expression level of RCSD1 in tumor tissues is lower (Figure 7A). RCSD1 is related to individual cancer stage in LUAD patients, RCSD1 expression levels in stage 1 was higher than stage 3 and stage 4 (Figure 7B). Secondly, RCSD1 expression was correlated with age in LUAD patients, with higher RCSD1 expression levels in the 61-80 years old group than in the 41-60 years old group (Figure 7E). Meanwhile, the expression of RCSD1 was also correlated with the smoking habit of LUAD patients. The non-smoking group expressed higher RCSD1 levels than the smoking group, and the higher RCSD1 level in the reformed smoker (> 15 years) group than the reformed smoker (<15 years) group (Figure 7F). Finally, RCSD1 expression was correlated with lymph node metastasis status in LUAD patients, and patients in the N0 group expressed higher levels of RCSD1 than in the N2 group (Figure 7H). However, RCSD1 expression was not significantly different with race, sex, histological subtypes, and TP53 mutation status in the LUAD group (Figures 7C, D, G, I). Similarly, in LUSC group, the expression of RCSD1 is associated with individual cancer stage, and stage 1 patients’ RCSD1 expression level is higher than that in stage 4 (Figure S3B). The expression of RCSD1 was related to the LUSC histological subtypes, the RCSD1 expression levels in the NOS group was higher than in the basaloid group (Figure S3G). RCSD1 expression was also associated with TP53 mutation status in LUSC patients, and the RCSD1 expression level was higher in the TP53-NonMutant group than in the TP53-Mutant group (Figure S3I).




Figure 7 | RCSD1 differential expression in LUAD with different clinical subgroups. On (A) sample types, (B) individual cancer stages, (C) patient’s race, (D) patient’s gender, (E) patient’s age, (F) patient’s smoking habits, (G) histological subtypes, (H) nodal metastasis status and (I) TP53 mutation status. *, P < 0.05; **, P < 0.01; ***, P < 0.001.





Co-expression network and enrichment analysis of RCSD1 in lung cancer

For gaining the knowledge of RCSD1 biological function in LUAD and LUSC, the LinkedOmics web portal was deployed to check the co-expression patterns of RCSD1. As shown in Figure 8A and Figure S4A, the genes indicated by red dots were positively correlated with RCSD1, and the green dots were negatively correlated with RCSD1. The Figures 8B, C respectively show the heat maps of the top 50 genes positively and negatively associated with RCSD1 in LUAD. IKZF1 (r = 0.8702), GIMAP6 (r = 0.8674) and FLI1 (r = 0.8665) were positively correlated with RCSD1 expression in LUAD (p = 8.15e-160, 1.39e-157, 6.76e-157, respectively) (Figure 8B). Figures S4B, C showed the heat maps of the top 50 genes positively and negatively correlated with RCSD1 in LUSC, respectively. Then, SASH3 (r=0.9363, p=6.05e-229), EVI2B (r=0.9294, p=3.87e-218) and PTPRC (r=0.9278, p=8.52e-216) are the three genes with the positive correlation with RCSD1 in LUSC (Figure S4B). We then performed the GO and KEGG enrichment analyses of the RCSD1-related genes in both LUAD and LUSC cohorts. The results showed that, in LUAD, the RCSD1-related genes were mainly associated with “respiratory burst”, “interleukin-4 production”, “purinergic receptor signaling pathway”, “cellular defense response”, “interleukin-12 production”, “regulation of defense response to virus by virus”, “T cell activation” (Figure 8D). In LUSC, the RCSD1-related genes are mainly related to “purinergic receptor signaling pathway”, “regulation of defense response to virus by virus”, “cellular defense response”, “interleukin-10 production” (Figure S4D). In addition, the KEGG pathways for RCSD1 and its correlated genes are shown in Figure 8E and Figure S4E. Among these pathways, many immune-related pathways were highly associated with RCSD1, including “Intestinal immune network for IgA production”, “Allograft rejection”, “Autoimmune thyroid disease”, “Primary immunodeficiency”, and “Th1 and Th2 cell differentiation”. Above, it shows that RCSD1 is closely related with immune infiltration in LUAD and LUSC.




Figure 8 | Co-expression genes and enrichment analysis of RCSD1 in LUAD. (A) The whole significantly associated genes with RCSD1 distinguished by Pearson test in LUAD cohort. (B) Top 50 positive co-expression genes of RCSD1. (C) Top 50 negative co-expression genes of RCSD1. (D) GO annotations in LUAD. (E) KEGG pathways in LUAD.





RCSD1 correlates with infiltration of immune cells in LUAD and LUSC

To further assess the effect of RCSD1 on the tumor micro-environment (TME), we first used the CIBERSORT method to analyze the distribution of 22 immune cells in different high and low RCSD1 expression groups. In the LUAD sample, B cells naive (p<0.01), B cells memory (p<0.05), T cells CD8 (p<0.001), T cells CD4 memory resting (p<0.001), T cells CD4 memory activated (p<0.001), NK cells activated (p<0.01), Monocytes (p<0.01), Macrophages M0 (p<0.001), Macrophages M1 (p<0.001), Dentritic cells resting (p<0.01), Dentritic cells activated (p<0.001), and Mast cells activated (p<0.01) was significantly different in the RCSD1 high and low expression group (Figure 9A). And in the case of LUSC, RCSD1 low expression group has the higher expression of B cells naive (p<0.05), NK cells activated (p<0.05), Macrophages M0 (p<0.001), Dentritic cells activated (p<0.001), and Mast cells activated (p<0.001) (Figure 9B). The expression of T cells CD8 (p<0.001), T cells CD4 memory resting (p<0.001), T cells CD4 memory activated (p<0.001), T cells regulatory (Tregs) (p<0.001), T cells gamma delta (p<0.01), Macrophages M1 (p<0.001) and Mast cells activated (p<0.001) in RCSD1 high expression group was higher than that in RCSD1 low expression group (Figure 9B).




Figure 9 | Relationship between RCSD1 and immune cells in LUAD and LUSC. The ratio of 22 immune cells in (A) LUAD and (B) LUSC tissues in the RCSD1 high and low expression groups. Correlation of RCSD1 and immune cells in (C) LUAD and (D) LUSC. *, P<0.05; **, P<0.01; ***, P<0.001.



We then explored the correlation of immune cells with RCSD1 in both LUAD and LUSC in the R software. In LUAD group, T cells CD8 (p<0.001), T cells CD4 memory activated (p<0.001), Macrophages M1 (p<0.001), T cells CD4 memory resting (p<0.001), B cells memory (p=0.001), Dendritic cells resting (p=0.004), and Mast cells resting (p=0.030) were positively correlated with RCSD1, while T cells follicular helper (p=0.026), NK cells activated (p=0.005), B cells naive (p=0.003), Mast cells activated (p=0.002), Macrophages M0 (p<0.001), and Dentritic cells activated (p<0.001) were negatively correlated with RCSD1 (Figure 9C). Similarly, in LUSC group, T cells CD4 memory activated (p<0.001), T cells CD8 (p<0.001), Mast cells resting (p<0.001), T cells regulatory (Tregs) (p<0.001), T cells CD4 memory resting (p<0.001), Macrophages M1 (p<0.001), T cells gamma delta (p=0.009), and Neutrophils (p=0.024) were positively correlated with RCSD1, while B cells naive (p=0.045), Eosinophils (p=0.027), NK cells activated (p=0.020), Macrophages M0 (p<0.001), Dentritic cells activated (p<0.001), and Mast cells activated (p<0.001) were negatively correlated with RCSD1 in LUSC (Figure 9D).

Immune infiltrating cells in tumor tissues can not only perturb the cytokine signal in tumor micro-environment but also serve a significant part in cancer biology (25). Tumor infiltrating lymphocytes are important predictors for the status of sentinel lymph node and prognosis of cancer patients (26). In our analysis, we explored LUAD and LUSC in TIMER database to determine whether RCSD1 expression was related to the abundance of immune infiltration. Our findings showed that there was a significant positive correlation between RCSD1 expression and immune infiltrates, such as B cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic cells in LUAD and LUSC. However, RCSD1 expression was negatively associated with tumor purity (Figure 10A). Table 1 shows the correlation analysis of RCSD1 and immune cell biomarkers in LUAD and LUSC based on the TIMER and GEPIA database. In Table 1, we can see that RCSD1 has different degrees of correlation with immune cell biomarkers. In both LUAD and LUSC, RCSD1 was significantly associated with all the Gene markers of B cell, CD8+ T Cell, Th1 cell, Th17 cell, Treg cell, T cell exhaustion, M2 Macrophage, TAM, Monocyte, and Natural killer cell (Table 1). Moreover, Different copy number alterations of RCSD1 cause changes in the levels of immune cell infiltration. In LUAD group, when arm-level gain and high amplication mutations occur in the RCSD1 gene, it will cause altered infiltration levels of CD8+ T Cell, CD4+ T Cell, Macrophage, Neutrophil, and Dendritic cells (Figure 10B). And arm-level deletion and arm-level gain, which occur in RCSD1 of LUSC group, will alter the level of immune infiltration in B cell, CD4+ T Cell, Neutrophil, and Dendritic cells (Figure 10B). We next explored the effect of RCSD1 and immune-infiltrating cells on the prognosis of tumor patients. Results showed that increased B cell and Dendritic cells and higher RCSD1 expression indicated the better the prognosis of LUAD patients (Figure 10C).




Figure 10 | Correlation of RCSD1 expression and immune infiltration level. (A) Correlation of RCSD1 with tumor purity and infiltration of different immune cells. (B) The infiltration level of each immune subset at different copy numbers of RCSD1 in LUAD and LUSC. (C) Effects of multiple tumor immune subsets and RCSD1 expression on the prognosis of LUAD and LUSC patients. *, P<0.05; **, P<0.01; ***, P<0.001.




Table 1 | Correlation analysis between RCSD1 and biomarkers of immune cells in LUAD and LUSC based on the TIMER and GEPIA database.





Relationship between RCSD1 and immune molecules in lung cancer

Next, we investigated the connections between RCSD1 expression and various immune signatures to broaden the cognition of the correlation between RCSD1 and immune infiltration. Figure 11A shows the relationship between the abundance of TIL and the expression of RCSD1. Among them, Immature B cell, T follicular helper cell, and Th1 have the highly correlation with RCSD1 in LUAD (Figure 11A). Figures 11B, C show the correlation between RCSD1 and the markers of immunoinhibitor and immunostimulator, separately. And among the immunoinhibitor factors, RCSD1 has the high correlation with BTLA, CD96, and TIGIT (Figure 11B). In these immunostimulator factors, RCSD1 showed the high correlation with CD48, CD28, and CD40LG (Figure 11C). The MHC molecules, such as HLA-DOA, HLA-DPB1, and HLA-DMB, showed the high correlation with RCSD1 (Figure 11D). In the chemokine (receptor) tab, we can examine the chemokines (or receptors) that may be regulated by RCSD1. It can now be seen that, in the LUAD, the chemokine highly associated with RCSD1 are the CCL19, CCL5, CXCL13, CXCL12, CXCL9, CCL4 (Figure 11E), and the receptors highly associated with RCSD1 are the CCR2, CCR5, CCR7, CXCR6, CCR6 (Figure 11F). Figure S5 demonstrated the immunological features associated with RCSD1 in LUSC. Figure S5A showed the significant correlation of RCSD1 with Imm _B, Tfh, and Myeloid derived suppressor cell (MDSC). Figures S5B, C show the correlation between RCSD1 and the marker factors of immunoinhibitor and immunostimulator, respectively. And among the immunoinhibitor factors, RCSD1 has the high correlation with HAVCR2, CD96, and CSF1R (Figure S5B). In LUSC, RCSD1 showed the high correlation with CD28, CD48, and CD40LG among the immunostimulator factors (Figure S5C). The MHC molecules, such as HLA-DPA1, HLA-DPB1, and HLA-DMB, showed the high correlation with RCSD1 in LUSC (Figure S5D). It can also be seen that, in the LUSC, the chemokine highly associated with RCSD1 are the CCL19, CCL4, CCL5 (Figure S5E), and the receptors highly associated with RCSD1 are the CCR2, CCR5, CCR4 (Figure S5F). Thus, we confirmed that RCSD1 is widely involved in regulating multiple immune molecules in LUAD and LUSC, thereby affecting immune infiltration in the tumor micro-environment.




Figure 11 | Associations of the RCSD1 expression level with lymphocytes, immunomodulators and chemokines in LUAD. (A) Correlations between abundance of tumor-infiltrating lymphocytes (TILs) and RCSD1 (plus the six TILs with the highest correlation). (B–D) Correlations between immunomodulators and RCSD1 (plus the six immunomodulators with the highest correlation, respectively). (E, F) Correlations between chemokines (or receptors) and RCSD1 [plus the six chemokines (or receptors) with the highest correlation, respectively].





Analysis of RCSD1 versus immunotherapy

Cytotoxic T-lymphocyte-associated antigens 4 (CTLA-4) and programmed death 1 (PD-1) immune checkpoints are negative regulators of T-cell immune function. The PD-L1 inhibitors and the CTLA-4 inhibitors increase the average life expectancy of cancer patients by passing through different cellular immune pathways (27–29). IPS can determine the tumor immunogenicity and predict the response of multiple tumor types to treatment with immune checkpoint inhibitors (30). The higher the IPS, the better the patient is receiving immunotherapy. Through the analysis of immunotherapy in the TICA database, we can observe the effect of immunotherapy between the high and low RCSD1 expression groups. The abscissa of the violin plot represents the grouping of the RCSD1, and we divided the RCSD1 into two groups of high and low expression groups, and the vertical coordinate represents the IPS (Figure 12). In the PD1 negative/CTLA4 negative group, RCSD1 expression has no significance for immunotherapy. In the PD1 positive/CTLA4 negative, PD1 negative/CTLA4 positive, PD1 positive/CTLA4 positive groups, the higher the RCSD1 expression, the better the effect of receiving immunotherapy (Figure 12). These results suggest that patients in the high RCSD1 expression group may show a better response to immunotherapy.




Figure 12 | Relationship between RCSD1 expression and immunotherapy. (A) IPS score for the high and low RCSD1 expression group in LUAD. (B) IPS score for the high and low RCSD1 expression group in LUSC.






Discussion

The RCSD1 gene encodes a highly phosphorylation-dependent cytoskeletal regulatory molecule and participates in important components of mitosis (31). However, when the RCSD1 gene is dysregulated, such as a gene fusion occurs, the cell’s cytoskeleton regulation capacity will be altered, affecting cell function (9, 10, 32). Currently, the mechanism of RCSD1 in the development of other human malignancies has not been further explored. Therefore, we investigated the mRNA and protein expression of RCSD1 in pan-cancer through public databases. The relationship between RCSD1 and patient prognosis, clinical data, gene mutations, tumor immune infiltration, tumor immune markers, and immunotherapy provides new insights for future clinical diagnosis and treatment.

There may be several reasons for the influence of RCSD1 on the prognosis of tumor patients. Firstly, through the Timer database, we found that the RCSD1 expression was lower in BLCA, BRCA, LUAD, LUSC, COAD, KICH, KIRP, PRAD, READ, STAD, THCA, and UCEC, while it was higher in a few tumors (CHOL, HNSC, KIRC, and so on). Meanwhile, we performed a complementary analysis of the Timer database using the GEPIA database, and the expression of RCSD1 in 15 human tumors was lower than that in normal tissues, which was consistent with the conclusion in the TIMER database. Our analysis of RCSD1 total protein and phosphorylated proteins in pan-cancer using CPTAC database revealed that RCSD1 total protein expression was lower in COAD, LIHC, and LUAD tissues than in normal tissues. However, the total protein expression of RCSD1 in GBM, PAAD, KIRC, and UCEC was higher than that in normal tissues. Previous studies have shown that CapZIP, encoded by the RCSD1 gene, is a substrate of SAPKs (stress-activated protein kinases). Stress-activated members of the mitogen-activated protein kinase family phosphorylate CapZIP at many sites, including Ser-68, Ser-83, Ser-108, and Ser-216 (7). In our study, RCSD1 (NP_443094.3) was found to be phosphorylated at multiple sites of the pan-cancer. In LUAD and BRCA cohorts, the RCSD1 phosphoprotein expression at all sites was lower than in the corresponding normal tissues. However, in KIRC, RCSD1 phosphorylated proteins at S68, S105, S105S108, and S284 showed lower expression in tumors than in normal tissues; the RCSD1 expression of phosphoproteins at S116S120, S216, S267S268, and S298 was higher than that in normal tissues. This finding can help the subsequent basic experiments to deeply explore the specific site and mechanism of RCSD1 phosphorylated protein in the mechanism of tumor development and development. Meanwhile, after a comprehensive analysis of the GEPIA database and the Kaplan-Meier survival curves, we found that the low expression of RCSD1 in most tumors (HNSC, KIRC, LUAD, THYM, SARC, and so on) was associated with poor patient prognosis (OS) in tumors. However, the high expression of RCSD1 in only a few tumors (LGG, UVM, TGCT, and ESCC) was associated with poor tumor patient prognosis (OS). Above, the mRNA expression and the protein expression level of the RCSD1 in the different tumors may be the important factors affecting the patient prognosis.

Through previous studies, we learned that genetic mutations in RCSD1 may induce hematological malignancies (33), so here, we investigated the type and status of mutation and mutations that may occur in the RCSD1 gene in pan-cancer, and the effect of the RCSD1 gene mutation on patient prognosis. We first analyzed the gene mutation frequency, mutation types, mutation site of RCSD1 in pan-cancer by using the cBioportal web site, RCSD1 mutation rates were found to be high in CHOL, BLCA, LIHC, BRCA, LUAD, SARC, and LUSC. And most types were the Amplification. We then analyzed the effect of genetic mutations in RCSD1 on patient prognosis, found that the RCSD1 genetic alteration significantly shortened the DFS in COAD patients and the OS in PCPG patients. The above results indicate that genetic mutations of RCSD1 in tumors are potential factors that induce poor prognosis in patients.

In parallel, we retrieved 50 proteins that showed interactions with RCSD1 in pan-cancer by the String database. Among these genes that interact with RCSD1 include USP7, CD2AP, and CAPZA1. Previous studies have shown that USP7 is able to act synergistically with PI3K inhibitors to inhibit breast cancer development (34). The CD2AP was able to inhibit the metastasis of gastric cancer (35). CAPZA1 is lowly expressed in tumors, when CAPZA1 is phosphorylated, the adhesion and migration of PRAD, PAAD, and LIHC cells increase, leading to poor patient prognosis (36–38). At the same time, we also screened the 100 genes with the strong correlation with RCSD1 in the GEPIA database, in which IKZF1 (r=0.87) and DOCK2 (r=0.87) were highly positively associated with RCSD1. Studies have shown that genetic mutations in IKZF1 are associated with poor prognosis in hematologic tumors and colorectal tumors (39–41); Low expression of DOCK2 is associated with a poor prognosis in colorectal cancer and lung cancer patients (42–44). Through GO and KEGG enrichment analysis, we can see that RCSD1-related genes are highly correlated with cellular immunomodulatory processes such as “T cell activation”, “lymphocyte differentiation”, and “mononuclear cell proliferation”. Moreover, it is highly enriched in the immune-related signaling pathways such as “chemokine signaling pathway”, “VEGF signaling pathway”, and “T cell receptor signaling pathway”. The above analysis proved that RCSD1 and its related genes are closely related to the process of tumorigenesis, and that the expression of RCSD1 may affect the prognosis of patients. At the same time, the expression of RCSD1 was significantly different in most of the tumor immune subtypes and tumor immune molecular subtypes, which suggested that RCSD1 may be involved in regulating tumor immune related processes, thereby affecting patient prognosis.

In addition, we selected LUAD and LUSC focusing on the correlation of RCSD1 and patient clinical data, found that RCSD1 was associated with individual tumor stage, patient age, smoking history, and lymph node metastasis in LUAD patients. RCSD1 is also associated with individual tumor stage, histological subtypes, and TP53 mutational status in LUSC patients. In LUAD, we then explored the 50 genes with a positive and negative correlation with RCSD1. In the LUAD group, IKZF1 and GIMAP6 showed the strong positive correlation with RCSD1. IKZF1 is a known tumor-suppressor gene (45, 46), and high GIMAP6 expression level is also associated with a favorable prognosis in patients with LUAD and LIHC (47, 48). In LUSC, SASH3 showed the strong positive association with RCSD1, and SASH3 is currently known to be a LUAD suppressor (49). The above results indicate that RCSD1 is potentially associated with lung cancer prognosis, but the specific occurrence mechanism remains unclear. Therefore, we further explored the relationship between RCSD1 and the immune mechanisms of lung cancer. The results showed that RCSD1 was correlated with immune cells in lung cancer, moreover, increased tumor immune-infiltrating cells and increased RCSD1 expression were associated with better prognosis of lung cancer patients. There was a significant correlation between RCSD1 and most TIL, and immunotherapy with high RCSD1 expression was better. The above results indicate that RCSD1 mainly regulates tumor-related immune mechanisms, involved in the development and development of lung cancer and affects patient prognosis.

This study improves our understanding of the relationship between RCSD1 and pan-cancer, but several limitations remain. First, we mainly explored the analysis of RCSD1 expression and immune related processes in pan-cancer. However, the biological process and molecular mechanism of RCSD1 in tumor progression need more basic experimental studies. Second, we only investigated the expression of RCSD1 phosphorylated proteins, but the specific phosphorylation mechanism has not been deeply explored.

Taken together, our results demonstrate that RCSD1 is significantly differentially expressed in different human tumors and that its expression level correlates with clinical case characteristics and prognosis of pan-cancer patients. The expression of RCSD1 is closely related to the immune infiltration of lung cancer cells, and RCSD1 may partly affect the prognosis by regulating the immune infiltration in lung cancer patients. RCSD1 may serve as a prognostic biomarker for the prognosis associated with immune infiltration in lung cancer. In conclusion, we conducted a comprehensive assessment of RCSD1, revealing its potential role as an indicator of patient prognosis and its immunoregulation effect.

Therefore, in future clinical work, the detection of RCSD1 expression levels in cancer patients could be used to evaluate the disease and predict the prognosis of patients. We look forward to further studies of RCSD1 to progressively elucidate the biological role of RCSD1 in the tumor immune micro-environment and prognosis.
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Background

Immunotherapy has changed the therapeutic landscape of cervical cancer (CC), but has durable anti-tumor activity only in a subset of patients. This study aims to comprehensively analyze the tumor immune microenvironment (TIME) of CC and to mine biomarkers related to immunotherapy and prognosis.



Methods

The Cancer Genome Atlas (TCGA) data was utilized to identify heterogeneous immune subtypes based on survival-related immune cell signatures (ICSs). ICSs prognostic model was constructed by Cox regression analyses, and immunohistochemistry was conducted to verify the gene with the largest weight coefficient in the model. Meanwhile, the tumor immune infiltration landscape was comprehensively characterized by ESTIMATE, CIBERSORT and MCPcounter algorithms. In addition, we also analyzed the differences in immunotherapy-related biomarkers between high and low-risk groups. IMvigor210 and two gynecologic tumor cohorts were used to validate the reliability and scalability of the Risk score.



Results

A total of 291 TCGA-CC samples were divided into two ICSs clusters with significant differences in immune infiltration landscape and prognosis. ICSs prognostic model was constructed based on eight immune-related genes (IRGs), which showed higher overall survival (OS) rate in the low-risk group (P< 0.001). In the total population, time-dependent receiver operating characteristic (ROC) curves displayed area under the curve (AUC) of 0.870, 0.785 and 0.774 at 1-, 3- and 5-years. Immunohistochemical results showed that the expression of the oncogene (FKBP10) was negatively correlated with the degree of differentiation and positively correlated with tumor stage, while the expression of tumor suppressor genes (S1PR4) was the opposite. In addition, the low-risk group had more favorable immune activation phenotype and higher enrichment of immunotherapy-related biomarkers. The Imvigor210 and two gynecologic tumor cohorts validated a better survival advantage and immune efficacy in the low-risk group.



Conclusion

This study comprehensively assessed the TIME of CC and constructed an ICSs prognostic model, which provides an effective tool for predicting patient’s prognosis and accurate immunotherapy.





Keywords: cervical cancer, immunotherapy, biomarkers, tumor immune microenvironment, immunohistochemistry



Introduction

Cervical cancer (CC) is the fourth most commonly diagnosed cancer and the leading cause of cancer deaths in women (1). Persistent infection with high-risk human papilloma virus (HPV) is a major causative factor in the progression of CC. With the continuous improvement of HPV vaccination rate, the growth trend of CC incidence has slowed down (2). However, due to distant metastasis and local recurrence after treatment, the prognosis of CC is not very ideal (3, 4).

Immunotherapy includes immune checkpoint blockade (ICB), immune cell therapies, cancer vaccines, and lysing viruses that target various types of immune cells and have dramatically changed the treatment landscape of many solid tumors (5). However, clinical trials have revealed that ICB could only exhibit durable antitumor activity in some patients with CC (6). Therefore, precise immunotherapy and accurate efficacy prediction of patients by immunotherapy-related biomarkers has manifested clinical research priorities.

Tumor immune microenvironment (TIME) in CC is characterized by high levels of immunogenicity and immune cells infiltration, suggesting that an in-depth study of TIME may be critical for tumor prognosis and treatment (7). Wang et al. (8) identified the PD-1 + DC density of the TIME might be a diagnostic factor in predicting the best beneficiaries of PD-1/PD-L1 blockade immunotherapy in CC. Furthermore, Walayat Shah et al. (9) found that reversal of the CD4/CD8 ratio of tumor-infiltrating lymphocytes and CD4 + FOXP3 + regulatory T cells high ratio were significantly associated with clinical prognosis in CC. Therefore, the use of computational methods to quantify TIME may provide more advanced prognostic biomarkers, which may reveal additional novel targets for chemotherapy and immunotherapy in CC patients.

This study explored the TIME of CC based on immune cell signatures (ICSs) and mined eight immune-related genes (IRGs). Biological function, immune cell infiltration, and immunotherapy-related biomarkers were mined to identify ideal immunotherapeutic subgroups for CC. The highlighted results provided methodological and technical support to achieve precision immunotherapy for CC.



Materials and methods


Data acquisition and processing

Fragments per kilobase million (FPKM) data of CC (N = 307) including gene expression profiles, somatic alteration data, and clinical data were downloaded from the Cancer Genome Atlas (TCGA) Genomic Data Commons (GDC) data portal (https://portal.gdc.cancer.gov/). The TCGA database is based on tissue specimens for high-throughput sequencing. The FPKM data were translated into transcripts per kilobase million (TPM). Duplicate recorded samples and overall survival (OS) time or survival status unavailable were excluded. Ultimately, 291 CC patients from the TCGA cohort were enrolled in the analyses, including 241 squamous cell carcinomas, 46 adenocarcinomas, and 4 adenosquamous carcinomas. Specific clinical information on CC patients was supplemented in Data Files S1.

These 184 ICSs were based on the aggregation of databases such as ImmPort, CIBERSORT, and ImSig (10). Detailed information was listed in Data Files S2. The normalized enrichment score (NES) generated by single sample gene set enrichment analysis (ssGSEA) with the R package “GSVA” (version 1.42.0) was considered as the infiltrate level of each ICS (11). In this study, only 183 ICSs were evaluated for follow-up analyses due to lack of some marker genes in the transcriptome atlas.

Meanwhile, the IMvigor210 cohort (http://research-pub.gene.com/IMvigor210CoreBiologies/) (N = 348) were also enrolled to validate our findings using the R package “IMvigor210CoreBiologies”, which are patients with metastatic urothelial cancer (mUC) receiving PD-L1 inhibitor (12). Raw count was also translated to TPM to represent gene expression in the IMvigor210 cohort. In addition, to expand our findings in gynecologic tumors, ovarian cancer (OC) and endometrial cancer (EC) data were downloaded and processed from the TCGA database. Finally, 374 OC patients and 539 EC patients were included. The flow of this study was shown in Figure 1.




Figure 1 | Flow chart of the study.





Unsupervised consensus clustering for survival-related ICSs

The univariate Cox regression was applied to obtain survival-related ICSs (P< 0.050). Subsequently, according to the infiltrate levels of survival-related ICSs, hierarchical agglomerative cluster of CC patients was performed using R package “ConsensusClusterPlus”. This algorithm was repeated 1,000 times to obtain stable classification. The differentially expressed genes (DEGs) between ICSs clusters were analyzed with false discovery rate (FDR)< 0.050 and absolute fold-change > 2, which was implemented by employing the R package “limma”. To identify the genomes and pathways enriched by DEGs, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment analyses were performed using the R package “clusterProfiler” (version 4.2.2).



ICSs prognostic model construction and validation

In the TCGA cohort, the univariate Cox regression was applied to obtain survival-related genes from DEGs (P< 0.050). Then, the TCGA-CC samples were randomly divided into training (n = 204) and validation (n = 87) sets at 7:3. Least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were used to construct an ICSs prognostic model in the training set. The calculation formula of Risk score was as follows:

	

In the formula, βi was defined as the coefficient of genes correlated with survival and ExpGenei was the expression value of the corresponding gene in each sample. The cut-off value was determined by the “surv_cutpoint” function of the R package “survminer”, which calculates statistics based on maximally selected rank statistics. The principle of this function to determine the optimal cutoff value is to obtain the two groups with the most statistically significant difference in survival rates through multiple simulations.



Immunohistochemistry

Tumor tissues from a total of 23 CC patients were obtained from the Harbin Medical University Cancer Hospital. These samples were obtained from patients who underwent radical surgery, and all patients were untreated prior to radical resection. Specific clinical information is supplemented in Data Files S3. All specimens were collected in accordance with the ethical standards of the Committee for Human Experimentation. The expressions of S1PR4 and FKBP10 on the CC tissue were performed by immunohistochemistry (IHC) staining. Tissue sections were incubated with a primary antibody against S1PR4 or FKBP10 at 4°C overnight and then incubated with horseradish peroxidase combined with goat anti-rabbit antibody (PV-6001, ZSGB) at room temperature for 30 mins. Tissue sections were stained using DAB and counterstained with hematoxylin. The results of the experiment were analyzed by two doctors and two pathologists. The rules are as follows: Immunoreactive score (IRS) = SI (staining intensity) × PP (percentage of positive cells). SI was assigned as: 0 = negative; 1 = weak; 2 = moderate; 3 = strong. PP was defined as 0 = 0%; 1 = 0–24.9%; 2 = 25–49.9%; 3 = 50–74.9%; 4 = 75–100%. All of the included patients were dichotomized into two groups based on the median score.



Immune infiltration landscape evaluation

To further explore the immune infiltration landscape in two prognostic subgroups, multiple immune-related algorithms were utilized, such as the ESTIMATE, CIBERSORT, and MCPcounter algorithms (13–15). In addition, we also analyzed the distribution of immune subtypes in high and low-risk groups, which were categorized in previous studies (16, 17). To further reveal the underlying mechanisms of CC, gene set variation analysis (GSVA) was performed using the R package “GSVA” (adjusted P< 0.050). The gene set “c2.cp.kegg.v7.4.symbols” was downloaded from Molecular Signatures Database (MSigDB, http://www.broad.mit.edu/gsea/msigdb/).



Immunotherapy-related biomarkers analyses

The main biomarkers for the prediction of immune efficacy included immune mark genes, immune function characteristics, tumor mutational burden (TMB), histocompatibility complex (MHC) molecules, chemokines, cytolytic activity (CYT), and stimulator of interferon genes (STING) (18–20). Therefore, we further explored the differences in these immunotherapy-related biomarkers between high and low-risk groups.



Immunotherapeutic response prediction

We downloaded the immunophenoscore (IPS) from the cancer immunome atlas (TCIA) (https://tcia.at/home) to predict responses to ICB (21). IPS was calculated based on the expression of MHC molecules, immunomodulators, effector cells (ECs) and suppressor cells (SCs). It included four types of scores, ips_ctla4_pos_pd1_pos, ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_pos, and ips_ctla4_neg_pd1_neg, to better predict the efficacy of anti-CTLA-4 and anti-PD-1 antibodies. IMvigor210 cohort and two gynecologic tumor (TCGA-OC and TCGA-EC) cohorts were also used to validate the predictive value of Risk score for immunotherapy.



Statistical analyses

All statistical analyses were performed with R software (version 4.1.3). The Kaplan–Meier plotter was employed to depict survival curves. The Wilcoxon test was carried out to compare the difference between two groups, and the correlation coefficient was computed using the Spearman analyses. Two-tailed P< 0.050 was deemed statistical significance.




Results


Survival and immunological characterization between ICSs clusters

The TCGA cohort was divided into two clusters based on survival-related ICSs by using hierarchical agglomerative cluster (Figure 2A; Figures S1A, B). The accuracy of the clustering was verified using principal component analysis (PCA) (Figure 2B). Furthermore, Kaplan-Meier survival curves showed significant survival difference between two ICSs clusters (P = 0.016; Figure 2C). Differential correlation patterns of survival-related ICSs between two clusters were visualized as heatmap (Figure S1C). Enriched biological processes of ICSs clusters were summarized by Figures S1D and S1E, with specific data in the Data Files S4.




Figure 2 | Determination of immune cell signatures (ICSs) subtypes. (A) Consensus matrix of the TCGA-CC cohort with appropriate k values (k = 2). (B) PCA validation of clustering results. (C) Kaplan-Meier curves of OS for CC patients in both ICSs clusters (P = 0.016). (D) Violin plots of 22 tumor-infiltrating immune cell types of two ICSs clusters by CIBERSORT algorithm. (E) Differential analysis of 27 immune marker genes in two ICSs clusters (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (F) Differences between two ICSs clusters in the degree of enrichment of indicator signals for specific immune functions (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (G) Biological processes of two ICSs clusters using GSVA analysis. Heatmap colors indicate ICSs infiltrate levels, with red indicating high infiltrate levels and blue indicating low infiltrate levels. (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001).



To furtherly clarify the intrinsic substrates leading to different survival outcomes between two ICSs clusters, we performed a series of immune correlation analyses. CIBERSORT algorithm revealed that ICSs cluster A was characterized by high naive B cells, M0 macrophages, activated mast cells infiltration, which might be the cause of poor prognosis. By contrast, ICSs cluster B was marked by high CD8 T cells, memory activated CD4 T cells, follicular helper T cells, and M1 macrophages infiltration (Figure 2D). The heatmap of correlation coefficient was generated to visualize the cellular interaction of the tumor-infiltrating immune cell types (Figure S1F). MCPcounter and ESTIMATE algorithms similarly demonstrated a higher immune infiltration of ICSs cluster B (Figure S1G; Figure S1H). In the subsequent analysis, we compared the differential expression levels of 27 common immune marker genes in two clusters (22, 23). The results exhibited that most of the immune marker genes were comprehensively elevated in the ICSs cluster B (Figure 2E). Furthermore, ssGSEA of specific gene sets demonstrated that the ICSs cluster B was highly active in multiple immune function pathways (Figure 2F), consistent with the results of the above immune correlation analyses. GSVA identified that the B cell receptor, T cell receptor, and JAK/STAT pathways were significantly activated in the ICSs cluster B (Figure 2G). The results were supplemented in the Data Files S5.



ICSs prognostic model construction and validation

The 986 DEGs (FDR< 0.050 and absolute fold-change > 2) were included in the univariate Cox regression model and 321 genes (P< 0.050) were found to be significant. Heatmap results displayed that the gene expression levels in ICSs cluster B were generally higher than that in ICSs cluster A (Figure 3A). All the 321 significant genes were incorporated into the LASSO and multivariate Cox regression model (Figures 3B, C). Finally, eight IRGs were contained in the ICSs prognostic model. The comprehensive Risk score was calculated as follows: Risk score = (0.13780 * CA9) + (0.29263 * FKBP10) + (-0.27821 * CKB) + (-0.40748 * GLIPR2) + (-0.42239 * ISG20) + (-0.42787 * S1PR4) + (-0.26784 * SDS) + (-0.20766 * VTCN1). Patients with CC were divided into high and low-risk groups using the cutoff value (1.27508) as the dividing line. The above results were showed in the Data Files S6.




Figure 3 | Construction and validation of ICSs prognostic model in the TCGA cohort. (A) Heatmap depicted the expression levels of survival-related DEGs in different ICSs clusters and the distribution of clinical traits of patients. The rows represent survival-related DEGs and the columns represent samples. (B, C) Determination of the number of survival-related DEGs into the multivariate Cox regression model by LASSO analyses. (D–F) Kaplan-Meier curves of OS for the high and low-risk groups in the total population, training set, and validation set (P< 0.001). (G–I) Time-dependent ROC curve in the total population, training set, and validation set.



In the total population, training and validation sets, the distribution curves and survival scatter plots indicate that patients with high-risk scores have a poorer prognosis (Figures S2A–F), and Kaplan-Meier survival curves demonstrated that patients showed a significant difference between high and low-risk groups in survival rate (P< 0.001; Figures 3D–F). In the total population, time-dependent receiver operating characteristic (ROC) curves showed that the ICSs prognostic model had a strong prognostic accuracy with the area under the curve (AUC) of 0.870 in 1 year, 0.785 in 3 years and 0.774 in 5 years (Figure 3G). The results of time-dependent ROC curves for the training and validation sets were shown in Figures 3H, I.

Univariate and multivariate Cox regression showed that Risk score and Stage were independent prognostic factors for CC (Data Files S7). By combining the independent prognostic factors, we constructed a nomogram that serves as a clinically relevant quantitative method by which clinicians could predict the mortality of CC patients (Figure 4A). In addition, calibration plots indicated that the performance of the nomogram was similar to that of the ideal model (Figure 4B). The decision curve analysis (DCA) also revealed that the nomogram had high potential clinical utility (Figure 4C). We also compared the AUC of the Risk score and Stage, and the results showed that the Risk score had better predictive power (Figure 4D). Finally, we compared the distribution of Stage between high and low-risk groups, as shown in Figure 4E, with a higher proportion of Stage I-II patients in the low-risk group.




Figure 4 | Independent prognostic analysis of Risk score. (A) Nomogram for predicting the probability of patient mortality at 1-, 3-, or 5- year OS based on two independent prognosis factors (***P< 0.001). (B) Calibration curves of the nomogram for predicting the probability of OS at 1-, 3-, or 5- year. (C) Decision curve analyses (DCAs) of the nomograms for 1-, 3-, or 5- year risk. (D) Time-dependent ROC curve of two independent prognosis factors. (E) Heatmap and table showing the distribution of Stage I-IV between high and low-risk groups (P = 0.036).





Immunohistochemical results of FKBP10 and S1PR4

To verify our previous research results, IHC staining was performed on tissue samples collected from patients with CC to explore the expression of oncogenes (FKBP10) and tumor suppressor genes (S1PR4) with the largest weight coefficient in the ICSs prognostic model. Figures 5A and B show immunohistochemical images of FKBP10 and S1PR4 in different differentiation states. The immunohistochemical results showed that the expression level of oncogene FKBP10 was negatively correlated with the degree of differentiation, while the expression of tumor suppressor gene S1PR4 was the opposite. In addition, this study used immunohistochemical images of tissues at different stages to demonstrate that the expression level of FKBP10 gradually increased with increasing tumor stage, and that of S1PR4 gradually decreased with increasing tumor stage (Figures 5C, D). This evidence confirmed the expression of two key genes in CC tissues, and our results had a higher degree of confidence.




Figure 5 | Immunohistochemical results of FKBP10 and S1PR4. (A) Immunohistochemical images of FKBP10 in high and low differentiation groups. (B) Immunohistochemical images of S1PR4 in high and low differentiation groups. (C) Immunohistochemical images of FKBP10 in four different tumor stages (Stage I-IV). (D) Immunohistochemical images of S1PR4 in four different tumor stages (Stage I-IV).





Immune infiltration landscape in high and low-risk groups

To further explore the correlation between the prognosis and TIME, we analyzed the immune infiltration landscape of CC. Alluvial diagram illustrated that most patients in ICSs cluster B have low Risk score and more alive status (Figure 6A; Figure S3A). In addition, we assessed the differential correlation pattern of prognosis-related ICSs in the high and low-risk groups, and the result was shown in Figure 6B. Further analyses showed that low-risk group had higher immune score, stromal score and estimate score (Figure 6C). CIBERSORT and MCPcounter algorithm displayed that the immune cell infiltrating types of the low-risk group were similar to ICSs cluster B, and the high-risk group was consistent with ICSs cluster A (Figures 6D, E). The association heatmap visualized a negative correlation between Risk score and multiple tumor-infiltrating immune cells (Figure S3B). The distribution of immune subtypes showed that the low-risk group was mainly distributed in IS4 and C2 types, which reflected that the low-risk group had a more favorable anti-tumor immune response (Figures 6F, G). GSVA was used to further explore the potential role of Risk score in biological processes, which identified that B cell receptor, T cell receptor and ATP-binding cassette (ABC) transporters pathways were significantly activated in the low-risk group (Figure 6H). Detailed results of GSVA were listed in the Data Files S8.




Figure 6 | Immune infiltration landscape in the high and low-risk groups. (A) Alluvial diagram of the distribution with patients in different ICSs clusters, risk groups, and survival outcomes. (B) Heatmap depicted the infiltration of survival-related ICSs in the high and low-risk groups and the distribution of clinical traits of patients. The rows represent survival-related ICSs and the columns represent samples. (C) Differential analysis of immune score, stromal score and estimate score in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (D) Violin plots of 22 tumor-infiltrating immune cell types of high and low-risk groups by CIBERSORT algorithm. (E) Violin plots of 10 tumor-infiltrating immune cell types of high and low-risk groups by MCPcounter algorithm (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (F) Heatmap and table showing the distribution of pan- SCC immune subtypes (IS1, IS2, IS3, IS4, IS5, and IS6) between high and low-risk groups (P = 0.001). (G) Heatmap and table showing the distribution of immune subtypes (C1, C2, C3, C4, C5, and C6) between high and low-risk groups (P = 0.001). (H) Biological processes of high and low-risk groups using GSVA analysis. Heatmap colors indicate ICSs infiltrate levels, with red indicating high infiltrate levels and blue indicating low infiltrate levels. (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001).





Immunotherapy-related biomarkers differences between high and low-risk groups

To further elucidate the effects of Risk score in the context of immunotherapy, we explored the associations between Risk score and several well-known immune marker genes. It was shown that immune marker genes were expressed at higher levels in the low-risk group (Figure 7A). We analyzed 29 immune function-related characteristics and found that the low-risk group had a more favorable immune activation phenotype, suggesting that they may have a more intense immune response (Figure 7B). Considering the great clinical significance of TMB for immunotherapy, we sought to explore the intrinsic correlation between TMB and Risk score. The “maftools” R package was carried out for assessing the distribution of somatic mutation in the high and low-risk groups, and depicted the top 20 driver genes with the highest alternative frequencies in Figures 7C, D. The heatmap of correlation coefficient demonstrated the interrelationship of the top 20 mutated genes in CC patients (Figure S3C). We found no difference in the prognosis of patients in the high and low TMB group (Figure S3D), as well as no significant correlation between TMB and Risk score (Figures S3E, F). In addition, we found that the expression levels of MHC molecules, and chemokines, which were responsible for the movement of immune cells, were comprehensively elevated in the low-risk group (Figures 7E, F). CYT and STING were relatively higher in the low-risk group (P< 0.001; Figures 7G, H), and Risk score was significantly negatively associated with relatively higher (Figures 7I, J). Taken together, these results suggested that Risk score based on eight IRGs may be potential predictors of CC immunotherapy efficacy.




Figure 7 | Comparison of immunotherapy predictive biomarker. (A) Differential analysis of 27 immune marker genes in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (B) Differences between high and low-risk groups in the degree of enrichment of indicator signals for specific immune functions (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (C, D) The waterfall diagram of the top 20 driver genes between the high (C) and low risk-score (D) of CC patients. (E, F) Differential analysis of MHC molecules (E) and chemokines (F) in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (G) CYT difference in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (H) STING difference in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (I) Scatterplots depicting the correlation between Risk score and CYT (R = -0.380, P<0.001). (J) Scatterplots depicting the correlation between Risk score and STING (R = -0.250, P<0.001).





Prediction of clinical benefits of ICB

To assess the ability of the Risk score as a biomarker for predicting clinical response to ICB treatment, we assessed the immunogenicity of two prognostic subgroups by IPS analyses. The low-risk group had higher ips_ctla4_pos_pd1_pos, ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_pos, and ips_ctla4_neg_pd1_neg scores in the TCGA-CC cohort (Figures 8A–D). In the TCGA-CC and IMvigor210 cohort, Risk score was negatively correlated with MHC scores, EC scores and IPS scores. Regarding the SC score, opposite results were obtained (Figures 8E, F). In the subsequent analyses, IMvigor210 cohort were assigned high and low-risk score. As shown in Figures 8G, H, while there was no statistical difference in Risk scores between patients with complete response (CR)/partial response (PR) and those with stable disease (SD)/progressive disease (PD), clinical response rates with anti-PD-L1 therapy were higher in patients with low-risk group than those with high-risk group (P = 0.020). Noteworthy, patients with low-risk score had a significantly better prognosis than those with high-risk score in the IMvigor210 and two gynecologic tumors (Figures 8I–K). In addition, IPS analyses indicated consistent results for the TCGA-EC cohort with the TCGA-CC cohort (Figures S4A–D), while only the ips_ctla4_pos_pd1_neg score was higher in the low-risk group of the TCGA-OC cohort (Figures S4E–H). These results indicated that patients in the low-risk group may have a better response to immunotherapy.




Figure 8 | The role of Risk score in immunotherapeutic response prediction. (A–D) The distribution plot of ips_ctla4_pos_pd1_pos (A), ips_ctla4_pos_pd1_neg (B), ips_ctla4_neg_pd1_pos (C), and ips_ctla4_neg_pd1_neg (D) scores in TCGA-CC cohort. (E, F) Intrinsic connection of Risk score and MHC, EC, SC, IPS score in TCGA-CC and IMvigor210 cohorts, with red indicating positive correlations and blue indicating negative correlations. The asterisks represented the statistical P value (*P< 0.050). (G) Distribution of clinical response rates for anti-PD-L1 immunotherapy in the high and low-Risk score groups in the IMvigor210 cohort (P = 0.020). (H) Risk score in groups with different anti-PD-L1 clinical response status (P = 0.160). (I) Kaplan-Meier curves for OS in the IMvigor210 cohort for the high and low-risk groups (P = 0.001). (J) Kaplan-Meier curves for OS in the TCGA-OC cohort for the high and low-risk groups (P = 0.002). (K) Kaplan-Meier curves for OS in the TCGA-EC cohort for the high and low-risk groups (P = 0.030).






Discussion

Immunotherapy, as a novel treatment strategy for CC, only benefit a minority of patients (24). In this study, we constructed ICSs prognostic model based on eight IRGs. Patients in the low-risk group had higher survival rates and immune activated cell infiltration. In addition, we revealed a greater enrichment of immunotherapy-related biomarkers in the low-risk group. Notably, we also evaluated the prognostic and immunotherapeutic role of the Risk score in the IMvigor210 and two gynecologic tumors cohorts.

Published work suggested that the TIME plays an important role in improving prognosis and mediating the therapeutic response to chemotherapy and immunotherapy in patients with CC (7). In this study, we categorized the patients with CC into two ICSs clusters. Our analyses indicated that ICSs cluster B with higher densities of CD4 + T cells, CD8 + T cells, and M1 macrophages, as well as higher immune score, were associated with patient prognosis, which is in line with the previous studies (25, 26). In addition, cluster B was enriched for more immunoreactive and signaling pathways compared to ICSs cluster A. Therefore, patients with ICSs cluster B may generate a more intense immune response. However, despite the higher degree of immune infiltration, the existing clinical studies reported lower response rates to immunotherapy in patients with CC, suggesting that there may be underlying molecular mechanisms in the anti-tumor process (27, 28).

In this study, we focused on the molecular characteristics that regulate the immune system in CC. We screened eight IRGs (CA9, FKBP10, CKB, GLIPR2, ISG20, S1PR4, SDS, VTCN1). Previous studies observed that genes such as CA9, CKB and GLIPR2 were strongly associated with the prognosis of cancer (29–31). FKBP10 and S1PR4 had the largest weight coefficients compared with other genes in the model, suggesting that the expression levels of these two genes have a greater impact on patient prognosis. FKBP10, an endoplasmic reticulum chaperone, coordinates protein translation to sustain lung cancer growth, but the mechanism of action in CC has not been elucidated (32). Bioinformatics analysis has shown that hypermethylation and low expression of S1PR4 are associated with poor prognosis of CC, but experimental verification is still lacking (33). In the present study, based on immunohistochemical experiments, we verified the differences in the expression levels of FKBP10 and S1PR4 in different differentiation states and different tumor stages, further demonstrating the plausibility of the results of this study. In conclusion, the ICSs prognostic model constructed based on eight IRGs quantified the risk of individual patients and effectively identified high-risk patients.

To further understand the immunological nature of the two prognostic subgroups, we analyzed their immune infiltration landscape. We found that the immune infiltration phenotype of the low-risk group was consistent with ICSs cluster B, suggesting that the low-risk group has a more favorable immune activation phenotype and is a “hot” tumor (34). In addition, we found more IS4 and C2 in the low-risk group of CC patients. IS4 had the highest T-cell and IFNγ gene expression as well as low-reactive stroma and TGFβ, and C2 had the highest M1/M2 macrophage polarization and strong CD8 signaling, which means a more favorable antitumor immune response in the low-risk group. In contrast, the high-risk group pooled more IS6 and C1, implying low inflammatory signaling and higher angiogenic gene expression (16, 17). These findings reveal an active immune response and lower tumor aggressiveness in the low-risk group and a suppressed immune response and greater tumor aggressiveness in the high-risk group.

Considering the individual heterogeneity of immunotherapy efficacy, there is an urgent need to investigate new therapeutic markers to identify ideal subgroups for CC immunotherapy. In the present study, we found that common biomarkers representing better immune efficacy were more enriched in the low-risk group, which is in line with our previous study (35, 36). However, the difference in TMB was not statistically significant in the high and low-risk groups, probably due to the lower level of TMB with the median index value was 1.908 (1.184-3.414). Previous studies have indicated that there is no significant difference in TMB between PD-L1-positive and PD-L1-negative subsets at lower TMB levels in CC cohorts (mean and median index value were 7.74 and 5.00, respectively), and therefore it may not be appropriate to investigate its application as a potential biomarker for immune checkpoint therapy at low overall TMB levels (37). To further validate the value of ICSs prognostic model, we evaluated the IPS scores in the high and low-risk groups, the results also demonstrated that patients in the low-risk group benefited more from immunotherapy (38). Analyses of the IMvigor210 cohort receiving anti-PD-L1 therapy also showed a better survival advantage and higher objective remission rates in the low-risk group as well. Gynecologic malignancies mainly include three major types of cervical cancer, ovarian cancer and endometrial cancer. It has been suggested that there may share a common molecular mechanism among the three gynecologic malignancies (39–41). Our findings for the other two gynecologic tumors were consistent, which may provide some references for further revealing the common molecular mechanisms of the three gynecologic tumors.

Although the present study suggests that the ICSs prognostic model may have clinical translational promise, there are still limitations. First, the relationship between prognostic models and immune efficacy was only preliminarily analyzed in the IMvigor210 cohort, which needs to be validated in other immunotherapy cohorts. Secondly, we only conducted IHC experiments for FPBK10 and S1PR4, and deeper mechanistic studies and clinical translation should be elucidated more systematically in vitro and in vivo.

In summary, we carried out a comprehensive assessment of the immune infiltration landscape in CC patients and screened the biomarkers based on immunotherapy relevance. In future studies, systematic evaluation of ICSs in tumor patients is important to achieve precision immunotherapy.
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Introduction

The purpose of this study was to evaluate recombinant human endostatin (rHE)-induced normalization of the tumor vasculature in colorectal cancer (CRC) and to evaluate the therapeutic effects of combined treatment with rHE and a programmed death ligand-1 (PD-L1) inhibitor.



Methods

A mouse subcutaneous tumorigenesis model was established to evaluate the antitumor effects of endostatin combined with a PD-L1 inhibitor on CRC. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DW MRI) was used to evaluate changes in the intratumor microcirculation in response to combined treatment with endostatin and a PD-L1 inhibitor. The infiltration density and function of CD8+ T cells in tumors were evaluated using flow cytometry. Finally, clinical specimens were used to evaluate the expression area of tumor vascular pericytes and CD8+ T cells in tumor tissues.



Results

The antitumor effects of endostatin combined with a PD-L1 inhibitor were significantly greater than those of endostatin or a PD-L1 inhibitor alone. On the ninth day of intervention, the endostatin group showed significantly higher pseudo diffusion parameter (D*) and microvascular volume fraction (F) values in tumors than those in the control group or PD-L1 group. After 27 days of intervention, the endostatin groups showed significantly lower levels of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β than those in the control group. Treatment of CD8+ T cells with endostatin for 24 h did not alter the expression levels of markers of reduced T-cell activity. However, endostatin reversed the VEGF-mediated inhibition of the secretion of interferon (IFN)-γ from T cells. The results in CRC clinical samples showed that treatment with endostatin induced significantly higher infiltration of CD8+ T cells compared with treatment that did not include endostatin. Furthermore, the expression area of pericytes was significantly positively related to the infiltration density of CD8+ T cells and overall survival time.



Conclusion

Endostatin improved the antitumor effects of PD-L1 inhibitors on CRC, significantly increased the activity of CD8+ T cells, and synergistically improved the tumor treatment effect of the two inhibitors.
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Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide and is one of the leading causes of cancer-related death (1). The American Cancer Society (ACS) released a statistical report on colorectal malignant tumors in the United States in 2020 (2). CRC is the third most common cause of cancer death in men and women in the United States. Increasingly sophisticated surgical procedures, targeted therapies, innovative antitumor vascular therapies, and emerging immunotherapies have enhanced the survival rates of some patients with advanced malignant colorectal tumors (3–5). However, the prognoses of some patients with targeted drug resistance and high tumor invasiveness are poor (6).

Abnormalities in the tumor vasculature lead to hypoxia, acidosis, and high interstitial pressure in the tumor microenvironment (TME) (7, 8). Hypoxia and acidosis promote immunosuppression through accumulation, activation, and extension of T cells (9–11). This process results in the recruitment of inflammatory monocytes and tumor-associated macrophages (TAMs), leading to transformation of TAMs from the M1 phenotype to the M2 phenotype (12–14). Inhibition of dendritic cell (DC) maturation leads to reduced antigen presentation and activation of tumor-specific cytotoxic T lymphocytes (CTLs) (15, 16). The proliferation of abnormal endothelial cells (ECs) occurs in response to the immunosuppressed microenvironment (17, 18). In addition, activation of the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) pathway and upregulation of PD-L1 in TAMS occur in the TME, resulting in immune escape (19, 20). Tumor-infiltrating CTLs upregulate PD-1, marking it as dysfunctional or “depleting” and restricting its cytotoxic potential to tumor cells (21, 22). In addition, vascular endothelial growth factor (VEGF)-A, a proangiogenic molecule produced by tumor cells, plays a key role in the development of an immunosuppressive microenvironment. Blockade of VEGF-A has been shown to enhance the activation of CD8+ T cells within the tumor, resulting in increased ability to produce cytokines (23). These processes result in abnormal tumor angiogenesis, and vascular abnormalities are an immunosuppressive TME. Preclinical studies have shown that combination treatment with vascular normalization drugs with inferences alleviating T-cell functional blockade (24–26). For example, immune checkpoint blockers (ICBs) with anti-PD-1 antibody improve the degree of tumor control achieved with anti-ANG2-VEGF antibody A2V in various cancer models (21, 27). Preclinical and clinical evidence has suggested that anti-VEGF therapy builds a time window for vascular normalization, during which the delivery of oxygen, radiosensitizers, immunostimulators, and other therapeutic agents is improved (28).

Pericytes are mesenchymal cells that stabilize and wrap capillaries. They are embedded in the basement membrane of small blood vessels and affect ECs by secreting endothelial growth factors and matrix metallopeptidase (MMP) inhibitors. Pericytes also stabilize EC junctions to limit vascular permeability. The lack of stable pericyte–endothelial interactions in tumors inhibits angiogenic sprouting, resulting in dysfunctional vascular networks characterized by endothelial proliferation, defective cell junctions, and vascular leakage. ECs secrete platelet-derived growth factor subunit B (PDGFB) to promote pericyte recruitment to the tumor vasculature. Kinase inhibitors that block both vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), such as sunitinib and sorafenib, suppress tumors better than VEGFR inhibitors alone. These findings suggested that pericytes may provide critical prosurvival cues for angiogenesis (29).

Endostatin is a multitarget antiangiogenic drug that exerts therapeutic effects through the regulation of EC surface protein expression and cell signaling pathways at the molecular level and regulation of the TME (30). Endostatin can directly bind to VEGFR2 and inhibit its phosphorylation to block the VEGF-VEGFR2 pathway, resulting in tumor vascular normalization (31). However, the efficacy of antiangiogenic therapy using recombinant human endostatin (rHE) combined with immunotherapy has yet to be evaluated. Clinical data and elucidation of mechanisms of action are needed.



Materials and methods


Cell strain and cell culture

CT26 murine CRC cell lines were provided by the Cell Bank of the Chinese Academy of Sciences and were cultured in 90% Roswell Park Memorial Institute (RPMI) 1640 medium + 10% fetal bovine serum (FBS) + 1% double antibodies (streptomycin and penicillin) + 1% non-essential amino acid + 1% L-glutamine at 37°C in a 5% CO2 cell incubator.



Mouse subcutaneous xenograft model and group intervention

Twenty-five BALB/C mice aged 5–7 weeks weighing 18–26.5 g were provided by the Guangdong Medical Laboratory Animal Center. The mice were subcutaneously inoculated with CT26 cells. The mice were housed under standard conditions, and they were observed daily. Tumors were allowed to grow. Two weeks after inoculation with tumor cells, tumor growth was observed in all 25 inoculated mice, which indicated a tumorigenesis rate of 100%. The long diameter (A) and short diameter (B) of the tumor were measured on the body surface using a Vernier caliper to calculate the tumor volume using the following equation: V = 0.532ab2. Tumors that were too large or too small were excluded. Twenty mice were included in the study. The 20 mice were divided into four groups using the random number method. There were no group differences in average tumor volume among the groups. The treatment groups were as follows: 1) Endostar group: On days 3, 6, 9, 12, 15, and 18 after group assignment, mice were administered rHE (Endostar, Simcere) (5 mg/kg) subcutaneously; 2) PD-L1 inhibitor group: Subcutaneous injection of a PD-L1 inhibitor (anti-mouse PD-L1 monoclonal antibody Clone 10F.9G2, BioXcell) was administered at a dose of 10 mg/kg every 3 days for a total of six doses; 3) Endostar+PD-L1 inhibitor group (Endostar+PD-L1): The mice received subcutaneous injections of Endostar (5 mg/kg) combined with a PD-L1 inhibitor (10 mg/kg) once every 3 days for a total of six doses; and 4) Control group (Ctrl): Mice were injected subcutaneously with an equal volume of normal saline at the same times as the mice in the treatment groups. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI MRI) was performed on Days 0, 9, and 18 after intervention. On Day 27, all mice were sacrificed by neck dissection. All animal experiments were performed in accordance with the Guidelines of the Ethics Committee for Animal Experiment of Jinan University. The Ethics Committee for Animal Experiment of Jinan University approved the study proposal.



Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging

Prior to MRI, the mice were anesthetized (intraperitoneally) with 2% sodium pentobarbital and remained sedated for the duration of the magnetic resonance scan. Experimental magnetic resonance scans were performed using an Agger Medical System equipped with an eight-channel body coil and a 1.5T Signa HDXTL.5T superconducting MRI system. T2-weighted images were obtained using fast spin echo (FSE) sequences with the following imaging parameters: 0.2-mm layer gap, 2.0-mm layer thickness, Time Echo (TE) 91.8 ms, Time Repeat (TR) 4,000 ms, field of view (FOV) 10 cm × 7 cm, and matrix size 128 × 96. The following coefficients were obtained using IVIM: fast diffusion coefficient (D*) fast Apparent diffusion coefficients (ADC), slow diffusion coefficient (D) slow ADC, and perfusion fraction (f) fast adc. D* is the pseudo diffusion coefficient obtained from the microcirculation, which reflects perfusion. D is the true diffusion parameter of water molecules. F is the microvascular volume fraction, which is the percentage of perfusion, and reflects blood flow. The image with the largest tumor cross-section was selected on T2W, and the tumor boundary was manually drawn to delineate the region of interest.



Immunofluorescence detection of microvessel density and tissue hypoxia expression

Paraffin-embedded tumor tissues were sectioned to a thickness of 5 μm and dewaxed to water. The primary antibodies used included anti-mouse CD31 (AF 3628, R&D Systems) and rabbit anti-mouse Hypoxia-inducible factor (HIF)-1α (AB179483, Abcam) and the corresponding fluorescent secondary antibodies. Antibodies were added dropwise into the water blockade ring to cover the tissue. Slice images were collected using a confocal fluorescence microscope (Confocal/Living Cell Workstation).



Flow cytometry detection

The density of infiltrating CD8+ T cells in the tumors and the expression levels of interferon (IFN)-γ were evaluated using flow cytometry. After the mice were sacrificed, fresh subcutaneous xenograft tissue samples were taken to obtain tumor-infiltrating lymphocytes. Tumor-infiltrating lymphocytes and peripheral blood lymphocytes were suspended, and 1 μl of Fluorescein isothiocyanate (FITC) anti-mouse CD8 (alpha subunit, CD8a, Ly-2, 11-0081-81, eBioScience) and phycoerythrin (PE) anti-mouse IFN-γ (Clone Number: XMG 1.2, E-AB-F11101UD, Elabscience) were added into the tube. After routine operation, the supernatants were collected and flow cytometry was performed.



Isolation of mouse T cells

The mice were sacrificed by cervical dislocation. The abdomens of the mice were aseptically dissected, and the spleens were removed, sieved through a cell sieve, and crushed. After the supernatant was removed, red blood cell lysates were added and the supernatant was removed following centrifugation. The cells were cultured and resuspended to remove insoluble tissue fibers, and the cells in the suspension were counted. Then, CD8+ T cells were isolated using the EasySep™ mouse CD8+ T-cell enrichment kit (Stem Cell Technologies, 19853).



ELISA testing

ELISA kits for mouse VEGF, interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-β were purchased from Zhenke Biology, Shanghai. The levels of VEGF, IL-6, IL-10, and TGF-β were detected in serum. A mouse IFN-γ ELISA kit, purchased from Soleil, was used to determine levels of secreted IFN-γ in cell supernatants.



Cell treatments

Mouse CD8+ T cells were plated and treated with recombinant mouse VEGF (Pepro Tech) with or without rHE. Cell supernatants were collected and centrifuged, and the supernatants were used for analysis. The expression levels of CD8+ T-cell markers PD-1, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), T-cell immunoglobulin and mucin domain 3 (TIM3), Lymphocyte activation gene-3 (LAG3), and T cell immunoglobulin and ITIM domain (TIGIT) were detected using RT-qPCR. We used Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the internal reference, and the primers were all designed by Primer Premier 6.0 primer design software and synthesized by Biological Engineering (Shanghai) Co., Ltd. T-cell proliferative capacity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After CD8+ T cells were plated on 96-well plates, they were placed in the incubator in MTT buffer for 4 h. Then, MTT lysate was added to each well, and the plates were shaken gently and incubated overnight. The plates were read at 570 nm. The mean and standard deviation were calculated and plotted.



Clinical cases and specimen processing

A total of 37 paraffin sections from patients with CRC who were treated surgically in the First Affiliated Hospital of Jinan University from 1 January 2013 to 1 January 2016 were retrospectively analyzed. All patient specimens were confirmed as CRC by the Department of Pathology, and each patient had complete clinical data. The study included 22 men and 15 women aged 47–66 years, and the average age was 56.4 ± 4.5 years. According to the TNM staging criteria of the American Joint Committee on Cancer (AJCC) eighth edition of CRC, there were 14 cases in stage II, 19 cases in stage III, and four cases in stage IV. The patients were divided into an endostatin intervention (rHE) group and a non-endostatin intervention (non-rHE) group. Seventeen patients were treated with neoadjuvant chemotherapy combined with endostar intervention prior to surgery. All surgically resected colon cancer tissues were embedded in paraffin using an automatic biological tissue embedding machine. Paraffin-embedded CRC tissue and paracancerous normal colon tissue were selected using patient clinical data. Serial tissue sections (thickness of 5 μm) were prepared, and at least five sections were cut consecutively for each tissue. All patients signed an informed consent for pathological examination. This study met the requirements of the Hospital Ethics Committee and was approved after review.

Immunohistochemistry was used to determine the expression levels of Alpha-smooth muscle actin (α-SMA), CD8+ T cells in the peripheral cells of clinical tissues, and PD-L1 in mouse tissues. After sections are baked and deparaffinized, antigen retrieval is performed and endogenous peroxidase is blocked. After blocking, sections were incubated with primary antibodies, then incubated with secondary antibodies. Then, Diaminobenzidine (DAB) color developing solution was added dropwise. Positive cells were brownish yellow, the nuclei were counterstained, the slices were dehydrated, and images were collected for analysis. Photographs were imported into Image Pro Plus V6.0 software for further analysis.



Statistical analysis

Statistical analyses were performed using GraphPad Prism (Version 5.01). Normal distributed data were expressed as   s, and analyses with two groups (kindness intervention group and non-kindness intervention group) were subjected to t-tests. Data with non-normal distributions were expressed as medians (interquartile range), and non-parametric tests were used to compare two groups. Categorical data were shown as percentages, and comparisons were performed using the chi-square test or Fisher’s exact test. Spearman correlation was used to analyze the marker coverage rate of pericolonic cancer cells and the infiltration density of CD8+ T cells in CRC tumor tissues. The association of CD8+ T-cell density on the prognosis of patients with CRC was evaluated using Kaplan–Meier survival analysis. The test criterion was α = 0.05. When the result is P< 0.05, it is considered that there is a significant difference. All data were processed by SPSS 20.0 statistical software.




Results


Evaluation of the antitumor effects of endostatin combined with a programmed death ligand-1 inhibitor and monitoring of intratumor microcirculation

The mouse xenograft model was constructed using CT26 cells. The antitumor effects of Endostar, a PD-L1 inhibitor, and Endostar combined with a PD-L1 inhibitor provided significantly better therapeutic effects than the control treatment (P< 0.05). The antitumor effects in the Endostar+PD-L1 inhibitor group were significantly better than those observed in response to Endostar or a PD-L1 inhibitor alone (P< 0.05), as shown in Figure 1A. These outcomes showed that Endostar+PD-L1 inhibitor was superior to PD-L1 alone.




Figure 1 | Evaluation of the antitumor effect of Endostar combined with programmed death ligand-1 (PD-L1) inhibitor. (A) The effect of Endostar combined with PD-L1 inhibitor on the xenograft volume of CT26 mice (*P< 0.05; ***P< 0.001). (B) Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI MRI) is used to evaluate the tumor microcirculation of colorectal cancer (CRC) intervention mice in Endostar, Endostar+PD-L1, and PD-L1 groups. IVIM-DWI MRI was performed before the intervention and on the ninth and 18th days after the intervention.



Following drug intervention, IVIM-DWI MRI scans were performed prior to intervention (Day 0) and on Days 9 and 18 after treatment. Figure 1B shows the images of the mice in each group. No significant differences were observed in the true diffusion parameter (D) of water molecules, the pseudo diffusion parameter (D*), or the microvessel volume fraction (F) of water molecules in the tumors of the four groups prior to the intervention. On the ninth day of intervention, there was no significant difference in the true diffusion coefficient (D) of water molecules of tumors between the four groups (P > 0.05). The pseudo diffusion coefficient (D*) and microvessel volume fraction (F) of the tumors in the Endostar group and the Endostar+PD-L1 group were significantly higher than those in the control group and the PD-L1 group (P< 0.05). On Day 18 after the intervention, there were no significant differences in the true diffusion parameter (D) of water molecules, the pseudo diffusion parameter (D*) of the tumors, or the microvessel volume fraction (F) of water molecules among the four groups of mice (Figures 2A–C).




Figure 2 | Changes of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI MRI)-related indexes in Endostar, Endostar+programmed death ligand-1 (PD-L1), and PD-L1 groups after intervention of colorectal cancer (CRC) mouse tumor. (A) Comparison of real diffusion coefficients (D) of water molecules in the four groups of mouse tumors at different times. (B) Comparison of pseudo diffusion coefficients (D*) of four groups of mouse tumors at different times. (C) The microvascular volume fraction (F) of water molecules in the tumor of mice in group was compared at different times. (D–F) Comparison of microvessel density and tissue hypoxia parameters of CRC by different interventions (*P< 0.05, ***P< 0.001). ns, not significant, P>0.05.





Effects of endostatin combined with a programmed death ligand-1 inhibitor on hypoxia in colorectal cancer blood vessels and tissues

After the mice were sacrificed, immunofluorescence analysis of the tumor tissues (Figure 2D) showed that Endostar and Endostar+PD-L1 treatment resulted in significantly lower microvascular densities than those in the control group or the PD-L1 group (P< 0.05). No differences were observed between the Endostar and Endostar+PD-L1 groups (Figure 2E). The tumor hypoxia areas (HIF-1α) in the Endostar and Endostar+PD-L1 groups were significantly lower than those in the control group or the PD-L1 group (P< 0.05). There were no differences between the Endostar and the Endostar+PD-L1 groups (P > 0.05) (Figure 2F).



Effect of Endostar combined with a programmed death ligand-1 inhibitor on density and function of infiltrating CD8+ T cells

Mouse tumor tissues were collected and processed to produce suspensions of cells. Flow cytometry was used to evaluate the infiltration density of CD8+ T cells in the tumors (Figures 3A, B). The Endostar and Endostar+PD-L1 groups showed significantly higher infiltration densities of CD8+ T cells than those of the control or PD-L1 group (P< 0.05). The infiltration densities of CD8+ T cells in the Endostar and Endostar+PD-L1 groups did not differ (Figure 3C, P > 0.05). Analysis of IFN-γ secretion from infiltrated CD8+ T cells showed that the CD8+ T cells in the Endostar, Endostar+PD-L1, and PD-L1 groups secreted more IFN-γ than those in the control group (P< 0.05). Moreover, CD8+ T cells in the Endostar+PD-L1 group secreted significantly more IFN-γ than those in the Endostar or PD-L1 group (Figure 3D, P< 0.05).




Figure 3 | Density and function of CD8+ T cells infiltrating colorectal cancer detected by flow cytometry when recombinant human endostatin is combined with a programmed death ligand-1 (PD-L1) inhibitor. (A) Flow cytometry is used to detect the infiltration density of CD8+ T cells in the tumors of the four groups of mice. (B) The proportion of interferon (IFN)-γ-positive cells of CD8+ T cells in the tumors of the four groups of mice is detected by flow cytometry. (C) Comparison of the infiltration density of CD8+ T cells in the tumors of the four groups of mice. (D) Comparison of the proportion of IFN-γ-positive CD8+ T cells in the tumors of the four groups of mice (*P<0.05; ***P< 0.001). ns, not significant, P>0.05.





Comparison of the expression levels of serum vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-10, and transforming growth factor (TGF-β) and the expression of programmed death ligand-1 in tumor tissues of mice before and after the intervention

Serum levels of VEGF, IL-6, IL-10, and TGF-β did not differ among the groups before the intervention (P > 0.05). After 27 days of intervention, the Endostar and Endostar+PD-L1 groups had significantly lower levels of VEGF, IL-6, IL-10, and TGF-β than those in the control or PD-L1 group (P< 0.05). However, no differences in VEGF, IL-6, IL-10, or TGF-β were observed between the Endostar and the Endostar+PD-L1 groups (Figures 4A–D, P > 0.05).




Figure 4 | Comparison of serum vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-β levels between before and 27 days after intervention. (A) Serum vascular endothelial growth factor (VEGF), levels in the control, Endostar, Endostar+programmed death ligand-1 (PD-L1), and PD-L1 groups. (B) Comparison of serum interleukin (IL)-6 levels among the four groups. (C) Comparison of serum interleukin (IL)-10 levels among the four groups. (D) Comparison of serum transforming growth factor (TGF-β) levels among the four groups. After 27 days of intervention, the expression levels of PD-L1 in tumors of mice in each group were compared. (E) programmed death ligand-1 (PD-L1) expression levels of tumors in mice of the immunohistochemical control (Ctrl), Endostar, Endostar+PD-L1, and PD-L1 groups (×400). (F) Comparison of combined positive score (CPS) scores of PD-L1 expression among the different groups of mouse tumors (ns, Not significant; P > 0.05). (*P<0.05, **P<0.01).



Figure 4E shows a representative diagram of PD-L1 expression of tumors in mice among the different groups. No differences were observed in PD-L1 expression levels (combined positive score (CPS) scores) in tumors of mice among the four groups (Figure 4F, P > 0.05).



The effect of endostatin on VEGF-mediated T-cell depletion

After treatment of CD8+ T cells with Endostar for 24 h, RT-qPCR showed that the expression levels of PD-1, CTLA4, TIM3, LAG3, and TIGIT did not change in response to treatment (Figure 5A, P > 0.05).




Figure 5 | Effect of endostatin on vascular endothelial growth factor (VEGF)-mediated T-cell depletion. (A) Endostatin was used to interfere with CD8+ T cells in mice, and RT-qPCR was used to detect the expression changes of markers (PD-1, CTLA4, TIM3, LAG3, TIGIT) related to T-cell depletion in mice. (B) MTT assay Endostar was used to block the inhibition of VEGF on T cell-mediated cell proliferative activity under the intervention of VEGF. (C) ELISA test showed that Endostar was used to block the secretion of T cell-mediated IFN-γ by VEGF (ns, P > 0.05; *P< 0.05; **P< 0.01; ***P< 0.001).



In this study, treatment of mouse T cells with VEGF resulted in significantly reduced T-cell activity, as determined using the MTT assay (P< 0.05). No difference in T-cell activity was observed between mice in the Endostar group and the control group (P > 0.05). Treatment with VEGF and Endostar alleviated VEGF-mediated inhibition of T-cell activity (Figure 5B, P< 0.05). In addition, ELISA was used to determine the levels of IFN-γ secreted from T cells following each intervention. The results showed that Endostar reversed the VEGF-mediated inhibition of the secretion of IFN-γ from T cells (Figure 5C, P< 0.05).



The correlation between the expression of pericytes and the infiltration density of CD8+ T cells in colorectal cancer

When the expression areas of pericytes in CRC tissues were compared between patients who received rHE before surgery and those who did not receive rHE, it was found that the expression levels of α-SMA markers in pericytes in the rHE group were significantly higher than those in the non-rHE group (Figures 6A, B), which indicated that rHE could be used to normalize the tumor vasculature.




Figure 6 | Relationship between the expression area of pericytes in the tumor tissue and infiltration density of CD8+ T cells in patients with colorectal cancer (CRC). (A, B) Comparison of the peritumoral cell expression areas in CRC patients treated with Endostar intervention. (C, D) Endorsement Intervention in colorectal cancer patients. (E) The correlation between the expression area of pericytes and the infiltration density of CD8+ T cells was examined by immunohistochemistry (×200). (F) Analysis of the correlation between the expression area of pericytes and the infiltration density of CD8+ T cells. (G) The effect of different CD8+ T-cell infiltration densities on the overall survival time of patients receiving Endostar intervention, ***P<0.001.



The infiltration density of CD8+ T cells in CRC tumor tissues was compared between the rHE group and the non-rHE group. The rHE group showed significantly greater infiltration of CD8+ T cells labeled with α-SMA than the non-rHE group (Figures 6C, D). These results showed that Endostar could promote the infiltration of CD8+ T cells.

Serial sections were used to analyze the association between the expression area of pericytes and CD8+ T-cell infiltration density in CRC tissues. The expression of pericytes and CD8+ T-cell infiltration density in CRC tissues in the same tissue FOV are shown in Figure 6E. The expression area of pericytes in CRC tissues was significantly positively associated with CD8+ T-cell infiltration density (Figure 6F). The overall survival time of patients with a high CD8+ T-cell infiltration density was significantly longer than that in patients with a low infiltration density in the Endostar intervention group (Figure 6G).




Discussion

The TME is typically characterized by hypoxia, low pH, and high interstitial hydraulic pressure, which can reduce the effectiveness of almost all types of anticancer treatments, including chemotherapy, radiotherapy, and immunotherapy. Therefore, normalization of tumor blood vessels can alter the TME, resulting in improved efficacy of immunotherapy (32, 33). Normalization of tumor blood vessels can reduce tumor vascular leakage, decrease the distortion and dilation of the vascular wall, normalize the basement membrane, and allow for homogeneous coverage of pericytes. Furthermore, alleviation of hypoxia in the TME can allow for improved transport of drugs into tumor tissues (34, 35). Endostar exerts an antiangiogenic effect by acting specifically on vascular ECs, resulting in the inhibition of proliferation and migration of vascular ECs, which leads to apoptosis (36, 37).

CD8+ T lymphocytes (CTLs) are the immune cells of choice for targeting tumors. CD8+ T lymphocytes become dysfunctional due to immune-related tolerance and suppression within the TME. Cancer-associated fibroblasts (CAFs) and regulatory T cells (Tregs) can form an immune barrier against CD8+ T cell-mediated antitumor immune responses. CD8+ T cells are thus primed and activated against effector CTLs during the tumor immune cycle to generate durable and potent antitumor immune responses. CD8+ T-cell priming acts as a facilitator between innate immune cells, including DCs and natural killer (NK) cells, and CD4+ T cells in adaptive immunity. When activated, effector CTLs infiltrate the core or invasive site of the tumor and play a key role in killing cancer cells (38).

PD-L1 is a key molecule that mediates reduced activity of T-cell killer tumor cells and is a target of PD-L1 inhibitors (39, 40). However, whether Endostar can regulate the expression level of PD-L1 in CRC has not been evaluated. A previous study (41) showed that T-cell failure can be induced by VEGF-A. VEGF-A induces the expression of the transcription factor thymocyte selection-associated high mobility group box (TOX) in T cells to boost the exhaustive given transcription program in T cells. Combined blockade of PD-1 and VEGF-A can restore the antitumor function of T cells and thus better control the microsatellite stable CRC.

In this study, we first evaluated the microcirculation in tumor tissues using voxel-based IVIM-DWI MRI. The TME is composed of blood vessels and lymphatic vessels, stromal cells, and resident and infiltrated immune cells. Our previous study using IVIM-DWI MRI showed that the D* value and F value could be used in place of Microvessel density (MVD), peripheral cell coverage, and intratumor perfusion rate to detect the vascular normalization and timing of vascular normalization. Our results showed that the perfusion rates in the tumor tissues of the rHE treatment group peaked on the ninth day of intervention, then gradually decreased. Furthermore, our experimental results showed that endostatin improved hypoxia in CRC tissues. Treatment with Endostar or Endostar+PD-L1 resulted in significant amelioration of hypoxia compared to that of the control group and the PD-L1 group (P< 0.05). No differences in hypoxia were observed between the Endostar and the Endostar+PD-L1 groups (P > 0.05).

Using animal models, we showed that coadministration of a PD-L1 inhibitor and Endostar improved anti-CRC efficacy and found that Endostar alone significantly increased IFN-γ secretion from tumor-infiltrating CD8+ T cells. In vivo, Endorsement can be achieved through improvement of the TME, including through reduced secretion of VEGF, IL-6, IL-10, and TGF-β. In vitro, we showed that VEGF inhibited the proliferation of mouse T cells and secretion of IFN-γ. In contrast, rHE reversed the VEGF-mediated T-cell inhibition. These results indicated that endostatin could inhibit tumor angiogenesis and reverse the immunosuppressive TME.

Pericytes play a role in tumor angiogenesis. They cover the surface of the basement membrane of vascular ECs and support and regulate vasoconstriction and relaxation under normal physiological conditions (42, 43). In multiple solid malignant tumors, the number of infiltrated CD8+ T cells was shown to be related to patient prognosis and response rate to immunotherapy (44–47). In our analysis of clinical samples, we found that pericyte coverage of tumor tissues in patients with CRC who received Endostar was significantly increased (as evidenced by labeled α-SMA). Furthermore, α-SMA could be used as a marker of pericyte labeling on the surface of basement membrane of new blood vessels. There was a significant positive association between the area of pericyte coverage and the infiltration density of CD8+ T cells in CRC tissues. The infiltration density of CD8+ T cells in patients who received Endostar was strongly associated with overall survival time. Increased infiltration of CD8+ T lymphocytes was associated with increased efficacy of PD-1/PD-L1 inhibitors. These results showed that Endostar induced increased CD8+ T-cell infiltration into CRC tumor tissues. In addition, Endostar induced increased secretion of IFN-γ, which indicated that Endostar improved the CD8+ T-cell tumor killing activity. These findings suggested that coadministration of anti-VEGF with PD-L1 exerted better antitumor effects than monotherapy. This dependence on VEGF-A production in the TME enhances the expression of inhibitory checkpoints involved in CD8+ T-cell exhaustion, rather than directly on CD8+ T cells (48). This phenomenon can be reversed through targeting of the VEGF-A–VEGFR axis, which provides a rationale for combination treatment with antiangiogenic and immunotherapeutic drugs to treat cancer.

The results of our preclinical and retrospective clinical research indicated that targeting the VEGF pathway has potential for the treatment of CRC. Administration of low-dose targeted VEGF pathway blockers prolonged the window of vascular normalization and transformed the immunosuppressive microenvironment into an immunosupportive environment. However, this normalization is transient, and the TME becomes hypoxic through upregulation of PD-L1 in tumor cells and TME stromal cells, including ECs, pericytes, and immune cells. Our results indicated that increased expression of pericytes on the surface of tumor blood vessels in CRC tissues could be indicative of a more complete tumor vascular structure. A more complete vascular structure may allow for better infiltration of immune cells, especially CD8+ T cells, which has potential clinical significance for improving tumor immunotherapy.



Conclusion

Endostatin can induce vascular normalization of CRC. The level of vascular normalization of CRC tumors is closely related to the infiltration density of CD8+ T cells. The infiltration density of CD8+ T cells may be an effective prognostic marker for patients with CRC receiving coadministration of Endostar and PD-L1 inhibitors. Endostatin significantly improved CD8+ T-cell activity and synergistically improved the antitumor treatment effect of PD-L1 inhibitors.
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Background

Prostate cancer (PCa) is the second most common malignancy in men worldwide. Growing evidence substantiates the important role of immunotherapy in human tumors. Given that immunotherapy is often unsatisfactory on PCa, many studies have been conducted on PCa immunotherapy to improve treatment efficacy. However, no relevant bibliometric study of PCa immunotherapy has hitherto been reported. A bibliometric analysis was performed to evaluate the global scientific production of PCa immunotherapy research and characterize the development trends for future studies in this article.



Methods

The publications related to PCa immunotherapy were extracted from the Web of Science Core Collection. The contribution and co-occurrence relationships of countries/regions, institutions, journals, references, authors, and keywords were assessed and visualized by VOSviewer and CiteSpace to identify research hotspots and potential future trends.



Results

A total of 3,583 publications related to PCa immunotherapy from 1999 to 2021 were collected. The results of annual publications and citations exhibited a steady increase over the past 22 years. The National Cancer Institute in the USA published far more papers during the study than any institute. Accordingly, the USA had the most publications (n = 1,954, 54.54%). Gulley, James L. had the most number of published papers, and Small, Eric J. was the most co-cited authors in this field. Cancer Immunology Immunotherapy was the most productive journal, with 145 publications on PCa immunotherapy. Keyword cluster and keyword burst analyses showed that research in PCa immunotherapy shifted from “t cell infiltration” and “sipuleucel t” to “immune checkpoint inhibitor”, “CTLA-4”, and “PD-L1 expression”.



Conclusion

PCa immunotherapy has attracted much attention, reflected by the increasing number of annual publications and citations. Much emphasis has been placed on exploring the complex immunogenicity and tumor microenvironment for PCa and identifying the patient population who can benefit from immunotherapy. Combining immune checkpoint inhibitors with other therapeutic options and cancer vaccines represents the future development trends in PCa immunotherapy.
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Introduction

Prostate cancer (PCa) is the most common malignant tumor of the male genitourinary system and ranks second in new cases and fifth in mortality among male malignant tumors worldwide (1). An increasing body of evidence suggests that localized PCa is curable by radical prostatectomy or radiotherapy, but the prognosis of advanced or metastatic PCa is poor (2, 3). Unlike other types of malignancies, androgen is an important risk factor for promoting the progression of PCa. Androgen deprivation therapy (ADT) has been developed accordingly, including castration and androgen receptor-targeted therapy. Chemotherapy remains the first-line treatment option for advanced PCa (including taxane, mitoxantrone, and platinum) (4). Both ADT and chemotherapy inevitably lead to drug resistance (5, 6). Once patients with PCa progress to the metastatic castration-resistant PCa (mCRPC) stage, the overall survival (OS) is significantly reduced (7), emphasizing the need to identify new treatments to effectively control the disease progression and prolong the OS of this patient population.

Immunotherapy is a novel treatment reported to be efficient in various human tumors (8–10). PCa is considered an immunologically “cold” tumor, characterized by low mutation load, with multiple immune escape mechanisms, complex immunogenicity, and tumor microenvironment (TME) without active response for immunotherapy (11, 12). Although many immunotherapeutic methods have been applied to PCa, including cancer vaccine, immune checkpoint inhibitor (ICI), and chimeric antigen receptor (CAR) T cells, the autologous cellular vaccine sipuleucel-T remains the only approach approved by the U.S. Food and Drug Administration (FDA) for mCRPC in 2010 (13). ICI for immunotherapy is mainly based on cytotoxic T lymphocyte antigen 4 (CTLA-4) (ipilimumab) or programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) (pembrolizumab) inhibition and yields excellent performance against various malignancies, such as melanoma, lung cancer, and urothelial carcinoma (8–10). However, the results of these drugs used alone or in combination are unsatisfactory for PCa (14–16). In recent years, attempts have been made to identify PCa patients that may derive benefit from ICI and the optimal disease stage for immunotherapy. CAR T cells have shown promising efficacy in hematologic malignancies but failed in solid tumors with immunosuppressive TME, dominated by high levels of multiple immune inhibitory factors, including transforming growth factor (TGF)-β. A first-in-human phase I trial showed that it was feasible and generally safe for castration-resistant, PCa-directed CAR T cells armored with a dominant-negative TGF-β receptor (17). To sum up, although the past two decades have witnessed significant progress in PCa immunotherapy, the role of immunotherapy in PCa warrants further exploration.

To our knowledge, no study has systematically evaluated PCa immunotherapy through bibliometric analysis. The bibliometric analysis takes the document system and document metrological characteristics as the research object, and uses quantitative research methods to analyze the document distribution, relationship, change, and progress in a certain field (18–20), performed by visual tools, such as VOSviewer (21, 22) and CiteSpace (23). In this study, we applied bibliometric analysis to analyze the countries, institutions, journals, authors, references, and keywords of PCa immunotherapy from 1999 to 2021. This study sought to reveal the current situation and research trends for PCa immunotherapy.



Methods


Data retrieval strategy

Literature on PCa and immunotherapy from 1999 to 2021 was searched using the Science Citation Index-Expanded (SCIE) of the Web of Science Core Collection (WoSCC). WoSCC is one of the most professional and authoritative citation-based databases with powerful indexing functions, which not only contains the basic information including authors, institutions, countries/regions, funding agencies, and author keywords but also includes the reference information (24–26). The search was conducted until 24 April 2022. The language was limited to English, and only original articles and reviews were collected. The following keywords were entered for the database retrieval using Boolean search operators: TS = (immunotherapy OR immunotherapies OR immunotherapeutic) AND TS = (prostate OR prostatic) NEAR/1 (cancer* OR tumor* OR tumour* OR oncology OR neoplasm* OR carcinoma*). The detailed screening process is shown in Figure 1.




Figure 1 | Flowchart of the literature screening process.





Statistical and bibliometric analysis

Microsoft Office Excel 2019 (Microsoft, Redmond, WA, USA) was used for the descriptive statistical analysis and for generating graphs. Meanwhile, a polynomial regression model was used to analyze the trends of annual citations and publications through Microsoft Office Excel 2019.

Bibliometric visualization was performed by VOSviewer and CiteSpace V. VOSviewer (Version 1.6.16) is a widely used software in bibliometrics developed by van Eck and Waltman (27). In this study, VOSviewer was used to perform the co-citation analysis of references/journals, co-occurrence analysis of author keywords, and co-authorship analysis of countries/institutions/authors. CiteSpace V (Version 5.8.R3) is also a popular visual tool (28–30) for co-authorship analysis of institutions, citation burst analysis of keywords, and timeline view analysis of co-cited references in this study. The parameter settings for CiteSpace were as follows: time span = 1999–2021, slice length = 1, selection criteria = top 50 per slice, node types = (reference, institution, keyword), pruning = (minimum spanning tree, pruning sliced networks), and visualization = cluster view-static.




Results


Analysis of publications and citations showed an overall increase in PCa immunotherapy research

According to our screening process, 3,583 publications related to PCa immunotherapy were included in this study by retrieval from the WoSCC database from 1999 to 2021. Overall, the annual number of publications and citations on PCa immunotherapy exhibited an upward trend (Figure 2). The model fitting curve of publications and citations suggested a significant increasing trend (R2 = 0.9571 and 0.9933). The number of papers rapidly increased from 2017, with over 200 publications per year. Although there was a decrease in publication in 2019, the annual number of publications was more than 300 in 2020 and 2021. Significant increases in total citations were observed in 2009 and 2018. According to the above results, research interest in PCa immunotherapy has gradually increased over the years and has become a research hotspot.




Figure 2 | Annual trend and polynomial fitting curve of published articles and citations in the field of PCa immunotherapy in the database of WoSCC from 1999 to 2021.





Analysis of the top 10 productive countries/regions, institutions, and authors showed that the USA is the leader in this field

For this part, we analyzed the top 10 productive countries/regions, institutions, and authors to identify leaders in this field. The trend for the number of annual publications related to PCa immunotherapy by the top 10 productive countries/regions from 1999 to 2021 is shown in Figure 3A, and the USA was the most productive country with 1,954 publications (54.54%), followed by China (12.50%, 448 publications), Germany (7.48%, 268 publications), Italy (7.26%, 260 publications), and England (6.89%, 247 publications) (Table 1). The cooperative relationship between different countries/regions was also analyzed. The country/region with the highest total link strength (TLS) was the USA, followed by England, which exhibited a close mutual cooperative relationship (Figure S1A).




Figure 3 | (A) The annual trend publications of the top 10 countries/regions related to PCa immunotherapy from 1999 to 2021. (B) The top 10 productive institutions on PCa immunotherapy-related literature.




Table 1 | Top 10 productive countries/regions and organizations related to PCa immunotherapy research.



The most active institutions are shown in Figure 3B, and more details are listed in Table 1. The National Cancer Institute (NCI) was the most productive institution with 185 publications and 10,978 citations, followed by the Memorial Sloan Kettering Cancer Center (137 publications with 18,581 citations), and the University of California San Francisco (102 publications with 10,955 citations). The top 10 productive institutions were all from the USA. Furthermore, the partnerships between institutions (Figure S1B) showed that the Memorial Sloan Kettering Cancer Center has close relationships with many institutions.

The top 10 prolific authors on PCa immunotherapy from 1999 to 2021 are listed in Table 2. Gulley, James L. (80 publications) has published the most papers, followed by Madan, Ravi A. (61 publications) and Drake, Charles G. (58 publications). Further analysis revealed that 8 of the top 10 authors were from the USA and the remaining 2 were from Japan. The top 10 co-cited authors with centrality are shown in Table 2, and Small, Eric J. was the most co-cited author, followed by Fong, Lawrence. Figure S1C is a visualization map of the top 100 co-cited authors with the highest TLS; Kantoff, P.W. was at the center of this field, followed by Small, Eric J.


Table 2 | The 10 most productive authors and the top 10 co-cited authors with the highest centrality.





Journals and co-cited journals analysis

The identification of authoritative journals is convenient for researchers in related fields to understand current research trends and effectively track research hotspots. The network visualization of the most productive journals is shown in Figure 4A, and the top eight are listed in Table S1 in detail. Cancer Immunology Immunotherapy was the most productive journal with 145 publications in the PCa immunotherapy field, followed by Prostate (n = 124 publications), Clinical Cancer Research (n = 122), Cancer Research (n = 86), and Cancers (n = 69). Of the top eight journals, the most cited was Clinical Cancer Research (n = 10,705), which was far more than other journals. All were classified as Q1/Q2 of Journal Citation Reports (JCR) in 2020, and the Journal for Immunotherapy of Cancer had the highest Impact Factor (IF) with 13.751. The network visualization of the most frequently co-cited journals is shown in Figure 4B. The top three with the largest nodes were Cancer Research (n = 11,945 citations), followed by Journal of Clinical Oncology (n = 11,090) and Clinical Cancer Research (n = 10,598). Detailed information on co-cited journals, such as country, IF, JCR, and total citations, is provided in Table S1. Of the top eight co-cited journals, the New England Journal of Medicine was the journal with the highest IF (91.245).




Figure 4 | The visualization network of journals (A) and co-cited journals (B) related to PCa immunotherapy. The nodes with the same color represent the same cluster, implying a close partnership. The larger the node’s size or the width of the connecting line, the closer the relative degree of co-occurrence.





Analysis of references and co-cited references revealed the fundamental studies and the most influential papers in this field

The most cited references are often considered the basis of research in a particular field. The top 10 original articles on PCa immunotherapy research are listed in Table 3. The article “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer” from the New England Journal of Medicine by Topalian, Suzanne L., had the highest number of citations (n = 8,193), followed by “Sipuleucel-T immunotherapy for castration-resistant prostate cancer” (n = 3,629). The top three most cited references were all clinical trials. Almost all studies were published before 2010, except for the fifth and sixth studies.


Table 3 | Top 10 original articles concerning the research of PCa immunotherapy.



Meanwhile, a co-cited reference analysis was conducted in our study. The visualization network map is demonstrated in Figure 5, with more details in Table 4. As mentioned above, the article “Sipuleucel-T immunotherapy for castration-resistant PCa” by Kantoff, Philip. W. published in the New England Journal of Medicine, was the most cited in the top 10 co-cited references. We also analyzed the co-cited references through the timeline view (Figure 6). Indeed, we found that “PD-L1 expression” (Cluster 3) was a research hotspot in recent years. The clusters with larger nodes representing more citations indicated that “cancer therapy” (Cluster 0), “PD-L1 expression” (Cluster 3), “metastatic castration-resistant PCa” (Cluster 5), and “therapeutic cancer vaccine” (Cluster 9) were the hotspots in this field since 2007.




Figure 5 | The visualization network of co-cited references in PCa immunotherapy.




Table 4 | Top 10 co-cited references involved in the research of PCa immunotherapy.






Figure 6 | The timeline view of publications related to PCa immunotherapy with relevant clusters.





Keyword analysis revealed the hot topics and research frontiers

To identify the hot topics in this field, keyword co-occurrence analysis, designed to clarify the co-occurrence relationship between keywords in publications, was performed. Table 5 shows the top 20 co-occurrence keywords of PCa immunotherapy with the highest frequencies. The top 20 co-occurrence keywords were composed mainly of the terms “dendritic cell”, “vaccines”, and “cancer vaccine” related to tumor vaccine and the terms “PD-L1”, “immune checkpoint inhibitors”, and “CTLA-4” related to ICI. Meanwhile, author keywords network visualization is shown in Figure 7A, conducted by VOSviewer. All keywords were classified into four categories: cluster 1 (therapeutic approaches in PCa, red nodes), cluster 2 (mechanisms of tumor immunotherapy, green nodes), cluster 3 (tumor vaccines in PCa, blue nodes), and cluster 4 (ICI in PCa, yellow nodes).


Table 5 | Top 20 co-occurrence keywords involved in the research of PCa immunotherapy.






Figure 7 | (A) The network visualization of author keywords. (B) Top 25 keywords with the strongest citation bursts in publications related to PCa immunotherapy.



The citation burst analysis of keywords was conducted by CiteSpace, involving burst strength and time of duration, which can reflect research hotspots in a certain period. The top 25 keywords with the strongest citation bursts were arranged by the beginning year of the burst from top to bottom, indicating the change in research trends for PCa immunotherapy from 1999 to 2021 (Figure 7B). The first keywords with a strong citation burst in this field began in 1999, including “cytotoxic t lymphocyte”, “peptide”, and “gene therapy”. The burst strength of “resistant PCa”, “double blind”, and “ipilimumab” was over 30 among these keywords. The keywords with the strongest citation burst in the past 5 years included “tumor microenvironment”, “multicenter”, “PD 1 blockade”, “checkpoint inhibitor”, “immune checkpoint inhibitor”, and “placebo”, suggesting that studies related to ICI are currently popular topics in PCa immunotherapy.




Discussion

Immunotherapy, especially ICI, represents a new therapeutic approach for advanced PCa, which has demonstrated efficacy in delaying the malignancy progression in tumors with an active immune response (8–10). Therefore, the relationship between PCa and immunotherapy has attracted much interest in the past two decades. Regrettably, although significant progress has been achieved, ICI for PCa still has limitations when used for single-agent and combination therapy.

Bibliometric analysis has been widely used to clarify the status and follow the trends of research fields in recent years (31–33). To our knowledge, this is the first study to perform a systematic literature search for conducting the knowledge mapping and predicting the future research frontiers about PCa immunotherapy.

Based on the annual number of publications and citations shown in Figure 2, research interest in PCa immunotherapy has exhibited a steady upward trend. The three time points 2006–2007, 2010–2012, and 2017 were the moments of burst for publications and citations, which were accompanied by several major studies and events. In 2006–2007, the first phase III clinical trial about sipuleucel-T (APC8015) in PCa patients was published (34). After 3 years, another study indicated that sipuleucel-T prolonged OS among men with mCRPC (13); hence, sipuleucel-T was approved by the FDA for mCRPC patients in April 2010. In the same year, research about single-agent anti-PD-1 (MDX-1106) was also published, which involved various types of human tumors, including PCa (35). After 2017, an increased number of ICIs were approved by FDA for non-small cell lung cancer, melanoma, and urothelial carcinoma. Simultaneously, a series of studies were devoted to exploring the possibility of ICI via single-agent or combination therapy for PCa. For example, ICI significantly increased Th1 lineage and improved survival in the subcutaneous CRPC model but failed in the bone metastatic CRPC model since PCa promotes osteoclast-mediated bone resorption that releases TGF-β, which inhibits the development of Th1 lineage. Combined TGF-β neutralizing antibody and ICI could increase Th1 lineage, promote clonal expansion of CD8 T cells, and improve survival rate in the CRPC model of bone metastasis (36). Another study demonstrated the key role of CHD1 in MDSC recruitment and found that CHD1/IL6 is the main regulator of immunosuppressive TME in PTEN-deficient PCa. Interestingly, pharmacological inhibition of IL6 combined with ICI triggered a strong antitumor response in PCa (37).

In the present study, the USA is the most productive country in PCa immunotherapy. Cancer Statistics reported in 2021 by the American Cancer Society estimated that PCa ranked first and second in incidence and mortality for male malignant tumors in the USA (7). The incidence rate of PCa in the USA was higher than in other parts of the world, probably due to race, diet, lifestyle, and other factors, resulting in a heavy health burden (38). For this reason, many studies on PCa immunotherapy were conducted in the USA, accounting for 54.54% of the total publications. Meanwhile, the top 10 productive organizations related to this field were all from the USA, which corroborated its dominance in this field.

Next, we identified the influential experts in the field of PCa immunotherapy by the productive author list and the centrality of the co-cited author. Small, Eric J. from the USA had the largest centrality, with 44 publications and 1,176 citations. The clinical trial about sipuleucel-T (APC8015) (34) published in 2006 by him and his team was influential and attracted much attention. A comprehensive analysis of the most productive and co-cited journals in the field of PCa immunotherapy indicated that Cancer Research was the journal most co-cited by researchers in this field.

The analysis of the top 10 co-cited references, considered an indicator of significance reflected by the number of citations, is helpful for researchers to understand the important achievements in a particular field. The details of references are shown in Table 4, and most are clinical trials published in high-quality journals. We analyzed these documents and the significance behind them in the field of PCa immunotherapy according to the time axis.

In 2000, Small, Eric J. attempted to use antigen-loaded dendritic cells for hormone-refractory PCa immunotherapy. Provenge, the immunotherapy product consisting of autologous dendritic cells loaded ex vivo with a recombinant fusion protein, demonstrated good safety and effectiveness (39). Six years later, based on the encouraging results of phase I and phase II trials, a follow-up phase III trial (D9901) from the same expert was published in the Journal of Clinical Oncology, showing that sipuleucel-T may provide a survival advantage to asymptomatic metastatic hormone-refractory PCa patients (34). Subsequently, this research team conducted two phase III trials (D9901 and D9902A), demonstrating a survival benefit for PCa patients treated with sipuleucel-T compared to placebo patients (40). Finally, a double-blind, placebo-controlled, multicenter phase III trial of sipuleucel-T showed that it significantly prolonged OS among men with mCRPC (13). In April 2010, sipuleucel-T was approved by FDA for treating mCRPC patients. However, despite its good efficacy against PCa, the clinical usage of sipuleucel-T is limited due to lack of availability, the complexity of administration, and cost issues (41). Additionally, Philip W. Kantoff et al. also explored the efficacy of vaccine-related immunotherapy. PROSTVAC-VF immunotherapy, based on prostate-specific antigen (PSA)-targeted poxviral vaccines for PCa, was well tolerated and related to a 44% decrease in mortality and an 8.5-month improvement for median OS among men with mCRPC in a phase II trial (42). However, the phase III trial in 2019 indicated that PROSTVAC-VF did not affect the endpoints such as OS or alive without events (AWE) in mCRPC. Combination therapy is currently being explored in clinical trials (43).

ICI is another important approach for cancer immunotherapy. Immune checkpoints currently used for pharmaceutical development include CTLA-4 and PD-1/PD-L1. In 2010, immunotherapy based on immune checkpoints was first applied to melanoma. The two phase III trials by F. Stephen Hodi showed that it improved OS in patients with previously treated metastatic melanoma (44). For PCa, the effect of ipilimumab after radiotherapy on patients with mCRPC that progressed after docetaxel chemotherapy was assessed by Kwon, Eugene D., but there was no significant difference between the ipilimumab group and the placebo group in terms of OS during the primary analysis (14). Another ICI, nivolumab, was also applied for various cancer immunotherapies, including advanced melanoma, non-small cell lung cancer, castration-resistant PCa, renal cell cancer, or colorectal cancer. Regrettably, no objective responses were observed with PD-1 monotherapy in patients with colorectal cancer or PCa, considered as low immune response tumors (45). In addition, the combination of ipilimumab and nivolumab was used in a large trial for patients with mCRPC (published in Cancer Cell). The objective response rate was 25% in cohort 1 (pre-chemotherapy; n = 45) and 10% in cohort 2 (post-chemotherapy; n = 45) (16). However, the incidence of grade 3–4 adverse events was 42%–53% of patients, suggesting the necessity of optimizing the dose/schedule. Due to the limited clinical benefits of PD1/PD-L1 and CTLA-4, other immune checkpoints have been explored by researchers, such as the V-domain immunoglobulin suppressor of T-cell activation (VISTA), T-cell immunoglobulin domain and mucin domain 3 (TIM-3), and lymphocyte activation gene 3 (LAG-3) (46). For example, researchers found that ipilimumab therapy significantly increased VISTA expression on CD4 T cells, CD8 T cells, and CD68+ macrophages from matched pre- and post-treatment prostate tumors. VISTA is considered a compensatory inhibition pathway of ipilimumab in treating PCa, and combined treatment may bring meaningful clinical benefits (47).

Apart from understanding the research hotspots and changes in the development of PCa immunotherapy by co-cited references above, we can also objectively track the focus of publications and future development trends at different time points by analyzing the timeline view of references (Figure 6).

It has been reported that #1 dendritic cell, #2 therapeutic vaccination, #4 prostate-specific membrane antigen, and #9 therapeutic cancer vaccine could be clustered into cancer vaccines. Cancer vaccines are designed to activate the immune system to eliminate tumor cells. It has been established that mutations occur during tumor growth, accompanied by the production of new proteins (neoantigens), which could be recognized by immune cells. However, the intrinsic mechanism of tumor cells and the interaction with other cells effectively protect tumor from the immune system (48). Inspired by the effect of vaccines against pathogens, researchers manipulated tumor or immune cells (antigen-presenting cells or T cells) in vitro and then transfused them into the human body to activate the patient’s immune system. Except for sipuleucel-T (dendritic cell-based) and PROSTVAC-VF (PSA-based), GVAX is another vaccine indicated for PCa, consisting of inactivated PCa cell lines (PC-3, LNCaP) that could secrete GM-CSF and be effective in tumor antigen presentation. Two phase II trials of GVAX in asymptomatic metastatic CRPC showed effective antitumor activity, but the subsequent phase III trial was terminated at the interim analysis due to lack of efficacy. These tumor vaccines were well tolerated with infusion reactions or reversible influenza-like symptoms at the beginning of treatment (41, 49, 50).

PCa is an ideal candidate for cancer vaccine therapies, given its high targetable number of PSA and prostate-specific membrane antigen (PSMA) (51). Although PSMA has been studied for a long time (indicated by our timeline), cancer vaccine related to PCa based on PSMA has made encouraging progress in recent years (52). Lutetium-177 [177Lu]-PSMA-617, a radiolabeled small molecule, binds with high affinity to PSMA, enabling beta particle therapy targeting to mCRPC, showing high response rates, low toxic effects, and reduction of pain in patients with mCRPC who have progressed after conventional treatments (53).

Moreover, it has been reported that #0 Cancer therapy, #3 PD-L1 expression, and #11 CTLA-4 could be clustered into PCa immunotherapy by ICI. It is widely thought that mCRPC is an immunologically “cold” tumor due to a relatively low somatic mutation frequency and few tumor-infiltrating T cells, leading to resistance to immune checkpoint therapy (54). Higher tumor mutation burden (TMB) tumors, like melanoma and non-small lung cancer, with higher levels of neoantigens, are usually more responsive to immunotherapy. Accordingly, TMB can be applied as a biomarker to predict patient response to ICI. Although studies found that high expression of PD-L1, another biomarker of ICI response, was associated with a variety of clinical parameters, such as proliferation (Ki-67), Gleason Score, and androgen receptor expression (55), and was an independent biomarker in the prognosis of high-risk PCa patients who received adjuvant hormonal therapy after radical prostatectomy (56), the results of relevant clinical trials were unsatisfactory probably due to the tumor immunosuppressive microenvironment. It is widely acknowledged that the tumor immunosuppressive microenvironment is composed of multiple immunosuppressive cells [tumor-associated macrophages, myeloid-derived suppressor cells (MDSC), or regulatory T cells] and non-cellular components (chemokines, cytokines, or signaling molecules), resulting in less number or limited function of tumor-infiltrating T lymphocytes. Reversing the immunosuppressive microenvironment or increasing T lymphocyte infiltration is considered the main strategy to improve the effect of ICI on PCa. Meanwhile, emphasis has been placed on exploring other biomarkers that can predict the immunotherapy response for patients with PCa by whole-exome sequencing on tumor samples, which helps identify patients who can benefit from immunotherapy (57).

There were some limitations in this study. Indeed, it is well-established that English is the most global language, and most publications are in English. However, it should be borne in mind that there are still some important studies published in other languages that were not included in this study. Moreover, only publications from WoSCC were included in this study, which may cause selection bias. Next, the bibliometric analysis relies heavily on the number of publications and total citations, but it takes time to accumulate citations. Our results showed that most of the highly cited articles were published 5 years before, and many publications that did not appear in our analysis may also be highly influential. Therefore, it is necessary to update and track in a timely manner.



Conclusion

In this study, we obtained a comprehensive overview and potential directions of PCa immunotherapy by bibliometric analysis. Exploring complex immunogenicity and TME for PCa helps provide novel insights for reversing the immunosuppressive microenvironment and identifying the patient populations who can benefit from immunotherapy. Combining ICI with other therapeutic options and cancer vaccines represents the future development trends in PCa immunotherapy.
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Background

Increasing evidence suggests that the number of examined lymph nodes (ELNs) is strongly linked to the survivorship of gastric cancer (GC). The goal of this study was to assess the prognostic implications of the ELNs number and to construct an ELNs-based risk signature and nomogram model to predict overall survival (OS) characteristics in GC patients.



Methods

This inception cohort study included 19,317 GC patients from the U.S. Surveillance, Epidemiology, and End Results (SEER) database, who were separated into a training group and an internal validation group. The nomogram was built with the training set, then internally verified with SEER data, and externally validated with two different data sets. Based on the RNA-seq data, ELNs-related DERNAs (DElncRNAs, DEmiRNAs, andDEmRNAs) and immune cells were identified. The LASSO–Cox regression analysis was utilized to construct ELNs-related DERNAs and immune cell prognostic signature in The Cancer Genome Atlas (TCGA) cohort. The OS of subgroups with high- and low-ELN signature was compared using the Kaplan–Meier (K-M) analysis. A nomogram was successfully constructed based on the ELNs signature and other clinical characteristics. The concordance index (C-index), calibration plot, receiver operating characteristic curve, and decision curve analysis (DCA) were all used to evaluate the nomogram model. The meta-analysis, the Gene Expression Profiling Interactive Analysis database, and reverse transcription–quantitative PCR (RT-qPCR) were utilized to validate the RNA expression or abundance of prognostic genes and immune cells between GC tissues and normal gastric tissues, respectively. Finally, we analyzed the correlations between immune checkpoints, chemotherapy drug sensitivity, and risk score.



Results

The multivariate analysis revealed that the high ELNs improved OS compared with low ELNs (hazard ratio [HR] = 0.659, 95% confidence interval [CI]: 0.626–0.694, p < 0.0001). Using the training set, a nomogram incorporating ELNs was built and proven to have good calibration and discrimination (C-index [95% CI], 0.714 [0.710–0.718]), which was validated in the internal validation set (C-index [95% CI], 0.720 [0.714–0.726]), the TCGA set (C-index [95% CI], 0.693 [0.662–0.724]), and the Chinese set (C-index [95% CI], 0.750 [0.720–0.782]). An ELNs-related signature model based on ELNs group, regulatory T cells (Tregs), neutrophils, CDKN2B-AS1, H19, HOTTIP, LINC00643, MIR663AHG, TMEM236, ZNF705A, and hsa-miR-135a-5p was constructed by the LASSO–Cox regression analysis. The result showed that OS was remarkably lower in patients with high-ELNs signature compared with those with low-ELN signature (HR = 2.418, 95% CI: 1.804–3.241, p < 0.001). This signature performed well in predicting 1-, 3-, and 5-year survival (AUC [95% CI] = 0.688 [0.612–0.763], 0.744 [0.659–0.830], and 0.778 [0.647–0.909], respectively). The multivariate Cox analysis illustrated that the risk score was an independent predictor of survival for patients with GC. Moreover, the expression of prognostic genes (LINC00643, TMEM236, and hsa-miR-135a-5p) displayed differences between GC tissues and adjacent non-tumor tissues. The C-index of the nomogram that can be used to predict the OS of GC patients was 0.710 (95% CI: 0.663–0.753). Both the calibration plots and DCA showed that the nomogram has good predictive performance. Moreover, the signature was significantly correlated with the N stage and T stage. According to our analysis, GC patients in the low-ELN signature group may have a better immunotherapy response and OS outcome.



Conclusions

We explored the prognostic role of ELNs in GC and successfully constructed an ELNs signature linked to the GC prognosis in TCGA. The findings manifested that the signature is a powerful predictive indicator for patients with GC. The signature might contain potential biomarkers for treatment response prediction for GC patients. Additionally, we identified a novel and robust nomogram combining the characteristics of ELNs and clinical factors for predicting 1-, 3-, and 5-year OS in GC patients, which will facilitate personalized survival prediction and aid clinical decision-making in GC patients.
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Introduction

Gastric cancer (GC) remains a major cancer globally, causing over a million new cases in 2020 and about 769,000 deaths, placing it fifth in incidence and fourth in mortality worldwide (1). In 2018, there are an estimated 456,124 new GC cases and 390,182 cases of GC-related death, which ranks third and second in cancer incidence rates and mortality rates, respectively, in China (2). The number of examined lymph nodes (ELNs) is regarded as the critical quality index for cancer care. The number of ELNs is essential as it guarantees adequate lymph node examination, improves the quality of pathology, and ensures the accuracy of lymph node staging (3, 4). Several studies have found that ELNs could reflect the extent of lymphadenectomy, and patients with more ELNs have improved prognoses (5–9). However, some studies have found that a positive correlation between ELNs and prognosis does not exist (10). In recent years, increasingly more researchers have been interested in the determination of optimal ELNs, and some studies advocated the minimum ELNs (8, 9, 11). However, the ideal number of retrieved lymph nodes remains unsettled, and the underlying mechanisms have not been elucidated.

For patients with GC undergoing radical total gastrectomy, the higher the ELNs, the better the prognosis, and the optimal threshold for ELNs is 21 or more (7). A study showed that both the Chinese and Surveillance, Epidemiology, and End Results (SEER) database populations were significantly associated with prognosis in patients with stage III GC after gastrectomy with systemic lymphadenectomy and recommended >31 ELNs to accurately assess the prognosis of GC patients (8). In ypN0 GC patients, ELNs were an independent predictor of survival. A minimum of 15 ELNs were recommended as the cutoff point for the evaluation of the quality of postoperative or prognostic stratification in ypN0 GC patients (9). These studies have shown that ELNs are related to the prognosis of GC, but the recommended number of ELNs is not the same. However, a recent GC study found that the multivariate Cox regression analysis showed that ELNs are no longer an independent prognostic factor of overall survival (OS) (10). To assess the relationship between ELNs and the OS of GC, the aforementioned studies are based on large numbers of people adjusted for age, sex, stage, and other basic characteristics. However, the mechanism through which ELNs improve survival time remains unclear. Thus, innovative strategies are needed to boost risk stratification and predict clinical outcomes with greater accuracy.

In contrast, little research has focused on revealing the molecular mechanisms underlying the different ELNs group in the genome. A comprehensive analysis of the link between genes, immune infiltration, and clinical prognosis is lacking for GC patients. Therefore, to understand the benefits of ELNs in predicting the prognosis of GC, we first used the GC data in the SEER database to find the optimal ELNs and evaluated the relationship between different ELNs subgroups and OS. Then, prognostic factors associated with GC were investigated, and a predictive nomogram was formulated for visualizing the information. On the basis of gene expression data and clinical data obtained from The Cancer Genome Atlas (TCGA) GC cohort, we developed an ELNs-related signature related to survival.



Materials and methods


Data set source and processing


Surveillance, epidemiology, and end results database

The SEER program (https://www.seer.cancer.gov) was initiated by the National Cancer Institute, which collects relevant information on patients in the United States from cancer registries. The largest geographic coverage of the database accounts for approximately 36.7% of the U.S. population. Data were extracted using the latest SEER*Stat software (version 8.3.9). The SEER*Stat database is Incidence-SEER 18 Regs Research Data, Nov. 2018 Sub (1975–2016). During the period 2004–2016, according to the International Classification of Disease for Oncology, Third Edition (histology code: ICD-O-3/WHO 2008), patients who pathologically confirmed stomach cancer as the first primary cancer were included in the research cohort for retrospective analysis and evaluation. The data selection process is shown in Figure 1. The inclusion criteria were as follows: (1) patient with microscopically confirmed diagnosis; (2) survival time of >1 month; (3) age of >18 years old; (4) and clinical and pathological characteristics including age at diagnosis, year at diagnosis, race, sex, marital status, grade, AJCC (American Joint Committee on Cancer) stage, TNM (Tumor Node Metastasis) status, regional nodes examined, regional nodes positive, tumor size, survival months, and vital status. We excluded patients with a diagnosis obtained exclusively from a death certificate or autopsy report, along with patients with regional nodes examined, regional nodes positive, and unknown tumor size.




Figure 1 | Flowchart illustrating gastric cancer patient selection for this study.



Patients from 2004 to 2015 used the AJCC Staging Manual (sixth edition) to determine their pathological TNM status. Patients in 2016 used the SEER*RSA, a staging database developed by SEER, to determine the pathological TNM status. Regional nodes examined in SEER means the total number of regional lymph nodes removed and examined by the recording pathologist. Regional nodes positive in SEER means recording the exact number of regional lymph nodes that were found to have metastasis by the pathologist. The number of regional nodes positive is 0, which means that the lymph node status is negative, and the number of regional nodes greater than 0 means that the lymph node status is positive. The primary outcome of the study was OS, which was defined as the time from diagnosis to death or last follow-up. A receiver operating characteristic (ROC) curve was used to find the optimal cutoff of ELNs number to predict OS.



Chinese cohort

For the external validation set, Chinese patients from the Affiliated Tumor Hospital of Xinjiang Medical University diagnosed between 2009 and 2015 were used for external validation. The inclusion and exclusion criteria for the Chinese cohort were consistent with the SEER cohort. Demographic and clinicopathological data including age at diagnosis, gender, AJCC stage, grade, T stage, N stage, M stage, regional lymph nodes examined count, lymph nodes status, survival time, and survival status were collected. The institutional review committee of the participating institution approved the retrospective analysis of anonymous patient data. Since the study was retrospective, informed consent was not necessary, and patient data were used anonymously. A major outcome was OS, defined as the time from the date of diagnosis until death or last follow-up.



Other databases

The following databases were selected to obtain clinical information and omics data of GC patients:

	TCGA (https://portal.gdc.cancer.gov/),

	cBioPortal website (http://www.cbioportal.org/), and

	Genomic Data Commons (GDC; https://cistrome.shinyapps.io/timer/).



The clinical characteristics of the GC patients were collected from the TCGA database and the cBioPortal website. The detailed clinical information included age, gender, race, grade, AJCC stage, T stage, N stage, M stage, regional lymph nodes examined count, lymph nodes status, survival time, and survival status. Patients with survival time of <30 days, unclear survival time, survival status, and clinical–pathological characteristics were excluded. The main outcome was OS, defined as the time from the date of diagnosis (diagnosed between 1996 and 2013) to the date of death or last follow-up. The gene expression RNA-seq (HTSeq-Count) and the miRNA expression RNA-seq (Illumina HiSeq) were obtained from the TCGA data portal. As this part of the data used in this study was downloaded from the TCGA database, following the TCGA’s strictly approved publication guidelines, there was no requirement for ethics committee approval. Moreover, immune infiltration information that consisted of every tumor specimen immune cell fraction of the 22 immune cell types was downloaded from the GDC. The specific processing flow of those cohorts is shown in Figure 1.




Differentially expressed gene analysis

By using the “DESeq2” R package, we identified differentially expressed lncRNAs, miRNAs, and mRNAs between the high and low groups of ELNs. We selected DElncRNAs, DEmiRNAs, and DEmRNAs according to the same cutoff criteria: p < 0.05 and |log2 (foldchange)| > 0.5. The heat maps of differentially expressed lncRNAs, miRNAs, and mRNAs were generated by the function of the “ComplexHeatmap” R package.



Construction of competing endogenous RNA network

The competing endogenous RNA (ceRNA) network was built using differentially expressed mRNAs, miRNAs, and lncRNAs. lncRNA–miRNA interaction information was predicted by the lncbase v.3 experimental module (http://carolina.imis.athena-innovation.gr/). The miRNA–mRNA interaction information was downloaded from miRTarBase databases (http://mirtarbase.cuhk.edu.cn/). The lncRNA–miRNA–mRNA coreRNA network based on the interactions between DElncRNAs and DEmiRNAs, as well as between DEmiRNAs and DEmRNAs, is created and visualized by using the “ggalluvial” R package.



Immune cell scores

We used the Mann–Whitney U-test to identify significant differences in immune cell distributions of the high and low groups of ELNs. The R package “ggpubr” was used to draw the box plot.



Development of the prognostic the number of lymph nodes examined signature

The genes and immune cells were transformed into binary variables, and the K-M curve analysis and the univariate Cox regression analysis were performed to screen prognostic genes and immune cells associated with patients’ OS. The genes and immune cells whose K-M and univariate Cox analyses’ p-value were <0.1 were inputted into the LASSO–Cox regression to identify the most useful predictive features. The ELNs group was also essential and included in the ELNs signature. The ELNs signature was calculated by the formula:

ELNs signature = ∑ Coefi * Vari where Coefi was the coefficient of each variable (ELNs group, gene, and cell) in the final Cox model, and Vari represented the variable value. For the ELNs group, the high-ELN group was given 1 point, and the low-ELN group was given 0 points. For each gene or cell, high expression was given 0 points, and low expression was given 1 point. According to the formula, all the GC patients in the TCGA cohort were separated into low- and high-ELN signature groups using the cutoff point calculated by the “survminer” package of R software. The K-M analysis was worked to measure the survival difference between the two risk subgroups.



Validation of prognostic markers

Gene Expression Profiling Interactive Analysis (GEPIA; http://www.gepia.cancer-pku.cn/) is an interactive web server that analyzes RNA sequencing expression data across tumors and normal samples from TCGA and Genotypic Tissue Expression projects. The expression of each lncRNA and mRNA in normal tissues and cancer tissues can be obtained in the GEPIA database. Moreover, GC patients’ gene expression data and full clinical annotation were also searched in the GEO database. We systematically retrieved the databases with the key words “gastric cancer” and “survival.” There are some enrollment criteria as follows: data sets incorporating more than 30 human primary GC samples, series offered with OS time and survival status, and with transcriptome profiling as the experiment type. In total, seven eligible GC cohorts (GSE26253, GSE62254, GSE84437, GSE26899, GSE13861, GSE26901, and GSE28541) were gathered in this study for further analysis. Patients without survival information were not considered for further evaluation. The normalized matrix files for those cohorts were directly downloaded. The baseline clinical information of patients in all cohorts in this research is summarized (Table S1). Then, those cohorts were used to conduct a subsequent meta-analysis for prognostic markers. The combined value was calculated by the hazard ratio (HR) with a 95% confidence interval (CI). The χ2 and I2 statistical tests were applied to assess the heterogeneity between the involved data sets. If p > 0.05 or I2 < 50%, the fixed-effect model was used to calculate the combined effect. Otherwise, the random-effects model was used (p < 0.05 or I2 > 50%). The results display a series of forest plots created by the “forestplot” package of R software. For further evaluation of gene expression differences (mRNA) at the protein level, immunohistochemistry (IHC) staining images of gene protein expression in normal gastric tissues and gastric tumor tissues were acquired from the Human Protein Atlas (HPA; http://www.proteinatlas.org/) and analyzed.



RNA extraction and reverse transcription–quantitative PCR analysis


Experimental specimens

In this study, 30 GC surgical specimens and paired normal adjacent tissues (normal tissues more than 5 cm away from the primary tumor) were selected from patients undergoing radical gastrectomy for GC in the Affiliated Tumor Hospital of Xinjiang Medical University from January 2018 to December 2020. All patients had signed informed consent before surgery, had no history of chemotherapy or radiotherapy before surgery, and were confirmed by pathological diagnosis after surgery. Fresh tumor tissues and normal adjacent tissues were immediately put into liquid nitrogen bottles for transfer and stored in a refrigerator at −80°C for RNA extraction.



Reverse transcription–quantitative PCR

Total RNA from tissues was extracted using a miRcute miRNA isolation kit (TIANGEN, Inc.). Total RNA was reverse-transcribed into cDNA using a FastKing RT kit (TIANGEN, Inc.) according to the manufacturer’s protocol. qPCR was subsequently performed on an ABI 7500 real-time PCR system (Applied Biosystems, Thermo Fisher Scientific, Inc.) with a SuperReal PreMix Plus (SYBR Green) reagent (TIANGEN, Inc.). qPCR was performed as follows: 95°C for 15 min, and 40 cycles of 95°C for 10 s and 60°C for 32 s. The primer sequences used for the qPCR are listed in Table S2. The expression levels of target genes were analyzed using the 2−ΔΔCt method.




Construction and evaluation of the nomogram model

First, we performed the univariate Cox regression analysis to evaluate the prognostic value of the ELNs signature and clinicopathological features. Subsequently, the multivariate Cox regression analysis was used to further determine the independent prognostic factors. A nomogram model construction was achieved by the “rms” package and the “survival” package in R. Finally, the concordance index (C-index), ROC curve, calibration curves, and decision curve analysis (DCA) were used to assess the consistency, accuracy, and clinical applicability of the nomogram model.



Estimation of immune checkpoint expression

We assessed the expression levels of 50 immune checkpoints (ICPs) in GC samples in the TCGA cohort. The Wilcoxon rank-sum test was utilized to compare their expression difference in the high- and low-ELN signature.



Drug sensitivity assessment

According to the public pharmacogenomics database Genomics of Drug Sensitivity in Cancer (GDSC; https://www.cancerrxgene.org), in the TCGA-STAD project, we calculated the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs using the R package to predict the response of GC patients to chemotherapy drugs. Using the Wilcoxon rank-sum test, we compared the difference in the estimated IC50 between the high- and low-risk groups.



Statistical analyses

Categorical data and continuous data were shown as frequency and percentage, and mean and standard deviation, respectively, which were assessed by the χ2 test and the Mann–Whitney U-test, respectively. The paired t-test was used to test the significant difference between the paired samples. K-M survival analysis, univariate Cox regression analyses, LASSO regression, multivariate Cox regression analyses, ROC curve analysis, and DCA executed by the corresponding R packages were applied to the data sets. All optimal cutoff values (except for ELNs) were found using the “survminer” R package. The “mice” R package was used to perform multiple imputation procedures. The Spearman’s or Pearson’s test was used to conduct a correlation analysis between the two variables. R software (version 3.6.2, The R Foundation for Statistical Computing, https://www.r-project.org/) was used for all statistical analyses. Except for the special instructions, results with two-sided p-values of <0.05 were considered to be statistically significant. The detailed flow diagram of the study design is exhibited in Figure 2.




Figure 2 | Flowchart of data analysis and experiment.






Results


Clinical characteristics analyses


Demographic and clinical characteristics in cohorts

The SEER database contained 19,317 GC patients, who were used as the model cohort. The random split sample method (split ratio 2:1) was used to divide the modeling cohort into training (12,880 cases) and internal validation cohorts (6,437 cases). In total, 62.9% of the patients were men, and 37.1% were women. The mean age of patients included was 65.69 years (18–101 years). The grade wears mostly III (62.3%); that is, the tumor characteristics showed a high proportion of poorly differentiated or undifferentiated cancers. The mean number of ELNs was 17.68, with 7,820 (40.5%) negative lymph nodes and 11,497 (59.5%) positive lymph nodes. In Table S3, you can find the demographics and clinicopathological characteristics of SEER’s training and internal validation cohorts, which were both comparable. A total of 396 patients were collected from the TCGA database and used as an external validation cohort for further mechanism analysis. There was also one external validation set, namely the Chinese validation set (n = 471). Demographic and clinicopathological characteristics of the two external validation cohorts are also listed in Table S3. The median follow-up time of the entire SEER data set and the internal validation data set were 24.00 months (interquartile range [IQR], 10.00–58.00 months) and 25.00 months (IQR, 10.00–57.00 months), respectively. Regarding the TCGA validation set and the Chinese validation set, they were 15.67 months (IQR, 9.49–26.44 months) and 24.63 months (IQR, 15.82–39.93 months), respectively. In addition, the 5-year OS of these data sets was also calculated. The findings displayed that, in the SEER training data set, the 5-year OS was 40.2% (95% CI, 39.3%–41.2%). For the SEER internal validation, TCGA, and Chinese external validation set, the 5-year OS values were 41.0% (95% CI: 39.6%–42.3%), 38.6% (95% CI: 30.5%–48.9%), and 62.0% (95% CI: 54.0%–71.2%), respectively.



Impact of the number of lymph nodes examined on survival

First, we analyzed the prognostic effect of ELNs in the training cohort. We determined the optimal cutoff value by the maximally selected rank statistics and divided the whole training cohort into two subgroups (low ELNs, ≤16; high ELNs, >16). Through the analysis of the clinical data of GC patients in the training cohort, we found that the high-ELN group and the low-ELN group were factors influencing the survival of GC patients. The K-M analysis revealed that the survival rate of the high-ELN group was better than that of the low-ELN group (p < 0.0001; Figure 3A). To explore the difference in gene expression levels between the two groups of patients with phenotype, we divided the GC patients in the TCGA database into the high-ELN group and the low-ELN group according to the cutoff value of the lymph node count obtained by the training cohort under the condition of ensuring that the phenotype is different. Consistent analysis results were also obtained in the clinical data of GC patients in the external validation cohort of the TCGA database (p < 0.01; Figure 3B).




Figure 3 | Survival analyses of OS in the ELNs group. (A) OS for high (>16) and low (≤16) ELNs in the training cohort. (B) OS for high (>16) and low (≤16) ELNs in the external validation cohort (The Cancer Genome Atlas). ELNs, the number of examined lymph nodes; OS, overall survival.



In the training cohort, we further stratified by histological grade, N stage, and lymph node status and analyzed the prognostic effects of ELNs. A stratified analysis of histological grade showed (Figures S1B, C) that the OS of ELNs ≤ 16 and ELNs > 16 had a significant difference (p < 0.0001) in grades II and III. The survival benefit of the ELNs appeared to be stronger in N0–N2 (all p’s <0.0001; Figures S2A–C) compared with N3–NX (p = 0.27 and p = 0.60; Figures S2D, E). A stratified analysis by the lymph node status showed a statistically significant difference in the OS of patients between the ELNs ≤ 16 and ELNs > 16 groups (p < 0.0001; Figures S3A, B).



The construction of the STAD prognosis prediction model in the SEER database

The results of the univariate Cox analysis showed (Table S4) that age, differentiation grade, T stage, N stage, M stage, ELNs group, lymph node status, and tumor size were all correlated with OS (all p’s < 0.05). The potential predictors (other than tumor size) identified in the univariate analysis were subsequently undertaken into the multivariate Cox analysis. Because the tumor size does not exist in the TCGA database and cannot be verified with the TCGA database, the tumor size is not included in the multivariate Cox analysis. The results demonstrated that age, differentiation grade, T stage, N stage, M stage, ELNs group, and lymph node status were all independent prognostic features of OS (all p’s < 0.05). Compared with low ELNs, patients with high ELNs had improved OS (HR = 0.659, 95% CI: 0.626–0.694, p < 0.0001). Higher ELNs were associated with better survival in GC, independent of age, differentiation grade, T stage, N stage, M stage, and lymph node status (Table S4). Based on the analysis results of the multivariate Cox of the training cohort, we described the influence of each variable on the risk of GC in the form of a nomogram. That is, a nomogram prediction model related to the occurrence of GC is established to predict the OS at 1, 3, and 5 years (Figure 4). In the nomogram, the first row is the score obtained for each variable. The sum of the scores of all variables in the model is the total score. The prediction corresponding to the total score vertically downward helped in estimating the 1-, 3-, and 5-year OS for each patient. Using 396 patients in the TCGA database and 471 patients in the Chinese cohort, we externally verified the nomogram and obtained similar analysis results.




Figure 4 | Nomogram to predict the OS of GC patients. ELNs, the number of examined lymph nodes; LN status, lymph node status; OS, overall survival; GC, gastric cancer. ***p < 0.001.





Validating and comparing the predictive accuracy of the nomogram model in four data sets

In the training cohort (SEER), the internal validation cohort (SEER), the external validation cohort (TCGA), and the Chinese validation cohort, the time-dependent AUC indicated that the nomogram model had a considerable value in predicting the OS in the GC cohort (Figure 5A). The AUCs of the nomogram predicting the 1-, 3-, and 5-year OS were 0.755, 0.784, and 0.779 in the training cohort (SEER); 0.762, 0.791, and 0.791 in the internal validation cohort (SEER); 0.665, 0.710, and 0.785 in the external validation cohort (TCGA); and 0.791, 0.815, and 0.762 in the Chinese validation cohort, respectively, indicating that the model has good prediction ability. The SEER internal validation data set confirmed excellent recognition capability of the nomogram (C-index [95% CI], 0.720 [0.714–0.726]). In addition, TCGA and Chinese external verification sets also confirmed this performance, with C-indices of 0.693 [0.662–0.724] and 0.750 [0.720–0.782], respectively (Figure 5B). The calibration plots of the 1-, 3-, and 5-year OS of the nomogram indicated that the predicted values of the training cohort (Figure 5C), the internal validation cohort (Figure 5D), the TCGA validation cohort (Figure 5E), and the Chinese validation cohort (Figure 5F) are in favorable agreement with the actual observations. Therefore, the constructed nomogram in this study performed well in both the training and validation sets. Additionally, DCA analysis was used to elucidate the net benefit at 1  (Figures 6A, D, G, J), 3 (Figures 6B, E, H, K), 5 (Figures 6C, F, I, L) years in four cohort. For instance, the net benefit ranges at 5 years in four cohort can be obtained. When the threshold probability of SEER training set and SEER internal verification set is between 24% and 98%, 52% and 76% in the TCGA validation set and 13% and 68% in the Chinese validation set, the usage of nomogram to predict the prognosis of GC patients offers a higher net benefit than the “all treat” or “no treat” strategies, indicating that the nomogram has good potential clinical applicability.




Figure 5 | Evaluation of the nomogram. (A) The time-dependent AUC value of the nomogram in the training cohort (SEER), the internal validation cohort (SEER), the external validation cohort (TCGA), and the Chinese validation cohort. (B) The C-index of the nomogram in the training cohort (SEER), the internal validation cohort (SEER), the external validation cohort (TCGA), and the Chinese validation cohort. Calibration plots of the nomogram performed in the (C) SEER training, (D) the SEER internal validation, (E) the TCGA validation, and (F) the Chinese validation set, respectively.






Figure 6 | A decision curve analysis constructed for the nomogram that depicted the clinical net benefit for each cohort. (A–C) SEER training. (D–F) SEER internal validation. (G–I) TCGA validation. (J–L) Chinese validation set. As shown by the horizontal blue solid line, all patients are assumed not to be treated, whereas the solid red line indicates that all patients are treated. In all different cohorts, the nomogram provided superior net benefit across a range of threshold probabilities for decision curve analysis.






Molecular features analyses of gastric cancer

By analyzing the clinical data of GC patients, our study showed that ELNs are independent prognostic factors for patients with GC, and the survival of the high-ELN group is better than that of the low-ELN group in the SEER database. The TCGA database also got consistent analysis results. To explore the differences at the molecular level between GC patients in the two groups (low-ELN and high-ELN groups), the 334 patients having both clinical information, miRNA, lncRNA, mRNA sequencing, and 22 immune cell fraction data were divided into high ELNs (n = 183) and low ELNs (n = 151) subgroups, according to the cutoff value of 16 ELNs from the SEER database.


Identification of differentially expressed lncRNAs, miRNAs, and mRNAs

First, the different expression analyses of miRNA, mRNA, and lncRNA were performed in the high- and low-ELN groups. The differentially expressed RNAs from the TCGA-STAD project were 14,333 lncRNAs, 2,055 miRNAs, and 19,568 mRNAs. Using the |log2 (foldchange)| > 0.5 and p < 0.05 as the cutoffs, we acquired 664 protein-coding genes (Figures 7A, B), 20 miRNAs (Figures 7C, D), and 530 lncRNAs (Figures 7E, F).




Figure 7 | The differentially expressed mRNAs, lncRNAs, and miRNAs between the high-ELN and low-ELN groups were identified using the “DESeq2” package with R. The cutoff that we set was log2 (foldchange) > 0.5 or < −0.5 and p < 0.05. (A, C, E) The volcano plots of differentially expressed mRNAs (n = 664), lncRNAs (n = 530), and miRNAs (n = 20). Blue and red dots represent downregulated genes and upregulated genes, respectively. (B, D, F) Heat maps of the differentially expressed lncRNAs, miRNAs, and mRNAs between the high- and low-ELN groups.





The construction of competing endogenous RNA networks and the survival analysis

Next, a ceRNA network displaying the interactions between miRNAs, mRNAs, and lncRNAs was constructed based on the lncbase v.3 experimental module online tool and experimental verification from miRTarBase. According to the lncbase v.3 experimental module, target miRNA prediction revealed that six overlapped lncRNAs (eight lncRNA–miRNA links including six lncRNAs and six miRNAs) were obtained between 1,055 lncRNAs predicted from 20 miRNAs and the 530 differentially expressed lncRNAs. Target miRNA prediction revealed 35 miRNA–mRNA links composed of 14 miRNAs and 26 mRNAs according to the miRTarBase database. Finally, using R software, we constructed a STAD ceRNA regulatory network composed of 23 genes including 6 DElncRNAs, 4 DEmiRNAs, and 13 DEmRNAs (Figure 8 and Table S5). Table S6 provides detailed information about the ceRNA network. Moreover, we calculated the connection degree for genes related to the prognosis to understand their significance within the ceRNA network (Figure 8 and Table S5). Among the lncRNAs, miRNAs, and mRNAs, HOTTIP (connection degree = 7), hsa-miR-135a-5p (connection degree = 9), APOA1, and ARC (connection degree = 3) are deemed the most significant. In the ceRNA network, hsa-miR-135a-5p had the highest connection degree (connection degree = 9), suggesting a strong impact on the pathogenesis of STAD.




Figure 8 | Sankey diagram of the competing endogenous RNA network in GC. Each rectangle represents a gene, and the connectedness of each gene is shown according to the size of the rectangle.



lncRNAs are thought to interact directly with miRNAs to positively regulate mRNA expression, as explained by the ceRNA theory. To validate this phenomenon in STAD, we analyzed the correlation between DElncRNAs and DEmRNAs targeted by hsa-miR-135a-5p, which was a gene with the highest degree of connectivity within the ceRNA network. We detected positive correlations between DElncRNAs and DEmRNAs targeted by hsa-miR-135a-5p. Figures S4A–C showed the top three correlation coefficients of interactions, in which HTR5A-AS1 interacts with GAGE1 (R = 0.34, p = 9.57E−11), MIR663AHG interacts with GAGE1 (R = 0.39, p = 1.50E−13), and MIR663AHG interacts with APOA1 (R = 0.22, p = 5.03E−05). Moreover, we also verified the relationship between the lncRNAs and mRNAs in other dependent data sets (GEO data sets: GSE62254 and GSE84437). Among the correlation coefficients between DElncRNA and DEmRNA targeted by hsa-miR-135a-5p, GAGE1 and MIR663AHG had the highest correlation coefficient, so we only verified the relationship between GAGE1 and MIR663AHG. The correlation analysis results of these two data sets (GSE62254 and GSE84437) reveled weak positive correlations between GAGE1 and MIR663AHG, which are consistent with the results of TCGA (Figures S4D–E).

To obtain DERNAs closely associated with the prognosis of GC patients, we performed univariate Cox regression, K-M survival curve analysis, and log-rank test on each DERNA in the constructed ceRNA network. According to their respective optimal cutoff values, GC patients were categorized into high-expression and low-expression groups. As a result, we obtained 10 DERNAs (namely five DElncRNAs: MIR663AHG, LINC00643, HOTTIP, CDKN2B-AS1, and H19; one DEmiRNA: hsa-miR-135a-5p; and four DEmRNAs: APOA1, ARC, TMEM236, and ZNF705A), which were correlated with OS (all p’s < 0.1). Among these genes, two DElncRNAs and two DEmRNAs have a protective effect (HRs < 1) because patients with low expression levels of these RNAs have a better prognosis than patients with high expression levels. On the contrary, the remaining three DElncRNAs, one DEmiRNA, and two DEmRNAs were considered oncogenes (HRs > 1) because their expression is negatively correlated with the prognosis of GC patients. The survival curves and univariate Cox regression results of all DElncRNAs, DEmiRNAs, and DEmRNAs are displayed in Figures S5, S6.



Estimation of immune cell-type fractions in GC and the survival analysis

We measured the abundance of tumor-infiltrating immune cells (TIICs) in GC tissue using the CIBERSORT algorithm. The box plot (Figure 9A) could indicate that macrophages M2, T-cell CD4 memory resting, and T-cell CD8 were significantly high expression in the GC tissue, and they might play an essential role in GC. The results of the Wilcoxon–Mann–Whitney U-test suggested that the distribution of several immune cell fractions in the high-ELN group was different from that in the low-ELN group, including plasma cells, neutrophils, Tregs, NK cells resting, dendritic cells resting, dendritic cells activated, and mast cells resting (all p’s < 0.05; Figure 9B). To determine which immune cell has an impact on the OS of GC patients, we also conducted univariate Cox regression, K-M survival curve analysis, and log-rank test for seven immune cells that passed the Wilcoxon rank-sum test (Figures 9C, S6). Among these immune cells, neutrophils were positively associated with the prognosis of GC patients because patients with low expression levels of this cell have a longer prognosis than patients with high expression levels, which suggested the protective roles of this cell in GC development. On the contrary, plasma cells and Tregs were considered risk factors because their expression is negatively correlated with the prognosis of GC patients.




Figure 9 | Analysis of the ELNs-related TIICs. (A) Distribution of 22 types of TIICs in gastric cancer. (B) Box plot displays the abundance differentiation of 22 types of immune cells between the GC samples with low- and high-ELN groups, and the significance test was carried out by the Wilcoxon rank-sum test. (C) Kaplan–Meier and log-rank test for seven immune cells passed the Wilcoxon rank-sum test. Four representative immune cells including plasma cells, neutrophils, and regulatory T cells (Tregs) are shown based on their respective optimal cutoff values (all p < 0.1). ELNs, the number of lymph nodes examined; TIICs, tumor-infiltrating immune cells; GC, gastric cancer. *p < 0.05; **p < 0.01.ns, no significance.





The composite and coexpression analysis of genes and tumor-infiltrating immune cells

We further analyzed and illustrated the correlation between TIICs and DERNAs. Spearman analysis was used to demonstrate some significant coexpression patterns about 10 DERNAs and 3 immune cells associated with the prognosis of the GC patients (Figure 10A). The results revealed that neutrophils (Figure 10B) and plasma cells (Figure 10C) had a positive correlation with the hsa-miR-135a-5p expression (R = -0.13, p = 0.022; R = 0.16, p = 0.0034), and Tregs (Figure 10D) had a positive correlation with APOA1 expression (R = 0.14, p = 0.013). We could further verify that the expressions of hsa-miR-135a-5p and APOA1 significantly influenced the immune activity of the tumor microenvironment (TME) from the above outcomes.




Figure 10 | The correlation result of the coexpression analysis between tumor-infiltrating immune cells and DERNAs related to the prognosis of gastric cancer patients. (A) The coexpression heat map illustrated the coexpression patterns of 10 genes and 3 immune cells. (B–D) Neutrophils and hsa-miR-135a-5p (R = -0.13, p = 0.022), plasma cells and hsa-miR-135a-5p (R = 0.16, p = 0.0034), and regulatory T cells and APOA1 (R = 0.14, p =0.013). *p < 0.05; **p < 0.01; ***p < 0.001.





Construction of the number of lymph nodes examined signature for overall survival

A total of 14 factors were significantly related to the OS of GC patients in this study. The result of the univariate Cox regression for the ELNs group, 10 genes (APOA1, ARC, TMEM236, ZNF705A, MIR663AHG, LINC00643, HOTTIP, CDKN2B-AS1, H19, and hsa-miR-135a-5p), and 3 immune cells (plasma cells, neutrophils, and Tregs) was illustrated by the forest plot in Figure S6. Next, to build an optimal prognostic ELNs signature for OS, we used the LASSO–Cox analysis to identify key prognostic indicators. The LASSO regression model was optimal when 12 variables with lambda.1se = 0.05892685 were selected as the target markers (Figures 11A, B). We applied the factors derived from the LASSO regression analysis to the multivariate Cox regression analysis to construct the optimal ELNs signature. Furthermore, the risk coefficients generated by the multivariate Cox regression analysis were used to calculate the ELNs signature of each patient. The formula of the ELNs signature was based on the corresponding coefficients of variables with p < 0.1 (Table S7):




Figure 11 | Identifying prognostic genes and cells for developing an ELNs signature. (A) LASSO coefficient profiles of the 14 survival-related factors in the TCGA cohort. (B) Selection of the optimal parameter (lambda.1se = 0.05892685) in the LASSO regression model. (C) The distribution of the ELNs signature between the high- and low-ELN groups using Mann–Whitney U-test. (D) Kaplan–Meier survival curve of patients with high- and low-ELN signature groups. (E) Distribution of the ELNs signature in the TCGA cohort. ELNs, the number of lymph nodes examined.



ELNs signature = −0.35569 * ELNs group + 0.38558 * Tregs| CIBERSORT + −0.52900 * Neutrophils | CIBERSORT + −0.36941 * CDKN2B-AS1 | lncRNA + 0.55315 * H19 | lncRNA + 0.41669 * HOTTIP | lncRNA + 0.36619 * LINC00643 | lncRNA + −0.40853 * MIR663AHG | lncRNA + 0.49878 * TMEM236 | mRNA + −0.32665 * ZNF705A | mRNA + 0.35357 * hsa-miR-135a-5p | miRNA.

Among these factors in the ELNs signature, the ELNs group, neutrophils, CDKN2B-AS1, MIR663AHG, and ZNF705A were protective factors for GC patients’ OS, with HRs of <1, and Tregs, H19, HOTTIP, LINC00643, TMEM236, and hsa-miR-135a-5p were risk factors, with HRs of >1. Distributions of the ELNs signature revealed that patients in the high-ELN group had lower ELNs signature than patients in the low-ELN group (p < 0.001; Figure 11C). According to the optimal ELNs signature cutoff value (0.00164), all patients were divided into the high-ELN signature (n = 92) and low-ELN signature (n = 242) groups. The K-M survival curve showed that the patients with a low-ELN signature exhibited a longer survival time than those in the high-ELN signature group (log-rank test: p < 0.0001; Figure 11D). The ELNs signature and the survival status distribution of each case were shown in Figure 11E. Remarkably, the number of deaths was dramatically higher in the high-ELN signature group.



The verification of prognostic markers in the number of lymph nodes examined signature by database and reverse transcription–quantitative PCR

To further verify the expression or abundance of prognostic genes and immune cells constructing ELNs markers, meta-analysis was performed. We performed univariate Cox regression analysis for partial markers (in the absence of miRNAs in all data sets in GEO, we were unable to verify the prognostic value of hsa-miR-135a-5p) in the ELNs signature based on seven GEO data sets, with available OS data and clinical information. Then, a meta-analysis based on the univariate Cox regression analysis results of eight GC cohorts including TCGA STAD and seven GEO data sets was conducted, integrating the HR values of these markers from multiple data sets to assess their impact on prognosis (Figures S7A–I). The meta-analysis results exhibited that HOTTIP and LINC00643 were associated with the OS of GC. According to the fixed-effects model, HOTTIP was remarkably downregulated in the GC group (HR = 1.40, 95% CI: 1.10–1.78, Z = 2.73, p < 0.01). The combined HR of LINC00643 was 1.80, according to the random-effects model (95% CI: 1.31–2.41, Z = 3.60, p < 0.01), indicating that LINC00643 was lowly expressed in GC. Among the remaining makers, the expression of MIR663AHG, neutrophils, and ZNF705A was not significant with OS, but the tendency was consistent with the survival analysis and Cox regression of TCGA. The ELNs signature we built was based on tumor sample data analysis; to further validate the expression of the prognostic genes constructing the ELNs signature, we analyzed the difference in seven RNAs (CDKN2B-AS1, H19, HOTTIP, LINC00643, MIR663AHG, TMEM236, and ZNF705A) between the normal samples and tumor samples. We compared the lncRNAs and mRNAs expression levels in GC tissues and normal gastric tissues in the GEPIA database, and the results showed that CDKN2B-AS1, H19, HOTTIP, MIR663AHG, and ZNF705A were highly expressed in GC, whereas LINC00643 and TMEM236 exhibited low expression in GC (Figures S8A–G). Subsequently, we detected the expression levels of eight RNAs in GC tissues (n = 30) and adjacent non-tumorous tissues (n = 30) by an RT-qPCR assay (Figure 12). Consistent with our bioinformatics analysis results, the results of an RT-qPCR experiment showed that the RNA expressions of LINC00643 (p < 0.0001; Figure 12D), TMEM236 (Figure 12F, paired t-test, p = 0.05073), and hsa-miR-135a-5p (p = 0.003335; Figure 12G) were downregulated in GC tissues compared with adjacent non-tumorous tissues. Furthermore, to evaluate TMEM236 and ZNF705A (not found) expressions at the protein level, the IHC result provided by the HPA database was analyzed, and we compared the results of the TMEM236 gene in the HPA (protein expression level) database and the TCGA database (gene expression level). As shown in Figures 13A–C, the data analysis results of the two databases are consistent. Normal gastric tissues had moderate TMEM236 IHC staining, whereas tumor tissues had weak staining.




Figure 12 | Reverse transcription–quantitative PCR result of eight RNAs expression in 30 pairs of gastric cancer tissues and adjacent non-tumor tissues. (A) H19. (B) HOTTIP. (C) CDKN2B-AS1. (D) LINC00643. (E) MIR663AHG. (F) TMEM236. (G) hsa-miR-135a-5p. (H) ZNF705A.






Figure 13 | Comparison of TMEM236 expression at the protein level immunohistochemistry pictures. (A) normal (left) and (B, C) tumor (middle and right) tissues.





Construction and evaluation of a prognostic nomogram for patients with gastric cancer

We carried out univariate and multivariate Cox regression analyses to study whether the ELNs signature was an independent prognostic factor for the OS of GC patients (Figures 14A, B). As the results demonstrated, ELNs signature (HR = 2.761, 95% CI: 2.092–3.645, p < 0.001), age, M stage, N stage, T stage, and number of lymph nodes positive were potential indicators associated with the OS of GC patients in the univariate Cox regression analysis. Subsequently, the multivariable Cox regression analysis showed that the ELNs signature derived from the 11 factors (HR= 2.418, 95% CI: 1.804–3.241, p < 0.001), age, M stage, and T stage were independent prognostic factors for OS (p < 0.1). In time-dependent ROC curves analysis, the ELNs signature also exhibited better prognostic value of 1-, 3-, and 5-year survival (AUCs = 0.688, 0.744, and 0.778) than other clinical characteristics (ELNs group, AUCs = 0.561, 0.605, and 0.676; age + T stage + M stage, AUCs = 0.674, 0.648, and 0.696). Moreover, for the 1-, 3-, and 5-year OS probability, the ROC curves also showed that the combination (AUCs [95% CI] = 0.742 [0.675–0.808], 0.768 [0.686–0.849], and 0.813 [0.692–0.934]) of the ELNs signature and other independent clinicopathological prognostic factors was better than the model built only by the ELNs signature (Figures 14C–E). Eventually, according to the results of the ROC analyses, all independent factors were combined to create a nomogram for predicting the 1-, 3-, and 5-year OS of GC patients. We can calculate each feature’s score for each patient to predict their 1-, 3-, and 5-year OS probability, contributing to personalized precision treatment. As shown in Figure 15A, the contribution of the ELNs signature to the total score is greater than that of other variables. With increasing total scores, the 1-, 3-, and 5-year OS rates of GC patients decreased. Our model’s C-index reached 0.710 (95% CI: 0.663–0.753). There was a remarkable agreement between the predicted and actual 1-, 3-, and 5-year survival probabilities (Figure 15B). Similarly, the DCAs constructed using the TCGA cohort showed that the nomogram performed well at predicting the 1-, 3-, and 5-year OS rates in GC patients and achieved a higher net benefit (Figures 15C–E).




Figure 14 | Prognostic analysis of the gastric cancer patients in the TCGA cohort. (A, B) Forest plots of univariate and multivariate Cox regression analysis between the ELNs signature and clinicopathological characteristics regarding OS in the TCGA cohort. (C–E) Time-dependent receiver operating characteristic analyses were constructed by the ELNs signature, ELNs group, age + T stage + M stage, etc., to show their prognostic ability in the TCGA cohort. ELNs, the number of lymph nodes examined; OS, overall survival.






Figure 15 | Establishment and assessment of the nomogram. (A) The nomogram plot was built based on the ELNs signature, age, M stage, and T stage. (B) The calibration curves showed that the predicted OS of the nomogram is highly concordant with the actual OS. (C–E) DCAs of the nomogram for 1-, 3-, and 5-year OS in the TCGA cohort. OS, overall survival; DCA, decision curve analysis. *p < 0.05; **p < 0.01; ***p < 0.001.





Somatic mutation analysis of high– and low–the number of lymph nodes examined signature groups

Figure S9A shows the top 20 most frequently mutated genes in the high-ELN signature and low-ELN signature GC samples. In this study, more significant co-occurrence mutations were observed among the mutations of these genes (Figure S9B). Subsequently, differential mutations were detected between the two groups, and the mutation burden of SYNE1 and PCDH15 genes in the high-ELN signature group was higher than that in the low-ELN signature group (Figure S9C).



Association between the prognostic the number of lymph nodes examined signature and clinical characteristics, immune checkpoints, and drug sensitivity

We further investigated the correlations of the ELNs signature with clinical features, ICP molecules, and drug sensitivity, respectively, in this section. The results of the Kruskal–Wallis rank-sum test revealed that the ELNs signature in the NX subtype was obviously higher than those in N0, N1, N2, and N3 subtypes (all p’s < 0.05; Figure S10E). For the T stage, the ELNs signature of GC patients with T1 was lower than those with T3, T4, and TX (all p’s < 0.05; Figure S10F). However, there was no difference in the ELNs signature between men and women (p = 0.18; Figure S10A), and lymph nodes negative and positive (p = 0.98; Figure S10B). As shown in Figures S10C–D, the M stage (p = 0.38) and the grade level (p = 0.31) were not related to the ELNs signature. The finding of this study suggested that ELNs signature may play a pivotal role in the development of GC.

Recently, ICPs have been recognized as potential therapeutic targets for many malignant tumors and have been used in tumor immunotherapy. Therefore, to explore whether the ELNs signature could predict immunotherapeutic benefits in GC patients, we further explored the difference in the expression of ICP genes between the two groups. We extracted the expression of 50 ICPs (Figure S11A), namely ADORA2A, BTLA, BTNL2, CD160, CD200, CD200R1, CD244, CD27, CD274, CD276, CD28, CD40, CD40LG, CD44, CD48, CD70, CD80, CD86, CTLA4, HAVCR2, HHLA2, ICOS, COSLG, IDO1, IDO2, KIR3DL1, LAG3, LAIR1, LGALS9, NRP1, PDCD1, PDCD1LG2, TIGIT, TMIGD2, TNFRSF14, TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8, TNFRSF9, TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF9, VTCN1, ENTPD1, NT5E, SIGLEC15, and NCR3, to assess their relationships with the ELNs signature. As presented in Figure S11B, CD40 and VTCN1 expression levels in the high-ELNs signature group patients were markedly higher than those in the low-ELNs signature group patients (p < 0.05). The expression of CD44, ENTPD1, NT5E, and NRP1 in the low-ELN signature was significantly higher than that in the high-ELN signature (p < 0.05) (Figures S11B, S12). Meanwhile, we also evaluated the correlation between the ELNs signature and CD40, VTCN1, CD44, ENTPD1, NT5E, and NRP1 (Figures S11C–H). The ELNs signature was positively correlated with the expression of CD40 (p = 0.041) and VTCN1 (p = 0.001), whereas CD44 (p = 0.025), ENTPD1 (p = 0.0014), NT5E (p = 0.0053), and NRP1 (p = 0.003) were negatively correlated with the ELNs signature. This result indicated that patients in the low-ELN signature group have a better effect with immunotherapy.

Besides checkpoint blockade therapy, we compared the sensitivity of high- and low-ELN signature groups to chemotherapy drugs. Based on the GDSC database, we forecasted the chemotherapy response of high- and low-ELN signature groups. The results displayed that a total of 31 targeted agent drugs had an obvious difference in the IC50 between high- and low-ELN signature groups in GC (Figure S13). Among those outcomes, the estimated IC50 levels of BIRB-0796 (Doramapimod), BMS-708163 (Avagacestat), GW-441756, PF-4708671, rapamycin, and sorafenib in the high-ELN signature group were significantly lower than those in the low-ELN signature group (Figure S13A), and the remaining results showed that the estimated IC50 levels of other drugs in the high-ELN signature group were significantly higher than those in the low-ELN signature group (Figure S13B), which indicated that patients with low-ELN signature were more sensitive to these chemotherapeutics.





Discussion

Lymph node metastasis plays an important role in GC long-term survival and recurrence (12). Appropriate staging of lymph node metastasis can accurately predict and improve the prognosis of patients. The ability to adequately evaluate lymph node metastasis depends on the total number of detected lymph nodes that can be used for histological evaluation. In addition, a large number of studies have demonstrated that lymph node retrieval with a sufficient number and dissection regions is necessary for proper N staging and setting up of appropriate GC treatment regimens. According to those findings, it confirmed that the number of lymph nodes was an independent predictor of the GC prognosis. Totally, a greater number of ELNs were associated with more precise nodal staging, and the incremental number of lymph node retrieval is directly correlated with improved survival (13–18). Unfortunately, because of insufficient ELNs numbers, GC can be incorrectly staged, which is called “staging migration.” Correct staging is the basis of the optimal strategy for adjuvant therapy, and patients who are underestimated may miss out on access to adjuvant therapy, resulting in adverse outcomes (15, 19). There may be a variation in the number of lymph node examinations depending on the surgical method (20). Furthermore, it is possible for the dissection procedure of the surgeon to influence not only the number of examined lymph nodes but also the pathologist’s search for lymph nodes (21, 22). Consequently, it may be necessary for the pathologist to examine the specimen with high quality to find more positive lymph nodes and provide more accurate staging (23).

To date, there is no agreement on the number of regional lymph nodes to be retrieved for adequate staging, and the optimal number of ELNs continues to be a contentious topic, but the AJCC 8th GC staging system recommends the examination of at least 16 lymph nodes. Moreover, a majority of previous studies have demonstrated a close relationship between ELNs and GC outcomes. However, not much has been done to improve prognosis accuracy using bioinformatics, clinicopathological factors, and machine learning. For example, the true impact of ELNs on OS may be understated because of the absence of a special ELNs assessment signature. From the macroscopic and molecular levels, as a result of combining two widely used external databases (SEER and TCGA), we were able to provide novel insights regarding the relationship between ELNs-related DERNAs, immune cells, and the survival of GC patients. Moreover, our study also provides an effective ELNs signature and nomogram model for evaluating the GC prognosis.

First, we developed an accurate nomogram prediction model of GC patients’ OS using the large cohort in the SEER database. Before establishing the nomogram prediction model, according to the stratified K-M curve analysis by clinicopathological features, we explored the effect of ELNs on survival. Our study results revealed that, for the N0, N1, and N2 patients, there were wide differences in survival between the high- and low-ELN groups; higher excess hazard (lower survival) was observed in patients with ≤16 ELNs than in patients with >16 ELNs. However, in the results of N3 and NX patients, the differences in survival between the two groups were not significant, regardless of the number of lymph nodes examined. Furthermore, a similar pattern of findings was observed for patients stratified as follows: grade and lymph node status. These results demonstrated that >16 ELNs were a prerequisite for the accurate evaluation of prognosis in GC patients. This study further indicated that, in our nomogram, the study of large cohorts of GC patients revealed that ELNs were independent prognostic factors, and ELNs presented to be a protective factor (high vs. low, HR = 0.659, 95% CI: 0.626–0.694, p < 0.0001), indicating that the survival was worse for patients whose number of lymph nodes examined was less than the optimal number (16) based on the SEER database. It was found that patients with more examined lymph nodes tended to have higher survival rates, as in previous studies (8, 18). Synthesizing above all outcomes, we can clearly know that a greater number of lymph nodes can reduce the likelihood of undetected positive lymph nodes, improving the quality of adjuvant chemotherapy and improving long-term survival. In gathering fewer lymph nodes, there is an increased chance of missing positive nodal disease, and this may lead to inappropriate patient selection and improper adjuvant therapy selection (8). Based on the optimal cutoff value of ELNs established by the SEER cohort, the TCGA and Chinese cohorts were separated into two subgroups (high and low ELNs). Meanwhile, the nomogram model was externally validated using the TCGA database and the Chinese cohort. As a result of this study, the predicted values of the model are in good agreement with the actual values for the two external validation data sets.

Then, we analyzed the DERNAs between the high- and low-ELN groups based on lncRNA, mRNA, miRNA, clinical, and immune cell fraction data from 334 GC samples collected from TCGA. A total of 664 DEmRNAs, 530 DElnRNAs, and 20 DEmiRNAs were identified. Ultimately, a GC-specific ceRNA network containing 13 mRNAs, 4 miRNAs, and 6 lncRNAs was created by integrating the interaction between DEmiRNAs and DEmRNAs or DElncRNAs. In the ceRNA network, HOTTIP had the highest connection degree within the prognostic DElncRNAs including MIR663AHG, LINC00643, HOTTIP, CDKN2B-AS1, and H19. Excepting lncRNAs, miRNAs should also get comprehensive attention. We observed that the DEmiRNA hsa-miR-135a-5p kept the highest connection degree among the prognostic DEmiRNAs in the ceRNA network. Among the prognostic DEmRNAs, APOA1 and ARC had the same connection degree in the ceRNA network. Therefore, we concluded that they might exert a strong influence on GC pathogenesis. Subsequently, by understanding the immune microenvironment, we found that the fractions of plasma cells, neutrophils, Tregs, NK cells resting, dendritic cells resting, dendritic cells activated, and mast cells resting were different between high- and low-ELN groups, suggesting that the ELNs status could change the immune microenvironment to affect prognosis. In addition, the correlation analysis showed that hsa-miR-135a-5p was associated with neutrophils and plasma cells significantly. Meanwhile, APOA1 was associated with Tregs significantly. We could infer that the three pairs and their relevant mechanisms would play essential roles in the prediction and remedy of the GC prognosis. Furthermore, to obtain the markers with the greatest potential prognostic values, univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis were performed to identify 11 OS-related markers (ELNs group, TMEM236, ZNF705A, MIR663AHG, LINC00643, HOTTIP, CDKN2B-AS1, H19, hsa-miR-135a-5p, neutrophils, and Tregs) and construct an OS-related ELNs signature. In the signature model, Tregs, H19, HOTTIP, LINC00643, TMEM236, and hsa-miR-135a-5p were unfavorable factors for GC prognosis, whereas other factors showed a protective effect on the outcome.

Our prognostic signature containing 10 biomarkers (TMEM236, ZNF705A, MIR663AHG, LINC00643, HOTTIP, CDKN2B-AS1, H19, hsa-miR-135a-5p, neutrophils, and Tregs) can identify GC patients with a high risk of poor prognosis. Certain genes and immune cells in the signature are related to the formation and regulation of tumor progression. For example, risk stratification plays a critical role in the early detection of GC, which can improve the cure rate and reduce mortality. LINC00643 as an epigenetic risk marker has been emphasized as a prospective biomarker for cancer risk stratification (24–31). TMEM236 is a new gene significantly downregulated in colorectal tumors (32). However, there are no studies on TMEM236 and its correlation with GC. TFs (Transcription Factors) that are specifically expressed in an individual tissue or cancer may be potential marker genes. ZNF705A was specifically highly expressed in germ cell tumors, which may be potential targets for cancer therapy (33). CDKN2B-AS1 has been confirmed to be upregulated in a variety of tumor tissues (34–39), which is involved in the processes of tumor cell proliferation, migration, invasion, and inhibition of tumor cell apoptosis. Deng et al. (39) found that GC patients with high expression of CDKN2B-AS1 had poor survival, and mechanism studies showed that CDKN2B-AS1 promoted tumor progression mainly by enhancing NF-κB signal. Our study is consistent with this study, indicating that CDKN2B-AS1 may serve as a potential biomarker and therapeutic target for the prognosis and treatment of GC. In numerous tumors, such as tongue squamous cell carcinoma (40), lung cancer (41), bladder cancer (42), and colorectal cancer (43), miR-135a-5p manifested pro-proliferation and pro-metastasis effects. Consistent with our result, by measuring the level of miR-135a-5p in samples of human GC, Zhang et al. (44) demonstrated that miR-135a-5p is typically reduced in GC tissues. Nevertheless, the role of this miRNA in GC and its specific mechanism need to be further investigated. In addition, MIR663AHG requires more explorations because its expression affects the OS while the associated mechanism remains unclear. H19 was upregulated in GC tissues, which induced tumor growth and metastasis through the miR−22−3p/Snail1 signaling pathway (45). Numerous previous studies have exhibited that high HOTTIP expression was relevant to larger tumor size, poor differentiation, deeper invasion depth, positive lymph node metastasis, advanced TNM stage, and poor overall patient survival (46–48). Tregs, as a subtype of CD4+ T cells, accumulate in the TME and play vital roles in tumor metastasis (49). Large populations of FOXP3+ Tregs have been recognized in the TME, and their accumulation has been linked to poor prognosis in cancer (50, 51). Elevated FOXP3+ Tregs have been linked to poor OS and tumor metastasis in GC (52, 53). Wang et al. (54) demonstrated that activated neutrophils with an immunosuppressive phenotype are greatly concentrated in GC, are associated with disease progression, and are inversely correlated with patient survival after surgery. Neutrophils contribute to the inhibition of antitumor immunity and the development of GC by suppressing T-cell activity in a PD-L1–dependent manner. This report is consistent with our present observation, as we observed that OS rates were considerably lower for individuals in the greater neutrophil number group in the TCGA-STAD cohort. However, apart from H19 and HOTTIP, the other RNAs were seldom studied in the context of a combination of transcriptional profiles and immune microenvironment. Our study identified TMEM236, ZNF705A, LINC00643, MIR663AHG, and hsa-miR-135a-5p as potential prognostic biomarkers of GC for the first time. Thus, signature genes identified in this study could provide underlying targets for experimental design in the laboratory to elucidate molecular mechanisms in GC.

In this study, meta-analysis results showed that LINC00643 was significantly associated with the OS of GC. The GEPIA database analysis found that CDKN2B-AS1, MIR663AHG, and ZNF705A were highly expressed in GC and that LINC00643 and TMEM236 have low expression in GC. Previous K-M survival analysis showed that CDKN2B-AS1, MIR663AHG, and ZNF705A overexpression is associated with a poor prognosis, whereas LINC00643 and TMEM236 overexpression is associated with a good prognosis. In addition, by studying GC pathological specimens, we confirmed that LINC00643, TMEM236, and hsa-miR-135a-5p were lowly expressed in GC tissues. Furthermore, TMEM236 mRNA expression showed the same results as the HPA database. These results are consistent with our Cox regression analysis in the TCGA cohort, which suggests that they may play an important role in tumorigenesis. There are few reports on the expression pattern and function of these genes in GC; we need a large number of cohort and basic experiments to further explore the potential mechanism of these genes in the future.

There have been reports on lncRNA signatures and miRNA signatures for GC. A previous study reported a three-miRNA signature that can predict outcomes in patients with GC (55). Guo et al. (56) constructed a four-lncRNA signature and successfully used a publicly available data set (GSE62254) to corroborate the reliability of the four lncRNA signatures. Recent studies have been performed to investigate the immune characteristics of GC patients, which have adequately demonstrated high prognostic potential and clinical guidance values relative to the conventional clinical characteristics or risk models (57–60). These studies have assessed the immunological characteristics of GC mainly from the perspective of immune cell infiltration. The biomarkers included in the risk model constructed by the above studies are relatively single, and the risk model established by combining multiple types of indicators may have better performance in prediction. In this study, we concentrated our efforts on exploring the immune infiltrating cell and gene associated with ELNs and established an ELNs signature associated with prognosis. According to the ROC analysis of the TCGA data sets, the ELNs signature is good at predicting short-term (1 and 3 years) and long-term (5 years) survival for GC patients. In addition, risk stratification by the ELNs signature showed that patients in the high-ELN signature subgroup had a shorter OS than those in the low-ELN signature subgroup. A nomogram integrating the ELNs signature and other clinical variables (age, M stage, and T stage) was created to provide clinicians with a quantitative approach to predict the prognosis for GC patients, which provided more precise short- and long-term survival predictions than any individual prognostic factor for GC patients. C-indices, calibration plots, and DCAs also demonstrated the excellent predictive performance of the nomogram. According to these findings, the ELNs signature was an effective predictor of the prognosis of GC patients, which has certain implications for clinical treatment decisions.

Furthermore, a comprehensive analysis of the correlation between clinicopathological characteristics, ICPs, drug sensitivity, and the prognostic signature was done. There were no significant differences in the expression of common checkpoint genes such as PD-1, PD-L1, and CTLA-4 between the two risk groups, which signified that our risk model could not predict the therapeutic effect of existing PD-1/PD-L1 or even CTLA-4 immune therapy. At present, novel immunotherapies like anti–PD-1 and anti–PD-L1 have been applied in GC. Nevertheless, only a minority of subjects benefit from immunotherapies (61, 62). However, we found that the expressions of some novel checkpoint genes (CD44, ENTPD1, NT5E, and NRP1) were upregulated in the low-ELN signature group, and our study has uncovered that the high expression of NT5E was obviously associated with poor prognosis, cancer cell migration, and metastasis in GC patients (63), and this may be served as a therapeutic target for GC metastasis. Meanwhile, the data also indicated that this signature was closely associated with immunotherapy, and the low-ELN signature patients may have a better response to immunotherapy. This is in light of the fact that most GC patients are at an advanced stage of the disease, which makes prevention and treatment of GC a high priority (64). The localized GC can only be cured by radical surgery with or without chemotherapy beforehand. However, chemotherapy is the predominant treatment method for metastatic GC (65). Unfortunately, chemotherapy shows relatively little response because of tumor heterogeneity (66). According to the estimated IC50, our data indicated that patients with low ELNs were more sensitive to those drugs than those with high ELNs. Patients in the high-ELN signature subgroup showed sensitive chemotherapy response only to BIRB-0796 (doramapimod), BMS-708163 (avagacestat), GW-441756, PF-4708671, rapamycin, and sorafenib. Based on the patient’s TME, medical staff can choose a suitable treatment method for the patient more accurately. ICP inhibitor therapy has recently been transformed from a single therapeutic medication pattern to a combination therapy design. The approach of combining immunotherapy with chemotherapy has been studied in a number of clinical studies. Studies about GC have shown that, compared with chemotherapy alone, combination therapy can increase the efficacy of cancer treatment. However, because chemotherapy has negative side effects, discovering the most optimal combination of chemotherapy and ICIs is critical for adopting more effective clinical strategies for treating GC patients (67, 68).

Taking our research in its entirety, there are some obvious strengths. It is clear from this study that the GC cohorts from the multicenter study had large sample sizes. Utilizing the public SEER, TCGA, and GEO databases and an external cohort from the Affiliated Tumor Hospital of Xinjiang Medical University, we identified and comprehensively analyzed the ELNs associated with the prognosis of GC patients. More importantly, our research is the first to use a large clinical database and a large-scale omics database to establish a signature related to ELNs for predicting the prognosis of GC patients. The ELNs signature was developed to predict outcomes for patients, showing satisfactory prediction performance. With the ELNs signature and other significant clinical indicators, a novel nomogram was able to comprehensively and systematically demonstrate the predicted effects. Second, even people without medical backgrounds can perform the calculations, making it possible to apply the signature to a variety of different settings.

Still, there are some limitations in this study. First, since the study employed a retrospective research design, some critical information about the patients might have been omitted inevitably, reducing the number of eligible participants. Second, we have internally verified the nomogram prediction model based on ELNs signature, and the findings of this study would be more meaningful if this model could be well validated externally with another real-world, independent, large-quantity, high-quality cohort, and thus, a more diverse patient population could be extrapolated. However, the application of the prognostic prediction model based on the ELNs signature required four types of data, containing clinical information, RNA-seq, miRNA-seq, and an abundance of TIICs, which involve high costs and are not easily feasible in practice. There are still many limitations in our model, but the findings show that it remains an instructive and efficient way for predicting the accurate individual clinical outcomes of GC patients. However, it is necessary to explore and prove further the potential value of these results in the prognosis and treatment of GC.



Conclusion

In conclusion, our study explored the prognostic role of ELNs in GC and successfully developed an ELNs signature correlated with the GC prognosis. The results exhibited that this signature is an effective predictor of GC patients. Moreover, to predict the 1-, 3-, and 5-year OS of patients with GC, we established a novel and robust nomogram integrating the ELNs signature and clinical factors, which will help personalize survival prediction and clinical decision-making in GC patients.
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As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.
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Introduction

Pancreatic cancer is among the deadliest malignancies with unfavorable diagnostic accuracy and patients’ prognoses. Due to the aggressive nature of early pancreatic cancer cells, it is difficult to completely cure pancreatic cancer through surgery (1). Despite advances in existing treatments for pancreatic cancer including surgery, immunotherapy, and chemotherapy, the patients’ five-year survival rate is below 10% worldwide (2). Hence, it is of great significance to conduct research on the underlying mechanism of pancreatic cancer and to discover novel therapeutic targets for the disease.

Malignant tumors result from cell cycle dysfunction and aberrant cell differentiation. CDC28 protein kinase regulatory subunit 1B (CKS1B), which belongs to the CKS family, participates in the modulation of cell cycle function by binding to the CDK’s catalytic subunit (3). The initiation and development of many malignant tumors are related to the overexpression of CKS1B, such as colon cancer, lung cancer, gastric cancer, and breast cancer (4–6). Deng et al. found that CKS1B silencing inhibites cell proliferation and invasion and activates apoptosis in glioma (7). In addition, a meta-analysis including 2,224 cancer participants showed that high CKS1B expression is associated with advanced T stage and lymph node metastasis (8). These evidences suggest that CKS1B may be a key gene to promote the malignant progression in a variety of tumors. Furthermore, CKS1B has been identified as a ubiquitin-like protein system resistance gene that can induce resistance to inhibitors of ubiquitin-like protein synthesis (9). Thus, previous studies have confirmed that CKS1B plays a vital role in the cancer cell growth, invasion, metastasis and chemical resistance. Nevertheless, deeper comprehension of the clinical prognosis and mechanistic explanation of CKS1B in pancreatic cancer is lacking.

As a novel therapeutic method, immunotherapy has become one of the research hotspots. PD-L1 (also known as B7-H1) is the main ligand of PD-1, mainly expressed in immune cells and tumor cells (10). Previous studies have shown that PD-L1 acts as an immune checkpoint to prevent the immune system from killing cancer cells by suppressing autoimmunity (11). Many studies have reported that high PD-L1 expression is closely related to poor survival in pancreatic cancer patients, which is an independent adverse prognostic factor (12–14). Therefore, tumor immunotherapy based on immune checkpoint blocker (ICB) has become the main method of tumor treatment nowadays (15). However, the efficacy of PD-1/PD-L1 blockers alone in the treatment of pancreatic cancer is actually poor, and only a few patients can benefit from immunotherapy currently (16, 17). Therefore, it is crucial to find effective biomarkers that can predict the efficacy of immunotherapy.

In this study, we investigated the expression and prognostic value of CKS1B in pancreatic cancer. Furthermore, the relationship between CKS1B and tumor immune microenvironment was also discussed. We hypothesized that knocking down CKS1B may suppress pancreatic cancer cell viability and migration by blocking PD‐L1 level. This study provides further insight into the function and detailed mechanism of CKS1B in pancreatic cancer and suggests that targeting CKS1B is a promising strategy for pancreatic cancer therapy.



Method


Pancreatic cancer dataset source and preprocessing

Public transcriptome and clinical data were acquired from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and UCSC Xena Browser. RNA sequencing data (FPKM value) was retrieved for TCGA-PAAD, then converted into TPM values and log2 transformation was performed. We directly obtained the normalized matrix files for the GSE16515, GSE15471 and GSE62165 cohorts. Data on somatic mutation was also obtained from the TCGA database. The R language (version 4.1.2) was used to carry out all investigations.



Pathway enrichment and Gene Set Enrichment Analysis (GSEA)

Co-expressed genes with CKS1B were defined by Pearson correlation analysis with correlation coefficient > 0.6 and p< 0.001. The protein-protein interactions (PPI) of CKS1B co-expressed genes were analyzed by STRING database (18) and visualized with Cytoscape software v3.9.1 (19). The Molecular Complex Detection (MCODE) plugin of the Cytoscape app was used to identify the densely connected regions/clusters in the PPI network (20). The top three gene clusters of the interactive network were extracted according to their scores. The “clusterprofiler” program was adopted for executing the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses (21). Premised on median levels of CKS1B expression, samples were further separated into two groups. We subsequently conducted the GSEA (22). The cut-off criteria for GSEA was p <0.05.



Analysis of infiltration of immune cells

The corresponding infiltration status of 22 distinct immune cells in pancreatic cancer was assessed utilizing the ”CIBERSORT” software (23). Utilizing the ESTIMATE method, the stromal and immunological scores from each pancreatic cancer specimen were computed and analyzed.



Patients

We obtained 25 paired tumors and normal tissues from the tissue bank of PLA General Hospital, which were collected between March and November 2018. The samples were diagnosed as pancreatic ductal adenocarcinoma by two pathologists. Additionally, the Ethics Committee of PLA General Hospital approved this research. All patients recruited into this study provided a formal informed consent form before participating.



Tissue microarray and immunohistochemistry (IHC)

A pancreatic cancer tissue microarray (HPanA060CS02) that contained 37 cancer and 23 corresponding paracancerous tissues was acquired from Shanghai Outdo Biotech Company (Shanghai, China). IHC studies of CKS1B were performed on pancreatic cancer samples of tissue microarray. CKS1B antibody (DF3221, Affinity Biosciences) was used at a 1:500 dilution. IHC was performed according to the instructions. In brief, after dewaxing in xylene, rehydrating in alcohol, and blocking endogenous peroxidase activity, the tissue arrays were incubated overnight at 4°C with specific antibodies for CKS1B. After washing with PBS, the tissues were then incubated with a HRP-conjugated secondary antibody at 37°C for 40 min and 3,3’ -diaminobenzidine (DAB) for 5 min, then counterstained with hematoxylin for 30 s.



Cell culture and transfection

ATCC (Manassas, VA, USA) supplied the human pancreatic ductal epithelium cell line HPDE6-C7 as well as pancreatic cancer cell lines Capan-1, BxPC-3, MIA PaCa-2, SW1990, and PANC-1. We then cultured cells in either RPMI 1640 or DMEM supplemented with 10% fetal bovine serum (FBS), and placed them in a 37°C, 5% CO2 incubator. After reaching 30% confluence, transfection of SW1990 cell was done utilizing shCKS1B or shNC (designed and synthesized by Jintuosi (Wuhan) Biotechnology Co., Ltd) using the Lipofectamine 3000 (L3000015, Invitrogen) following the manufacturer. CKS1B shRNA target sequences were: shRNA1: 5′-GGTCCATTATATGATCCAT-3′; shRNA2: 5′-GATGGGTCCATTATATGAT-3′.



Reverse transcription-quantitative polymerase chain reaction (qRT‐PCR)

We undertook qRT-PCR to detect gene expression. Specifically, we isolated total RNA from cancer and normal samples utilizing TRIzol reagent (15596018, Ambion) and then converted it into cDNA using Eppendorf Mastercycler®. StepOnePlus Real-Time PCR System was utilized to execute qPCR premised on the primers listed in Table 1.


Table 1 | Primers used for qRT‐PCR analysis.





Western blot assay

After BCA protein quantification, protein samples were transferred onto the PVDF membrane by SDS-PAGE. Following the blocking of the membranes using 5% non-fat milk, a primary antibody against CKS1B (DF3221, Affinity Biosciences), PD-L1 (13684, Cell Signaling Technology), LC3B (83506, Cell Signaling Technology), phosphorylated STAT3 (9145, Cell Signaling Technology) and GAPDH (97166, Cell Signaling Technology) was utilized to incubate the membranes throughout the night at 4°C, followed by incubation with corresponding peroxidase-labeled secondary antibodies. Based on the electrochemical luminescence (ECL) color development kit, protein levels were determined using a chemiluminescence detection system.



CCK8 assay

Cell counting kit-8 (CCK-8) (E-CK-A362, Elabscience Biotechnology) was utilized to evaluate the proliferative capacity of cells. Cells were seeded into a 96-well plate, then 10 μL CCK-8 reagent was introduced into each well at different timepoint of 24 hours, 48 hours, 72 hours and incubated for 2 hours at 37°C. Following this, the absorbance at 450 nm was determined. The average OD values of three wells were calculated, and three repeated experiments were performed.



Clone formation experiment

Following the use of trypsin to digest the cells, they were resuspended and counted. Subsequently, the cell suspension was plated in a six-well plate with 2000 cells/well. This was followed by additional incubation of the cells in an incubator comprising 5% CO2 at 37°C. After a total of 7 days, we fixed the cells with methanol for 30 min before staining them with Giemsa for 20 min. Finally, rinse using tap water and photograph for counting.



Wound healing assay

Logarithmic growth cells were grown in a six-well plate with each well containing 5×105 cells. Once the cells had attached to the six-well plate in a single layer, the six-well plate was scratched vertically using a 200μl pipette tip. After cleaning and removing the suspension cells with PBS, incubation was then carried out with serum-free medium (SFM) at 37°C with 5% CO2. Three separate replications of the experiment were carried out, and images were taken using a microscope at 0 and 24 hours after the experiment began.



Transwell assay

After dilution to 2×105/ml with SFM, 200 μl cell suspension was introduced into the upper chamber, while 600 μl medium that contained 20% FBS was introduced into the bottom chamber. A cotton tip was used to remove the upper surface of the membrane, and Giemsa stain was introduced into the lower surface following 24 hours of incubation at 37°C. The Matrigel matrix (356234, Corning) was diluted to 200 μg/mL with SFM, and then each Transwell® insert was carefully filled with 100 μL of the diluted Matrigel matrix for invasion assays.



Statistical analysis

The Wilcoxon matched-pairs signed-rank test was utilized to evaluate the differences in CKS1B mRNA levels that existed between malignant and corresponding paracancerous samples. The analysis was executed utilizing GraphPad Prism 8.4.3, and the data were presented as mean ± standard deviation. Unless otherwise noted, all experiments were performed at least thrice. Univariate Cox regression and multivariate Cox regression analyses were employed in order to evaluate significant factors that contributed to an independent prognosisusing the “survival” R package. When P-value is less than 0.05, statistical significance is regarded to have been achieved.




Result


CKS1B is highly expressed and correlated with histological grade in pancreatic cancer

Based on information obtained from the TCGA database, the gene expression levels of CKS1B in various human cancers were compared with those found in normal tissues. A considerably elevated expression level of CKS1B mRNA was found in cancer tissues, including pancreatic cancer tissues (Figure 1A). The level of CKS1B expression was further validated using the Oncomine and GEO database, these findings illustrated that CKS1B was overexpressed in pancreatic cancer (Figure 1B; Supplementary Figures 1A–C). In addition, the findings from Clinical Proteomic Tumor Analysis Consortium (CPTAC) illustrated that the levels of CKS1B protein expression were elevated in pancreatic cancer contrast with normal samples (Figure 1C), revealing that the mRNA and protein expressions of CKS1B were comparable across multiple databases. Premised on the mean level of CKS1B expression, the patients were classified into low- and high CKS1B expression groups (Table 2), following which the relationship of CKS1B expression with clinical parameters was examined. CKS1B levels were substantially greater in G3-4 patients than that in G1-2 patients (Figure 1D). Additionally, high CKS1B expression was linked to higher histological grade in contrast with the low CKS1B expression (Figure 1E). Furthermore, we demonstrated differential expression of CKS1B in pancreatic cancer cells and tissues using qRT-PCR. According to the results, the CKS1B expression level was remarkably elevated in pancreatic cancer tissues (Figure 1F). Besides, we further determined the CKS1B expression in pancreatic cancer cell lines. Result illustrated that the CKS1B mRNA expression remarkably upregulated in pancreatic cancer cell lines in comparison to HPDE6-C7 (Figure 1G). The above results demonstrate that CKS1B is abnormally expressed in pancreatic cancer. In addition, IHC of tissue microarray also showed that CKS1B protein expression is higher in pancreatic cancer tissue (Supplementary Figure 2).




Figure 1 | CKS1B is highly expressed and correlated with histological grade in pancreatic cancer. (A) CKS1B expression in different cancer types from TCGA datasets. (B) The mRNA expression of CKS1B in pancreatic cancer tissues in the Oncomine database. (C) The protein level of CKS1B in pancreatic cancer analyzed by the CPTAC database. (D) The clinical characteristics difference between high CKS1B and low CKS1B group. (E) The expression of CKS1B in different histological grade. (F) mRNA expression of CKS1B in pancreatic cancer tissues. (G) mRNA expression of CKS1B in cell lines. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001).




Table 2 | The clinical characteristic between high CKS1B and low CKS1B group.





CKS1B indicates a dismal prognosis in pancreatic cancer

In the pan-cancer dataset, an investigation of the connection between the CKS1B expression and patients’ prognoses was carried out. OS and PFS were included as survival metrics. According to Cox regression analysis of 33 types of cancer, CKS1B expression was significantly associated with OS in 13 types of cancers, including UVM, DLBC, UCEC, THCA, PCPG, PAAD, MESO, LUAD, LIHC, LGG, KIRP, KICH, and ACC (Supplementary Figure 3A). Besides, we investigated the possible link between the CKS1B expression and PFS in pancreatic cancer patients. The CKS1B expression affected PFS in 8 kinds of cancers, including ACC, HNSC, UVM, PAAD, LGG, PRAD, KIRP, UCEC, LIHC, and KICH (Supplementary Figure 3B). Kaplan-Meier survival curves illustrated that upregulated CKS1B expression was remarkably linked to unfavorable PFS and OS in patients with PAAD (Supplementary Figures 3C, D). To assess the diagnostic significance of CKS1B, we additionally generated a receiver operating characteristic (ROC) curve for further analysis. The value of the area under the curve (AUC) for CKS1B levels was 0.988 (CI = 0.978-0.999), indicating a strong potential for diagnostic application (Supplementary Figure 3E).



CKS1B expression has independent prognostic value in pancreatic cancer

A strong connection between high CKS1B expression and poor overall survival was discovered utilizing univariate Cox regression analysis (HR = 1.683, 95% CI = 1.245-2.276, P < 0.001) (Figure 2A). Moreover, multivariable regression analysis further supported that CKS1B independently served as a prognostic indicator in pancreatic cancer patients (HR = 1.554, 95% CI = 1.122-2.152, P = 0.008) (Figure 2B). And the test of Schoenfeld residuals indicate that the assumption of proportional hazards was not violated (p=0.3229, Supplementary Figure 4). Next, we developed a nomogram using age, grade, and CKS1B expression levels to anticipate 1-, 3-, and 5-year survival in pancreatic cancer patients (Figure 2C). In terms of the calibration curve, the 1-, 3-, and 5-year clinical outcomes were accurately predicted by the nomogram (Figure 2D). Together, these data indicate that CKS1B serves as an important biomarker for pancreatic cancer patients in predicting their overall survival.




Figure 2 | The independent prognostic analysis and nomogram construction in pancreatic cancer. (A) Univariate Cox regression analysis for CKS1B and clinical characteristics. (B). Multivariate Cox regression analysis for CKS1B and clinical features. (C) The nomogram consists of age, grade, and CKS1B expression. (D) The calibration curve for evaluating model accuracy. (*P < 0.05).





CKS1B is involved in immune and autophagy regulation through GSEA analysis

We undertook KEGG pathway analysis and GSEA to determine the possible cellular processes that CKS1B involved in pancreatic cancer. Pearson correlation analysis was conducted to define CKS1B co-expressed genes. And 239 co-expressed genes were visualized by Cystoscope (Figure 3A), and the above genes were used for further enrichment analysis. CKS1B was enriched in the T cell receptor complex according to the result of GO enrichment analysis (Figure 3B). KEGG pathway analysis showed that CKS1B was related to the cell cycle, cellular senescence, DNA replication, p53 signaling pathway, etc. (Figure 3C). Furthermore, we analyzed the interaction of proteins corresponding to 239 CKS1B co-expressed genes using STRING database. The PPI network was performed by Cystoscope (Supplementary Figure 5A). The top three MCODE-generated clusters were exhibited in Supplementary Figures 5B–D based on the vertex weighting of the MCODE algorithm. Then KEGG enrichment analysis was also performed for genes in cluster 1, which was generally consistent with the analysis for all co-expressed genes (Supplementary Figure 5E). Besides, GSEA enrichment analysis also highlighted a substantial enrichment of autophagy regulation in the CKS1B high expression phenotype (Figure 3D), whereas the CKS1B low expression phenotype underwent a substantial enrichment in the T-cell receptor signaling pathway (Figure 3E).




Figure 3 | Co-expression network construction and enrichment analysis for CKS1B. (A) The co-expression network for 239 CKS1B co-expressed genes. (B) GO enrichment analysis for CKS1B based on CKS1B co-expressed genes. (C) KEGG pathway analysis for CKS1B based on CKS1B co-expressed genes. (D) GSEA enrichment analysis in high CKS1B group. (E) GSEA enrichment analysis in low CKS1B group.





CKS1B expression is related to the infiltration of immune cells in pancreatic cancer tissue

Afterward, we compared the immuneScore and the infiltration levels of immune cells between CKS1B high and low expression groups to examine the involvement of CKS1B in the pancreatic cancer immune microenvironment. The average immuneScore, stromalScore, and ESTIMATEScore were higher in the low CKS1B expression group (Figure 4A). And the abundance of infiltration of 22 different kinds of immune cells is displayed (Figure 4B). The high-CKS1B expression group had a higher abundance of M0 macrophages, and a lower abundance of CD4 memory-activated T cells, CD8 T cells, and monocytes than that low-CKS1B expression group. Our study analyzed the relationship between CKS1B somatic copy number alterations and immune cell infiltration in pancreatic cancer samples using TIMER. Our data indicated that CKS1B somatic copy number alterations were substantially linked to the infiltration degree of neutrophils, CD4+ T cells, macrophages, B cells, and CD8+ T cells (Figure 4C). Additionally, infiltration levels were highest in diploid/normal samples. Furthermore, immunocell correlation analysis illustrated a positive link between CKS1B and M0 macrophages and follicular helper T cells, but an inverse link to naive B cells, CD4 memory-resting T cells, CD4 memory-activated T cells, CD8 T cells, and monocytes (Figure 5A). In addition, an investigation of the connection between the expression of CKS1B and immune checkpoints was carried out. Furthermore, we discovered a positive link between PD-L1 expression and CKS1B levels (P=0.017) (Figure 5B), which was also verified in GSE16515, GSE15471 and GSE62165 cohorts (Supplementary Figures 6A–C). Subsequently, the genetic alteration in CKS1B was studied in 149 pancreatic cancer samples (TCGA, Firehose Legacy). It was found that the CKS1B genetic alteration occurred 4% across 149 pancreatic cancer patients (Figure 5C). The type of mutation most commonly occurred among them was amplification. Additionally, the reverse-phase protein arrays (RPPA) identified the CKS1B protein was frequently expressed in pancreatic cancer tissues.




Figure 4 | CKS1B expression is associated with immune cell infiltration in pancreatic cancer. (A) The immuneScore, stromalScore, and ESTIMATEScore between high and low CKS1B group. (B) The level of immune cell infiltration between the groups with high and low CKS1B expression. (C) The correlation of CKS1B somatic copy number alterations with immune cell infiltration. (*P<0.05,**P<0.01,***P<0.001).






Figure 5 | The expression of CKS1B correlates with immune checkpoint in pancreatic cancer. (A) The correlation of CKS1B expression with immune cells. (B) The relationship between CKS1B expression and immune checkpoints. (C) The genetic alteration of CKS1B.





CKS1B expression is correlated with microsatellite instability (MSI), tumor mutational burden (TMB), and neoantigen

To gain a deeper comprehension of the function performed by CKS1B in the tumor microenvironment (TME), the link between CKS1B expression and TMB, MSI, and neoantigens was investigated. There is mounting evidence that neoantigens, MSI, and TMB in TME are linked to antitumor immunity, which may anticipate the effectiveness of tumor immunotherapy (24). According to our results, CKS1B expression exhibited significant positive correlations with TMB in STAD, LUAD, SARC, LGG, HNSC, LUSC, BRCA, PAAD, BLCA, and ACC, and negative relations in THYM (Supplementary Figure 7A). Positive links were discovered between MSI and CKS1B expression in HNSC, LIHC, SARC, BLCA, and STAD and negtive links in PRAD (Supplementary Figure 7B). We further observed a positive link between CKS1B expression and neoantigens in BLCA, BRCA, LUAD, and LUSC (Supplementary Figure 7C). It could be summarized that CKS1B was significantly positively linked to TMB in pancreatic cancer (R=0.49, P=1.4e-10) (Supplementary Figure 7D), which confirmed our hypothesis that CKS1B may exert anti-tumor immunity by influencing immune microenvironment. Next, with the TISIDB website, the role of CKS1B expression in pancreatic cancer subtypes was explored. It has been reported that immune types can be classified into six categories: wound healing (C1), IFN-γ dominant (C2), inflammatory (C3), lymphocyte depleted (C4), immunologically quiet (C5), and TGF-β dominant (C6) (25). These findings illustrated that the levels of CKS1B expression in distinct immune subtypes of PAAD were significantly different (Figure 6A). Additionally, CKS1B was discovered to be expressed at a high level in C2 subtypes and lowly expressed in C3 subtypes. According to the pRRophetic algorithm, three common chemotherapeutic agents (gemcitabine, 5-fluorouracil, and paclitaxel) were studied in high CKS1B and low CKS1B patients and found that these drugs had lower IC50 in high CKS1B patients (Figures 6B–D). It followed that these three drugs appeared to be more sensitive to patients with high levels of CKS1B. Additionally, KRAS and TP53 mutation status differed considerably in the low- and high-CKS1B groups (Figures 6E, F).




Figure 6 | The chemotherapy sensitivity difference between high and low CKS1B group. (A) The relationship between CKS1B expression and pancreatic cancer immune subtypes. (B–D) The IC50 of common chemotherapeutic agents in high CKS1B and low CKS1B patients (gemcitabine, 5-fluorouracil, and paclitaxel). (E, F) KRAS and TP53 mutation status in the high and low CKS1B groups. (*P < 0.05, ****P < 0.0001).





CKS1B is positively associated with efficacy of immunotherapy in pancreatic cancer

To better elucidate the value of CKS1B in predicting immunotherapy response, we analyzed the tumor immune dysfunction and exclusion (TIDE) score in PAAD patients of TCGA. The results showed that the TIDE score was lower in the high CKS1B group (Figure 7A). In addition, the IMvigor210 cohort including 348 urothelial carcinoma patients who received immunotherapy were enrolled for analysis. We found that the responder group was positively associated with CKS1B expression, indicating that patients in the high CKS1B group had a better response to immunotherapy (Figure 7B). The immunological score could predict the anti-CTLA-4 and anti-PD-1 antibody response, which can identify determinants of tumor immunogenicity. Subsequently, we investigated this correlation of immunophenoscore in the TCGA-PAAD cohort and found that risk groups in IPS- PD1 and IPS-PD1-CTLA4 blocker scores had no significant difference in immunophenoscore. Whileas, IPS and IPS-CTLA4 were higher in the high-risk group suggesting better immunotherapeutic benefits (Figures 7C–F).




Figure 7 | CKS1B is positively associated with efficacy of immunotherapy in pancreatic cancer. (A) The TIDE score in high CKS1B and low CKS1B groups. (B) The comparison of beneficiaries from immunotherapy between the high- and low-CKS1B group. (C–F) Correlation analysis between immunophenoscore of anti-CTLA-4 and anti-PD-1 blocker and CKS1B eexpression. (***P<0.001).





Knocking down CKS1B inhibits autophagy and STAT3/PD-L1 signaling in PC cells

To attain more insights into the function performed by CKS1B in the progression of pancratic cancer, CKS1B was silenced in SW1990 cells by transfecting them with shCKS1B plasmids (Figures 8A, B). As mentioned above, we found that CKS1B was involved in the regulation of autophagy by GSEA analysis, so we further detected whether the autophagy level of pancreatic cancer cells changed after CKS1B knockdown by western blotting. LC3B, which is a widely used marker of autophagy, was investigated in the presence of CKS1B depletion in our research. The result showed that CKS1B knockdown cells had significant reductions in LC3-II (Figure 8D), which demonstrated that CKS1B was associated with autophagic activity in pancreatic cancer. In view of the important role of CKS1B in pancreatic cancer immunotherapy, we further explored the association between CKS1B and PD-L1 and its possible regulatory mechanism in pancreatic cancer cell lines. First, qRT-PCR analysis was utilized to evaluate the PD-L1 expression after CKS1B knockdown, and the findings illustrated that PD-L1 expression was attenuated substantially following CKS1B depletion (Figure 8C). Subsequently, PD-L1 and p-STAT3 expression were measured in SW1990 cells with suppressed CKS1B by western blotting. It was observed that CKS1B knockdown remarkably lowered the levels of PD-L1 and p-STAT3 proteins (Figure 8E), implying that CKS1B affects PC cell function by modulating STAT3/PD-L1 signaling.




Figure 8 | Knocking down CKS1B inhibits autophagy and STAT3/PD-L1 signaling in PC cells. (A, B) mRNA and protein expression of CKS1B in cells transfected with shCKS1B. (C) mRNA expression of PD-L1 was measured by qRT-PCR. (D) Protein levels of LC3B were measured by Western blotting. (E) Protein levels of p-STAT3 and PD-L1 were measured by western blotting. (***P<0.001,****P<0.0001).





CKS1B knockdown inhibits the proliferation of pancreatic cancer cells

According to the above qRT-PCR result, we found that knockdown efficiency was 66.5% for cells treated with shCKS1B#1 and 95.1% for cells treated with shCKS1B#2. Therefore, we selected the group with higher knockdown efficiency for subsequent experiments. Upon successful shCKS1B transfection, the CCK8 assay demonstrated that cell viability was drastically reduced (Figure 9A). Our results showed that the blocking of CKS1B could significantly reduce colony formation compared with the control group (Figure 9B). These findings provided evidence that CKS1B is responsible for promoting the proliferative potential of pancratic cancer cells.




Figure 9 | CKS1B promotes cell proliferation, migration and invasion in pancreatic cancer. (A, B) Cell viability of different groups of cells was measured by CCK8 assay (A) and colony formation assay (B). (C, D) Cell migration ability of different groups of cells was detected by transwell assay (C) and wound healing assays (D). (E) Cell invasion ability of different groups of cells was detected by transwell assay. (*P<0.05,**P<0.01,***P<0.001).





Knockdown of CKS1B inhibits migratory and invasive capabilities of pancreatic cancer cells

Transwell migration assays and wound healing assays were performed to assess the effect of CKS1B on the migratory capacity of pancreatic cancer cells. The results showed that the migration rate of SW1990 cells transfected with shCKS1B was significantly lower than that of control cells (Figure 9C). And wound healing assays illustrated that the migratory rate of SW1990 cells with shCKS1B transfection was 13.09 ± 0.37%, lower than that control group 31.32 ± 0.66%, which implied that CKS1B enhanced the migratory capacity of pancreatic cancer cells (Figure 9D). As demonstrated by transwell invasion assays, the invasiveness of SW1990 cells infected with shCKS1B was also reduced considerably in contrast with the control group (Figure 9E).




Discussion

Pancreatic cancer is a kind of malignant neoplasm that leads to a poor prognosis and present no sign in its early stages (26). By the year 2030, it is anticipated that pancreatic cancer will become the second major contributor to cancer-associated fatalities in the United States (27). Despite many advances in pancreatic cancer research in recent years, the 5-year survival rate remains below 10% (28). Thus, there is an urgent need to find new therapeutic approaches to improve the long-term survival of patients with pancreatic cancer. Immunotherapy, represented by immune checkpoint inhibitors, as a new antitumor therapy, has shown good therapeutic effect in non-small cell lung cancer, melanoma, lymphoma and other malignant tumors (29–31). However, clinical data showed that single immune checkpoint inhibitors have limited therapeutic effect on pancreatic cancer, which may be related to its unique tumor microenvironment (32–34). Therefore, it is particularly important to find markers that could predict the effect of immunotherapy for pancreatic cancer.

Several researches have illustrated that CKS1B performs a function in cancer progression. It was reported that CKS1B expression could be suppressed by miR-1258, inhibiting colorectal cancer proliferation and migration (35). Besides, silencing CKS1B could limit the capacity of retinoblastoma (RB) cells proliferation, and migration, as well as angiogenesis by inhibiting MEK/ERK activation (36). In addition, CKS1B is considered a predictor of adverse survival in patients with multiple myeloma (37). Furthermore, CKS1B has been reported to be a resistance-inducing gene. At present, the research on CKS1B targeted therapy is also in full swing. Studies have shown that miR-204 can down-regulate the expression of CKS1B in gastric cancer (38). Other experiments showed that CKS1B expression was positively regulated by MALAT1, which provided a new adjunct strategy for improving the efficacy of radiotherapy in ESCC (39). Additionally, it was also found that 3-O-(Z)-coumaroyloleanolic acid, a candidate compound for targeting CKS1B, can reverse CKS1B-induced chemoresistance in lung cancer (40). Consistent with previous studies, we found that CKS1B was highly expressed in multiple cancers including pancreatic cancer, which was confirmed in the Oncomine and CPTAC databases. Besides, qRT-PCR also substantiated that CKS1B was upregulated in pancreatic cancer cells and tissues. Furthermore, CKS1B was substantially linked to histological grading in pancreatic cancer. Additional research was conducted to investigate the predictive performance of CKS1B. Results from the Kaplan-Meier survival analysis were consistent with those of the univariate Cox analysis, which illustrated that CKS1B expression is substantially linked to OS and PFS in pancreatic cancer. Furthermore, as an independent prognostic factor, CKS1B was incorporated into a nomogram that can accurately anticipate patients’ OS over 1, 3, and 5 years.

Tumor immune microenvironment (TIME) has been proven to play a significant role in pancreatic cancer development (41, 42). In pancreatic cancer immune microenvironment, anti-tumor immune cells such as CD4+/CD8+ T cells, NK cells and DCs are less, while immune-suppressive cells such as Tregs, MDSCs and TAMs are abundant. The immunosuppressive tumor microenvironment in pancreatic cancer suppresses the anti-tumor immune response and cause immune escape, thus affecting the effect of immunotherapy for pancreatic cancer (43). In our research, we observed that the T cell receptor signaling pathway was substantially enriched in the low-CKS1B group, which showed that CKS1B may contribute to immune regulation. In addition, we also found that immuneScore, stromalScore, and ESTIMATEScore were lower in the high-CKS1B expression group, which indicated that high-CKS1B expression group may be under an immunosuppressed state. Studies have shown that tumor-infiltrating immune cells is closely related to tumor progression and prognosis (44). Additionally, CD4+ T cells have synergistic effects with cytotoxic CD8+ T cells, which could activate antitumor immune responses (45, 46). It was also found that high levels of M2 macrophages and Treg cells in tumor-infiltrating cells were significantly associated with poorer survival, while high levels of CD4+ T, CD8+ T and M1 macrophages were significantly associated with higher survival rate in pancreatic cancer patients (47, 48). In our study, we found that high-CKS1B expression group had a higher abundance of M0 macrophages, and a decreased abundance of CD4 memory-activated T cells, monocytes, and CD8 T cells compared to the low CKS1B expression group. These results indicate that the tumor microenvironment with high CKS1B expression exhibited highly immunosuppressive characteristic, which provided a microenvironment condition for CKS1B to promote tumor development, invasion and metastasis. And the two interact to jointly maintain the malignant progression of pancreatic cancer. In addition, the relationships between the CKS1B expression and immune checkpoints were further investigated. We discovered a positive link between PD-L1 expression and CKS1B levels. What’s more, we evaluated the connections between CKS1B expression and neoantigens, MSI, and TMB, which may anticipate the treatment effectiveness of tumor immunotherapy. The result illustrated that CKS1B was significantly positively linked to TMB in PC. The above results showed high CKS1B patients were much more likely to benefit from anti-PD-L1 treatment.

Recently, targeted autophagy has emerged as a new approach to cancer therapy (49). Similarly, studies have shown that autophagy contributes to the onset and advancement of pancreatic cancer (50, 51). In addition, autophagy has also been associated with chemotherapy resistance of pancreatic cancer cells (52). In our research, further GSEA analysis showed that CKS1B was involved in the regulation of autophagy, which was further verified by western blotting. The result showed that LC3-II levels were remarkably lowered following the CKS1B knockdown. Furthermore, qRT-PCR analysis illustrated a considerable decrease in PD-L1 expression following the knockdown of CKS1B. However, it is unclear how CKS1B regulates PD-L1. Studies have shown that STAT3 is an upstream molecular of PD-L1 (53). Many studies have reported that CKS1B may modulate STAT3 signaling. Generally, the CKS1B/STAT3 axis contributes to the development of cancer. A previous research report conducted by Liu et al. illustrated that CKS1B contributes to HCC cell proliferation and metastasis by stimulating the JAK/STAT3 signaling (54). Another study highlighted that the drug resistance of myeloma cells may be induced through the stimulation of the STAT3 signaling by CKS1B (55). In addition, CKS1B/STAT3/PD-L1 axis has also been reported in several studies. A study by Wang et al. demonstrated that CKS1B overexpression may increase PTC viability and invasiveness by altering Akt phosphorylation and STAT3/PD-L1 signaling pathways (56). Another study also showed that PD-L1 expression may be enhanced by CKS1B/STAT3 axis, further promoting lung cancer development (57). In the present study, CKS1B was also observed to favorably modulate STAT3/PD-L1 signaling in PC cells, and blocking CKS1B might inhibit the development of PC via STAT3/PD-L1 signaling.



Conclusion

In conclusion, we first used public databases to examine the differential expression and prognostic significance of CKS1B in pancreatic cancer. Then, further analysis showed that CKS1B was significantly associated with immune infiltration and could predict the immunotherapy effect for pancreatic cancer. Finally, we demonstrated that knocking down CKS1B may suppress PC cells’ viability and migratory capacities by suppressing autophagy and STAT3/PD-L1 signaling. These results offer a deeper knowledge of the function performed by CSK1B/STAT3/PD-L1 in PC advancement. Nevertheless, our study does have some limitations. Firstly, how CKS1B regulates autophagy remains unclear, although STAT3 has also been reported to be involved in autophagy. Secondly, it is not known if other signaling pathways play a role in this process. In addition, the function of CKS1B in vivo needs to be investigated in further study.
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Different biomarkers based on genomics variants have been used to predict the response of patients treated with PD-1/programmed death receptor 1 ligand (PD-L1) blockade. We aimed to use deep-learning algorithm to estimate clinical benefit in patients with non-small-cell lung cancer (NSCLC) before immunotherapy. Peripheral blood samples or tumor tissues of 915 patients from three independent centers were profiled by whole-exome sequencing or next-generation sequencing. Based on convolutional neural network (CNN) and three conventional machine learning (cML) methods, we used multi-panels to train the models for predicting the durable clinical benefit (DCB) and combined them to develop a nomogram model for predicting prognosis. In the three cohorts, the CNN achieved the highest area under the curve of predicting DCB among cML, PD-L1 expression, and tumor mutational burden (area under the curve [AUC] = 0.965, 95% confidence interval [CI]: 0.949–0.978, P< 0.001; AUC =0.965, 95% CI: 0.940–0.989, P< 0.001; AUC = 0.959, 95% CI: 0.942–0.976, P< 0.001, respectively). Patients with CNN-high had longer progression-free survival (PFS) and overall survival (OS) than patients with CNN-low in the three cohorts. Subgroup analysis confirmed the efficient predictive ability of CNN. Combining three cML methods (CNN, SVM, and RF) yielded a robust comprehensive nomogram for predicting PFS and OS in the three cohorts (each P< 0.001). The proposed deep-learning method based on mutational genes revealed the potential value of clinical benefit prediction in patients with NSCLC and provides novel insights for combined machine learning in PD-1/PD-L1 blockade.
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Introduction

Immune checkpoint blockade (ICB) therapy has been proven to be successful as a treatment for non-small cell lung cancer (NSCLC) (1, 2), and different biomarkers, such as PD-L1 expression (3), tumor mutational burden (TMB) (4, 5), and gene expression profile (GEP) (6), have been recently associated with ICB response. However, the predictive values of these biomarkers are relatively limited because of the low predictive accuracies. Thus, the search for useful and precise biomarkers for predicting ICB response is critical.

Increasing studies have reported that mutated genes carrying single nucleotide variants (SNVs) are significantly related with the ICB response (7, 8). For example, STK11, B2M, and EGFR mutations or MDM2 amplification were associated with poor responsiveness or even hyper-progressive disease (HPD) (9, 10), whereas TP53, KRAS, and POLE mutations or KP (co-mutations of KRAS and TP53) molecular sub-type were positively related with ICB response in advanced NSCLC (11, 12). Patients with KL (co-mutations of KRAS and STK11) showed poor responses (13, 14). Moreover, NSCLC patients with mutations or co-mutations of DDR and Notch pathways had clinical benefit from ICB (15–17). These findings reveal the potential values of exploiting a novel method for predicting clinical benefit using a mutational database.

Deep learning, especially as convolutional neural network (CNN), has frequently been applied to medical images for the diagnosis, predictive prognosis, and therapy response assessment of patients with cancer (18–20). However, there is unclear whether the CNN based on SNV database could predict the clinical outcome of immunotherapy in the patients with NSCLC.

Therefore, we sought to use CNN algorithm based on a panel of genomic mutations to develop a robust model for selecting patients with advanced NSCLC who are responsive to ICB therapy. CNN based on next-generation sequencing (NGS) and whole-exome sequencing (WES) databases was used to predict ICB benefit in patients with NSCLC from three large cohorts. The CNN model showed a better predictive ability than PD-L1, TMB, and conventional machine learning (cML) models. Moreover, we combined CNN and cML models to build a nomogram for predicting the prognosis of immunotherapy. A robust comprehensive classification of genomic panels would facilitate the selection of patients who would benefit from ICB.



Materials and methods


Patients treated with immunotherapy

POPLAR/OAK cohort: A total of 287 patients with advanced or metastatic NSCLC were recruited in the POPLAR study (NCT01903993) (21). The exclusion criteria were as follows: second or third-line standard therapy of docetaxel (n=143), treatment with atezolizumab (n=144), and no blood TMB (bTMB) data (n=39). Finally, 105 patients were retained and unchosen for PD-L1 expression status. The OAK study (NCT02008227), a randomized phase III trial, recruited 850 patients with metastatic NSCLC to compare atezolizumab with docetaxel in the primary analysis population (22). A total of 425 patients who received second or third-line standard therapy of docetaxel, 425 patients who were treated with atezolizumab, and 101 patients who had no bTMB data were excluded. Finally, 324 patients were retained and unchosen for PD-L1 expression status. The POPLAR and OAK cohorts had 429 patients in total as a training cohort.

UCMC cohort: Patients with locally advanced or metastatic NSCLC who were treated with only anti-PD-1 or a combination of chemo-immunotherapy treatment in the University of Chicago Medical Center (UCMC) were investigated (23). The patients had undergone tumor NGS test prior to the initiation of ICB therapy. Between 2016 and 2020, of the 426 patients treated with ICB, 139 who undergone tumor NGS test prior to the initiation of ICB therapy were deemed eligible to participate in this study. Two patients without TMB database were excluded. Finally, the tumor samples of 137 patients were evaluated for PD-L1 expression or EGFR/ALK mutational status, and results were validated using deep learning and cML algorithms.

MSKCC cohort: The Memorial Sloan Kettering Cancer Center (MSKCC) cohort of patients with advanced NSCLC receiving anti-PD-1 treatment were derived from three clinical studies. In the first cohort, 75 patients with stage IV NSCLC were treated with a combination of nivolumab and ipilimumab in the CheckMate-012 clinical trial (NCT01454102) between February 2013 and March 2015 (24). In the second cohort, 34 patients with metastatic NSCLC treated with anti-PD-1 treatment were derived from the MSKCC (n=29) and University of California at Los Angeles (n=5) (NCT01295827) studies (25). In the third cohort, the data of 240 patients treated with only anti-PD-1 or a combination of anti-CTLA-4 and anti-PD-1 between April 2011 and January 2017 were retrospectively collected (10). A total of 349 patients were considered as another validation cohort.

This study was approved by the institutional review board of the Second Affiliated Hospital of Guizhou Medical University and was conducted in accordance with the tenets of the Declaration of Helsinki.



Study design

The flowchart of the proposed CNN and cML models for predicting DCB and prognosis is shown in Figure 1A. The SNV databases of sequencing results of tumor or blood samples from the patients with NSCLC before ICB treatment were collected. In the POPLAR/OAK cohort, the optimal genomic features were selected by RF algorithm based on a five-fold cross-validation as previously described (26). The selected genes were input into CNN, logistic, support vector machine (SVM), and random forest (RF) models and were used to train for DCB prediction. After adjusting the parameters, the four machine learning models were validated for DCB in the UCMC and MSKCC cohorts. The associations between the predictive scores of four models and prognosis were analyzed. CNN model was further trained on the data of the clinical subgroups. After multivariate analysis, the CNN and cML models were combined to build a nomogram for predicting PFS and OS in the above mentioned three cohorts.




Figure 1 | Flowchart of the proposed CNN and cML models for predicting DCB and prognosis. (A) SNV databases were collected from NSCLC patients before ICB treatment. In the POPLAR/OAK cohort, RF based on a five-fold cross-validation was used to select the optimal genomic features. Then, the selected genes were inputted into CNN, logistic, SVM, and RF models. The four machine learning models were validated for DCB in the UCMC and MSKCC cohorts. After multivariate analysis, the CNN and several cML models were combined to build a nomogram for predicting PFS and OS in the above mentioned three cohorts. (B) The detailed architecture of one-dimensional CNN is presented.





DCB, PFS, and OS

The primary outcome measures of this study were durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS). The Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 were used to evaluate complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). We defined DCB as CR, PR, or SD lasting ≥ 6 months, whereas no durable benefit (NDB) was defined as either SD lasting< 6 months or PD. We defined PFS as the time from the start of PD-1/PD-L1 blockade therapy to death or the first confirmation of PD based on RECIST version 1.1. OS was defined as the time from the start of PD-1/PD-L1 blockade therapy until the last contact or death.



WES, targeted NGS, TMB, and PD-L1 analysis

WES and targeted NGS of tumor and blood samples were performed before ICB. DNA and circulating tumor DNA (ctDNA) were separately extracted from formalin-fixed paraffin- embedded (FFPE) tumor masses and peripheral blood samples from the patients. The different sequencing assays, including WES and targeted NGS (MSK-IMPACT and OncoPlus), were performed as described in Supplementary Methods.

Based on the results of WES and targeted NGS profiling, we defined a high TMB as ≥20/Mb or total somatic nonsynonymous as ≥ 200, and low TMB as<20/Mb or total nonsynonymous mutations as<200. The E1L3N (Cell Signaling, Danvers, MA, USA), 22C3 (DAKO), and 28-8 (DAKO) were used to determine the PD-L1 expression of tumor cells. Positive PD-L1 expression was defined as > 1% staining.



Selection of genomics features and construction of conventional machine learning models

The genomics features of the SNVs were selected by RF function and five-fold cross-validation sampling. Three cML algorithms, including SVM, logistic, and RF, were employed. Based on the selected genomics features, three cML models were built by R packages (“randomForest”, “caret”, and “e1071”).



CNN architecture

As shown in the Figure 1B, the architecture of the one-dimensional CNN included a one-dimensional convolution layer, with a convolution kernel of 16, a spatial domain of convolution kernel of 128, and a stride of 1. Firstly, the input information was processed as embedded. Secondly, we used the tanh activation function, followed by the Maxpooling method to reduce the dimension. After the first dimensionality reduction, one-dimensional convolution calculation was carried out for the vector, with a convolution kernel of 32 and a spatial domain of convolution kernel of 3. Then, batch normalization (BN) was carried out. Similarly, tanh activation function was used, and dimensionality was reduced by Maxpooling. Adam was used as deep neural network optimization, the gradient descent method was SGD, and the learning rate was 0.01. On the basis of the above, the fully-connected feed forward network (FCN) of dense and the output result of the Softmax activation function were used as previously described (27).

	

	

The summation part in the above formula is equivalent to solving a cross correlation, where b is the deviation; Zl and Zl+1 represent the convolution input and output of layers l+1, respectively, also known as feature map; Ll+1 is the dimension of Zl+1; K is the number of channels; and f, s0, and p are the convolution layer parameters corresponding to the size of convolution kernel, convolution stride, and the number of padding layers, respectively.

The tanh activation function is shown below:

	

The Softmax activation function is expressed as follows:

	

where Vi is the output of the output unit of the front stage of the classifier, i represents the category index, C is the total number of categories, and Si represents the ratio of the index of the current element to the sum of the indexes of all elements.

Cross Entropy Loss was calculated as below:

	

where y is the real value, and   is the predicted value.



CNN implementation

The selected 55 genomics features were input to the CNN model. To ensure adequate performance of training process, the maximum number of epochs was set to 600. Implementation of deep learning was based on the TensorFlow-1.14 in Python (https://www.python.org/). The experiment was performed in a Windows environment with a 3.7 GHz Intel i7-12700KF CPU, NVIDIA GeForce RTX 3090, and 32 GB of RAM.



Statistical analysis

The ROC curves were plotted and evaluated for accuracy using the “pROC” package. The area under the curve (AUC) and the corresponding 95% confidence interval (CI) were calculated in the three cohorts. PFS and OS curves were analyzed by Kaplan–Meier method and plotted by the survminer package. Multivariate Cox regression of the CNN, logistic, SVM, and RF models was analyzed, and significant variables (P< 0.01) were used to build the nomogram using “rms” package. The HRs for PFS and OS in the CNN-low and CNN-high subgroups were analyzed and visualized by the “Forestplot” package. KEGG (Kyoto Encyclopedia of Genes and Genomes) and Gene Ontology (GO) were analyzed in DAVID (https://david.ncifcrf.gov/home.jsp). All statistical analyses were conducted in R version 3.5.1 (https://www.r-project.org/) and GraphPad Prism 7.01 (https://www.graphpad.com/). P< 0.05 was defined as statistically significant.




Results


Characteristics of patients who received ICB therapy

The basic clinical characteristics of the patients with NSCLC in the POPLAR/OAK, UCMC, and MSKCC cohorts are presented in Supplementary Table 1. A total of 275 (64.10%), 61 (44.53%), and 171 (49.00%) patients were men in the POPLAR/OAK, UCMC, and MSKCC cohorts, respectively. In the three cohorts, there were 265 (61.77%), 92 (67.15%), and 222 (63.61%) patients aged >60 years old. Majority (82.05%, 87.59%, and 80.51%) of the patients were current or ever smokers. Patients with no-squamous NSCLC comprised 70.86% and 94.26% of the POPLAR/OAK and MSKCC cohorts. We found that 15 (3.50%), 20 (14.60%), and 71 (20.34%) patients had high TMB (≥200 or >20/Mb) in the three cohorts and that the TMB status is a stratifying variable in the different populations. In the POPLAR/OAK, UCMC, and MSKCC cohorts, 59 (13.75%), 45 (32.84%), and 43(12.33%) patients had positive PD-L1 expression (>1%), respectively. There were 286 (31.27%) patients in the three cohorts who were not tested for PD-L1 expression. In the POPLAR/OAK, UCMC, and MSKCC cohorts, 134 (31.24%), 57 (41.61%), and 131 (37.54%) patients achieved DCB, respectively.



Landscape of selection genomics and building of cML for DCB

Based on the five-fold cross-validation, the RF was used to select the optimal mutational genomics from the POPLAR/OAK cohort, and 55 somatic mutations were finally chosen. The importance and Gini coefficients of the top 30 somatic mutations are shown in Supplementary Figure 1. The ARID1A and ERBB4 showed the important roles of the 55 genomics features. We summarized the clinical and somatic mutations in the three patient cohorts with NSCLC (Figure 2A). Seven mutational subtypes (nonsense mutation, missense mutation, frame shift del, frame shift ins, splice site, inframe del, and multi hit) were detected in the three cohorts, and the frequencies of the 55 selected genes in each case are shown as a heatmap. TP53, KRAS, and STK11 showed high mutational frequency (55.30%, 22.62%, and 15.19%) in the total cohort (n = 915). The correlations among 55 somatic mutations are presented in Figure 2B. Notch1 and POLE had a positive correlation (r = 0.133, P< 0.001), whereas KRAS and EGFR showed a negative correlation (r = −0.150, P< 0.001).




Figure 2 | Summary characteristics of somatic mutations and construction of cML models. (A) The clinical factors and frequency of the 55 selected genes are presented in the heatmap. (B) The relationships among each genomic feature are shown. (C) The KEGG, GO analyses of the 55 mutational genes. (D) Three clusters are presented as module1, module 2 and module 3.



KEGG revealed 55 mutational genes that are associated with different cancer pathways, such as the glioblastoma signaling pathway, head and neck squamous cell carcinoma, and melanoma (FDR P< 0.001; Figure 2C). GO analysis showed that theses genomics are related with development growth, regulation of protein kinase activity (PKA), and response to radiation. Modular analysis revealed 55 genes that could be classified into three groups. Model1 consisted of ERBB2, ERBB4, NRAS, EGFR, PIK3CA, NOTCH1, CBL, MET, CDH1, PTEN, and KDR (Figure 2D). Based on the three cML algorithms, we used the panel of 55 mutational genes to train the model to predict DCB. The training process of RF is shown in Supplementary Figure 2, with the number of trees set at 100. The RF model showed a better and more stable prediction than the logistic and SVM methods in the POPLAR/OAK, UCMC, and MSKCC cohorts (Supplementary Table 2).



Convolutional neural network was trained and tested for DCB in the three ICB cohorts

The deep-learning model of CNN was implemented in the TensorFlow platform as the set parameters. The POPLAR/OAK cohort was trained, and the UCMC cohort was validated in the process of 600 epochs (Figure 3A). The curves of training accuracy and loss had consistent trend with the validating curves. Then, the MSKCC cohort was tested using the trained CNN model. We found significant associations between the three cML (logistic, SVM, and RF) models and the CNN model (each P< 0.001) (Figure 3B), with the strongest correlation between the CNN and SVM models (r = 0.905, 95% CI: 0.886–0.920, P< 0.001). The CNN model had the highest AUCs in the POPLAR/OAK, UCMC, and MSKCC cohorts (AUC = 0.965, 95% CI: 0.949–0.978, P< 0.001; AUC =0.965, 95% CI: 0.940–0.989, P< 0.001; AUC = 0.959, 95% CI: 0.942–0.976, P< 0.001, respectively; Figure 3C). Comparing the predictive accuracy of TMB, PD-L1, logistic, SVM, RF, and CNN, the CNN had the highest AUCs in the three cohorts, and we found that TMB and PD-L1 had similar AUCs (Figure 3D). The CNN model also had significantly higher sensitivity and specificity than TMB and PD-L1 in the POPLAR/OAK cohort (sensitivity = 97.01, 95% CI: 92.53–99.18, P< 0.001; specificity = 76.95, 95% CI: 71.72–81.63, P< 0.001), the UCMC cohort (sensitivity = 94.74, 95% CI: 85.38–98.90, P< 0.001; specificity = 85.00, 95% CI: 75.26–92.00, P< 0.001), and the MSKCC cohort (sensitivity = 83.97, 95% CI: 76.55–89.79, P< 0.001; specificity = 90.37, 95% CI: 85.65–93.94, P< 0.001; Supplementary Table S3). A case with a positive PD-L1 expression and a low TMB showed a significant response. The somatic mutations included TP53, KRAS, EPHA5, ARID1A, and POLE. The CNN and the three cML models showed different scores in this patient (Figure 3E).




Figure 3 | CNN training and validation for DCB in the three cohorts. (A) The accuracy and loss are plotted for the training and validation processes. (B) The correlations of predictive scores among CNN, logistic, SVM, and RF models. (C) The ROCs were plotted in the three cohorts. (D) AUCs of the PD-L1, TMB, logistic, SVM, and CNN models are shown. (E) A representative NSCLC case treated with ICB is shown, and the evaluation of the PD-L1, TMB, logistic, SVM, and CNN models are presented.





Convolutional neural network and conventional machine learning predict PFS and OS in NSCLC patients with ICB

According to the cut-off value (0.31) of CNN scores as the biggest Youden Index (YI), the patients with NSCLC treated with ICB were stratified into CNN-high (> 0.31) or CNN-low (≤ 0.31) groups. The CNN-high group had a longer median PFS than that of the CNN-low group (mPFS: 1.41 vs 9.29 months) (HR = 3.67 [2.94–.57], P< 0.001; Figure 4A) in the POPLAR/ OAK cohort with anti-PD-1 therapy. In the UCMC and MSKCC cohorts, the CNN-high group also showed better PFS than that by the CNN-low group (both P< 0.001; Figures 4B, C). We then validated the predictive OS of the CNN model in the POPLAR/OAK cohort and found that the CNN-high group had a longer median OS (mOS: 6.70 vs 22.04 months) (HR = 3.20 [2.52–4.06], P< 0.001) than that of the CNN-low group (Figure 4D). The CNN-high group had better OS than that of the CNN-low group in both the UCMC and MSKCC cohorts (both P< 0.001; Figures 4E, F). PD-L1 expression was a significant predictor of PFS in the MSKCC cohort (P< 0.001), and TMB was a significant biomarker for PFS in the POPLAR/OAK and MSKCC cohorts (P = 0.004 and P< 0.001; Supplementary Table 4). PD-L1 expression was a significant predictor of OS in the POPLAR/OAK and MSKCC cohorts (P = 0.005 and P = 0.022), and TMB was a significant predictor of OS in the MSKCC cohort (P = 0.049, Supplementary Table 5). The three cML models accurately predicted the OS and PFS in the three cohorts (Supplementary Tables 4, 5). We analyzed the prediction of CNN in the clinical subgroups across different variables. Combining the three cohorts, the CNN model showed a good prediction as a biomarker of PFS and OS (Figures 4G–H).




Figure 4 | CNN was used to predict prognosis and analyzed in clinical subgroups. (A–C) Kaplan–Meier survival curves showing PFS between the CNN-low and CNN-high groups in patients from the three cohorts. (D–F) Kaplan–Meier survival curves showing OS between the CNN-low and CNN-high groups in three cohorts. (G, H) Subgroup analysis of CNN for PFS and OS from the combination cohorts (n = 915) according to basic clinical variables.





Nomogram of combining CNN, SVM, and RF predicts PFS and OS in patients with ICB

In the POPLAR/OAK cohort, we used six variables (including logistic, SVM, RF, CNN, TMB, and PD-L1) for the multivariate analysis of PFS and OS. The SVM, RF, and CNN models were identified as significant independent factors for PFS (P< 0.001, 0.014, and< 0.001) and SVM, CNN, and PD-L1 (P< 0.001,< 0.001, and 0.005) were significant independent factors for OS (Supplementary Table 6).

Considering the low predictive ability of PD-L1 expression for prognosis, we used the SVM, RF, and CNN models to develop a comprehensive nomogram for predicting PFS (herein, EMN; Figure 5A). According to the two cut-off values (0 and 0.8), we stratified the three cohorts into EMN-low (≤0), EMN-intermediate (0< and ≤ 0.8), and EMN-high (> 0.8) groups. The EMN-low had a longer median PFS and OS than the EMN-intermediate and EMN-high groups (mPFS: 13.37 vs 2.72 vs 1.41 months, P< 0.00; mOS: not reached [NR] vs 12.41 vs 6.66 months, P< 0.001) (Figures 5B, E) in the POPLAR/OAK cohort. Similarly, the patients with EMN-low had better PFS and OS than those with EMN-intermediate and EMN-high in the UCMC and MSKCC cohorts (mPFS: 20.41 vs 8.94 vs 2.79 months, P< 0.001; 18.90 vs 3.60 vs 2.10 months, P< 0.001; mOS: NR vs 20.42 vs 7.36 months, P< 0.001; NR vs 18.00 vs 8.00 months, P< 0.001; Figures 5C–E, G).




Figure 5 | Development and analysis of a nomogram for PFS and OS in the three cohorts. (A) A nomogram was constructed using SVM, RF, and CNN methods in the POPLAR/OAK cohort. (B–D) PFS curves were compared among the EMN-low, EMN-intermediate, and EMN-high subgroups of patients from the three cohorts. (E–G) OS curves were compared among the EMN-low, EMN-intermediate, and EMN-high subgroups of patients from the three cohorts.






Discussion

In this study, we used deep learning and cML methods based on the NGS or WES data to develop predictive models for DCB in 915 patients with NSCLC treated with ICB from three independent cohorts. To our knowledge, this is the largest study conducted to predict ICB response based on the sequencing data of patients with NSCLC. To avoid overfitting of the training model, the RF algorithm was first used to reduce the genomics features, and 55 somatic mutations were finally selected. After tuning the parameters, the CNN and cML models showed high prediction accuracies for DCB in the POPLAR/OAK, UCMC, and MSKCC cohorts. In the four models, namely CNN, SVM, RF, and logistic, a significant association with PFS and OS in the above three cohorts was noted. Subgroup analysis of CNN revealed that deep learning had robust prediction in different clinical variables. After multivariate analysis, we used SVM, RF, and CNN to build a nomogram for predicting PFS and found that this nomogram could stratify patients into three groups. The three groups of patients had different PFS and OS in the POPLAR/OAK, UCMC, and MSKCC cohorts.

Although WES, WGS, and NGS databases from blood or tumor tissue samples have been increasingly and extensively used in cancer research, most studies have frequently focused on several gene panels or sole driver mutational gene, resulting in the inefficient use of large sequencing data, especially in somatic mutations (28–30). In this study, we mainly sought to use a relatively small panel of mutational genes to develop a robust predicting model for ICB response. Comparing the different cML models (SVM, RF, and logistic), we found that the CNN model had the highest precision for DCB prediction. This was the first study that used CNN to train somatic mutations but not routine images. More research should be conducted to determine whether CNN can potentially perform on classification of predicting DCB from large WES, NGS, or WGS data but not use a simple TMB. We also found CNN had a higher and more stable ability for predicting DCB than TMB and PD-L1 expression status. Because our genomics sequencing data were collected from circulating tumor DNA (ctDNA) and analysis in the training model (POPLAR/OAK) were validated from the other two cohorts (UCMC and MSKCC) with tumor tissue sequencing, these findings reveal that our CNN model could be potentially used as a non-invasive method to predict ICB response of patients with NSCLC.

Previous studies have reported that patients with various cancers who are responsive to ICB treatment frequently have a better prognosis than nonresponsive patients (31, 32). The CNN, SVM, logistic, and RF models for predicting DCB were significantly associated with PFS and OS. The patients with CNN-high had significantly better PFS and OS than those with CNN-low in the POPLAR/OAK, UCMC, and MSKCC cohorts. This finding revealed that the CNN model for predicting DCB could effectively assess the clinical prognosis of ICB therapy in patients with NSCLC. In contrast, TMB and PD-L1 expression showed unsatisfactory results for predicting PFS and OS in the three cohorts. We speculated that the different cut-off values or detection platform for TMB could have contributed to the uncertain predictive effect. New method of tumor mutational burden on cytological samples from a pilot study could be feasible and the application was unclear (33). PD-L1 is becoming a fundamental data for patient management and the role of pathologist and immunohistochemical assessement should be emphasized (34). The testing results of the PD-L1 assay varied across various reagents from several manufacturers (35). New evidences regarding clones, platforms, reporting system are issues (36). Additionally, PD-L1 expression from different areas of the tumor may also differ (37). Therefore, using PD-L1 as a prognostic and predictive marker of response to therapy was insufficient. This suggests that our CNN model is a feasible tool and could supplement the limitations of PD-L1 expression and TMB for predicting the PFS and OS in patients with NSCLC who were treated with ICB.

In the combination of three cohorts, subgroup analysis of patients with CNN-high also had significantly longer PFS and OS than those with CNN-low. These results support that the CNN model had a good prognostic prediction and was not affected by clinical variables. Combining deep learning and cML methods based on radiology images was suggested in previous studies and using this combination could improve the predictive abilities of various models (38–40). Interestingly, this is the first study to integrate CNN and cML methods based on WES and NGS databases to construct a nomogram for the stratification of patients treated with ICB. We found that patients in the EMN-low, EMN-intermediate, and EMN-high groups had different PFS and OS. This finding indicated that ensemble models, such as CNN, SVM, and RF, are promising and precise tools for predicting clinical benefit (for example, DCB, PFS, and OS) in patients undergoing immunotherapy.

However, this study had some limitations. First, although the number of patients was relatively large, the POPLAR/OAK, UCMC, and MSKCC cohorts were obtained from the American population. Thus, the molecular characteristics of these NSCLC patients may differ from those of East Asian descent, thus affecting clinical treatment outcomes (41). The CNN model should be trained with large international multi-center datasets to further improve prediction performance. Second, a panel of genomic variants based on the WES or NGS data was used in this study; however, DNA methylation, mRNA expression, radiology, and pathology were not used to predict the DCB. A multi-omics model, in addition to a genomics model, should be studied. Third, although extraction of the ctDNA of peripheral blood samples is a non-invasive method, the predictive ability of the model requires further investigation.

In summary, CNN classification based on a panel of 55 mutational genes serves as a novel and robust model for predicting DCB from ICB therapy in patients with NSCLC. A combination model that integrated CNN, SVM, and RF algorithms could better predict the PFS and OS. These findings may contribute to the discovery of a new strategy for patients with NSCLC treated with PD-1/PD-L1 blockade. Our method based on NGS and WES databases provides new insights for predicting clinical outcome in pan-cancer immunotherapy.
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Purpose

Neoadjuvant chemoradiotherapy (nCRT) is a standard treatment option for patients with stage III oesophageal cancer. Approximately 30% of oesophageal cancer patients will have a pathological complete response (pCR) after nCRT. However, available clinical methods cannot accurately predict pCR for patients. We aimed to find more indicators that could be used to predict the pathological response to nCRT.



Method

A total of 84 patients with stage III oesophageal squamous cell cancer were enrolled in this study. Ten patients failed to have surgery as a result of progressive disease (PD). Among the patients who underwent surgery, 32 patients had a pathologic complete response (pCR), whereas 42 patients showed no or partial response (npCR) after nCRT. Routine blood test results and lymphocyte subset assessments before and after nCRT were retrospectively analysed. Univariate and multivariate analyses were used to identify independent predictors of the clinical curative effect of nCRT. Eventually, nomograms were established for predicting the PD and pCR rates.



Results

The numbers of lymphocytes, B lymphocytes, T lymphocytes, Th lymphocytes, Ts lymphocytes, and NK cells and the percentages of B lymphocytes and NK cells were decreased significantly after nCRT (P < 0.0001), whereas the percentages of T lymphocytes and Ts lymphocytes increased (P < 0.0001). Univariate analysis showed that age, the length of the lesion, the level of haemoglobin before nCRT, and the amount of change in haemoglobin were related to PD, and the percentage of NK cells after nCRT was related to pCR. Multivariate logistic analysis demonstrated that the length of the lesion, the neutrophil-to-lymphocyte ratio (NLR) before nCRT, and the amount of change in haemoglobin were independent predictors of PD, whereas the percentage of NK cells after nCRT was an independent predictor of pCR.



Conclusion

Lymphocyte subsets changed dramatically during nCRT, and these changes together with baseline and posttreatment lymphocyte subsets have predictive value in determining the response to nCRT for oesophageal cancer.





Keywords: neoadjuvant chemoradiotherapy, pathological complete response, lymphocyte subsets, peripheral blood cell, oesophageal squamous cell cancer



Background

Oesophageal carcinoma is one of the most familiar malignant tumours, with 604,100 new cases of oesophageal cancer worldwide every year (1). There are two main types of oesophageal cancer: squamous cell carcinoma and adenocarcinoma. Although the incidence of oesophageal adenocarcinoma now exceeds that of squamous cell carcinoma in the USA and some western European countries, squamous cell carcinoma is still the predominant histological type of oesophageal carcinoma in East Asia (2). Squamous cell carcinoma accounts for more than 90% of the total number of oesophageal carcinoma cases in China (3). Surgery is the main treatment for oesophageal cancer, but chemotherapy and radiotherapy also play an important role in oesophageal cancer treatment, especially for those whose tumours cannot be completely resected. Several clinical trials have demonstrated that neoadjuvant chemoradiotherapy can improve long-term survival and reduce locoregional cancer recurrence (4, 5). Approximately 30% of oesophageal cancer patients will have a pathological complete response (pCR) after neoadjuvant chemoradiotherapy, and these patients will benefit more from neoadjuvant chemoradiotherapy (6–8). In recent years, the question has been raised of whether surgery can be dispensed with for patients who achieve pCR. However, the main problem is that we cannot distinguish which patient has achieved pCR without surgery. If a method that was verified to exactly predict the efficacy of neoadjuvant chemoradiotherapy (nCRT) was available, it would be of great clinical significance to the formulation of treatment options for patients.

At present, the efficacy of nCRT is mainly evaluated by imaging. However, in some patients with complete response evaluated by imaging, residual cancer tissue was still found during surgery. Hence, researchers have been looking for new predictors for the efficacy of nCRT. The NLR is an indicator of inflammation that has been linked with the prognosis of oesophageal cancer and other tumours in many studies (9–16). Sun Yat-sen University Cancer Center retrospectively analysed 306 ESCC patients who underwent nCRT and found that the NLR before nCRT and the PLR after nCRT were independent predictors of pCR (17). Recently, a real-world study established a prognostic model based on the NLR, the prognostic nutrition index (PNI), eosinophilic granulocytes (EOS), and the postoperative pathologic stage of adenocarcinoma for oesophagogastric junction patients treated with neoadjuvant chemoradiotherapy (18). However, due to their accuracy, these models have not been used clinically. Therefore, it is necessary to find new predictors.

In this study, we aimed to investigate potential indicators associated with the efficacy of nCRT. In addition, we developed prognostic nomograms for the clinical curative effect of nCRT based on certain clinical features and immunity indices.



Methods


Patients

This retrospective study included 84 oesophageal cancer patients who received nCRT at Shanghai Renji Hospital between September 2014 and June 2021. The study inclusion criteria were as follows: 1) patients were first diagnosed with clinical stage III oesophageal cancer evaluated by enhanced CT, endoscopic ultrasonography, or PET-CT (American Joint Committee on Oncology, Edition 8); 2) receipt of neoadjuvant chemoradiotherapy; 3) availability of routine blood and lymphocyte subset examination within 1 week prior to and after treatment; 4) Karnofsky performance status ≥80. The study was approved by the Medical Ethics Committee of our institute, and all the patients provided written informed consent.



Treatment

Intensity-modulated radiotherapy was used in all radiotherapy treatments, with a total dose of 41.4 Gy/23 Fx or 40 Gy/20 Fx. The gross tumour volume (GTV) was defined as the primary tumour and that of suspected metastatic lymph nodes visible on CT or PET-CT scans. Elective nodal irradiation was used in our study. The clinical target volume (CTV) consisted of a 3-cm expansion of the GTV at the proximal and distal margins and 5 mm in the radial direction, and the regional lymph nodes that were prophylactically irradiated were also included. The planning target volume (PTV) was generated from the CTV by adding a uniform margin of 5 mm.

Most patients in the study received concurrent intravenous chemotherapy during the radiotherapy, weekly or triweekly. Triweekly therapy refers to cisplatin 75 mg/m2 with paclitaxel 135 mg/m2 every 3 weeks for two cycles. Weekly therapy refers to cisplatin 25 mg/m2 with paclitaxel 45 mg/m2 every week for five cycles. Two patients received oral tegafur for concurrent chemotherapy. Then, patients received surgery about 6 weeks after completion of neoadjuvant chemoradiotherapy if they had no disease progression in the preoperative radiographic evaluation.



Response evaluation

Patients were divided into the PD group, pCR group (no residual tumour at the primary site or lymph nodes, ypT0N0M0), and no or partial response (npCR) group (residue was found in the primary lesion or lymph nodes) based on radiographic and pathological evaluation. Ten patients did not receive surgical treatment at the end of nCRT as a result of PD.



Data collection

The location of each tumour was determined by the centre of the tumour according to the American Joint Committee on Oncology, Edition 8. Lesion length refers to the length measured directly under endoscopy. The results of routine blood and lymphocyte subset tests before and after neoadjuvant chemoradiotherapy were collected. The following research indicators were included in this study: NLR, platelet-to-lymphocyte ratio (PLR), and immune-inflammation index (SII). The NLR, PLR, and SII were calculated as follows:

	NLR = lymphocyte count ÷ neutrophil count

	PLR = platelet count ÷ lymphocyte count

	SII = platelet count × neutrophil count ÷ lymphocyte count.





Statistical analysis

Continuous variables, such as age and lesion length, were converted into binary variables using cut-off values calculated from receiver operating characteristic (ROC) curves. Univariate logistic regression analysis was used to estimate the odds ratio (OR) and confidence interval (CI) to evaluate the effect of independent variables on the clinical curative effect of nCRT. To avoid omitting indicators that might be of clinical significance, all possible factors were subjected to multivariate analysis, and the backwards method was used to establish the best multivariate analysis regression model. The multivariate logistic regression model is presented in the form of a line graph. Then, the prediction model was evaluated by internal random sampling. A significant difference was considered if the two-sided P value was < 0.05. Statistical analysis was performed with IBM SPSS Statistics 25.0. A nomogram for possible prognostic factors was established with R 4.0.3, and the predictive accuracy was evaluated using the concordance index (c-index).




Results


Patient characteristics

A total of 84 patients with oesophageal cancer were enrolled in the study, with an overall pCR rate of 38.1% (32/84). All patients were first diagnosed with stage III oesophageal squamous cell carcinoma, including 71 males (84.5%) and 13 females (15.5%). The median age of the patients was 64 years, ranging from 48 to 79 years. Almost all patients (except one patient receiving a dose of 40 Gy/20 Fx) were scheduled to receive a standard radiation dose of 41.4 Gy/23 Fx, but two patients failed to complete the radiotherapy plan. One patient only completed 39.6 Gy/22 Fx, and another only completed 37.8 Gy/21 Fx; both failed to achieve a pCR.

All patients received concurrent chemotherapy. Triweekly therapy was selected by 33 patients, 39.4% (13 patients) of whom achieved a pCR, whereas among the other 49 patients who received weekly therapy, 17 (34.7%) patients achieved a pCR. The remaining two patients received oral tegafur, and both of them achieved pCR. All patients received surgical treatment about 6 weeks after the end of nCRT, except for the 10 patients (11.9%) who experienced PD and had tumours that were unable to be completely removed. According to the surgical pathology, patients were divided into a pathological complete response group and partial or no response group. Additional information about patient demographics, tumour characteristics, and treatment regimens are listed in Tables 1, 2.


Table 1 | Patient characteristics between inoperable and operative groups.




Table 2 | Patient characteristics between pCR and npCR groups.





Changes in peripheral blood lymphocyte subsets in oesophageal cancer patients after nCRT

The proportion of peripheral blood lymphocyte subsets is shown in Figure 1 and Table 3. The results indicated that the numbers of lymphocytes, B lymphocytes, T lymphocytes, Th lymphocytes, Ts lymphocytes, and NK cells and the percentages of B lymphocytes and NK cells were decreased significantly after nCRT (P < 0.05), whereas the percentages of T lymphocytes and Ts lymphocytes increased (P < 0.05). Notably, only the CD4/CD8 value and the percentage of Th lymphocytes did not show significant differences before and after nCRT (P > 0.05). These results suggest that nCRT treatment led to changes in the composition of peripheral blood lymphocyte subsets.




Figure 1 | Changes in lymphocyte subsets, peripheral blood cells, and haemoglobin.




Table 3 | Changes in the lymphocyte subset before and after nCRT.





Factors associated with efficacy of nCRT

First, we sought to explore whether lymphocyte subsets combined with clinical characteristics could be used to predict PD. The results of univariate analysis suggested that age, the length of the lesion, the level of haemoglobin before nCRT, and the amount of change in haemoglobin may be related to PD (Supplementary table 1). Factors with a univariate significance of P < 0.1 were enrolled in multivariate analysis. Multivariate logistic analysis further demonstrated that the length of the lesion, the NLR before nCRT, and the amount of change in haemoglobin were independent predictors of PD (Table 4). A nomogram was developed to predict the risk of PD on the basis of multivariate logistic regression coefficients (Figure 2A). The C-index of the nomogram was 0.90 (95% CI, 0.797 to 1.000), and the calibration curve displayed acceptable agreement between prediction and actual observation (Figures 2B, C). Then, we further explored the factors associated with pCR among the patients who received surgery after nCRT. In univariate analysis (Supplementary table 2), we found that only the percentage of NK cells after nCRT was related to pCR (P = 0.04, OR, 1.047, 95% CI, 1.005–1.098). We relaxed the inclusion criteria, and factors with a univariate significance of P < 0.5 were enrolled in the multivariate analysis. The results of the multivariate analysis are shown in Table 5. Similarly, a nomogram to predict the risk of pCR was developed on the basis of multivariate logistic regression coefficients (Figure 3A). The C-index of the nomogram was 0.73 (95% CI, 0.614 to 0.843), and the calibration curve displayed acceptable agreement between the prediction and actual observation (Figures 3B, C).


Table 4 | Multivariate analysis of PD.






Figure 2 |  (A) Nomogram for predicting PD rates after neoadjuvant chemoradiotherapy in patients with oesophageal squamous cell carcinoma. The nomogram adds up the points identified on the scale for each independent factor. The total scores projected on the bottom scale indicate the probabilities of PD. (B) Calibration plots of the nomograms. (C) ROC curves of the nomogram.




Table 5 | Multivariate analysis of pCR.






Figure 3 |  (A) Nomogram for predicting pCR rates after neoadjuvant chemoradiotherapy in patients with oesophageal squamous cell carcinoma. The nomogram adds up the points identified on the scale for each independent factor. The total scores projected on the bottom scale indicate the probabilities of pCR. (B) Calibration plots of the nomograms. (C) ROC curves of the nomogram.






Discussion

nCRT is a standard presurgical treatment option for patients with stage III oesophageal cancer. Most patients can benefit from nCRT, making them more likely to obtain R0 resection. The optimal outcome is a complete pathological response. These oesophageal cancer patients with a pCR have a significantly improved overall survival (OS) (6). Recently, the question has been raised of whether surgery can be dispensed with for patients who achieve pCR. However, there is no method to predict pCR without surgery. Therefore, finding new predictors of the efficacy of nCRT is very meaningful and is helpful in preserving organ function.

Inflammation is a well-recognized cancer risk factor that substantially contributes to the development and progression of malignancies (19, 20). Tumours are infiltrated by inflammatory cells, whose numbers become an independent factor affecting patient outcomes (21, 22). A great number of studies have focused on immune cell infiltration in the tumour microenvironment (23–25), whereas the peripheral blood lymphocyte subsets in tumour patients have not been well studied.

The maintenance of a normal immune state depends on the coordination of various immune cells, especially peripheral lymphocyte subsets. The number of lymphocyte subsets is relatively constant, and this balance is upset in a pathological state. Circulating NK and regulatory T-cell proportions have been found to be significantly lower in patients with advanced gastric cancer (26). A prospective study longitudinally analysed the peripheral blood samples of 26 patients with solid tumours and found that patients who did not respond to chemotherapy or had only a slight response had a significant decrease in total B-lymphocyte counts, suggesting that the number of B cells in peripheral blood may be used to predict the effect of chemotherapy (27). In a retrospective cohort study of non-small cell lung cancer, a high baseline absolute CD4+ T lymphocyte count contributed to longer progression-free survival (28). In oesophageal cancer, it was also found that a high proportion of CD4+CD8+ (>3.45%) cells and a low proportion of regulatory T cells (≤5.15%) before chemoradiotherapy were related to a better OS. To date, no studies have revealed the relationship between circulating lymphocyte subsets and the efficacy of nCRT for oesophageal cancer. Thus, our study might provide novel indicators to predict the efficacy of nCRT.

In this study, 84 oesophageal cancer patients who underwent nCRT were enrolled. The results showed that the numbers of lymphocytes, B lymphocytes, T lymphocytes, Th lymphocytes, Ts lymphocytes, and NK cells and the percentages of B lymphocytes and NK cells were decreased significantly after nCRT, suggesting that these cells may play an important role in the treatment. We first compared the 10 patients whose disease progressed with the 74 other patients who underwent surgery, and the multivariate logistic analysis demonstrated that the length of the lesion, the NLR before nCRT, and the amount of change in haemoglobin were independent predictors of PD. This is consistent with most previous studies, indicating that a high NLR is indeed an adverse factor for nCRT (12, 13, 16, 29). Then, we turned our attention to the pCR group. pCR is harder to predict, as most variables, including the NLR and PLR, did not differ significantly between patients with a complete response and those with a partial response. Ultimately, univariate logistic analysis showed that only the percentage of NK cells after nCRT was positively correlated with pCR. Multivariate logistic analysis further demonstrated that the percentage of NK cells after nCRT was an independent predictor of pCR.

Of note, the model we established to predict PD had a high coincidence index of 0.90, and the model suggested that a higher NLR and longer lesion length before treatment and high levels of decreased haemoglobin during treatment increased the risk of PD. Consistent with most previous studies (12, 13, 16, 29), a high NLR is indeed a risk factor for PD. In addition, decreased haemoglobin seemed to be another important risk factor, as only one of the 50 patients (2%) with a haemoglobin decrease less than 23 g/l (cut-off value) was evaluated as having PD, whereas this proportion increased to 26.5% in the 34 patients with a haemoglobin decrease over 23 g/l. Lesion length is also a well-known risk factor. In our study, among those with a lesion length less than 6.75 cm (cut-off value), only 6% of patients were evaluated as having PD, whereas this number increased to 27% among patients with a lesion length over 6.75 cm. Perhaps further study can focus on whether patients with a high risk of PD can benefit from an increase in the intensity of nCRT.

There are also some limitations in this study. First, in our predictive model of pCR, upper and lower oesophageal carcinomas seem to be more prone to pCR than middle oesophageal carcinomas. One possible reason is that the number of patients with upper and middle oesophageal cancer was relatively small, and selection bias existed. Whether there is a relationship between lesion location and efficacy should be explored by further increasing the sample size. Second, the NLR was not an accurate predictor of pCR in our study, although it was indeed lower in the pCR group. A previous study also showed that the NLR had no predictive value for the pathologic response to nCRT (30). One common deficiency of this previous study and our study is that the number of samples was not large. Perhaps a difference in the NLR between the pCR group and the npCR group would be observable with an increase in sample size. Third, almost all patients had leukopenia of varying degrees during the treatment and used drugs to raise their white blood cell count, which inevitably influenced the peripheral blood lymphocyte results after nCRT. Testing multiple times during treatment to select the lowest level may be a method to reduce this interference. Fourth, despite being cost-effective and non-invasive, the discriminatory ability of the nomogram to predict pCR is still not sufficient to fully guide clinical decision-making. Thus, integrating other novel predictive factors, such as imaging data, nutritional status, and other biological indicators, into the model is needed to improve its prediction ability.
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Introduction

RALA is a member of the small GTPase Ras superfamily and has been shown to play a role in promoting cell proliferation and migration in most tumors, and increase the resistance of anticancer drugs such as imatinib and cisplatin. Although many literatures have studied the cancer-promoting mechanism of RALA, there is a lack of relevant pan-cancer analysis.



Methods

This study systematically analyzed the differential expression and mutation of RALA in pan-cancer, including different tissues and cancer cell lines, and studied the prognosis and immune infiltration associated with RALA in various cancers. Next, based on the genes co-expressed with RALA in pan-cancer, we selected 241 genes with high correlation for enrichment analysis. In terms of pan-cancer, we also analyzed the protein-protein interaction pathway of RALA and the application of small molecule drug Guanosine-5'-Diphosphate. We screened hepatocellular cancer (HCC) to further study RALA.



Results

The results indicated that RALA was highly expressed in most cancers. RALA was significantly correlated with the infiltration of B cells and macrophages, as well as the expression of immune checkpoint molecules such as CD274, CTLA4, HAVCR2 and LAG3, suggesting that RALA can be used as a kind of new pan-cancer immune marker. The main functions of 241 genes are mitosis and protein localization to nucleosome, which are related to cell cycle. For HCC, the results displayed that RALA was positively correlated with common intracellular signaling pathways such as angiogenesis and apoptosis.



Discussion

In summary, RALA was closely related to the clinical prognosis and immune infiltration of various tumors, and RALA was expected to become a broad-spectrum molecular immune therapeutic target and prognostic marker for pan-cancer.
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Background

Cancer is now the leading cause of death in China and most developed countries. According to GLOBOCAN 2020, around 1930 million new cancer cases and 10 million cancer deaths worldwide in 2020 (1). Over the past decade, accelerated progress has been made in the design, improvement and application of anticancer therapies. Immunotherapy has become a new hot spot in clinical treatment of cancer. In particular, the application of a variety of immune checkpoint inhibitors in clinical practice has opened new direction for cancer treatment. Among them, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) are the most representative (2). But more and more clinical studies have shown that the use of checkpoint inhibitors can lead to multiple immune-related adverse events (irAEs) in cancer patients. The development of irAEs is related to irreversible organ damage, which may bring fatal risks. Organ damage in the endocrine system is most common, which mainly results in permanent damage to endocrine organs and usually requires long-term treatment (3–5). In order to increase efficacy and reduce side effects, new treatment-gene therapies came into being. Compared with other treatments, the advantage of gene therapy is that it can directly repair or even substitute pathogenic genes at the molecular level, and further rectify abnormal gene expression, so as to achieve precise and individualized treatment of cancer (6, 7). Therefore, the most principal objective is to screen out genes closely related to tumor growth and metastasis.

RAL (RAS-like) GTPases are encoded by RALA and RALB, which are located on human chromosomes 7 and 2, respectively. The proteins encoded by them have the same structural organization and the sequence identity is approximately 85% (8). RAS-dependent or RAS-independent upstream signals can activate RAL. In mammals, there are generally three downstream pathways of RAS signal, namely, RAF, PI3K and RAL-GEFs family (9, 10). RAL plays an important physiological role in normal cells. RAL-GEF/RAL signaling pathway can activate transcription factor STAT3 and JNK kinases by activating tyrosine kinase Src. The signal then activates c-jun kinase, which can stimulate transcription activity, cell differentiation and apoptosis (11). In the immune system, studies have shown that both RALA and RALB play key roles in immune response through cell-mediated cytotoxicity in natural killer (NK) cells (12). It was discovered more than 20 years ago that researchers had discovered the carcinogenic effect of RAL (13). In recent years, with the deepening research on cancer, molecule and immunology, the research direction of RAL function in cancer had been greatly expanded. Studies have found that RALA can enhance the proliferation, self-renewal and metastasis of HCC cells. The high expression of RALA in HCC is related to the increase of copy number, and is regulated and driven by the co-transcription of SP1 and ETS2. In addition, RALGAPA2 and RAL negative regulator, were down-regulated in HCC (14). However, the specific mechanism of RALA participating in pan-cancer immunity and progression remains unclear. In addition, the relationship between RALA level and various immune cell infiltration in tumor microenvironment (TME) has not been fully studied.

Thus, we studied the expression of RALA in TME and its correlation with immune infiltration and survival time of various cancers. Data showed that RALA had a cancer-promoting effect in most tumors, and increasing the expression level of RALA may reduce the lifetime of cancer patients. According to analysis, we found that the differential expression, prognosis and immune cell infiltration of RALA in HCC were statistically significant, and our team had a deep foundation in the study of RALA and HCC (14). Therefore, HCC was selected for further discussion and molecular biology verification to confirm the carcinogenic effect of RALA. Taken together, RALA is a promising therapeutic target for cancer and may serve as a marker of immune infiltration and poor prognosis.



Materials and methods


Data collection and differential expression analysis

Download RNA-seq, somatic mutation and related clinical data for 33 cancers from the Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.cancer.gov/). Normal samples were selected from Genotype-Tissue Expression (GETx) dataset. The combined queue for TCGA and GTEx samples was downloaded from https://xenabrowser.net/, where batch effects had been removed. Cell line data were downloaded from the Human Protein Atlas (HPA) dataset. Correlation between gene expression and immune infiltration abundance in TIMER.



Immunohistochemistry staining and immunofluorescence

In order to evaluate the difference in RALA expression at protein level, IHC images of RALA protein in normal tissues and four tumor tissues, including colorectal cancer, breast cancer, prostate cancer and lung cancer. Cellular localization of RALA by immunofluorescence. The data was downloaded and analyzed from HPA (http://www.proteinatlas.org/).



Correlation of RALA expression with TMB and MSI

Tumor mutation burden (TMB) and microsatellite instability (MSI) are downloaded from TCGA database. TMB is usually defined as the total number of mutations in tumor samples, which is a promising biomarker for immune response (15). TMB is closely related to immune checkpoint inhibitors (ICIs) and was initially identified as a biomarker of ICIs in melanoma (16). In addition to TMB, MSI can also be used as a potential biomarker for predicting ICIs response. MSI is determined by calculating the total number of mutations per million base pairs. MSI activates anti-tumor immune response, leading to the accumulation of mutations and the formation of new antigens (17). Corresponding clinical information and RNA-sequencing expression profiles for RALA were downloaded from the TCGA dataset. TMB is derived from the article Thorsson V et al. gave a more detailed description of TMB in The Immune Landscape of Cancer (18), while Bonneville R et al. explained MSI in their article (19). We analyze all data using R version 4.0.3 and the corresponding R package. If not stated otherwise, two-group data performed by wilcox test. P values less than 0.05 were considered statistically significant.



Functional enrichment analysis of RALA

Use the cBioPortal dataset to find genes co-expressed with RALA and select some genes with significant indigenous relevance (20). In order to further confirm the potential function of RALA, the data is analyzed through functional enrichment. Gene Ontology (GO) is a widely used tool for annotating functional genes, especially molecular function (MF), biological pathway (BP) and cellular component (CC). KEGG enrichment analysis is practical for analyzing gene function and related high-level genome function information. In order to better understand the carcinogenic effect of target genes, the ClusterProfiler package in R was used to analyze the GO function of potential mRNAs and enrich the KEGG pathway.



Protein-protein interaction

String database (https://string-db.org/) is one of the most abundant and widely used databases for studying protein interactions (21). Studying the interaction network between proteins helps to mine the core regulatory genes. In our study, the String, PINA, BioGRID database were used to retrieve interactions between known and predicted proteins.



RALA and pathways

Main pathway data containing RALA comes from the SMPDB database (https://smpdb.ca/) (22, 23). The correlation between RALA and each pathway was predicted in HCC, and analyzed by R package GSVA. The parameter method = ‘ssgsea’ was selected, and finally the correlation between gene and pathway score was analyzed by Spearman correlation (24, 25).



Cell culture

PLC/PRF/5, Huh-7 and THLE-3 cells were purchased from Zhong Qiao Xin Zhou Biotechnology Co., Ltd. (Shanghai, China). All cell lines were cultured in MEM medium (Gibco, USA) containing 10% fetal bovine serum (FBS) (Gibco, USA), 100 μg/mL streptomycin and 100 IU/mL penicillin (Gibco, USA). They were cultured at 37°C, 5% CO2.



Reverse transcription-quantitative polymerase chain reaction

Total RNA was extracted from HCC cell lines according to the RNA isolator (Vazyme, China), and the concentration and purity of total RNA were determined. The cDNA is obtained by reverse transcription of total RNA using the SureScript First-strand cDNA Synthesis Kit (Gene Copoeia, USA). RT-PCR assay was performed by Power SYBR Green (Takara, Hangzhou, Zhejiang, China). The relative expression of genes was calculated and standardized by 2-ΔΔCt method relative to β-actin. Specific primer sequences were as follows: RALA: 5’-ATGGCTGCAAATAAGCCCAAG-3’(forward), 5’-TGTCTGCTTTGGTAGGCTCATA-3’(reverse); β-actin: 5’- CATGTACGTTGCTATCCAGGC-3 (forward), 5′- CTCCTTAATGTCACGCACGAT-3’(reverse).



Western blotting analysis

Whole cell lysates were collected by using RIPA lysates (Beyotime, China) and total protein concentrations were determined by BSA standard protein. The antibodies used in this study were RALA (ZENBIO, China) and β-actin (#20536-1-AP, Proteintech) antibodies. HRP-labeled anti-rabbit secondary antibody was used for ECL detection.



Statistical analysis

RNA-seq data was converted into TPM (transcripts per 100 000 reads) format and log2 converted. Wilcoxon rank sum test was performed on these tumor types; p<0.05 was considered to indicate the differential expression between normal and tumor tissue. R software (version 4.0.3) was used for analysis, and the R package “ggplot2” was used to visualize the data and draw the box diagram.




Results


Differential expression of RALA in pan-cancer

In this paper, the expression of RALA in 33 kinds of cancers was compared based on TCGA database (Figure 1A). However, we found that adrenocortical cancer (ACC), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), acute myeloid leukemia (LAML), low grade glioma (LGG), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), testicular cancer (TGCT), uterine carcinosarcoma (UCS), ocular melanomas (UVM) lack of gene expression data in normal tissues, so GTEx dataset was introduced and analyzed (Supplementary Figures 1A, B). In normal tissues, the five tissues with the highest expression level of RALA were lung, vagina, nerve, cervix uteri and skin (Supplementary Figure 1B). Except for LAML, lung adenocarcinoma (LUAD) and pheochromocytoma and paraganglioma (PCPG), RALA was higher in almost all cancer samples than in normal controls (Supplementary Figure 1A; P<0.001). RNA expression data as normalized transcript per million (nTPM) values of tissue culture cell lines. The analyzed cell lines are divided into 16 color-coded groups according to the organ they were obtained from (Figure 1B). The top three cancer cell lines with the highest nTPM values were NTERA-2, OE19 and A-431. NTERA-2 comes from the kidney and urinary bladder, OE19 mainly exists in the proximal digestive tract, namely esophagus; A-431 belongs to skin tissue.




Figure 1 | RALA expression level of pan-cancer in different databases. (A) RALA expression analyzed by TCGA dataset. (B) RNA expression data as normalized transcript per million (nTPM) values of tissue culture cell lines from HPA. (C-D) IF results for RALA expression levels in cancer. (C) PRAD. (D) Osteosarcoma. ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001.



In addition, in order to evaluate the protein level of RALA expression, we analyzed the IHC and IF results provided by HPA database and compared the results with the RALA gene expression data from TCGA. As shown in the diagram, the data analysis results of these two databases are consistent. Normal colon and breast tissues had mild or moderate RALA IHC staining, while tumor tissues had strong staining. On the contrary, the RALA staining of normal lung tissue samples was strong, while the LUSC and LUAD were weakly or moderately stained. The staining intensity in normal prostate tissue was similar to that in PRAD, and the expression level of RALA was not statistically different (Figures 2A–D). IF images include two cell lines, PC-3 and U-2OS, from PRAD and osteosarcoma, respectively. In osteosarcoma cells, RALA is mainly localized in the plasma membrane. In PRAD cells, in addition to the plasma membrane, some parts are confined to focal adhesion sites (Figures 1C, D).




Figure 2 | IHC results for RALA expression levels in cancers and normal tissues. (A) Breast. (B) Colon. (C) Prostate. (D) Lung.





The prognostic value of RALA

In order to study the correlation between the expression level of RALA in pan-cancer and prognosis, we conducted survival correlation analysis on overall survival (OS) and disease special survival (DSS) of each cancer (Figures 3A, B). Through the analysis of cox proportional hazard model, the results showed that the expression levels of RALA were correlated with OS in breast invasive cancer (BRCA) (p=0.0250), kidney chromophobe (KICH) (p=0.0419), kidney renal clear cell cancer (KIRC) (p=0.0022), HCC (p=0.0005), MESO (p=0.0004), PAAD (p=0.0046) and Sarcoma (SARC) (p=0.0111) (Figure 3A); with DSS in BRCA (p=0.0223), KIRC (p=0.0093), LGG (p=0.0437), HCC (p=0.0097), MESO (p=0.0129), PAAD (p=0.0221), SARC (p=0.0204) (Figure 3B). The results of K-M analysis showed that the increased RALA was related to the shorter OS of BRCA, KICH, LGG, HCC, MESO and PAAD. On the contrary, in KIRC, the OS of patients with increased RALA was longer (Figures 3C–I; p<0.05).




Figure 3 | The prognostic value of RALA. The survival analysis of OS (A) and DSS (B) by RALA in pan-cancer described in the forest map. (C–I) K-M analysis curve of RALA expression and prognosis in different cancers.





RALA is associated with immune infiltration in tumor microenvironment

RNA-seq data and corresponding clinical information of pan-cancer were obtained from TCGA database. For reliable immune correlation assessments, we used immunedeconv, a R package that integrates six latest algorithms, including CIBERSORT (Supplementary Figure 2A), EPIC (Supplementary Figure 2B), MCP-counter (Supplementary Figure 2C), QUANTISEQ (Figure 4A), TIMER (Figure 4B) and XCELL (Supplementary Figure 2D). The results showed that RALA was closely related to these immune cells in pan-cancer. In particular, in BRCA, LGG, HCC, PCPG, PRAD, rectum adenocarcinoma (READ), and thyroid cancer (THCA), RALA with elevated expression levels was significantly positively correlated with CD8+ T cell, Neutrophil, Myeloid dendritic cell, Macrophage, and B cell (Figure 4B), which were also validated in the TIMER database (Figure 4C). Up-regulation of RALA expression was significantly positively correlated with M1 macrophages in bladder urothelial cancer (BLCA), BRCA, head and neck squamous cell cancer (HNSC), LGG, HCC, LUAD, LUSC, MESO, PAAD, stomach adenocarcinoma (STAD), THCA and UVM (Figure 4A). On the contrary, GBM and TGCT, in which M1 macrophages were significantly negatively correlated with RALA reduction (Figure 4A). Then we studied the relationship between RALA expression and classical immune checkpoints, such as CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, SIGLEC15, TIGIT (Figure 4D). This suggested that RALA expression was closely associated with these common immune checkpoints in most cancers. RALA expression was closely related to the expressions of these eight immune checkpoints in BLCA and HCC, which provided a new direction for their subsequent immune-related treatment. However, there was no significant correlation between RALA and immune checkpoints analysis in cholangiocarcinoma (CHOL), DLBC, esophageal cancer (ESCA), TGCT and UCS. In addition, we found that RALA was positively correlated with microsatellite instability (MSI) in CHOL, MESO, SARC and UCEC (p<0.05), and negatively correlated with MSI in DLBC, LGG, LUAD and PCPG (Figures 4E, F). RALA was positively correlated with tumor mutation load (TMB) in BRCA, UCEC, LUAD and THYM (p<0.05), and negatively correlated with TMB in COAD, KIRC, THCA and UVM (Figures 4G, H, p<0.05).




Figure 4 | Immune infiltration of RALA in TME. (A, B) The heatmap of immune score and expression of RALA in multiple tumor tissues. The abscissa represents different tumor tissues, and the ordinate represents different immune score. (C) Correlation between RALA and tumor tissue abundance of immune infiltrates in the TIMER database. (D) Expression heat map of immune checkpoint related genes in pan-cancerous tissues, in which abscissa represents different immune checkpoint genes and ordinate represents different tumor tissues. (E) Lollipop chart and (F) Radar Diagram describing Spearman Correlation Analysis of MSI and RALA Expressions. (G) Lollipop chart and (H) Radar Diagram describing Spearman Correlation Analysis of TMB and RALA Expressions. *p < 0.05, **p < 0.01, ***p < 0.001.





Mutant aspects of RALA

By analyzing the whole genome of pan-cancer, we found that RALA has only gene amplification in most cancers, and mutations and deletions rarely appear. The main types of cancer with mutations in RALA gene are Colorectal Adenocarcinoma, Melanoma and Burkitt lymphoma. Dissimilar with other cancers, the main phenomenon of LUSC RALA gene is the deep deletion of the gene. In addition, RALA gene has almost no mutation in Follicular Thyroid Cancer, Desmoplastic/Nodular Medulloblastoma, Cervical squamous cell cancer and endocervical adenocarcinoma (CESC), LAML, Chronic Lymphocytic Leukemia/Small Lymphocytic, Essential Thrombocythemia, Follicular lymphoma, Polycythemia vera, Invasive Breast Cancer and Liposarcoma (Figure 5A). At the mRNA level, we analyzed the correlation between the mRNA obtained by RALA gene transcription in pan-cancer and the variation of tumor copy number alteration (CNA) (Figure 5B).




Figure 5 | Mutant aspects of RALA. (A) Mutation types of RALA gene in pan-cancer. (B) The correlation between the mRNA obtained by RALA gene transcription in pan-cancer and the variation of tumor copy number (CNA).





Protein - protein interaction network of RALA

In order to explore the protein-protein interaction network of RALA, we searched the STRING database and found 11 nodes associated with RALA, namely RALBP1, EXOC2, EXOC8, RALGDS, PLD1, MYO1C, EXOC4, YBX3, RALGAPB, PLD2 (Figure 6A). Except for RALGAPB, the interaction between other proteins and RALA was verified in the experiment. The database predicted that RALGAPB was related to RALA, and they were gene neighborhoods. In order to ensure the accuracy of the data, we also selected the PINA database (Figure 6B) and the BioGRID database (Figure 6C), and intersected the genes of the three databases (Figure 6D). The intersection genes include RALBP1, EXOC2, EXOC8, PLD1, MYO1C and EXOC4 (Supplementary Table 1).




Figure 6 | Protein - protein Interaction network of RALA in different databases. (A) STRING, (B) PINA, (C) BioGRID, (D) Venn diagram of genes interacting with RALA in three different databases.





Functional analysis based on RALA expression

We used the pan-cancer dataset in cBioPortal to find the genes closely related to RALA and sorted them according to p-Value<0.05. We selected the genes whose absolute value of Spearman’s Correlation coefficient was more than 0.35, and screened a total of 241 genes associated with RALA (Supplementary Tables 2, 3). The four molecules with the highest positive correlation with RALA were YKT6, GPSM2, GARS1 and SLC24A2 (Supplementary Figures 3A–D). For these genes, we used GO database and KEGG database for functional enrichment analysis (Figures 7A–D). Through data analysis, the expression of RALA was significantly positive correlated with mitotic nuclear division, regulation of cell cycle phase transition, microtubule cytoskeleton organization involved in mitosis and protein localization to nuclear body at the biological process (BP) level; the cellular component (CC) is associated positively with chaperone complex, chaperonin-containing T-complex, spindle and mitotic spindle; in addition, at the molecular function (MF) level, we did not enrich the function that was significantly positively correlated with RALA. Based on KEGG database, the pathways positively associated with these genes are Cell cycle (Figures 7A, B). For BP, RALA was negatively correlated with alpha-amino acid catabolic process, cellular amino acid catabolic process, and alpha-amino acid catabolic process. As for MF, the top four negative correlations were complement binding, lyase activity, carbon-oxygen lyase activity and coenzyme binding. No functional genes related to CC were found in RALA. In the KEGG database, the analysis results showed that the main pathways negatively correlated with RALA were complement and coagulation cascades, tryptophan metabolism, other glycan degradation and arachidonic acid metabolism (Figures 7C–F).




Figure 7 | Functional analysis based on RALA expression. (A-F) Results of RALA functional enrichment analysis using GO and KEGG databases.





Drugs targeting RALA

TISIDB database was used to analyze the current drugs targeting RALA in DrugBank database. The result showed that there was a small molecule drug targeting RALA, Guanosine-5’-Diphosphate, ID: DB04315 (Figure 8). However, there is no clinical experiment to prove the relationship between the two. By reviewing the literature, we found that researchers usually focus on the clinical role of DB04315, which connects other functional groups such as diphosphate (26, 27).




Figure 8 | Current drug for RALA. The result showed that there was a small molecule drug targeting RALA, Guanosine-5’-Diphosphate, ID: DB04315.





Data analysis and experimental verification of RALA in HCC

Through the above analysis, we found that the differential expression, prognosis and immune cell infiltration of RALA were statistically significant in HCC. Therefore, we chose HCC as the tumor type to conduct in-depth analysis of RALA related data.



Expression of RALA in HCC

The expression level of RALA was predicted by the database to be significantly higher in HCC tumor tissues than in normal tissues (Figure 9A) and varied by stage (Figure 9B). The expression of RALA in I/II/III stage were significantly higher than that in normal tissues. In addition, the expression of RALA gradually increased with the progression of the disease. However, we found that the expression level of RALA decreased in IV stage, which was similar to that in stage 1, but still higher than that in normal tissues.




Figure 9 | Analysis of RALA in HCC. (A) The expression level of RALA was predicted by TCGA database to be significantly higher in HCC tumor tissues. (B) The expression of RALA in different stages of HCC. (C) The protein expression level of RALA in HCC cell lines. (D) The mRNA expression level of RALA in HCC cell lines. Compared with THLE-3, the expression level of RALA was up-regulated in HCC cell lines. (E) Mutations and CNA data of RALA in HCC. (F) Signaling pathways containing RALA. **p < 0.01, ***p < 0.001, ****p < 0.0001.





Expression of RALA in human HCC cell lines

In this study, the expression levels of RALA in HCC cell lines Huh-7, PLC/PRF/5 and liver immortalized cell line THLE-3 were analyzed. RT-qPCR results showed that compared with THLE-3, the expression level of RALA was up-regulated in HCC cell lines (Figure 9C). The results of Western Blotting analysis were consistent with those of RT-qPCR (Figure 9D).



Mutation of RALA in HCC

We used 366 samples of HCC with mutations and CNA data in the TCGA database, of which the more significant mutation type was missense mutation (Figure 9E). At the gene level, the mutation site was located in the third region of the exon. At the protein level, there are also some changes in post-translational modification after gene mutation. There are 11 phosphorylation sites, 1 ubiquitination site, 1 malonylation site, and 1 palmitoylation site. These mutation sites are evenly distributed in each part of the exon, exon 2 has two phosphorylation sites, one malonylation site, exon 3 includes five phosphorylation sites, exon 4 contains two phosphorylation sites, one ubiquitination site.



The correlation between RALA and HCC signaling pathways

RAS signaling pathway is one of the main channels to govern cell proliferation, survival and apoptosis inhibiting procedures in response to intracellular signals transduced by mitogens. RALA is a downstream molecule of RAS signaling pathway (Figure 9F). Next, we use HCC data in TCGA to further analyze the correlation between RALA and gene pathway. The results showed that the pathways significantly associated with RALA were mainly cellular response to hypoxia, tumor proliferation signature, EMT markers, ECM related genes, angiogenesis, apoptosis, DNA repair, G2M checkpoint, Inflammatory response. PI3K-AKT-mTOR pathway, P53 pathway, MYC targets, TGFB, IL-10 anti-inflammatory signaling pathway, DNA replication, collagen formation, degradation of ECM and ferroptosis, and the relationship between RALA and these pathways was positively correlated (Figure 10).




Figure 10 | The correlation between RALA and HCC signaling pathways. (A, P) There is no significant correlation between RALA and tumor inflammation signature, genes up-regulated by reactive oxygen species. (B–O, Q–T) RALA is remarkable positively correlated with cellular response to hypoxia, angiogenesis and other common intracellular signaling pathways.






Discussion

The results of data analysis showed that RALA gene was highly expressed in 29 kinds of cancers. The expression level of RALA in normal tissues was higher than that in cancer tissues only in LAML, LUAD, LUSC and PCPG. IHC results also supported the conclusion. We used TISIDB database to analyze the relationship between RALA expression and tumor staging in pan-cancer. The data showed that the staging of colorectal cancer was not significantly correlated with the expression of RALA. The study of Ushigome M et al. also proved this conclusion. RALA protein as a tumor antigen can induce the production of serum RALA antibody (s-RALA-Abs). They analyzed 314 patients with colorectal cancer and found that the level of RALA expression in 0/I/II stage of cancer was similar to that in III/IV stage. However, the recurrence-free survival rate in the s-RALA-Abs positive group was significantly poor (28).

RALA and RALB are small GTPases related to the growth and metastasis of various cancers. Although they belong to the RAS superfamily of small G proteins and are highly homologous small G proteins, their roles in BRCA are completely opposite. Thies KA et al. have shown that RALA knockdown inhibits in situ tumor growth in TNBC cells, while RALB knockdown accelerates this process. For the metastatic ability of tumor, similar results were obtained. RALA promoted the metastatic growth of TNBC cell lines, while RALB inhibited tumor metastasis (29). This experiment emphasized the potential of targeted RALA in the treatment of BRCA. But in bladder cancer, researchers found different phenomena. Oxford et al. found elevated levels of GTP-RALA in bladder cancer cell lines UMUC-3 and DU145, but in the experimental results obtained by transwell, only RALB was necessary for cancer cell migration and RALA inhibited it (30). In the early studies of multiple myeloma (MM), experiments had shown that RALB can promote the migration of OPM-1 and NCI-H929 cells, but RALA did not have this effect (31). In HCC, the expression level of RALA and the level of RALA autoantibodies in cancer tissues were significantly higher than those in patients with liver cirrhosis or normal tissues. RALA knockout greatly reduced the proliferation and invasion ability of cells in vitro (32). In addition, RALA silencing also reduced the stemness of HCC cells, and over-expression of RALA could reverse these characteristics, while RALB was not found to function in HCC tissues (14). Therefore, some researchers believed that RALA rather than RALB can be used as a therapeutic target for HCC.

We also analyzed the interaction between RALA and tumor immunity. TME is rich in immune cell infiltration, such as tumor associated macrophages (TAM), neutrophils, antigen presenting cells (APC), and adaptive immune cells. It is of great significance for the therapeutic effect and prognosis of cancer patients, and can be used as a marker to evaluate the response of tumor cells to immunotherapy (33). RALA GTPases can also be activated in NK cells and mediate cytotoxicity. After silencing both RALA and RALB, the cytotoxicity of NK cells is evidently attenuated (12). The purpose of immunotherapy is to enhance the body’s natural defense ability to eliminate malignant cells. It is a major breakthrough in cancer treatment. In recent years, great progress has been made in basic and clinical research, and immune cells are the cellular basis of tumor immunotherapy (34). According to the TCGA datasets, we conclude that RALA is significantly associated with multiple immune cells in pan-cancer. Cole G et al. used DNA vaccine technology to inject RALA probe into mice with prostate cancer by microneedle delivery system, and used vaccine to induce tumor-specific cellular immune response, so as to achieve the purpose of cancer treatment (35). Similar studies had been conducted in cervical cancer (36, 37). Ali AA et al. designed MN/RALA-E6/E7-vaccine using a new system for delivering therapeutic HPV DNA vaccines. The vaccine had a significantly preventive effect on cervical cancer and can significantly reduce tumor mass and prolong survival (36). RALA is a tumor antigen, so s-RALA-Abs could be used as potential biomarkers. This study had been reported in HCC, ESCA, colorectal cancer (38), breast cancer, ovarian cancer (39) and gastric cancer (40). Nanami T, et al. found that in gastric cancer, the presence of s-RALA-Abs had nothing to do with other conventional serum tumor markers. In clinical tests, the detection rate of gastric cancer can be improved when s-RALA-Abs is combined with CEA and CA19-9 (40). By detecting s-RALA-Abs and s-p53-Abs in 1833 patients with different cancers, it was found that the positive rates of both antibodies were significantly increased in all types of cancers. Therefore, the combination of s-RALA-Abs and s-p53-Abs has a synergistic effect on the diagnosis of cancer (41). RALA also inhibits cancer cell migration in certain types of tumors, such as bladder cancer. Interestingly, RALA expression was up-regulated in tumor tissues of bladder cancer by analysis of the TCGA database (30). Similarly, RALA expression was down-regulated in tumor tissues of LUSC and LUAD, but researchers found that inhibition of the RALA signaling pathway could treat non-small cell lung cancer (42). We did not find any studies on the expression and function of RALA in PCPG. In addition, we also found that RALA was significantly associated with several common immune checkpoints in pan-cancer, and the expression of RALA was closely related to the biological process of most immune-related molecules. However, there are few clinical studies on RALA and immune checkpoint inhibitors in pan-cancer. Our data analysis can provide new ideas for cancer treatment and new targets for the development of immune inhibitors.

Through the enrichment analysis of RALA gene, the results showed that RALA high expression may be through mitotic nuclear division, regulation of cell cycle phase transition, microtubule cytoskeleton organization involved in mitotic, protein localization to nuclear body. Chaperone complex, chaperonin-containing T-complex, spindle, mitotic spindle and cell cycle these biological processes affect the progression of cancer. These results are consistent with previously confirmed studies suggesting that RALA signaling regulates cell proliferation and migration (43).

Overall, our extensive cancer research on RALA showed significant differential expression of this gene between tumor and normal tissues, and elucidated the correlation between RALA expression and immune cell infiltration and common immune checkpoints (44). RALA affects the prognosis of a variety of tumors through extensive data analysis (45). For pan-cancer, the level of its expression might be closely related to tumor staging, and the specific function of RALA in each cancer needs to be further studied. Furthermore, the relationship between RALA expression and TMB, MSI was statistically significant in a variety of cancers. Through data analysis, we enriched the molecular functions and signaling pathways of RALA. In summary, our findings may help explain the role of RALA in the development and progression of pan-cancer (46).



Conclusion

In combination with the pan-cancer cohort, we analyzed multiple databases and found that the up-regulation of RALA expression was related to poor prognosis of tumors, which might be involved in the signaling pathway related to immune cell infiltration. Since RALA was significantly associated with a variety of immune checkpoints, it could be used as a potential target for immunotherapy. However, further clinical and general biological studies are needed to verify the function of RALA in tumor cells.
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Introduction

Breast cancer (BC) has been ranking first in incidence and the leading cause of death among female cancers worldwide based on the latest report. Regulated cell death (RCD) plays a significant role in tumor initiation and provides an important target of cancer treatment. Cuproptosis, a novel form of RCD, is ignited by mitochondrial stress, particularly the lipoylated mitochondrial enzymes aggregation. However, the role of cuproptosis-related genes (CRGs) in tumor generation and progression remains unclear.



Methods

In this study, the mRNA expression data of CRGs in BC and normal breast tissue were extracted from TCGA database, and protein expression patterns of these CRGs were analyzed using UALCAN. The prognostic values of CRGs in BC were explored by using KaplanMeier plotter and Cox regression analysis. Genetic mutations profiles were evaluated using the cBioPortal database. Meanwhile, we utilized CIBERSORT and TIMER 2.0 database to perform the correlation analysis between CRGs and immune cell infiltration.



Results

Our results indicated that CRGs expression is significantly different in BC and normal breast tissues. Then we found that upregulated PDHA1 expression was associated with worse endpoint of BC. Moreover, we also performed immune infiltration analysis of CRGs, and demonstrated that PDHA1 expression was closely related to the infiltration levels of CD4+ memory T cell, macrophage M0 and M1 cell and mast cell in BC.



Conclusions

Our results demonstrated the prognostic and immunogenetic values of  PDHA1 in BC. Therefore, PDHA1 can be an independent prognostic biomarker and potential target for immunotherapy of BC.
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Introduction

Breast cancer is the most frequent and commonly diagnosed cancer in women, and ranks first in terms of morbidity and mortality (1, 2). Not only a wealth of examinations including breast ultrasound, mammography and MRI have been conducted, which can diagnose breast cancer patients in early stage (3), but breast cancer has evolved from classical markers providing basic tissue diagnosis, such as ER and HER2, to a series of comprehensive biomarkers including BRCA1/2, PIK3CA, FOXA1 and NAT1 based on protein expression and molecular prognosis (4–6). However, breast cancer is a highly heterogeneous disease with non-specific and complicated biomarkers. Furthermore, in recent years a growing body of research has revealed that about 20% of metastatic BC patients survive less than 5 years, which may be due to the lack of specific biomarkers for early diagnosis and the prognosis assessment of BC patients (7, 8). Thus, it is imperative to find effective biomarkers to assess the prognosis of BC patients and explore new thoughts for BC treatment.

Breast cancer has traditionally been considered as a limited immunogenic tumor, but now there is growing evidence that immune infiltration has a prognostic role in all breast cancer subtypes (9, 10). The number and composition of tumor-infiltrating lymphocytes (TILs) are critical for both breast cancer treatment responsiveness and improved prognosis. TILs comprise a mixture of cytotoxic T cells, helper T cells, B cells, macrophages, natural killer cells, and dendritic cells, which have been observed in many solid tumors, including breast invasive carcinoma(BRCA) (11), gastrointestinal tumor (12) and colorectal cancer (13). To date, robust immune biomarkers for therapy have not been established in BC. A comprehensive understanding of the association between gene expression in BC and tumor immune components may facilitate faster identification of novel immune-related targets and elucidation of the immune-mediated interaction in BC patients.

Copper plays an indispensable role in cells, which is a catalytic cofactor involved in the regulation of energy generation, iron collection, oxygen transport, signal transduction and plenty of other biological processes (14). Slight changes of copper homeostasis might generate severe toxicity and influence the initiation and progression process of cancer (15). A recent study reported that serum Cu level in BC patients was significantly higher than in healthy controls and patients with benign breast diseases (16), and copper can be transported to lysyl oxidase (LOX) family members, thus contributing to cancer metastatic (17). Too little copper can injure the function of important copper-binding enzymes, and copper accumulation can overwhelm a cell, leading to death (18). Recently, this novel mode of cell death named cuproptosis draws much attention, which is depicted that copper can bind to the lipoylated components of the tricarboxylic acid (TCA) cycle, leading to toxic protein stress and finally to cell death (19). Cuproptosis is different from other known death forms, including apoptosis, ferroptosis, and necroptosis, which is mediated by an ancient mechanism named protein lipoylation instead of adenosine triphosphate production. Furthermore, based on a whole-genome CRISPR-Cas9 technical screening, seven genes (FDX1, DLD, DLAT, LIAS, LIPT1, PDHA1, and PDHB) were found to be resistant to cuproptosis, while three genes (MTF1, GLS, and CDKN2A) sensitized the cells to cuproptosis (19).Among them, LIPT1 was found to be positively related to PD-L1 expression and negatively correlated with Treg cell infiltration in melanoma (20), whereas FDX1 expression was closely associated with six types (including T cells, monocytes, macrophages, mast cells) in renal cancer and five types (including CD8+ T cells, regulatory T cells, dendritic cells, mast cells) in thyroid carcinoma (THCA) (21, 22). However, the relationship between cuproptosis-related genes (CRGs) and immune infiltration of breast cancer remains unclear.

In our current study, we comprehensively analyzed the expression profile and stage characteristics of these CRGs in breast cancer, finding that CDKN2A, PDHA1 and LIPT1 expression were associated with pathological stage of BC. Then, we evaluated the prognostic value of CRGs by Kaplan-Meier Plotter and Cox analyses, finding that upregulated PDHA1 was associated with lower overall survival (OS) and recurrence-free survival (RFS) in BC. Moreover, we also conducted the correlation analysis between CRGs expression and immune cell infiltration, and the result showed that PDHA1 expression was strongly linked to CD4+ memory T cell, macrophage M0 and M1 cell, and mast cell in BC. These findings demonstrated that PDHA1 is a promising prognostic biomarker and actively takes part in the process of the immune response of breast cancer, thereby comprehensively shedding light on the exploitation of specific target drugs and immunegenic-mediated network of BC.



Materials and methods


Gene and protein expression profile

We obtained CRGs gene expression data and clinical information in all types of tumors and paired normal samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue (GTEx). Meanwhile, comparison of CRG expression between 113 normal and 1109 breast cancer patients was also explored using Wilcoxon rank sum test. Furthermore, gene Expression Profiling Interactive Analysis 2 (GEPIA2) tool was used to analyze the CRGs expression in different pathological stages of BC (23). The university of alabama at birmingham cancer data analysis portal (UALCAN) tool was utilized to perform protein expression analysis of CRGs extracted from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset, including 18 normal samples and 125 primary BC samples (24, 25).



Survival prognosis analysis and cox regression analysis

We used Kaplan–Meier Plotter to explore the prognostic value of CRGs expression for OS and RFS in BC. The Cox proportional hazard model was used to evaluate whether the expression of CRGs was correlated with clinical prognosis of BC patients. Hazard ratios (HR) > 1 and p < 0.05 suggested a significant association between CRGs and increased risk of death.



Genetic alteration analysis

The cBioPortal database has an abundant resource for exploring and analyzing multidimensional cancer genomics data including epigenetic, gene expression profile and proteomic data (26). Therefore, the cBioPortal was used to evaluate the alteration frequency and form of CRGs in 996 BC samples.



Immune subtype and tumor microenvironment (TME) analysis

The “limma” “ggplot2” and “reshape2” R packages were used to conduct the immune subtype analysis of CRGs. The p value < 0.05 was considered to indicate a significant difference. Meanwhile, we obtained the immune score, stromal score, and estimate score of different tumor samples by using the “estimate” and “limma” R packages. Correlation analysis between CRGs expression and estimate score of 33 TCGA tumors including BC patients was performed. Furthermore, we combined gene expression data with stemness score of RNAss and DNAss to conduct Spearman correlation test. Finally, the association between 10 CRGs and RNAss/DNAss of 33 TCGA tumors were obtained.



Correlation analysis of the tumor-infiltrating immune cells

CIBERSORT algorithm was utilized to analyze 22 kinds of tumor-infiltrating immune cells (TIICs) in 33 TCGA tumors, such as regulatory T cells, gammadelta T cells, macrophages, CD8+ T cells, naive CD4+ T cells, follicular helper T cells. Then we used Timer 2.0 database to estimate the correlation between specific immune cell infiltration and CRGs expression levels in BC. Correlation values and p values were calculated by purity-adjusted Spearman’s rank correlation test. These results were displayed as a heatmap and scatter plots.



Correlation and enrichment analysis of CRGs

GeneMANIA is a flexible and powerful website which can explore gene function, and search interacted genes (27, 28). We utilized the GeneMANIA website to analyze and classify the interactions between CRGs and their correlate genes. WebGestalt is an online tool concentrating on enrichment analysis, which has various of enrichment analysis algorithms and supports an abundant database of functional annotations (29). In this study, we used the WebGestalt database to perform GO and KEGG enrichment analysis of CRGs.



Cell culture

Human breast cancer cell lines MCF-7, BT-474 and BT-549 and normal human breast epithelial cell line MCF-10A were obtained from American Type Cultural Collection (ATCC). MCF-10A were maintained in DMEM/F12 (Solarbio Science & Technology Co., Ltd, Beijing, China) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin solution plus 3.5 μg/mL human insulin, 20 ng/mL epidermal growth factor and 0.5 μg/mL hydrocortisone. MCF-7, BT-474 and BT-549 were maintained in RPMI 1640 (Solarbio Science & Technology Co., Ltd, Beijing, China) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin solution. These cells were cultured in an incubator with a 5% CO2 humidified atmosphere at 37°C. All reagents were commercially obtained from the Procell Life Science&Technology Co., Ltd (China)



Quantitative real-time polymerase chain reaction analysis

Total RNA was extracted from the cells using TRIzol reagent (Thermo Fisher, USA). Reverse transcription kit and SYBR qPCR Master Mix (Shandong Sparkjade Biotechnology Co., Ltd.) were used for the cDNA synthesis of the target genes according to the manufacturer’s instructions. RT-qPCR primer sequences are listed in Table S1. Beta-actin gene expression was used as the endogenous control. The relative expression of the target genes relative to the control was calculated according to the 2-ΔΔCT formula. Each experiment was conducted in triplicate.



Tissue microarray and immunohistochemistry

The tissue microarray including 30 BC tissues (Outdo Biobank, Shanghai, HBre-Duc060CS-04) was used in the study. The tissue microarray samples were immunostained by PDHA1 antibody (Abclonal, Cat.A1895, dilution 1:250). All immunostained slides were scanned on AxioScan Z1 (Zeiss), and computerized image analysis was performed by Aipathwell. The degree of immunostaining was analyzed and scored by two independent pathologists who were blinded to the clinical details.




Result


Gene expression analysis data of CRGs

We selected 10 genes (CDKN2A, DLAT, FDX1, DLD, LIPT1, LIAS, GLS, PDHB, MTF1 and PDHA1) which are closely related to cuproptosis and next performed expression analysis in breast cancer (19). As displayed in Figure 1A, we analyzed the expression pattern of CRGs in breast cancer tissues and non-tumor tissues based on TCGA and GTEx dataset, illustrating that CDKN2A, DLD, DLAT, MTF1 and PDHB expression were significantly elevated in breast cancer compared with their normal tissues. However, FDX1, LIAS, GLS, LIPT1 and PDHA1 were highly expressed in breast normal tissues (P < 0.05). Additionally, the diversity of the tumor tissues and adjacent normal tissues from TCGA database was also examined in Figure 1B, the expression discrepancy of DLD and DLAT has no statistical significance and others are consistent with the above results. Subsequently, normal breast epithelial cell line (MCF-10A) and three breast cancer cells with different receptor expressed (ER+ BC cell line MCF-7, HER2+ BC cell line BT474 and triple-negative breast cancer (TNBC) cell line BT549) were chosen to detect cuproptosis-related gene expression via RT-qPCR experiments, suggesting that the expression levels of MTF1 and PDHB were significantly higher in three above kinds of BC cells than in MCF-10A, whereas DLD and DLAT were higher expressed in MCF-7 and BT-474 than in MCF-10A. Notedly, there was no difference in LIPT1/PDHA1 expression between MCF-10A and BT-549 cells, but their expression in receptor-positive breast cancer cells was higher than that of MCF-10A, which might indicate that the difference of LIPT1 and PDHA1 expression was related to the receptor status of BC (Figure 2).




Figure 1 | (A) Expression levels of CRGs in BC and normal tissues from TCGA and GTEx database (tumor in red and normal in blue) (B) Expression levels of CRGs in BC and paired normal tissues from TCGA. *P < 0.05 and ***P < 0.001; ns, No statistical significant.






Figure 2 | mRNA levels of CRGs in BC cell lines and human normal mammary epithelial cell quantified by real-time PCR. (A) CDKN2A; (B) FDX1; (C) DLD; (D) DLAT; (E) LIAS; (F) GLS; (G) LIPT1; (H) MTF1; (I) PDHA1; (J) PDHB. The experiments were repeated three times. *p < 0.05, **p < 0.01, ***p < 0.001; ns, no statistically significant.



Furthermore, we also obtained CRGs expression data in 18 types of cancers (BLCA, BRCA, CHOL, COAD, ESCA, LUAD, GBM, HNSC, KIRC, UCEC, READ, KICH, LIHC, KIRP, LUSC, THCA, PRAD, and STAD) from TCGA dataset, showing that CRGs had a rich heterogeneity in these cancers. As displayed in Figure S1, CDKN2A was highly expressed in most cancers. In contrast, FDX1 and MTF1 expression in most cancers were lower than paired normal tissues. In addition to transcription, we also analyzed protein levels of CRGs using the large-scale proteome data available based on CPTAC dataset. The result demonstrated that the total protein expression levels of FDX1, LIPT1 and MTF1 in BC were significantly higher than the corresponding control tissues. Nonetheless, DLD, DLAT, PDHA1 and PDHB protein expression in BC tissues were lower than normal breast tissues (Figure 3). These results illustrate that expression differences of FDX1, LIPT1, MTF1, PDHA1 and PDHB genes may be involved in the development and outcome of BC. Additionally, we also analyzed the association between CRGs expression and pathological stage of BC patients by GEPIA2 tool, displaying stage-specific expressional changes of CDKN2A, LIPT1 and PDHA1 in BC patients (Figure 4). Then, early-stage associated prognosis analysis of the above three genes was performed in this study and found that only PDHA1 expression was closely related to survival rate of these patients (Figure S2). Previous studies demonstrated that PDHA1 could regulate the growth of breast cancer cells by the coordination of glucose metabolism reprogramming (30).To further elucidate the role of PDHA1 expression in the clinical features of BC patients, we verified that PDHA1 expression was associated with T stage from the database and subsequently collected 30 breast cancer samples to confirm that PDHA1 expression was higher in T2 stage than in T1 stage (Figure S3). In conclusion, PDHA1 is expected to be a potential molecule for early pathological diagnosis of BC.




Figure 3 | Total protein levels of CRGs (A–J) in normal tissue and BC. Protein expresssion data was collected and analyzed using CPTAC. *p < 0.05, ***P < 0.001, ****P < 0.0001; ns, no statistically significant.






Figure 4 | Stage-dependent expression levels of CRGs (A–J). Main pathological stages of BC were assessed and compared using TCGA data. The log2 (TPM + 1) for log-scale was used.





CRGs prognostic value in BC

Some evidence suggested PDHA1 was closely related to the progression and prognosis of gastric, pancreatic and esophageal squamous cancer (31–33). Therefore, we performed Kaplan-Meier analysis between CRGs expression and survival outcomes in BC, including OS and RFS. The results of OS analysis suggested that high expression of PDHA1 was correlated with the worse endpoint of BC patients, but upregulation of LIPT1 and MTF1 was associated with the better endpoint in BC (Figure 5). We also verified that the expression of these three genes was actively involved in the relapse free survival of BC (Figure 6)




Figure 5 | Relationship between CRGs (A–J) expression levels and OS in BC. The curves generated by using the KM plotter database show the prognostic value of CRGs. The red lines indicate high CRGs expression, and the black lines indicate low CRGs expression.






Figure 6 | Correlation between CRGs (A–J) expression levels and RFS in BC. The curves generated by using the KM plotter database show the prognostic value of CRGs.



To further clarify the effect of LIPT1 and PDHA1 on the prognosis of breast cancer, we performed univariate and multivariate Cox analysis of OS in BC patients, and the results are shown in Table 1. In univariate Cox model, T stage (P = 0.012), N stage (P < 0.001), M stage (P < 0.001) and PDHA1 expression (P = 0.025) were correlated with OS in BC patients. The result of multivariate Cox analysis displayed that N stage (P = 0.011), M stage (P = 0.049) and PDHA1 expression (P = 0.014) were still associated with worse clinical outcome. Therefore, PDHA1 is more possible to be seen as an independent prognostic biomarker in BC patients.


Table 1 | Univariate and multivariate Cox analyses of prognostic factors in breast cancer.





Genetic alteration analysis of CRGs in breast cancer

We used cBioPortal database to perform the frequency and types of gene changes of CRGs in 996 BC samples. As displayed in Figure 7A, the highest variation rate of CRGs was CDKN2A, which is 5%. The genetic alteration rate of the LIPT1 gene was 0.4%, which was the lowest in the CRGs. In 996 BC samples, 116 patients had genetic alteration in CRGs, with a total variation rate of 15.1%. Gene mutation, deep deletion and amplification were the main genetic variation types in CRGs. The mainly alteration types of DLD, GLS, LIPT1, MTF1 and PDHA1 are gene amplification (Figure 7B).




Figure 7 | Genetic mutation and correlation analysis of CRGs in BC. (A) Profile of alteration rates for CRGs in BC using cBioPortal (B) Genetic alteration frequency data of CRGs in BC using cBioPortal.





Immune subtype and tumor microenvironment (TME) analysis of CRGs

As we know from Figure 8, the expression of FDX1, LIAS and GLS were positively correlated with estimate score, while DLD, PDHA1, PDHB were negatively associated with estimate score in BC. In those genes, PDHA1 was the most significantly correlated with immune score, and GLS was the most significantly correlated with stromal score.




Figure 8 | Relationship of CRGs expression with RNAss, DNAss, StromalScore, ImmuneScore and EstimateScore in BC, R represents correlation value, positive number represents positive correlation, negative number represents negative correlation.



PDHA1 and CDKN2A were positively correlated with RNAss and DNAss, while LIPT1 was negatively associated with RNAss and DNAss in BC. Furthermore, PDHA1 was the most importantly correlated with RNAss and DNAss. Then we conducted these analyses of CRGs in pan-cancer. The result showed that most of CRGs were positively correlated with the RNAss and DNAss in pan-cancer (Figures S4A, B). In addition, Figures S4D–F demonstrated that most of CRGs were significantly negatively associated with stromal score, immune score and estimate score in pan-cancer.

Previous studies demonstrated that CRGs could regulate immune process in some specific tumors, including melanoma, liver cancer and renal cancer. Therefore, we compared the relationships between CRGs expression and immune subtype in this study. Immune subtype were classified into six types, including C1 (wound healing), C2 (IFN-gamma dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5 (immunologically quiet) and C6 (TGF-β dominant) (34). The results suggested that expression of CRGs in pan-cancer were significantly different in these immune subtypes (Figure 9A). For BC, the overall expression of DLD, DLAT, PDHA1 and PDHB were the most obvious in the five subtypes. Notably, PDHA1 was the highest expressed in C2, and was the lowest in C6 (Figure 9B).




Figure 9 | Correlation among expression levels of CRGs and different immune subtype in pan-cancer and BC. (A) CRGs expression levels in different immune subtypes in pan-cancer. (B) CRGs expression levels in different immune subtypes in BC. X axis is immune subtype, Y axis is gene expression. C1, wound healing; C2, IFN-γ dominant; C3, inflammatory; C4, lymphocyte depleted; C5, immunologically quiet; C6, TGF-β dominant. P < 0.05, ***P < 0.001.





Association between CRGs expression and immune cell infiltration

As the crucial components of the TME, tumor-infiltrating immune cells have been found to be closely associated with the initiation, progression and metastasis of cancers (35, 36). To further assess the relationship between LIPT1 and PDHA1 and immune cell infiltration levels in pan-cancer, we used “CIBERSORT” algorithm to evaluate the 22 immune cells based on published data and found that the expression of PDHA1 was negatively associated with gamma delta T cell and memory B cell in most cancers (Figure 10A). Whereas LIPT1 expression was negatively correlated with regular T cell and macrophage M0 cell in most cancers (Figure S5A). Furthermore, we also used the TIMER2 database to verify the relationship between PDHA1 expression and immune cells in BC (Figures 10B), suggesting that the expression level of PDHA1 was positively associated with CD4+ memory T cell and macrophage cell, and negatively linked to mast cell active. However, LIPT1 expression has no significant difference in CD4+ memory T cell and macrophage M1 cell (Figures S5B–E). Figure S6 displayed the correlation between other eight genes expression and immune cell infiltration. Additionally, correlation analysis between LIPT1/PDHA1 and related markers of immune cells of BC was also illustrated in this study, founding that PDHA1 has the most negative correlation with GATA3 and positive relation with CCR8 (Table S2). Nevertheless, the relationship of CRGs with significant immune checkpoint members including PD-1, PD-L1, PD-L2, LAG3 and CTLA4 in BC was also showed and found that PDHA1 has little correlation with these genes, which may suggest that PDHA1 regulates immune infiltration from other directions (Figure S7).




Figure 10 | Correlation analysis of PDHA1 expression with immune cell infiltration analysis in BC. (A) The relationship between PDHA1 expression level and the infiltration levels of immune-related cells. (B) The scatter plots of relationship between PDHA1 expression and infiltration levels of immune-related cells by using TIMER2 database *P < 0.05, **P < 0.01, and ***P < 0.001.





Correlation and enrichment analysis of CRGs

The CRGs correlation analysis in BC indicated that CDKN2A expression was negatively associated with the expression of other six CRGs (DLD, DLAT, LIAS, LIPT1, MTF1 and PDHB). The other nine genes expression except for CDKN2A were positively correlated with the expression of most CRGs (Figure 11A). Furthermore, we conducted the correlation analysis in pan-cancer, and the result demonstrated that DLD and PDHA1 were the two genes having the most significantly positive association (Correlation coefficient = 0.39). CDKN2A and GLS, CDKN2A and LIAS, PDHA1 and MTF1 were the genes having the most significantly negative correlation (Correlation coefficient= -0.17, Figure S8C). Figure S8A displayed the expression heatmap of the ten genes in 18 TCGA pan-cancers. PDHA1 was the highest expression in LUSC, and LIPT1 was the highest expression in GBM. Figure S8B demonstrated that PDHA1 was the highest expression in pan-cancer, and CDKN2A was the lowest expression in pan-cancer.




Figure 11 | Enrichment analysis of functions and pathways of the related molecules of CRGs. (A) The relationship between the CRGs. Blue color indicates negative correlation and red color indicate positive correlation. (B) protein–protein interaction network of the CRGs analyzed by using GeneMANIA; (C) GO analysis of relevant biological processes, cellular components, and molecular functions of the CRGs; (D) KEGG pathway analysis of the relevant signal pathways *P < 0.05, **P < 0.01.



Then we used the GeneMANIA database to find the potential interaction partners with CRGs. The result showed that expression of CRGs was closely associated with PDHX, DLST, OGDH and so on (Figure 11B). We also used the WebGestalt database to perform GO and KEGG functional enrichment analysis of the above 20 genes associated with CRGs. GO analysis displayed that metabolic process, response to stimulus and biological regulation were involved in biological processes. The result of KEGG analysis showed that Citrate cycle, Propanoate metabolism and Pyruvate metabolism were revealed as the three most importantly enriched pathways, suggesting that these genes were critically involved in the cell metabolic process (Figures 11C, D).




Discussion

Cuproptosis occurs via directly binding of copper to lipoylated components of the tricarboxylic acid cycle (19). The procedure of cuproptosis is significantly associated with mitochondrial respiration. Abundant copper within cells is transported to the mitochondria by ionophores and combined with lipoylated components of the tricarboxylic acid cycle, leading to the accumulation of lipoylated proteins, thereby resulting in cell death because of proteotoxic stress. Preliminary studies on the function of CRGs have been explored in several tumors including bladder cancer (37), esophageal carcinoma (38), melanoma (20) and liver cancer (39). However, the role of CRGs in the development of TME and their potential prognostic value in BC remains unknown.

Our study firstly conducted expression patterns and clinical characteristic analysis of CRGs and found that CDKN2A, LIPT1 and PDHA1 were associated with the stages of BC. Then, survival analysis was performed for the evaluation of prognostic role of the CRGs, and the result showed that the expression of PDHA1, LIPT1 and MTF1 were associated with the OS and RFS in BC, however, the COX analysis and T-stage associated survival analysis suggested only PDHA1 expression was significantly related to the prognosis of BC patients. Besides, previous studies have suggested that the expression of CRGs was closely associated with TME in various malignancies (37, 40), and our study also found that FDX1, DLAT, PDHA1, GLS, CDKN2A were the highest expressed in C2, and LIPT1, LIAS, MTF1 were the highest expressed in C3. LIAS, DLD, DLAT and PDHB were negatively related to stromal score, immune score and estimate score, and FDX1, LIPT1 and GLS were positively related to three scores. These results demonstrating that CRGs were closely correlated with TME in BC.

Regulatory T cell (Tregs), which can express Foxp3, plays a pivotal role in maintaining of self-tolerance by restraining immune responses to self or xenogenous antigens (41–43). Tumor-infiltrating Tregs can contribute to poor clinical endpoint, which result in progression of tumor through inhibiting antitumor immunity and promoting angiogenesis (44). Hence, they are considered as a major obstacle to the successful application of cancer immunotherapy (45). In our study, FDX1, GLS, DLAT, MTF1 and LIPT1 were positively associated with main immune checkpoint genes expression and negatively correlated with the infiltration level of Tregs, which suggesting that they could be a positive biomarker for the prognosis of BC patients treated by immunotherapy.

Pyruvate dehydrogenase (PDH) plays a crucial role in glucose metabolism by oxidatively decarboxylating pyruvate to produce acetyl-CoA for the TCA cycle. As the catalytic component of pyruvate dehydrogenase (PDH), pyruvate dehydrogenase E1 (PDHA1) is located in the X chromosome and loss-of-function PDHA1 mutation appear serious lactic acidosis (46, 47). Besides, PDHA1 serves as a significant bridge between glycolysis and the mitochondrial TCA cycle. Emerging proofs have illustrated that PDHA1 dysregulation can promote glucose metabolism reprogramming and remodel cellular metabolic pattern (30, 48–50). In terms of its effect on cancer progression and development, decreased expression of PDHA1 was verified to be associated with an unfavorable outcome in a variety of types of cancers including ovarian (51), liver (52) and esophageal cancer (53). Furthermore, knockout of PDHA1 led to greater Warburg effect and more malignant characteristic on esophageal squamous cancer (50). In our study, we found that mRNA and protein expression level of PDHA1 was lower in BC tissues than in normal breast tissues. Kaplan-Meier analysis and Cox analyses of PDHA1 demonstrated that upregulated expression of PDHA1 was associated with worse OS and RFS outcome of BC patients, illustrating that PDHA1 has the potential to serve as a prognosis biomarker of BC.

We also analyzed the potential association between PDHA1 gene expression and immune infiltration in 33 types of cancers. In our study, we found that PDHA1 expression was negatively associated with the infiltration of regulate T cell (Tregs) in 9 tumors. Therefore, increased PDHA1 might promote the response to immunotherapy by inhibiting regulate T cell infiltration in the tumor microenvironment. The population of tumor-associated macrophages (TAMs) are the most abundant among tumor-infiltrating immune cells in TME and generally polarize into two different function subtypes termed as classically activated M1 and alternatively activated M2 subtypes (54). The M1-like macrophages, show antitumor characteristic by secreting pro-inflammatory cytokines (such as TNF and interleukin-2) and reactive nitrogen and oxygen intermediates (55). On the contrary, the M2-like macrophages are activated by the type 2 T helper cell (Th2) cytokines such as IL-4, IL-10 and IL-13, and exhibit promoting tumor capacity. In this study, we found that PDHA1 expression was positively correlated with macrophage M0 and M1 cell via using TIMER2 database, and negatively linked to macrophage M2 cell in BC. Based on these data, we considered that PDHA1 may have direct or indirect effects on macrophage polarization, thereby regulating the biological process and clinical outcome of BC, which is need to be confirmed by more robust and sufficient molecular experiments.

In conclusion, we conducted the expression profile analysis and prognosis analysis of the CRGs in BC, finding that PDHA1 expression was downregulated in BC. The higher expression of PDHA1 was associated with worse clinical endpoint of BC patients. Furthermore, the immune infiltration analysis demonstrated that PDHA1 was closely associated with the CD4+ memory T cell, macrophage M0 and M1 cell, and mast cell in BC. These results may provide insights for further investigation of the PDHA1 as potential target in BC.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.



Author contributions

ZhiS and ZY designed the overall study and revised the paper. TH, YL and JL drafted the manuscript and performed the data analysis. BS and ZheS participated in the data
collection. All authors contributed to the article and approved the submitted version.



Funding

This project is supported by the grand “National Natural Science Foundation of China.” No. 81803044.



Acknowledgments

We thank the supporting of the grants from the National Natural Science Foundation of China (No. 81803044) and School of Medicine, Xiamen University, Xiamen, China.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054305/full#supplementary-material



References

1. Libson, S, and Lippman, M. A review of clinical aspects of breast cancer. Int Rev Psychiatry (2014) 26(1):4–15. doi: 10.3109/09540261.2013.852971

2. Trapani, D, Ginsburg, O, Fadelu, T, Lin, NU, Hassett, M, Ilbawi, AM, et al. Global challenges and policy solutions in breast cancer control. Cancer Treat Rev (2022) 104:102339. doi: 10.1016/j.ctrv.2022.102339

3. Conti, A, Duggento, A, Indovina, I, Guerrisi, M, and Toschi, N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol (2021) 72:238–50. doi: 10.1016/j.semcancer.2020.04.002

4. Asleh, K, Negri, GL, Spencer Miko, SE, Colborne, S, Hughes, CS, Wang, XQ, et al. Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes. Nat Commun (2022) 13(1):896. doi: 10.1038/s41467-022-28524-0

5. Barzaman, K, Karami, J, Zarei, Z, Hosseinzadeh, A, Kazemi, MH, Moradi-Kalbolandi, S, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol (2020) 84:106535. doi: 10.1016/j.intimp.2020.106535

6. Najjar, S, and Allison, KH. Updates on breast biomarkers. Virchows Arch (2022) 480(1):163–76. doi: 10.1007/s00428-022-03267-x

7. Liang, Y, Zhang, H, Song, X, and Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol (2020) 60:14–27. doi: 10.1016/j.semcancer.2019.08.012

8. Sun, CC, Li, SJ, Hu, W, Zhang, J, Zhou, Q, Liu, C, et al. Retraction notice to: Comprehensive analysis of the expression and prognosis for E2fs in human breast cancer. Mol Ther (2022) 30(7):2639. doi: 10.1016/j.ymthe.2022.03.018

9. Denkert, C, von Minckwitz, G, Darb-Esfahani, S, Lederer, B, Heppner, BI, Weber, KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol (2018) 19(1):40–50. doi: 10.1016/S1470-2045(17)30904-X

10. Pruneri, G, Vingiani, A, and Denkert, C. Tumor infiltrating lymphocytes in early breast cancer. Breast (2018) 37:207–14. doi: 10.1016/j.breast.2017.03.010

11. Gibney, GT, Weiner, LM, and Atkins, MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol (2016) 17(12):e542–e51. doi: 10.1016/S1470-2045(16)30406-5

12. Solinas, C, Pusole, G, Demurtas, L, Puzzoni, M, Mascia, R, Morgan, G, et al. Tumor infiltrating lymphocytes in gastrointestinal tumors: Controversies and future clinical implications. Crit Rev Oncol Hematol (2017) 110:106–16. doi: 10.1016/j.critrevonc.2016.11.016

13. Bai, Z, Zhou, Y, Ye, Z, Xiong, J, Lan, H, and Wang, F. Tumor-infiltrating lymphocytes in colorectal cancer: The fundamental indication and application on immunotherapy. Front In Immunol (2021) 12:808964. doi: 10.3389/fimmu.2021.808964

14. Kim, B-E, Nevitt, T, and Thiele, DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol (2008) 4(3):176–85. doi: 10.1038/nchembio.72

15. Babak, MV, and Ahn, D. Modulation of intracellular copper levels as the mechanism of action of anticancer copper complexes: Clinical relevance. Biomedicines (2021) 9(8):852. doi: 10.3390/biomedicines9080852

16. Feng, Y, Zeng, J-W, Ma, Q, Zhang, S, Tang, J, and Feng, J-F. Serum copper and zinc levels in breast cancer: A meta-analysis. J Trace Elem Med Biol (2020) 62:126629. doi: 10.1016/j.jtemb.2020.126629

17. Shanbhag, V, Jasmer-McDonald, K, Zhu, S, Martin, AL, Gudekar, N, Khan, A, et al. Atp7a delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U.S.A. (2019) 116(14):6836–41. doi: 10.1073/pnas.1817473116

18. Kahlson, MA, and Dixon, SJ. Copper-induced cell death. Science (2022) 375(6586):1231–2. doi: 10.1126/science.abo3959

19. Tsvetkov, P, Coy, S, Petrova, B, Dreishpoon, M, Verma, A, Abdusamad, M, et al. Copper induces cell death by targeting lipoylated tca cycle proteins. Science (2022) 375(6586):1254–61. doi: 10.1126/science.abf0529

20. Lv, H, Liu, X, Zeng, X, Liu, Y, Zhang, C, Zhang, Q, et al. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma. Front Pharmacol (2022) 13:930041. doi: 10.3389/fphar.2022.930041

21. Wang, T, Liu, Y, Li, Q, Luo, Y, Liu, D, and Li, B. Cuproptosis-related gene expression correlates with the prognosis and tumor immune microenvironment in clear cell renal cell carcinoma. Front In Immunol (2022) 13:999823. doi: 10.3389/fimmu.2022.999823

22. Zhang, C, Zeng, Y, Guo, X, Shen, H, Zhang, J, Wang, K, et al. Pan-cancer analyses confirmed the cuproptosis-related gene Fdx1 as an immunotherapy predictor and prognostic biomarker. Front In Genet (2022) 13:923737. doi: 10.3389/fgene.2022.923737

23. Tang, Z, Kang, B, Li, C, Chen, T, and Zhang, Z. Gepia2: An enhanced web server for Large-scale expression profiling and interactive analysis. Nucleic Acids Res (2019) 47(W1):W556–W60. doi: 10.1093/nar/gkz430

24. Whiteaker, JR, Halusa, GN, Hoofnagle, AN, Sharma, V, MacLean, B, Yan, P, et al. Cptac assay portal: A repository of targeted proteomic assays. Nat Methods (2014) 11(7):703–4. doi: 10.1038/nmeth.3002

25. Chandrashekar, DS, Bashel, B, Balasubramanya, SAH, Creighton, CJ, Ponce-Rodriguez, I, Chakravarthi, B, et al. Ualcan: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (2017) 19(8):649–58. doi: 10.1016/j.neo.2017.05.002

26. Gao, J, Aksoy, BA, Dogrusoz, U, Dresdner, G, Gross, B, Sumer, SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal. Sci Signal (2013) 6(269):l1. doi: 10.1126/scisignal.2004088

27. Warde-Farley, D, Donaldson, SL, Comes, O, Zuberi, K, Badrawi, R, Chao, P, et al. The genemania prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res (2010) 38:W214–W20. doi: 10.1093/nar/gkq537

28. Franz, M, Rodriguez, H, Lopes, C, Zuberi, K, Montojo, J, Bader, GD, et al. Genemania update 2018. Nucleic Acids Res (2018) 46(W1):W60–W4. doi: 10.1093/nar/gky311

29. Liao, Y, Wang, J, Jaehnig, EJ, Shi, Z, and Zhang, B. Webgestalt 2019: Gene set analysis toolkit with revamped uis and apis. Nucleic Acids Res (2019) 47(W1):W199–w205. doi: 10.1093/nar/gkz401

30. Liu, F, Zhang, W, You, X, Liu, Y, Li, Y, Wang, Z, et al. The oncoprotein hbxip promotes glucose metabolism reprogramming Via downregulating Sco2 and Pdha1 in breast cancer. Oncotarget (2015) 6(29):27199–213. doi: 10.18632/oncotarget.4508

31. Song, L, Liu, D, Zhang, X, Zhu, X, Lu, X, Huang, J, et al. Low expression of Pdha1 predicts poor prognosis in gastric cancer. Pathol Res Pract (2019) 215(3):478–82. doi: 10.1016/j.prp.2018.12.038

32. Olou, AA, Ambrose, J, Jack, JL, Walsh, M, Ruckert, MT, Eades, AE, et al. Shp2 regulates adipose maintenance and adipocyte-pancreatic cancer cell crosstalk Via Pdha1. J Cell Commun Signal (2022). doi: 10.1007/s12079-022-00691-1

33. Liu, L, Cao, J, Zhao, J, Li, X, Suo, Z, and Li, H. Pdha1 gene knockout in human esophageal squamous cancer cells resulted in greater warburg effect and aggressive features in vitro and in vivo. Onco Targets Ther (2019) 12:9899–913. doi: 10.2147/ott.S226851

34. Thorsson, V, Gibbs, DL, Brown, SD, Wolf, D, Bortone, DS, Ou Yang, T-H, et al. The immune landscape of cancer. Immunity (2018) 48(4):812–30. doi: 10.1016/j.immuni.2018.03.023

35. Fridman, WH, Galon, J, Dieu-Nosjean, M-C, Cremer, I, Fisson, S, Damotte, D, et al. Immune infiltration in human cancer: Prognostic significance and disease control. Curr Top Microbiol Immunol (2011) 344:1–24. doi: 10.1007/82_2010_46

36. Steven, A, and Seliger, B. The role of immune escape and immune cell infiltration in breast cancer. Breast Care (Basel) (2018) 13(1):16–21. doi: 10.1159/000486585

37. Song, Q, Zhou, R, Shu, F, and Fu, W. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer. Front Immunol (2022) 13:958368. doi: 10.3389/fimmu.2022.958368

38. Jiang, R, Huan, Y, Li, Y, Gao, X, Sun, Q, Zhang, F, et al. Transcriptional and genetic alterations of cuproptosis-related genes correlated to malignancy and immune-infiltrate of esophageal carcinoma. Cell Death Discovery (2022) 8(1):370. doi: 10.1038/s41420-022-01164-5

39. Liu, Y, Liu, Y, Ye, S, Feng, H, and Ma, L. Development and validation of cuproptosis-related gene signature in the prognostic prediction of liver cancer. Front Oncol (2022) 12:985484. doi: 10.3389/fonc.2022.985484

40. Deng, L, Jiang, A, Zeng, H, Peng, X, and Song, L. Comprehensive analyses of Pdha1 that serves as a predictive biomarker for immunotherapy response in cancer. Front Pharmacol (2022) 13:947372. doi: 10.3389/fphar.2022.947372

41. Sakaguchi, S, Sakaguchi, N, Asano, M, Itoh, M, and Toda, M. Immunologic self-tolerance maintained by activated T cells expressing il-2 receptor alpha-chains (Cd25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol (1995) 155(3):1151–64.

42. Rudra, D, Egawa, T, Chong, MMW, Treuting, P, Littman, DR, and Rudensky, AY. Runx-cbfbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol (2009) 10(11):1170–7. doi: 10.1038/ni.1795

43. Overacre-Delgoffe, AE, Chikina, M, Dadey, RE, Yano, H, Brunazzi, EA, Shayan, G, et al. Interferon-Γ drives T fragility to promote anti-tumor immunity. Cell (2017) 169(6):1130–41.e11. doi: 10.1016/j.cell.2017.05.005

44. Facciabene, A, Motz, GT, and Coukos, G. T-Regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res (2012) 72(9):2162–71. doi: 10.1158/0008-5472.CAN-11-3687

45. Arce Vargas, F, Furness, AJS, Solomon, I, Joshi, K, Mekkaoui, L, Lesko, MH, et al. Fc-optimized anti-Cd25 depletes tumor-infiltrating regulatory T cells and synergizes with pd-1 blockade to eradicate established tumors. Immunity (2017) 46(4):577–86. doi: 10.1016/j.immuni.2017.03.013

46. Brown, GK, Otero, LJ, LeGris, M, and Brown, RM. Pyruvate dehydrogenase deficiency. J Med Genet (1994) 31(11):875–9.

47. Rajagopalan, KN, Egnatchik, RA, Calvaruso, MA, Wasti, AT, Padanad, MS, Boroughs, LK, et al. Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells. Cancer Metab (2015) 3:7. doi: 10.1186/s40170-015-0134-4

48. Li, Y, Li, X, Li, X, Zhong, Y, Ji, Y, Yu, D, et al. Pdha1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget (2016) 7(33):53837–52. doi: 10.18632/oncotarget.10782

49. Liu, Z, Yu, M, Fei, B, Fang, X, Ma, T, and Wang, D. Mir−21−5p targets Pdha1 to regulate glycolysis and cancer progression in gastric cancer. Oncol Rep (2018) 40(5):2955–63. doi: 10.3892/or.2018.6695

50. Liu, L, Cao, J, Zhao, J, Li, X, Suo, Z, and Li, H. Gene knockout in human esophageal squamous cancer cells resulted in greater warburg effect and aggressive features in vitro and in vivo. Onco Targets Ther (2019) 12:9899–913. doi: 10.2147/OTT.S226851

51. Li, Y, Huang, R, Li, X, Li, X, Yu, D, Zhang, M, et al. Decreased expression of pyruvate dehydrogenase A1 predicts an unfavorable prognosis in ovarian carcinoma. Am J Cancer Res (2016) 6(9):2076–87.

52. Sun, J, Li, J, Guo, Z, Sun, L, Juan, C, Zhou, Y, et al. Overexpression of pyruvate dehydrogenase E1α subunit inhibits warburg effect and induces cell apoptosis through mitochondria-mediated pathway in hepatocellular carcinoma. Oncol Res (2019) 27(4):407–14. doi: 10.3727/096504018X15180451872087

53. Zhong, Y, Huang, R, Li, X, Xu, R, Zhou, F, Wang, J, et al. Decreased expression of Pdhe1α predicts worse clinical outcome in esophageal squamous cell carcinoma. Anticancer Res (2015) 35(10):5533–8.

54. Dehne, N, Mora, J, Namgaladze, D, Weigert, A, and Brüne, B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol (2017) 35:12–9. doi: 10.1016/j.coph.2017.04.007

55. Biswas, SK, and Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol (2010) 11(10):889–96. doi: 10.1038/ni.1937



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Huang, Liu, Li, Shi, Shan, Shi and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author (s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 12 December 2022

doi: 10.3389/fimmu.2022.1031400

[image: image2]



Machine learning-based predictive and risk analysis using real-world data with blood biomarkers for hepatitis B patients in the malignant progression of hepatocellular carcinoma



Yuemin Nan 1*†, Suxian Zhao 1†, Xiaoxiao Zhang 1, Zhifeng Xiao 2 and Ruihan Guo 3



1 Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Hebei Provincial Key Laboratory of liver fibrosis in chronic liver diseases, Shijiazhuang, China, 
2 School of Engineering, Penn State Erie, The Behrend College, Erie, PA, United States, 3 Shanghai Ashermed Healthcare Co., Ltd., Shanghai, China




Edited by: 
Jinghua Pan, Jinan University, China

Reviewed by: 
Yasir Waheed, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Pakistan
 Fang Qi, Peking University, China
 Bo Zhou, Southeast University, China


*Correspondence: 
Yuemin Nan
 nanyuemin@163.com



†These authors have contributed equally to this work and share first authorship


Specialty section: 
 
This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology



Received: 30 August 2022

Accepted: 18 November 2022

Published: 12 December 2022

Citation:
Nan Y, Zhao S, Zhang X, Xiao Z and Guo R (2022) Machine learning-based predictive and risk analysis using real-world data with blood biomarkers for hepatitis B patients in the malignant progression of hepatocellular carcinoma
. Front. Immunol. 13:1031400. doi: 10.3389/fimmu.2022.1031400



Hepatitis B Virus (HBV) infection may lead to various liver diseases such as cirrhosis, end-stage liver complications, and Hepatocellular carcinoma (HCC). Patients with existing cirrhosis or severe fibrosis have an increased chance of developing HCC. Consequently, lifetime observation is currently advised. This study gathered real-world electronic health record (EHR) data from the China Registry of Hepatitis B (CR-HepB) database. A collection of 396 patients with HBV infection at different stages were obtained, including 1) patients with a sustained virological response (SVR), 2) patients with HBV chronic infection and without further development, 3) patients with cirrhosis, and 4) patients with HCC. Each patient has been monitored periodically, yielding multiple visit records, each is described using forty blood biomarkers. These records can be utilized to train predictive models. Specifically, we develop three machine learning (ML)-based models for three learning tasks, including 1) an SVR risk model for HBV patients via a survival analysis model, 2) a risk model to encode the progression from HBV, cirrhosis and HCC using dimension reduction and clustering techniques, and 3) a classifier to detect HCC using the visit records with high accuracy (over 95%). Our study shows the potential of offering a comprehensive understanding of HBV progression via predictive analysis and identifies the most indicative blood biomarkers, which may serve as biomarkers that can be used for immunotherapy.
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1.  Introduction.

Hepatitis B virus (HBV) infection is a worldwide public health crisis. According to the World Health Organization (WHO), 316 million people have chronic HBV infection in 2019, while approximately 555,000 people die from HBV infection globally each year, with hepatocellular carcinoma (HCC) accounting for 45% of deaths (1). Primary liver cancer is a common malignancy worldwide, including HCC, intrahepatic cholangiocarcinoma (ICC), and mixed hepatocellular carcinoma-cholangiocarcinoma (cHCC-CC), of which HCC accounts for 85-90% (2). According to GLOBOCAN 2020 data, liver cancer has the 6th highest annual number of new cases at 905,700, accounting for 8.3% of new cases of all cancers. Due to its poor prognosis, the number of deaths reached 830,000 in 2020, making it the 3rd leading cause of cancer deaths (3). China is one of the regions with high incidence of liver cancer, the annual number of new cases reaches 410,000 and 391,000 deaths, which is 45.3% and 47.1% of the global rate respectively, and is also the 5th most prevalent malignant tumor and the 2nd leading cause of cancer death in China (4).

Most HCC is asymptomatic in its early stages, and most patients are locally advanced or have distant metastases by the time of diagnosis. The main reason for the low long-term survival rate of liver cancer is, first of all, the imperfect risk assessment of early stage of liver cancer, which leads to 70% to 80% of patients being in the middle to late stage at the time of diagnosis (5).

The detection of serum tumor markers can be one of the main methods for early screening and post-treatment efficacy assessment of HCC. The guidelines for the diagnosis and treatment of primary liver cancer (2020) specify AFP as a common and important index for diagnosis of liver cancer and efficacy testing. Liver fibrosis is a tissue repair response to liver damage caused by various pathogenic factors, and the process of abnormal increase or excessive deposition of extracellular matrix during the repair process, as well as the pathological process of developing cirrhosis and liver cancer (6). Studies (7) have shown that liver fibrosis is a reversible process. Therefore, timely and accurate knowledge of fibrosis changes with AFP and levels can help clinicians grasp the trend, regression and prognosis of patients’ disease.

The key to an effective liver cancer surveillance program that provides early diagnosis and improves prognosis is to have simple and accurate tools to identify patients with different liver cancer risks, reduce patient burden, and optimize resource allocation to increase the frequency of surveillance in high-risk groups. Ultimately, individualized patient monitoring of liver cancer risk can be achieved, thereby improving early diagnosis and treatment of liver cancer and ultimately reducing mortality. Retrospective studies also occupy an important position in clinical research and are important for understanding the efficacy of disease therapies and disease regression in the real world.

The immune system plays a crucial role in the development and progression of HCC. Some patients benefit greatly from immunotherapy with checkpoint inhibitors. Adoptive T-cell transfer, vaccination, and virotherapy are other immune strategies being researched, but none of them have shown consistent clinical efficacy as of yet. One of the promising research direction is the identification and validation of predictive biomarkers, which remains a significant challenge in the checkpoint immunotherapy for HCC.

This study gathered real-world electronic health record (EHR) data from the China Registry of Hepatitis B (CR-HepB) database (8). A total of 396 patients with HBV infection at different stages were extracted from CR-HepB, including 1) patients with a sustained virological response (SVR), 2) patients with HBV chronic infection but without further development, 3) patients with cirrhosis, and 4) patients with HCC. Patients in the database have received constant clinical monitoring, yielding multiple visit records that can be utilized to train predictive models. Each of theses records can be represented by a collection of 40 blood biomarkers. Specifically, we develop three machine learning (ML)-based models for three learning tasks, including 1) an SVR risk model for HBV patients via a survival analysis model, 2) a risk model to encode the progression from HBV cirrhosis and HCC using dimension reduction and clustering techniques, and 3) a classifier to detect HCC using the visit records with high accuracy (over 95%). Our study shows the potential of offering a comprehensive understanding of HBV progression via predictive analysis.

The rest of this paper is organized as follows. Section 3 describes the datasets used in this study and the details of the adopted methods. In Section 4, several experiments are conducted to evaluate our hypothesis. Finally, inSection 5 we discuss the findings, implications, limitations, and future work.



2.  Material and methods.


2.1.  Dataset.

A collection of 396 patients were extracted from the CR-HepB database, including 234 patients with HBV chronic infection and without further development, 90 patients with cirrhosis, and 72 patients with HCC. The inclusion criteria is: 1) age is greater than or equal to eighteen (any gender), 2) with complete hematological results. The exclusion criteria is: 1) patients with biliary obstruction or other factors causing hepatic sludge or hepatic edema, 2) patients who had a liver transplant, 3) patients with drug-induced hepatitis or autoimmune hepatitis. A total of 2400 visit records were gathered from their clinical visit data in between Jan. 2007 and Jan. 2020. Among these records, 1690, 168, and 542 entries were from chronic HBV, cirrhosis, and HCC patients, respectively. 
Table 1
 shows the stats of the patients divided into the three classes. The average number of visits for HBV, cirrhosis, and HCC patients are 7.22, 1.87, and 7.53, respectively. It is observed that the cirrhosis patients had less visits compared to HBV and HCC patients, which is a factor that may lead to prediction inaccuracy for this class.


Table 1 | 
Stats of the dataset.




A total of forty blood biomarkers are utilized as features to represent each visit record for a patient. These features include: qualitative HBeAg, quantitative HBeAg, qualitative HBsAG, quantitative HBsAG, qualitative anti-HBc, quantitative anti-HBc, qualitative anti-HBe, quantitative anti-HBe, qualitative anti-HBs, quantitative anti-HBs, Tri-iodothyronine (T3), Tetra-iodothyronine (T4), thyroid-stimulating hormone (TSH), neutrophilic granulocyte (GR), Low-Density Lipoprotein (LDL), prothrombin time (PT), prothrombin activity (PTA), cholesterol (CHOL), total bilirubin (TBI), total protein (TP), drinking alcohol or not, any prior treatment, nucleoside analogues, absolute lymphocyte count (LY), triglycerides (TG), alpha-fetoprotein (AFP), white blood cell count (WBC), albumin (ALB), direct bilirubin (DBI), alkaline phosphatase (ALP), creatinine (Cr), creatine kinase (CK), cholinesterase (CHE), platelet count (PLT), hemoglobin (HGB), time since first visit, Alanine Transaminase (ALT), glutamyl transpeptidase (gamma-GT), Aspartate Aminotransferase (AST), high-density lipoprotein (HDL).

The trial protocol and the implementation of the pilot study were in accordance with the requirements of the Declaration of Helsinki and other regulations. This study is a non-interventional retrospective study. All recipient personally identifiable information were removed or strictly encrypted.



2.2.  Survival analysis model.

The predictive objective in this study is the time to HBV turning negative. Two biomarkers, including HBeAg and HBsAg are utilized for evaluation. We adopt the Random Survival Forest (RSF) model (9) for survival analysis. An RSF adopts ensemble learning to aggregate a collection of decision tree (DT) models that are trained to be de-correlated to increase the model diversity via two ways: 1) each tree in the ensemble is trained on a different subset of the original training set, namely, bootstrapping; 2) for each node of a tree, the algorithm only selects a random subset of features and thresholds for split criterion evaluation. Finally, the predicted results of the DTs are aggregated to form the final prediction outcome. The concordance index (C-index) (10) is utilized as the performance metric.



2.3.  HBV malignant progression analysis.

The proposed distance-based method for HBV malignant progression analysis is detailed as follows.


	
Each visit entry of a patient is represented by a vector with forty elements, corresponding to the forty features of the dataset.


	
The geometric centroids for the three classes (i.e., HBV, Cirrhosis, and HCC) are then computed. In a multi-dimensional space, each patient visit is a data point, and patients in the same class tend to be close to each other.


	
Each patient has multiple visit records, yielding multiple data points with temporal characteristic. Thus, by tracing these data points we can find out which direction the patient’s condition heads to. There are two major cases that are of interest:the data points of a patient either head toward or move away from the centroid of HCC. The former case indicates a malignant progression, while the latter may lead to an SVR. The moving distance of the data point series can be quantified and used for risk analysis.


	
As more patients & visits are added to the dataset, the centroids of the three classes can be updated, and the above step can be re-run.






Figure 1
 is a diagram that shows an artificial example. To visualize it, we apply principal component analysis (PCA) to project the multi-dimensional features to the 2D space. Patients with HBV, Cirrhosis, and HCC are marked with blue squares, orange circles, and blue diamond shapes. The bigger three shapes represent the three centroids, and a sequence of blue squares with red lines denote the visit records of a patient. Since we want to highlight the example patient, the three centroids, and the arrow, the rest elements of the chart have been moved to the background. The arrow indicates a malignant progression for this patient, since the data points are moving towards the centroid of HCC (ie., the green diamond).




Figure 1 | 
An example diagram that showcases the distance-based method for HBV malignant progression analysis.






2.4.  Three-class classification.


2.4.1.  Predictive models.

Fifteen base predictive models were selected to conduct experiments for the classification task. We provide a brief review for these models as follows.


	
A Decision Tree (DT) model (11) is trained to be able to construct a tree data structure to make prediction (classification or regression). An internal node of the tree represents a feature, a branch is a learned rule, and a leaf is a predicted outcome. During training, an Attribute Selection Measure (ASM) is utilized to determine which feature is used to split the dataset. The two popular ASMs are information gain (IG) and the Gini index. Taking IG as an example, the training algorithm aims to maximize the overall IG value and takes a greedy method to always select the feature that yields the highest value of IG to build the tree recursively.


	
The Random Forest (RF) (12) works by aggregating a collection of DTs, which are a group of weak learners to constitute a more powerful predictive model via a voting strategy (13). Since each DT is individually trained, resulting in multiple uncorrelated trees, which helps reduce the variance (14, 15).


	
The Adaptive Boosting (ADA) Classifier (16) aggregates a set of weak learners via a weighted sum of the individual predicted results. ADA is featured by adjusting the training strategy based on the classification errors, with an aim to fix the misclassified samples and improve the overall predictive performance.


	
The Category Boost (CAB) model (17) is also an ensemble model of DTs but focused on gradient boosting. Also, the CAB classifier is featured with a support of categorical features.


	
The Extra Trees Classifier (ET) (18) works by fitting a collection of DTs with randomization, namely, the extra trees using a sampling strategy to train these trains with different sampled dataset.


	
The Light Gradient Boosting Machine (LGBM) (19) model utilizes a best-first strategy to build a set of DTs, improving the training efficiency compared to the tree-boosting approaches.


	
The Gradient Boosting Classifier (GBC) (20) adopts an optimization framework to tackle the boosting procedure by modeling it as a minimization problem on the loss function. Specifically, a set of weak learners, namely, DTs, are used jointly to train the classifier via a greedy strategy, i.e., each DT node is split based on the highest score of purity. The overall training algorithm is an additive procedure, involving one DT to be updated in a round, and the rest DTs are unchanged. The goal of each tree addition is to improve the overall predictive accuracy. Once the loss reaches a certain level, the algorithm can be stopped.


	
The K Nearest Neighbors (KNN) (21) model adopts a voting strategy from its k-nearest neighbors to determine the prediction outcome of the current data point.


	
The Linear Discriminant Analysis (LDA) (22) classifier adopts the Bayes’ rule to derive a a linear boundary by fitting the conditional class densities using the training data. For each class, a Gaussian density is fit so that data points belonging to different classes can be separated.


	
The Logistic Regression (LR) (23) model can predict the occurrence probability of an event, using the given datasets with a set of data points in two classes. Although originally designed for binary classification, extension to multi-class classification is straightforward. The model’s outcome is in between 0 and 1. A threshold of 0.5 is usually used to determine positive vs. negative classes when dealing with a classification problem.


	
The Naive Bayes (NB) (24) model is based on the Bayes’ theorem. Specifically, a collection of supervised models are trained with an assumption that two features in a feature pair are conditionally independent given the class label.


	
The Quadratic Discriminant Analysis (QDA) (22) model is similar to LDA but adopts a quadratic decision boundary to distinguish the data points belonging to two or more classes.


	
The Ridge model (25) works by fistly converting the targets from {0, 1} to {-1, 1}, and then treating the task as a regression model to perform a gradient decent optimization.


	
The Support vector machine (SVM) (26) with a linear kernel, is a discriminative that is widely used. The model aims to find the optimal hyperplane in a high dimensional space to separate the data points that need to be classified.


	
The Extreme Gradient Boosting (XGB) (27) model is an accurate and scalable version of boosting-tree models, with an aim to optimize the computing efficiency and predictive accuracy. XGB also uses regularization to control overfitting (28).








2.4.2.  Performance metrics.


We adopt the Harrell’s C-index [10] (A.K.A. the concordance index) to evaluate the performance of risk models developed for survival analysis. The intuition is that the risk model will assign a score indicatingthe chance of turning negative for each patient, and the patient with a higher score should have a shorter time-to-turning negative. The computation of C-index involves a pair of patients i and j (i ≠ j), with the their scores si
 and sj
 and the observed time-to-turning negative ti
 and tj
. The patient pair (i, j) is said to be a concordant pair if si
 > sj
 and ti
< tj
, or it becomes a discordant pair. With this definition, the C-index can be given in Equation 1.



A value of C-index close to 0.5 means that the predicted score is not better than coin flip to determine which patient’ HBV will turn negative in a shorter period of time. Also, a value close to 1 indicates that the score can well reflect the fact that which patient will be tested negative in HBV first.

For the classification task, we employ five metrics for performance evaluation, including accuracy (Acc), precision (Pre), recall (Rec), F1 score, and Area under the ROC Curve (AUC). Equations 2 - 5 show the definitions of Acc, Pre, Rec, and F1, respectively.

 







where the terms TP, FP, TN, FN stand for the corresponding numbers of true positives, false positives, true negatives, and false negatives, respectively. The ratio of false alerts is reflected in Pre. The model has less false alerts the higher the pre. Rec displays the number of missed positive samples in the meantime. In other words, the less positive samples that have been overlooked, the higher the Rec. For a classification assignment with an unbalanced dataset, F1 represents the harmonic mean of Pre and Rec and offers a better statistic than Acc. In addition, a ROC curve (receiver operating characteristic curve) is a graph that illustrates the overall performance of a classification model. On a ROC curve, TPR versus FPR are presented for various categorization criteria. When the classification barrier is lowered, more objects are categorized as positive, which increases FP and TP. AUC is the abbreviation for “Area under the ROC Curve.” In other terms, the AUC is the area in two dimensions below the entire ROC curve from (0,0) to (1,1). An overall measure of performance across all potential classification criteria is provided by AUC. AUC is not affected by classification thresholds. Regardless of the categorization threshold that is used, it evaluates the accuracy of the model’s predictions.





3.  Results.

Python 3.7.0 was used to run the experiments for this investigation. PyCaret (29) was adopted to implement the learning methods. Microsoft Office 365 Excel, Matplotlib 3.4.2, and Seaborn 0.11 were used to plot the charts. A self-developed Pythonlibrary named BAIX (https://github.com/aibaix accessed June 9th 2022) was used for data cleaning and exploratory data analysis. For the classification task, the 2,400 samples were divided into a training (1,675) and test (725) set in the ratio of 7:3. A five-fold cross validation (CV) was conducted on the training data.


3.1.  Results of survival analysis on HBV turning negative.



Figure 2
 shows the duration distribution of HBV turning negative for HBeAg (subfigure (a)) and HBsAg (subfigure (b)) biomarkers. It can be observed that 60 patients’ HBeAg have turned negative with a mean of 33.6, a min of 5, and a max of130 months, respectively. For HBsAg, the cases were less (ten patients), with a mean of 35.3, a min of 10, and a max of 79 months, respectively.




Figure 2 | 
(A) Duration distribution of HBeAg turning negative; (B) Duration distribution of HBsAg turning negative.






Figure 3
 shows two subfigures ((a) and (b)) for the estimated survival functions of HBeAg and HBsAg-positive persistence for ten random patients, with an overall C-index of 0.9104 and 0.9075, respectively. It is observed that different patientspresent different estimated probability of HBV turning negative. In subfigure (a), four patients (2, 3, 7, 8) are more probable to have HBeAg turning negative within 1,000 days, while the rest could take more than 3,000 days. Similar observations can be noted for patients 5 and 10 in subfigure (b). Since the survival function for each individual patient can be plotted and compared with others, a patient and the physician in charge can quickly understand the risk.




Figure 3 | 
(A) Estimated survival functions of HBeAg-positive persistence for ten random patients, with an overall C-index of 0.9104. (B) Estimated survival function of HBsAg-positive for ten random patients, with an overall C-index of 0.9075.






3.2.  Results of malignant progression analysis.



Table 2
 displays a three by three matrix that lists the average pair-wise distance between a class of data points to the centroid of the other class. It can be observed that data points in the same class are closer to the centroid of its own class than points from other classes, because the three elements on the diagonal are the smallest vertically and horizontally.


Table 2 | 
Distance from to.






Figure 4
 shows two opposite examples of HBV progression. Both patients in the two subfigures have been with HBV only. The horizontal axis and the vertical axis represent the visit time and the distance to the centroid of a class, respectively. Subfigure (a) shows that patient A has been moving towards HCC, indicating a malignant progression, because the its distance to the HCC centroid has gradually dropped from 1.24 to 1.052 after seven visits. The distances to HBV and cirrhosis do not change much. On the other hand, in subfigure (b), the patients’ visit records have been moving away from the centroids of all three classes, indicating a potential of SVR.




Figure 4 | 
Malignant progression analysis for patient A (subfigure (A)) and patient B (subfigure (B)).






3.3.  Results of three-class classification.



Table 3
 reports the predictive results of the fifteen models using a five-fold CV. Based on the CV results, we select the best-performing model and evaluate it on the test set. Models in the table are sorted by Acc, and the highest scores foreach metric are marked in bold. We have the following observations.


	
LGBM presents the highest scores in Acc (0.9548), Pre (0.9511), and F1 (0.9489), the second highest Rec (0.8015), and the third highest AUC (0.9892), making it undoubtedly the best overall model among the fifteen models.


	
The other top-five models following LGBM in the table are ET, RF, XGB, and CAB, with an Acc of 0.9516, 0.9503, 0.9497, and 0.9478, respectively. The gaps between LGBM and these models are minor (less than 1%). Another observation is that the top-five models are tree-based, demonstrating the superior modeling ability of tree-based models. Other traditional models, such as SVM, LR, and NB do not fit well on our dataset.

Based on the results in 
Table 3
, the best model, namely, LGBM, is selected for a further evaluation on the test set. Additional results for LGBM are presented in 
Figures 5
–
7
. The interpretations of these figures are as follows.


	

Figure 5
-(a) plots the learning curve, which shows the training and CV scores as more instances are utilized in training. It can be seen that the training score reached 1.0 with only 400 training samples, while the CV score was less than 0.9 with the same number of training instances. As more samples participated in training, the training - CV score gap narrowed down, posting a CV score of 0.95, which partially addressed the overfitting issue.


	
The ROC curves and the calculated AUCs are shown in 
Figure 5
-(b). Five curves, including the ROC curves for each individual class, the micro and macro-average ROC curves, along with the corresponding AUC scores, are reported. Since each ROC curve plots TPR vs. FPR at various classification thresholds, AUC is threshold-invariant. An ideal ROC curve stays to the top left area of the chart, yielding an AUC score close to 1.0. In 
Figure 5
-(b), the AUCs for the three classes were 0.99, 0.96, and 1.0, and the micro and macro-average AUCs were 1.0 and 0.98, respectively. The results show that the selected LGBM model was robust and performed well with different thresholds. However, we found that the AUC score of 0.96 for class 1 (i.e., cirrhosis) overstated its performance on this class, reflected by a relatively low F1 for cirrhosis (see 6-(b)).


	


Figure 6
-(a) reports the confusion matrix of LGBM on the test set. The results shown in the matrix are aligned with our observations on the decision boundary chart. Classes 0 (HBV) and 2 (HCC) were well-predicted, while class 1 (cirrhosis) samples were easily classified into class 0, indicating that the current feature setting is effective to separate HBV and HCC but not so effective to distinguish HBV and cirrhosis.


	


Figure 6
-(b) quantifies the results in the confusion matrix with Pre, Rec, and F1 reported for each individual class. It is shown that for class 1 (cirrhosis), both Pre and Rec were low, leading to a low F1 (0.541). Also, the number of samples for cirrhosis was only 45 in the test set. The insufficient samples could be another reason of this under-performance.


	

Figure 7
-(a) plots the decision boundary for the three classes after the forty features were projected to a 2D dimension space. Since LGBM is tree-based, the decision boundary consists of a collection of horizontal and vertical linesegments, attempting to separate the three classes. It is noted that the blue samples (HBV) and green ones (HCC) take different regions within the plotted 2D space, and that the orange ones (cirrhosis) are more difficult to be distinguished, as they are spread across both areas taken by HBV and HCC points. This observation is interesting, since it leads to our hypothesis that if an HBV patient, after multiple visits, finds that a clear visual path can be observed towards the centroid of the HCC area, it may indicate that the risk of HCC has been increasing for this patient.


	
The feature importance data are displayed in 
Figure 7
-(b), where the top ten most important features are listed and ranked by a variable importance score. The top ten features are AFP, quantitative HBsAg, ALP, HGB, CHE, quantitativeanti HBc, Cr, TP, LY, and quantitative HBeAg.







Figure 5 | 
(A) Learning curve for LGBM; (B) ROC curves for LGBM.







Figure 6 | 
(A) Confusion matrix for LGBM; (B) Classification report for LGBM.







Figure 7 | 
(A) Decision boundary chart for LGBM; (B) Feature importance chart.





Table 3 | 
Performance comparison.







4.  Discussion.

Several studies showed the most indicative biomarkers were involved in anti-HBV infection immunotherapy. Secretion of HBsAg and HBeAg promoted macrophage polarization from M1 phenotype towards M2 via the SIRT1/Notch1 pathway (30). Inhibitory receptor programmed death receptor 1 (PD-1) which contributes to T cell exhaustion was well-tolerated in chronic hepatitis B virus infection (CHB) HBeAg-negative patients, which caused HBsAg decline in most CHB patients (31). Furthermore, macrophage polarization and T cell exhaustion are both related to tumor immunotherapy, which reminds us biomarkers identified in the study may provide a new potential target for immunotherapy.

This study collected real-world electronic health record (EHR) data from 25 hospitals in China and built a cohort of 480 patients with HBV infection at different stages, including 1) patients with a sustained virological response (SVR), 2) patients with HBV chronic infection and without further development, 3) patients with cirrhosis, and 4) patients with HCC. Each patient has been monitored periodically, yielding multiple visit records that can be utilized to train predictive models. Specifically, we develop three machine learning (ML)-based models for three learning tasks, including 1) an SVR risk model for HBV patients via a survival analysis model, 2) a risk model to encode the progression from HBV cirrhosis and HCC using dimension reduction and clustering techniques, and 3) a classifier to detect HCC using the visit records with high accuracy (over 95%). Our study shows the potential of offering a comprehensive understanding of HBV progression via a predictive and multi-factor analysis using data with pure blood biomarkers. The most indicative biomarkers identified in the study may serve as biomarkers that can be used for immunotherapy.

The proposed method can be extended in the following directions. First, since the visit records for a patient are sequential, it would be feasible to apply sequential models such as gated recurrent units (GRU), long short-term memory (LSTM), and Bidirectional Encoder Representations from Transformers (BERT) for predictive analysis. Second, this study demonstrate the feasibility of the three predictive tasks applied on a small dataset with only 396 patients. The experiments can be readily extended to a dataset at a large scale.
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Transforming growth factor-β (TGF-β) signaling regulates multiple physiological processes, such as cell proliferation, differentiation, immune homeostasis, and wound healing. Besides, TGF-β plays a vital role in diseases, including cancer. Accumulating evidence indicates that TGF-β controls the composition and behavior of immune components in the tumor microenvironment (TME). Advanced cancers leverage TGF-β to reshape the TME and escape immune surveillance. TGF-β-mediated immune evasion is an unfavorable factor for cancer immunotherapy, especially immune checkpoint inhibitors (ICI). Numerous preclinical and clinical studies have demonstrated that hyperactive TGF-β signaling is closely associated with ICI resistance. It has been validated that TGF-β blockade synergizes with ICI and overcomes treatment resistance. TGF-β-targeted therapies, including trap and bispecific antibodies, have shown immense potential for cancer immunotherapy. In this review, we summarized the predictive value of TGF-β signaling and the prospects of TGF-β-targeted therapies for cancer immunotherapy.
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1 Background

Transforming growth factor-β (TGF-β) exists in the extracellular matrix as latent precursors with prodomain, and the transformation from latent pro-TGF-β molecule to active TGF-β is a multiple-step process (1). Firstly, pro-TGF-β contains a long signal sequence, a long N-terminal sequence named latency-associated peptide (LAP), and a short C-terminal, which is the mature cytokine (2). Then, dimerized pro-TGF-β is cleaved by Furin (a protease) in Golgi complex. As a result, the bioactive TGF-β moieties are linked with LAP homodimer through disulfide bonds. The LAP encircles bioactive TGF-β moiety and hampers the binding of TGF-β with its receptor. After secretion, The LAP homodimer could anchor to Glycoprotein A repetitions predominant (GARP) on the cell surface or crosslink with the extracellular matrix by latent TGF-β binding proteins (LTBPs). Then, active TGF-β is released by integrin-transmitted forces when cell contraction (Figure 1) (4).




Figure 1 | The negative effects of TGF-β signaling on anti-tumor immunity. Pro-TGF-β contains a long signal sequence, a long N-terminal sequence named latency-associated peptide (LAP), and a short C-terminal, which is the mature cytokine. Then, dimerized pro-TGF-β is cleaved by Furin (a protease) in Golgi complex. As a result, the bioactive TGF-β moieties are linked with LAP homodimer through disulfide bonds. The LAP encircles bioactive TGF-β moiety and hampers the binding of TGF-β with its receptor. After secretion, The LAP homodimer could anchor to Glycoprotein A repetitions predominant (GARP) on Treg or crosslink with extracellular matrix by latent TGF-β binding proteins (LTBPs). Then, active TGF-β is released by integrin-transmitted forces when cell contraction. TGF-β signaling is triggered by the interaction of TGF-β ligands with TGF-β type II receptors (TGFβRII). Following the recruitment and phosphorylation of TGF-β type I receptors (TGFβRI) by TGFβRII, SMAD2 and SMAD3 are phosphorylated and further assembled into trimeric complexes with SMAD4. The SMAD complexes could translocate into cell nucleus and regulate the expression of TGF-β-targeted genes. TGF-β acts on various immune cells in the tumor microenvironment, inducing the generation of a suppressive immune microenvironment. On the one hand, TGF-β inhibits the cytotoxic activity of CD8+ T cells, CD4+ T cells, and NK cells. On the other hand, TGF-β increases the proportion of regulatory T cells (Treg) and M2-like macrophage. Moreover, recent studies have found that TGF-β modulates the activity of tumor-associated fibroblast (CAF) and increases the content of collagen fibers in the tumor stroma (contributed mainly by myCAF). The thickened collagen fibers surrounding the tumor tissue are detrimental to lymphocyte infiltration, resulting in an immune-excluded tumor type. Adapted from Bai et al, 2019 (3).



TGF-β signaling is triggered by the interaction of TGF-β ligands with TGF-β type II receptors (TGFβRII) (5). Following the recruitment and phosphorylation of TGF-β type I receptors (TGFβRI) by TGFβRII, SMAD2 and SMAD3 are phosphorylated and further assembled into trimeric complexes with SMAD4 (6). The SMAD complexes could translocate into cell nucleus and regulate the expression of TGF-β-targeted genes, including TWIST1, SNAI1, and SNAI2 (7). Besides canonical SMAD signaling, TGF-β can initiate non-SMAD signalings, such as PI3K-AKT, MAPK, and RHO-ROCK pathways (8–10). TGF-β signaling plays a vital role in embryonic development and homeostasis by controlling cell proliferation, apoptosis, survival, differentiation, and stem-cell self-renewal (11).

TGF-β is a bifunctional cytokine in cancer, acting as tumor promoter and suppressor (12). For healthy cells and early-stage cancer cells, TGF-β inhibits tumorigenesis by inducing cell-cycle arrest (13). However, for late-stage cancers, cancer cells could bypass TGF-β-mediated apoptosis by mutating core components of TGF-β pathway (14). Contrarily, TGF-β promotes tumorigenesis by inducing epithelial-to-mesenchymal transition (EMT), eventually contributing to enhanced metastasis and chemoresistance (15–17). Besides, TGF-β also supports tumor progression by improving angiogenesis and immune evasion (4, 18). This transformation of TGF-β from tumor suppressor to tumor promoter is an important biological characteristic for advanced cancers (19).

The discovery of immune checkpoints and the development of drugs represented by programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies are landmark events in cancer immunotherapy (20–24). Anti-PD-1/PD-L1 treatments have shown potent and sustained antitumor effects in patients across multiple cancer types (25–32). However, the low response rate is a crucial drawback of anti-PD-1/PD-L1 therapies, and ideal molecular markers are unavailable to select patients (33–35). The classical cancer-immunity cycle model describes antitumor immunity as a cascade of multistep cascade responses (36). PD-1/PD-L1 axis in the tumor is not the only immunosuppressive pathway (37). It has been shown that hyperactive TGF-β signaling in the tumor microenvironment (TME) can broadly modulate multiple immune cell activities, reshape the TME, and collectively participate in tumor cell immune escape (3). The TGF-β and PD-1/PD-L1 pathways are independent of and complementary to each other. Recent studies have shown that TGF-β is a determinant for anti-PD-1/PD-L1 therapies, which could effectively predict treatment efficacy (38–40). Therefore, constructing TGF-β-involved predictive biomarkers and exploring TGF-β-targeted therapies are valuable to cancer immunotherapy.



2 TGF-β signaling-targeted antitumor agents

Given that TGF-β contributes to cancer immune evasion and immunotherapy resistance, blocking TGF-β could overcome immunotherapy resistance by reprogramming the TME. At present, TGF-β signaling has been a hot therapeutic target for cancer investigators, and enormous efforts have been expended on the development of TGF-β-targeted agents (41). TGF-β blockade strategies, including monoclonal antibodies (containing bispecific antibodies), ligand traps (containing bi-functional proteins), receptor kinase inhibitors, vaccines, and antisense oligonucleotides, are under clinical evaluation (Table 1andFigure 2) (42).


Table 1 | Agents targeting TGF-β signaling pathway.






Figure 2 | TGF-β signaling-targeted antitumor agents. At present, TGF-β signaling has been a hot therapeutic target for cancer investigators, and enormous efforts have been expended on the development of TGF-β-targeted agents. (A) TGF-β blockade strategies, including monoclonal antibodies (containing bispecific antibodies), ligand traps (containing bi-functional proteins), receptor kinase inhibitors, vaccines, and antisense oligonucleotides, are under clinical evaluation. (B) The structure of fusion protein M7824. (C) The structure of bispecific antibody YM101.




2.1 Antibodies targeting TGF-β or its receptor

Fresolimumab (also termed GC1008) is a pan-TGF-β blockade antibody developed by Genzyme for fibrotic diseases and cancers (43). Fresolimumab exhibited antitumor activity in renal cell carcinoma and melanoma with acceptable safety (43). Besides, in metastatic breast cancer, 10 mg/kg fresolimumab combined with irradiation outperformed 1 mg/kg fresolimumab plus irradiation in overall survival (Hazard ratio =2.73, P = 0.039) (44). The higher dose of fresolimumab was correlated with increased peripheral blood mononuclear cell and expanded CD8 memory T cell pool (44). Additionally, pan-TGF-β blockade antibodies 1D11 (developed by Genzyme) and 2G7 (developed by Genentech) exhibited antitumor activity in preclinical studies (45, 46). Notably, selective anti-TGF-β1 antibody SRK181 was sufficient to relieve the resistance to immune checkpoint inhibitors in murine models (47).

Y3022859 is an IgG1 antibody targeting TGFβRII (developed by Eli Lilly). In the phase 1 study of advanced solid tumors, the dose of more than 25 mg was unsafe in consideration of cytokine storm (48). Besides, anti-αvβ6 integrin antibody 264RAD (developed by AstraZeneca) could suppress TGF-β signaling by inhibiting latent TGF-β activation. The antitumor effect of 264RAD has been validated in multiple murine tumor models (49–51). Moreover, GARP, a protein mainly expressed on Treg surface, acts as the docking receptor to concentrate latent TGF-β (52). Selectively inhibiting GARP on Treg by antibody targeting GARP-TGF-β1 complexes effectively retarded tumor growth and relieved resistance to anti-PD-1/PD-L1 resistance (53). Notably, YM101 is an anti-PD-L1/TGF-β bispecific antibody (developed by Yi et al), which could simultaneously suppress PD-L1 and TGF-β signaling pathways (54). The preclinical data demonstrated YM101 effectively reprogrammed the TME and reserved immunotherapy resistance (54–56).



2.2 TGF-β receptor kinase inhibitor

TGF-β receptor kinase inhibitors block TGF-β signaling by occupying the ATP-binding domain of receptor (57). Vactosertib (developed by MedPacto) is a small-molecule inhibitor of TGFβRI (58). Vactosertib retarded tumor growth and prolonged survival in murine models by inhibiting EMT, cancer stemness, and metastasis (59–61). Also, galunisertib is a TGFβRI inhibitor developed by Eli Lilly (62, 63). Galunisertib showed potent antitumor activity in murine breast cancer, hepatocellular carcinoma, colon cancer, and lung cancer models (62). In clinical studies, galunisertib plus gemcitabine improved the overall survival of pancreatic cancer, relative to gemcitabine monotherapy (64). Besides, in the single-arm phase 2 trial of advanced rectal cancer, galunisertib combined with neoadjuvant chemoradiotherapy was tolerated, with an improved response rate (32%) (65). However, in the phase 2 study of recurrent glioblastoma, patients who received lomustine did not benefit from additional galunisertib treatment (66). Similarly, in a phase 1b study, galunisertib could not enhance the efficacy of ramucirumab in advanced hepatocellular carcinoma (67). LY573636 is a TGF-βRI inhibitor developed by Eli Lilly as well (68). Although several clinical trials showed that LY573636 had tolerable toxicity (69, 70), the results of the phase 2 study indicated that the autitumor effect of LY573636 was modest in NSCLC patients (71). At present, more than ten TGF-β receptor kinase inhibitors are in clinical or preclinical evaluations, including but not limited to LY2109761 (developed by Eli Lilly) (72), SB-431542 (developed by GlaxoSmithKline) (73), SB-505124 (developed by GlaxoSmithKline) (74), and IN-1130 (developed by In2Gen) (75, 76).



2.3 TGF-β trap

AVID200 (developed by Forbius/Bristol-Myers Squibb) is a computationally-designed trap that could effectively neutralize TGF-β1 and TGF-β3, with weak activity against TGF-β2 (77). The data of animal and human showed AVID200 enhanced antitumor immune response and reduced protumor and cardiotoxic effects caused by TGF-β2 blockade (77). Additionally, luspatercept (developed by Acceleron Pharma and Celgene) is a fusion protein containing the extracellular domain of human activin type 2B receptor and IgG, which has been approved as an erythroid maturation agent for β-thalassemia (78–80). Furthermore, soluble betaglycan (reported Bandyopadhyay et al.) inhibited angiogenesis, tumor growth, and metastasis in mice by antagonizing TGF-β (81).

M7824 (developed by Merck KGaA) is a bifunctional fusion protein consisting of anti-PD-L1 antibody and extracellular domain of the TGFβRII (82). M7824 showed potent antitumor activity in preclinical and phase 1 clinical studies by restoring antitumor immunity (82, 83). Similarly, anti-PD-L1/TGFβR fusion protein SHR-1701 (developed by Hengrui) overcame anti-PD-1/PD-L1 resistance in lung cancer (84).



2.4 Antisense oligonucleotides

Antisense oligonucleotides could directly silence genes participating in cancer progression. AP 12009 (developed by Antisense Pharma) is an antisense oligodeoxynucleotide targeting TGF-β2 (85). The data from phase IIb study of high-grade glioma demonstrated that 10 µM AP 12009 improved patients’ overall survival (86). Besides, other antisense oligonucleotides targeting TGF-β, such as AP 11014 and AP 15012, were still in preclinical tests (87, 88).



2.5 Cancer vaccine

Some cancer vaccines contain components suppressing TGF-β signaling pathway. Vigil (also termed gemogenovatucel-T, developed by Gradalis) is an autologous cancer vaccine that expresses granulocyte-macrophage colony-stimulating factor and decreases the expression of furin and its downstream TGF-β1 and TGF-β2 (89). In the phase 2b trial of advanced ovarian cancer, although vigil was well tolerated in patients, the primary endpoint was not met (90). Further investigations in other types of cancers are still undergoing (89). Moreover, Lucanix (also known as belagenpumatucel-L, developed by NovaRx) consists of allogeneic NSCLC cells transfected with the plasmid encoding TGF-β2 antisense gene (91, 92). In the phase III study NCT00676507, Lucanix improved the overall survival of NSCLC patients, especially these received prior chemotherapy or radiation (93).




3 Immune checkpoint inhibitor and its predictive biomarkers

PD-1/PD-L1 is an important signaling pathway to suppress immune responses and maintain autoimmune homeostasis (94, 95). However, in the TME, the hyperactive PD-1/PD-L1 pathway inhibits immune surveillance. It is traditionally believed that PD-L1, which is highly expressed on tumor cells, binds to PD-1 on the surface of T cells and suppresses the activity of T cells (96). PD-1/PD-L1 monoclonal antibody rescues T cells and restores antitumor immunity by blocking this negative immunomodulatory signal (97, 98). Recent studies have found that anti-PD-L1 antibodies also activate dendritic cells (DC) (99) and natural killer (NK) cells (100). Although PD-1/PD-L1 monoclonal antibodies are approved for the treatment of various cancers and have shown promising results in some patients, the problem of low objective response rates has not been effectively addressed (82, 101, 102). Therefore, screening for molecular biomarkers adapted to PD-1/PD-L1 therapy is an urgent issue at the present stage.

In terms of clinical efficacy, PD-L1 expression could not predict patient outcomes well, and even some patients whose tumors do not express PD-L1 can benefit from anti-PD-1/PD-L1 treatment (103–105). Apart from PD-L1 level, other predictive biomarkers have been identified, including tumor mutational burden (TMB) (106), mismatch repair (MMR) deficiency (107), the status of tumor-infiltrating lymphocyte (TIL) (108), immunosuppressive cell populations (109), oncogenic driver mutations (110–112), neoantigen repertoire (113), gut microbiota (114–116), inflammation-related genes (117, 118), extracellular vesicles (119), and patient’s clinical characteristics (120).



4 The role of TGF-β in cancer immunology and immunotherapy

High TGF-β in tumor tissues is mainly produced by tumor cells and mesenchymal cells. TGF-β promotes EMT of tumor cells and acts on various immune cells in the TME, inducing the generation of a suppressive immune microenvironment (121). On the one hand, TGF-β inhibits the cytotoxic activity of CD8+ T cells, CD4+ T cells, and NK cells. On the other hand, TGF-β increases the proportion of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) (122–125). Moreover, recent studies have found that TGF-β modulates the activity of tumor-associated fibroblast (CAF) and increases the content of collagen fibers in the tumor stroma (126). The thickened collagen fibers surrounding the tumor tissue are detrimental to lymphocyte infiltration, resulting in an immune-excluded tumor type (126). It is generally believed that this type of tumor does not respond to anti-PD-1/PD-L1 therapy, while antagonizing the TGF-β signaling pathway significantly improves anti-PD-1/PD-L1 therapeutic resistance and enhances the effect of antitumor immunotherapy (53, 127). Actually, although CAF was broadly classified into myofibroblastic (myCAF) and inflammatory and growth factor-enriched subgroups, some specific phenotypes are validated to participate in tumor progression as well (128). Besides, Grauel et al. found that TGF-β blockade induced the differentiation of IFN-licensed CAF, enhanced T cell recruitment and infiltration, and improved the effect of anti-PD-1 (129). Moreover, Krishnamurty identified a TGF-β-dependent CAF cluster with highly expressed LRRC15, which could support tumor progression by limiting T cell activity. Abrogating LRRC15+ CAF also significantly enhanced the efficacy of anti-PD-1 in mouse models (130).

Microsatellite-stable (MSS) colorectal cancer (CRC) is generally regarded as the cold tumor with poor immunogenicity and scare immune cell infiltration, which is unlikely to benefit from anti-PD-1/PD-L1 (131). However, this type of CRC could be conquered by the combination of anti-TGF-β and anti-PD-1/PD-L1 (132). Tauriello et al. established a metastatic CRC model by genetically engineering Apc, Kras, Tgfbr2, and Trp53 quadruple mutant mice (132). Metastatic cancer tissues display characteristics of human MSS CRC: low mutation burden, T cell depletion, and TGF-β activation (132). Normal intestinal mucosa and adenoma had T cell infiltration in the mesenchyme, but not in adjacent cancer tissue (132). Anti-PD-1/PD-L1 treatment had limited effects on these tumors, while TGF-β inhibitors increased the sensitivity of anti-PD-1/PD-L1 treatment (132). Further investigations showed that combination therapy upregulated T-bet and IFN-γ levels in CD4+ Th1 cells and increased GZMB generation in CTLs, eventually eradicating metastases and prolonging survival (132). The results support that the TME with hyperactive TGF-β signaling caused T cell depletion and a decrease in Th1 effector cells, leading to cancer immune escape (132).

Besides, Mariathasan et al. analyzed cancer tissues from patients with metastatic urothelial carcinoma receiving anti-PD-L1 treatment (126). The responders were characterized by high PD-L1 expression, high tumor mutation burden/neoantigen, and CD8+ effector T cells (126). The non-responders had tumor tissue containing dense mesenchymal stroma, CAF with high TGF-β activity, and T cell deficiency (126). The mouse breast cancer EMT-6 model mimicked the phenotype of epithelial carcinoma, where blocking either PD-L1 or TGF-β alone was ineffective (126). Combined inhibition of TGF-β and PD-1 signaling reduces TGF-β activity in stromal cells, promotes T cell infiltration into the tumor, stimulates a robust immune response, and leads to tumor regression (126). In conclusion, several studies have shown that TGF-β pathway activity is hyperactivated in anti-PD-1/PD-L1-resistant tumor tissues (3). The high expression of TGF-β in the TME suppresses the antitumor immune response (3). The immunosuppressive mechanisms of TGF-β and PD-1/PD-L1 pathways on tumors are independent and complementary, promoting the escape from immune surveillance (36).



5 The predictive value of TGF-β signaling for anti-PD-1/PD-L1 treatment

In parallel with the immunosuppressive role of TGF-β in cancer immunology, the predictive value of TGF-β signaling in anti-PD-1/PD-L1 therapies has been well documented in multiple clinical studies. In the single-arm phase 2 study NCT02662309, 95 muscle-invasive urothelial cancer patients were recruited and received anti-PD-L1 treatment before cystectomy (38). In this study, the presence of preexisting activated CD8+ T cells (dual CD8 and GZMB positive staining) in the tumor was closely correlated with patient outcomes. Moreover, FAP, the surrogate biomarker of CAF, was upregulated in relapsing tumor tissues but was downregulated in responders (38). Notably, the signatures of cytotoxic T cell and TGF-β signaling could also effectively predict treatment response to atezolizumab (38). In addition, in the single-institutional phase 2 trial NCT02658019 for advanced hepatocellular carcinoma (HCC), patients with low plasma TGF-β (< 200 pg/ml) at baseline had improved OS and PFS after anti-PD-1 treatment (39). Also, in non-small cell lung cancer (NSCLC), TGF-β concentration in the plasma collected seven days after anti-PD-1 treatment effectively predicted patient outcomes (133).

Transcriptomic data of microsatellite instability-high/mismatch repair-deficient gastrointestinal tumors showed TGF-β, EMT, Wnt/β-catenin, angiogenesis, hypoxia, KRAS, mTORC1, and metabolism-associated pathways were enriched in non-responders after PD-1 treatment (40). Similarly, the transcriptomic profile of metastatic bone and soft tissue sarcomas demonstrated that TGF-β signaling enrichment was negatively correlated with the efficacy of anti-PD-1 (134). Furthermore, the TGF-β signature (based on mRNA levels of BMPR2, FKBP1A, SLC20A1, SKIL, TGFBR1, and XIAP) predicted anti-PD-1/PD-L1 resistance in gynecologic cancer (135). The high TGF-β score was associated with shorter progression-free survival after immunotherapy (8.1 vs. 2.8 months, P < 0.05) (135). Additionally, for triple-negative breast cancer receiving Durvalumab with Nab-Paclitaxel, RNA-seq data showed that EMT, TGF-β, and extracellular matrix pathways were enriched in patients with residual disease (136).



6 TGF-β blockade enhancing the efficacy of anti-PD-1/PD-L1 therapy

Given the negative role of TGF-β signaling in cancer immunology and immunotherapy, it is rational to enhance ICI efficacy by blocking TGF-β. In preclinical explorations and clinical practice, combination therapies of TGF-β inhibitor and anti-PD-1/PD-L1, as well as anti-PD-L1/TGF-β bispecific antibodies/fusion proteins, have made rapid progress (137).


6.1 TGF-β inhibitor combined with anti-PD-1/PD-L1

The synergistic effect between TGF-β inhibitor (e.g. anti-TGF-β, receptor kinase inhibitor, cancer vaccine) and anti-PD-1/PD-L1 has been validated in multiple murine tumor models, including but not limited to CT26 (mouse colon cancer), MC38 (mouse colon cancer), 3LL (mouse Lewis lung cancer), and EMT-6 (mouse breast cancer) (47, 54, 138, 139). Mechanistically, the combination therapy reverses TGF-β-mediated immune exclusion, enhances immune infiltration, improves the activities of effectors, and alters the polarization of macrophages (140).

In the advanced NSCLC patients, the interim results of NCT03732274 showed that galunisertib (TGFβRI kinase inhibitor) combined with durvalumab (anti-PD-L1) had potent antitumor activity with a manageable safety profile (response rate: 30.8% for PD-L1≥1% tumors; response rate: 40.0% for PDL1≥25%) (141). However, in the single-arm, multicenter, phase Ib study NCT02734160, galunisertib plus durvalumab was tolerable in metastatic pancreatic cancer, in spite of the limited antitumor activity (142).



6.2 Anti-PD-L1/TGF-β bispecific antibody or bi-functional protein

Actually, most PD-1/PD-L1 and TGF-β dual blockade strategies in clinical practice are fulfilled by anti-PD-L1/TGF-β bispecific antibody or bi-functional protein, which has strategic advantages over the conventional two-agent combination. More importantly, due to the unique structure, bispecific antibodies or bi-functional proteins might have better tumor specificity and therapeutic effects (54, 82, 143). M7824 (fusion protein containing anti-PD-L1 and TGF-β trap) outperformed anti-PD-L1 and TGF-β trap in preclinical studies by mobilizing antitumor immunity (82, 144). Notably, in the phase 1 study NCT02517398, the response rate in NSCLC patients with high PD-L1 expression was high as 85.7% (83). Besides, the results of other early-stage clinical trials were encouraging as well (145). At present, the efficacy of M7824 is under evaluation in more than ten types of cancers, including NSCLC, triple-negative breast cancer, urothelial carcinoma, biliary tract cancer, gastric cancer, HPV-associated malignancies, and thymic carcinoma. Similarly, SHR-1701 (fusion protein of anti-PD-L1 antibody and TGF-β trap) exhibited encouraging antitumor activity in advanced tumors in the phase 1 study NCT03710265 (response rate: 17.8%) (146). Moreover, multiple phase 1/2 studies demonstrated the powerful antitumor activity of SHR-1701 in cervical cancer, EGFR-mutated NSCLC, biliary tract cancer, and pancreatic cancer (147–150)

YM101 is the first publicly reported anti-PD-L1/TGF-β bispecific antibody in the world (54). In the preclinical studies, YM101 overcame anti-PD-L1 resistance in 3LL, CT26, and EMT-6 tumor models (54). Investigations in the TME showed that YM101 expanded the numbers of TIL, M1-like macrophage, and DC, but decreased M2-like macrophage (54). The surrogate of YM101, Y101D is under evaluation in advanced solid tumors (NCT05028556).




7 Conclusions

TGF-β is a paradoxical regulator in cancer progression, which acts as a suppressor in early-stage cancer but as a promoter in advanced cancer. The negative effects of TGF-β on cancer immune surveillance have been well studied, including impairing immune infiltration, inducing the differentiation toward MDSC/M2-like macrophage/Treg, limiting the cytotoxicity of T cell and NK cell, and undermining the antigen presentation capability of DC. Accumulating evidence shows that TGF-β not only promotes cancer immune evasion but also predicts the efficacy of immune checkpoint inhibitors. Increased TGF-β level at baseline is commonly associated with a poor response to anti-PD-1/PD-L1 therapy. Blocking TGF-β could improve response to anti-PD-1/PD-L1 and patient outcomes. At present, dual PD-1/PD-L1 and TGF-β blockade have made a breakthrough, especially by anti-PD-L1/TGF-β bispecific antibody or bi-functional protein. This updated immune checkpoint inhibitor might alter the therapeutic paradigm for cancer in the future.
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Background

Noninvasive methods for the early identify diagnosis of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa) are current clinical challenges.



Methods

The serum metabolites of 20 healthy individuals and patients with prostatitis, BPH, or PCa were identified using untargeted liquid chromatography-mass spectrometry (LC-MS). In addition, targeted LC-MS was used to verify the organic acid metabolites in the serum of a validation cohort.



Results

Organic acid metabolites had good sensitivity and specificity in differentiating prostatitis, BPH, and PCa. Three diagnostic models identified patients with PROSTATITIS: phenyllactic acid (area under the curve [AUC]=0.773), pyroglutamic acid (AUC=0.725), and pantothenic acid (AUC=0.721). Three diagnostic models identified BPH: citric acid (AUC=0.859), malic acid (AUC=0.820), and D-glucuronic acid (AUC=0.810). Four diagnostic models identified PCa: 3-hydroxy-3-methylglutaric acid (AUC=0.804), citric acid (AUC=0.918), malic acid (AUC=0.862), and phenyllactic acid (AUC=0.713). Two diagnostic models distinguished BPH from PCa: phenyllactic acid (AUC=0.769) and pyroglutamic acid (AUC=0.761). Three diagnostic models distinguished benign BPH from PROSTATITIS: citric acid (AUC=0.842), ethylmalonic acid (AUC=0.814), and hippuric acid (AUC=0.733). Six diagnostic models distinguished BPH from prostatitis: citric acid (AUC=0.926), pyroglutamic acid (AUC=0.864), phenyllactic acid (AUC=0.850), ethylmalonic acid (AUC=0.843), 3-hydroxy-3-methylglutaric acid (AUC=0.817), and hippuric acid (AUC=0.791). Three diagnostic models distinguished PCa patients with PROSTATITISA < 4.0 ng/mL from those with PSA > 4.0 ng/mL: 5-hydromethyl-2-furoic acid (AUC=0.749), ethylmalonic acid (AUC=0.750), and pyroglutamic acid (AUC=0.929). Conclusions: These results suggest that serum organic acid metabolites can be used as biomarkers to differentiate prostatitis, BPH, and PCa.
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Introduction

Prostate diseases are common disease in adult men and usually refers to benign prostatic hyperplasia (BPH), prostatitis, and prostate cancer(PCa) (1). At present, the auxiliary diagnostic examinations for prostatitis, prostatic hyperplasia, and prostate cancer mainly include digital rectal examination, ultrasound, X-ray examination, pathological tissue biopsy, mechanical examination of urinary activity in the lower urinary tract, routine prostatic fluid tests, computed tomography examination, and magnetic resonance imaging examination. Serum markers include prostate-specific antigen (PSA). These tests and markers have certain deficiencies (2), and there are currently no efficient and convenient method or serum biomarkers with strong specificity and sensitivity. However, the development of metabolomics in recent years has started to bridge this gap and is now playing an important role in the auxiliary diagnosis of diseases.

Metabolomics is a discipline that complements genomics, proteomics and transcriptomics integrates systems mainly through high-throughput detection and information modeling and data processing (3). Metabolomics analytical techniques can identify metabolites with molecular weights lower than 1000 D, such as vitamins, lipids and sugars. The pathophysiological state of the corresponding organism in a certain period can be determined by changes in metabolic levels, and the small-molecule metabolites in this state can be used as biomarkers, providing effective help for the screening and early diagnosis of diseases (4, 5). Metabolomics analytical techniques mainly comprise nuclear magnetic resonance combined with mass spectrometry (MS) and liquid chromatography-mass spectrometry (LC-MS) technologies (6). LC-MS has been widely used in the analysis of biological fluid samples owing to its high resolution, high sensitivity, and high selectivity (7).

In the present study, we used untargeted and targeted LC-MS techniques to study metabolites in the serum of normal individuals and patients with prostatitis, BPH, or PCa in the hope of identifying a new biomarker and providing important clues for the early detection and rapid diagnosis of the disease.



Methods and materials


Inclusion criteria

Prostatitis, prostatic hyperplasia (BPH),and prostate cancer(PCa) were diagnosed according to European Association of Urology guidelines (8). Participants were classified as follows: (i) healthy individuals (control group), with normal findings on digital rectal examination and prostate B-mode ultrasound and excluding those with diseases of the urinary system, all kinds of malignant tumors, and all kinds of chronic diseases; (ii) prostatitis patients (prostatitis group), with typical clinical symptoms of urination urgency, frequency, and pain, with abnormal results on a routine examination of prostatic fluid, and no abnormalities in liver and kidney function and no drug treatment or surgical resection; (iii) BPH group, with digital rectal examination and B-mode ultrasound of the prostate showing increased prostate volume and the presence of poor urination, frequent urination, increased nocturia, and progressive dysuria; some patients may have a history of urinary retention, but none have a history of other malignant tumors; all patients underwent urethral resection of the prostate and the postoperative pathological diagnosis confirmed BPH; and (iv) prostate cancer group, with serum PSA, digital rectal examination, prostate ultrasound, multiparametric magnetic resonance scanning, and other examinations confirming the diagnosis of prostate biopsy pathology; other systemic diseases were excluded and there was no history of other malignant tumors; finally, no patients were treated with radiotherapy, chemotherapy, surgical castration, drug castration, or surgical resection. All participants provided signed informed consent. The study was approved by the Ethics Committee of Panyu District Central Hospital in Guangzhou.



Specimen collection

Preoperatively, 3 mL of fasting venous blood was taken from all participants (digital rectal examination, massage, puncture, and other exploratory procedures were forbidden 1 week before blood collection), and the serum was collected and stored at −80°C for analysis. Patient information and relevant laboratory test indicators were collected retrospectively from patient records.



Metabolomics analysis

Based on ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) platform analysis, serum extracts were obtained using methanol, and organic acids were analyzed by UHPLC-triple quadruple mass spectrometry. Substances identified by non-targeted liquid chromatography mass spectrometry (LC-MS) metabolomics include, organic acids, nucleotides, fatty acids, lipids, amino acids and other substances. The original MS raw file was converted to mzXML file format by the msConvert tool in ProteoWizard software package (V3.0.8789). The RXCMS software package was used for peak detection, peak filtering, and peak alignment, and a quantitative list of substances was obtained. The substances were identified using the HMDB (Human Metabolome Database), Metlin, MassBank, Lipid Maps, mzCloud, and KEGG(Kyoto Encyclopedia of Genes and Genomes) and a self-built database. The lose signal correction method based on quality control samples can conduct data correction and eliminate systematic errors. We filtered out material with a relative standard deviation>30% in quality control samples in data quality control.




Results


Characteristics of the study population

The characteristics of the participants in the discovery cohort are summarized in Table 1. Total, free, and complexed PSA contents were all higher in the prostatitis group, BPH group, and prostate cancer group than in the normal control group. Although the mean age of the patients in the control group was lower than that in the other groups, the serum metabolic profile of the samples did not differ due to age, as shown by unsupervised principle component analysis in Supplemental Material, Figures 1-3. The characteristics of the participants in the validation cohort are summarized in Table 2 and were generally very similar to those of the discovery cohort. As shown in Supplemental Material, Figures 4-6, the samples of the patient and healthy control groups in the verification cohort could be separated and the same group was clustered together, indicating good repeatability within the group.


Table 1 | Comparison of PSA levels found in the discovery cohort.




Table 2 | Comparison of PSA levels in the validation cohort.





Analysis of serum metabolites found in the discovery cohort

Non-targeted LC-MS technology was used to identify prostatitis, and 20 metabolites with an AUC value of 1 were obtained, including organic heterocyclic compounds, organic oxygen compounds, lipids and lipid-like molecules, organic acids and derivatives, and phenylpropanoids and polypeptides (Supplemental Material, Table 1). There were nine metabolites with an AUC value of 1, which were mainly organic heterocyclic compounds, lipids and lipid-like molecules, and organic nitrogen compounds (Supplemental Material, Table 2). A total of 33 metabolites with an AUC value of 1 were obtained for identifying prostate cancer, including phenylpropanoids and polypeptides, lipids and functional-like molecules, organic acids and derivatives, organic oxygen compounds, organic heterocyclic compounds, and benzenoids (Supplemental Material, Table 3). The results showed that metabolites of organic acids in the peripheral blood of patients with prostatitis, BPH, and prostate cancer had good sensitivity and specificity for identifying the respective condition.



Validation analysis of serum organic acid metabolites in the validation cohort

Three diagnostic models were obtained for identifying prostatitis, with sensitivities and specificities of 63.2% and 81.1% for phenyllactic acid, 78.9% and 56.8% for pyroglutamic acid, and 65.8% and 70.3% for pantothenic acid, respectively. The serum levels of phenyllactic acid, pyroglutamic acid, and pantothenic acid were significantly higher in the prostatitis group than in the normal control group (Figure 1A).




Figure 1 | (A) Comparison of the contents of organic acid metabolites in the serum of prostatitis and normal controls and ROC curve analysis. (a, b) The contents of pantothenic acid, phenyllactic acid, and pyroglutamic acid in the serum of prostatitis patients and normal controls and ROC curve analysis of lactic acid, used to identify prostatitis. (d) Diagnostic model for identifying prostatitis with serum organic acids. (B) Comparison of the contents of organic acid metabolites in the serum of patients with BPH and normal controls and ROC curve analysis. (a–c) Content of citric acid, D-glucuronic acid, and malic acid in the serum of patients with BPH and ROC curve analysis for differentiating BPH. (d) Diagnostic model of serum organic acid metabolites for differentiating BPH. (C) Comparison of the contents of organic acid metabolites in the serum of prostate cancer patients and normal controls and ROC curve analysis. (a–d) The contents of 3-hydroxy-3-methylglutaric acid, citric acid, malic acid, and phenyllactic acid in the serum of prostate cancer patients and normal controls and ROC curve analysis of lactic acid, used to identify prostate cancer. (e) Diagnostic model of serum organic acid metabolites for differentiating prostate cancer.



Three diagnostic models were obtained for the differential diagnosis of BPH, with sensitivities and specificities of 81.6% and 73.1% for citric acid, 84.2% and 73.1% for malic acid, and 78.9% and 71.2% for D-glucuronic acid, respectively. The serum contents of citric acid, malic acid, and D-glucuronic acid were significantly higher in the BPH group than in the normal control group (Figure 1B).

Four diagnostic models were used to identify prostate cancer, with sensitivities and specificities of 86.8% and 86.5% for citric acid, 76.3% and 82.7% for malic acid, 84.2% and 71.2% for 3-hydroxy-3-methylalutaric acid, 73.7% and 63.5% for lactic acid, respectively. As the degree of malignancy increased, the sensitivity and specificity of citric acid and malic acid also increased, suggesting that these metabolites can be used as good biomarkers for monitoring malignant prostatic hyperplasia (Figure 1C).

To further distinguish benign and malignant prostatic hyperplasia, two diagnostic models were obtained through ROC curve analysis. The sensitivity and specificity of phenyllactic acid were 86.5% and 63.5% while those of pyroglutamic acid were 84.6% and 67.3%, respectively (Figure 2A).




Figure 2 | (A) Comparison of the contents of organic acid metabolites in the serum of patients with BPH and patients with prostate cancer and ROC curve analysis. (a, b) Comparison of the contents of phenyllactic acid and pyroglutamic acid in the serum of patients with BPH and ROC curve analysis. (c) Diagnostic model of the serum organic acid metabolites used to distinguish prostate cancer from BPH. (B). Comparison of the contents of organic acid metabolites in the serum of patients with BPH and patients with prostatitis and ROC curve analysis. (a–c) Comparison of the contents of citric acid, ethylmalonic acid, and hippuric acid in the serum of patients with BPH and patients with prostatitis and ROC curve analysis. (d) Diagnostic model of serum organic acid metabolites to distinguish BPH from prostatitis.



Three diagnostic models were obtained to distinguish BPH and prostatitis. The sensitivities and specificities were 78.4% and 76.9% for citric acid, 73.0% and 82.7% for ethylmalonic acid, and 64.9% and 63.5% for hippuric acid, respectively (Figure 2B).

Six diagnostic models were obtained for distinguishing prostate cancer from prostatitis. The sensitivities and specificities were 91.9% and 82.7% for citric acid, 83.8% and 75.0% for pyroglutamic acid, 91.9% and 73.1% for phenyllactic acid. 86.5% and 78.8% for ethylmalonic acid, 81.1% and 73.1% for 3-hydroxy-3-methylglutaric acid, and 73.0% and 75.0% for hippuric acid, respectively (Figure 3). Thus, serum organic acid metabolites can be used as potential biomarkers to differentiate prostatitis, BPH, and prostate cancer.




Figure 3 | Comparison of organic acid metabolites in the serum of patients with prostate cancer and patients with prostatitis and ROC curve analysis. (A–F) Comparison of citric acid, pyroglutamic acid, phenyllactic acid, ethylmalonic acid, 3-hydroxy-3-methylglutaric acid, and hippuric acid content in the serum of patients with prostate cancer and patients with prostatitis and ROC curve analysis. (G) Diagnostic models of serum organic acid metabolites used to distinguish prostate cancer from prostatitis.





Analysis of organic acid metabolites in the serum of PCa patients

PSA is a specific tumor marker for prostate cancer that is mainly used for the auxiliary diagnosis of PCa. When the serum total PSA is higher than 4.0 ng/mL, prostate cancer is highly suspected. However, the serum PSA content of some prostate cancer patients is less than 4.0 ng/mL, and the definitive diagnosis of prostate cancer should be combined with clinical imaging and pathological examinations (9, 10). To further distinguish prostate cancer patients with PSA < 4.0 ng/mL from those with PSA < 4.0 ng/mL, ROC curve analysis was used to obtain three diagnostic models: the sensitivities and specificities were 56.1% and 100% for 5-hydroxymethyl-2-furoic acid, 63.4.0% and 100% for ethylmalonic acid, and 87.8% and 90% for pyroglutamic acid, respectively (Figure 4A). The serum content of pyroglutamic was higher in patients with PSA < 4.0 ng/mL than in patients with PSA > 4.0 ng/mL. The serum content of 5-hydroxymethyl-2-furoic acid was significantly higher in patients with PSA > 4.0 ng/mL than in patients with PSA < 4.0 ng/mL (Figure 4B). These results showed that 5-hydroxymethyl-2-furoic acid, ethylmalonic acid, and pyroglutamic acid could be used as biomarkers to differentiate prostate cancer with PSA < 4.0 ng/mL from that with PSA > 4.0 ng/mL.




Figure 4 | Comparison of the contents of organic acid metabolites in the serum of different prostate cancer groups and ROC curve analysis. (A) ROC curve analysis of 5-hydroxymethyl-2-furoic acid, ethylmalonic acid, and pyroglutamic acid for distinguishing prostate cancer patients with PSA < 4.0 ng/mL and PSA > 4.0 ng/mL. (B) Comparison of 5-hydroxymethyl-2-furoic acid, ethylmalonic acid, and pyroglutamic acid in the serum of prostate cancer patients with PSA < 4.0 ng/mL and PSA > 4.0 ng/mL.






Discussion

Increasing evidence indicates that the onset and progression of disease may influence the release of specific metabolites from the humeral microenvironment (11, 12). Serum sarcosine has been identified as a biomarker of invasive prostate cancer. It increases significantly during prostate cancer progression to metastasis and can be detected in urine, and increased sarcosine levels have been found in invasive prostate cancer cell lines relative to benign prostate epithelial cells (13). N-acetyl-3-methylhistidine has been implicated in the progression of prostate cancer (14). Accurate identification of noninvasive biomarkers remains a challenge. To date, few plasma/serum metabolomics have been used to identify prostate diseases, including prostatitis, BPH, and prostate cancer.

In our study, 26 types of serum organic metabolites were identified based on targeted LC-MS technology. Three diagnostic models were found to identify patients with prostatitis: phenyllactic acid (AUC=0.773), pyroglutamic acid (AUC=0.725), and pantothenic acid (AUC=0.721). Three diagnostic models identified BPH: citric acid (AUC=0.859), malic acid (AUC=0.820), and D-glucuronic acid (AUC=0.810). Four diagnostic models identified prostate cancer: 3-hydroxy-3-methylglutaric acid (AUC=0.804), citric acid (AUC=0.918), malic acid (AUC=0.862), and phenyllactic acid (AUC=0.713). Two diagnostic models distinguished BPH from prostate cancer: phenyllactic acid (AUC=0.769) and pyroglutamic acid (AUC=0.761). Three diagnostic models distinguished BPH from prostatitis: citric acid (AUC=0.842), ethylmalonic acid (AUC=0.814), and hippuric acid (AUC=0.733). Six diagnostic models were obtained for distinguishing prostate cancer from prostatitis: citric acid (AUC=0.926), pyroglutamic acid (AUC=0.864), phenyllactic acid (AUC=0.850), ethylmalonic acid (AUC=0.843), 3-hydroxy-3-methylglutaric acid (AUC=0.817), and hippuric acid (AUC=0.791). Three diagnostic models distinguished prostate cancer patients with PSA < 4.0 ng/mL from those with PSA < 4.0 ng/mL: 5-hydroxymethyl-2-furoic acid (AUC=0.749), ethylmalonic acid (AUC=0.750), and pyroglutamic acid (AUC=0.929). Therefore, serum organic acid metabolites can be used as biomarkers to differentiate prostatitis, BPH, and prostate cancer.

The serum marker PSA is a glycoprotein produced by intracytoplasmic vesicles in prostate epithelial cells. When prostate disease occurs, the tissue barrier between prostate vesicles and the ductal lumen and the blood circulation system is damaged to varying degrees, resulting in leakage of PSA protein into the blood and an elevated PSA concentration (15). PSA levels can be increased by prostate diseases such as prostatitis, prostatic hyperplasia, and prostate ischemia and prostate stimulation such as anal finger examination, prostate massage, cystoscopy, and acute urinary retention. When prostate cancer occurs, the original tissue barrier is severely damaged due to the abnormal infiltration and growth of cancer tissue, resulting in massive leakage of PSA into the blood. PSA is a sensitive marker for the diagnosis of prostate cancer but does not have specificity (10). To further distinguish prostate cancer patients with PSA > 4.0 ng/mL and PSA < 4.0 ng/mL, our results confirmed that the serum content of pyroglutamic was higher in patients with PSA < 4.0 ng/mL than in patients with PSA > 4.0 ng/mL. The serum content of 5-hydroxymethyl-2-furoic acid was significantly higher in the PSA > 4.0 ng/mL group than in the PSA < 4.0 ng/mL group. Thus, 5-hydroxymethyl-2-furoic acid, ethylmalonic acid, and pyroglutamic acid can be used to distinguish prostate cancer with PSA < 4.0 ng/mL and PSA > 4.0 ng/mL with high sensitivity and specificity.

The commonly used examination methods for clinical prostatitis include digital rectal examination, routine examination of prostatic fluid, and cumbersome diagnosis methods (16). Anal examination, B-mode ultrasound, diffusion-weighted magnetic resonance imaging, and urodynamics are somewhat helpful for the diagnosis of prostatic hyperplasia, but they lack specificity and sensitivity (17). Clinical methods used for prostate cancer diagnosis, such as transrectal ultrasound prostate examination and transrectal prostate puncture biopsy, are often invasive and cause great harm to the human body. PSA is not completely applicable to the diagnosis of prostate diseases (18). The detection of serum organic acid metabolites by LC/MC technology has potential clinical application value in the identification of prostatitis, prostatic hyperplasia, and prostate cancer, which can reduce patients’ puncture pain and compensate for the deficiency of PSA in the diagnosis of prostate diseases (Supplemental Material, Figure 7).

In conclusion, serum metabolomics analysis is a promising noninvasive method for the diagnosis of prostatitis, BPH, and PCa and can distinguish patients with prostatitis from those with BPH and PCa. Larger validation studies in patients with different conditions and ethnicities will be needed to further determine the clinical diagnostic value of these biomarkers.
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Background

Enrichment of tumor-infiltrating lymphocytes (TIL) in the tumor microenvironment (TME) is a reliable biomarker of immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Phenotyping through computed tomography (CT) radiomics has the overcome the limitations of tissue-based assessment, including for TIL analysis. Here, we assess TIL enrichment objectively using an artificial intelligence-powered TIL analysis in hematoxylin and eosin (H&E) image and analyze its association with quantitative radiomic features (RFs). Clinical significance of the selected RFs is then validated in the independent NSCLC patients who received ICI.



Methods

In the training cohort containing both tumor tissue samples and corresponding CT images obtained within 1 month, we extracted 86 RFs from the CT images. The TIL enrichment score (TILes) was defined as the fraction of tissue area with high intra-tumoral or stromal TIL density divided by the whole TME area, as measured on an H&E slide. From the corresponding CT images, the least absolute shrinkage and selection operator model was then developed using features that were significantly associated with TIL enrichment. The CT model was applied to CT images from the validation cohort, which included NSCLC patients who received ICI monotherapy.



Results

A total of 220 NSCLC samples were included in the training cohort. After filtering the RFs, two features, gray level variance (coefficient 1.71 x 10-3) and large area low gray level emphasis (coefficient -2.48 x 10-5), were included in the model. The two features were both computed from the size-zone matrix, which has strength in reflecting intralesional texture heterogeneity. In the validation cohort, the patients with high predicted TILes (≥ median) had significantly prolonged progression-free survival compared to those with low predicted TILes (median 4.0 months [95% CI 2.2–5.7] versus 2.1 months [95% CI 1.6–3.1], p = 0.002). Patients who experienced a response to ICI or stable disease with ICI had higher predicted TILes compared with the patients who experienced progressive disease as the best response (p = 0.001, p = 0.036, respectively). Predicted TILes was significantly associated with progression-free survival independent of PD-L1 status.



Conclusions

In this CT radiomics model, predicted TILes was significantly associated with ICI outcomes in NSCLC patients. Analyzing TME through radiomics may overcome the limitations of tissue-based analysis and assist clinical decisions regarding ICI.





Keywords: radiomics, immune checkpoint inhibitor (ICI), immunotherapy, tumor infiltrating lymphocyte (TIL), artificial intelligence



Introduction

Treating non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICI) has become a prevailing strategies since the clinical benefits have been demonstrated by numerous clinical trials (1–3). Various studies on the immune tumor microenvironment (iTME) have been conducted to identify patients who would benefit from ICI (4). Some of the most prevalent biomarkers that represent iTME include programmed cell death ligand 1 (PD-L1) expression, tumor mutation burden, and tumor-infiltrating lymphocytes (TILs) (4). However, these biomarkers require tissue biopsy through invasive procedures, which is difficult to perform repeatedly and sometimes even impossible. Radiomics may overcome such limitations as radiologic analysis is much less invasive than a tissue biopsy (5). Radiomics in medicine is the practice of processing high-throughput extraction of quantitative features to convert images such as computed tomography (CT) into mineable data and analyze the data for decision support (6). Studies have demonstrated the association of radiomic features with histologic findings such as histological subtypes of lung cancers (7, 8). Furthermore, radiomic features could represent TME and genomic instability, which have not been demonstrated by current functional imaging (9). Therefore, a radiomic approach in NSCLC may provide spatial information on TIL and thereby assist clinical decisions in the use of ICIs.

Previous studies have demonstrated the feasibilities of this approach. Yoon et al. (10) reported that radiomic features could be potential biomarkers in identifying type 2 helper T (Th2) cell signatures. Sun et al. (11) published the results of a radiomic signature model that predicts CD8 cells based on CD8B gene-associated signatures in NSCLC tumors and correlated this with ICI treatment outcomes. Tang et al. (12) reported the development of a PD-L1 and CD3 immunohistochemistry informed radiomics model dividing NSCLC into four clusters that correlated with overall survival. There is also a study on the radiomics of positron emission tomography which developed a deep-learning model predicting a cytolytic activity score that was associated with ICI outcomes and the heterogeneity of responses (13). However, these studies were based on biomarkers that are crude representatives of iTME and not often used in clinical practices. In addition, pathophysiologic insights regarding how radiomic models are associated with iTME have not been compelling enough.

Here, we searched for the radiomic features that are potentially reflective of iTME through the use of TIL. For an objective TIL assessment, we used an artificial intelligence (AI)-powered TIL analyzer, Lunit SCOPE IO, and hematoxylin and eosin (H&E) stained slides (14). The Lunit SCOPE IO determines the immune phenotype of tumors by TIL assessment, which showed a significant association with ICI outcome in advanced NSCLC (14). We identified radiomic features significantly correlated with TIL assessed by Lunit SCOPE IO and validated this data in the ICI treated cohort. For the selected radiomic features, we considered whether the potential pathophysiological mechanism of TIL could be applied to radiomics.



Methods

This is a single-center retrospective cohort study on patients with NSCLC from Samsung Medical Center, Seoul, South Korea. The schematic flow of this study is available in Figure 1. We developed least absolute shrinkage and selection operator (LASSO) models from the training cohort predicting the TIL enrichment score (TILes) with radiomic features, which will be described in detail later. Using the model, we calculated the predicted TILes in the validation cohort and evaluated their association with ICI outcomes. The demographic features of the patient, including pathologic diagnosis, EGFR mutation, ALK translocation, and PD-L1 status, were reviewed. PD-L1 status was defined as high if the tissue showed an ≥50% tumor proportional score (TPS) by PD-L1 immunohistochemistry 22C3 pharmDx and as low if otherwise. The progression-free survival (PFS) and overall survival (OS) of the validation cohort in association with ICIs was also investigated. The response of the disease was determined using revised response evaluation criteria in solid tumors guideline (RECIST) version 1.1 (15).




Figure 1 | Study scheme.



The study was approved by the institutional review board (IRB) of Samsung Medical Center (IRB number: 2021-04-196). All the data of the current study were collected and analyzed after approval and were in accordance with the declaration of Helsinki.


Patients of the training and validation cohorts

For the training cohort, the patients who were diagnosed with NSCLC from January 2005 to May 2021 and with available H&E-stained tissue from whole tumor and CT images of the lung acquired within 1 month of each other were included. For the validation cohort, the patients who received ICI monotherapy for advanced NSCLC from January 2013 to May 2021 and with CT images available before 1 year of ICI initiation were included. Patients with CT images not passing the quality for radiomic feature extraction were excluded. (Supplementary Figure 1)



Determining TILes

The version of Lunit SCOPE IO used for this study contains a cell detection AI model and tissue segmentation AI model that were updated from the version described previously in the published article (14). The detailed methods for the development of the Lunit SCOPE IO TIL analyzer are available in Supplementary Methods 1.

From the tissues of the training cohort, TILes was defined as the fraction of tissue with high intra-tumoral TIL density (inflamed immune phenotype) or stromal TIL density (immune-excluded immune phenotype) divided by the whole analyzable TME area as measured on the H&E slide. For quality control, samples with less than 0.5 mm2 of the cancer epithelium area in the whole H&E slide image and with fewer than ten 1 mm2-sized grids available for the evaluation were excluded.



CT acquisition and radiomic feature extraction

All the patients of the training cohort and the validation cohort underwent contrast-enhanced CT scans using the standardized protocol of our institution. The definition for target lesions were adopted from RECIST version 1.1 (15). The representative target lesions were selected by one thoracic radiologist and one technician (D.Y.J. with 6 years of experience and Y.J.O. with 5 years of experience), reviewed by one senior thoracic radiologist (H.Y.L. with 17 years of experience). Target lesions were segmented by drawing a volume of interest (VOI) with a semiautomatic approach using commercial software AVIEW COPD (version 1.1.38.6, Coreline soft, Seoul, South Korea) and a slice-per-slice approach. Then the boundary of the lesion was modified manually to avoid adjacent air, fat, blood vessels, and surrounding organs. Detailed CT parameters and the 3D segmentation process are also described in Supplementary Methods 2.

A total of 88 radiomic features of raw imaging over the given region of interest (ROI) were extracted using a combination of open-source (Pyradiomics, version 3.0.1, Pyradiomics Community) (16) and in-house MATLAB code (MATLAB, R2017, Mathworks Inc., Natick, MA, USA) (17).

The extracted features can be classified into seven categories: (I) first order (intensity) features (n=18); (II) shape features (n=14); (III) gray level co-occurrence matrix features (GLCM; n=24); (IV) gray level size zone matrix features (GLSZM; n=16); (V) cumulative distribution function feature (CDF, n=5); (VI) physical features (n=2); and (VII) Fractal features (n=9). CDF, physical and fractal features were extracted by in-house MATLAB code as they were not calculated in PyRadiomics. A detailed definition of the features is explained in Supplementary Table 1.



Feature selection associated with TILes

In the process of feature selection, we first searched for features that have significantly different TILes values. For each feature, samples were divided into high and low groups by the median value of the feature. Samples with the median value of the feature were classified into the high group. Then, Student’s t test was performed to evaluate the significance of the difference in TILes between the high and low groups of each feature. The cutoff of p< 0.005 was used to filter out and select significant features.

After the filtering process, logistic regressions were performed using TILes as the dependent variable and the selected features as the independent variables. The aliasing features were excluded. Then, the variance inflation factors were calculated to exclude the features showing multicollinearity, which was determined with a variance inflation factor value of more than 10. With the final remaining features, LASSO modeling was performed and features with a non-zero coefficient were finally selected. The models were used to predict TILes in the training cohort to compare with the original TILes. The LASSO modeling was performed using “glmnet” package in R statistics, which solves the objective function for the Gaussian family

	

where we have observations xi∈ℝp , the responses yi∈ℝ , i=1, …, N , and λ≥0 is a complexity parameter (18).

Using the model for TILes, we calculated the predicted TILes from the CT images of the validation cohort. With the predicted TILes, the patients were divided into high and low groups according to the median value. Patients with the median value of the feature were classified into the high group.



Other statistical analysis

The correlation of continuous values was reported by Spearman’s rank correlation coefficient (ρ). The comparison of continuous values between groups was analyzed using the Wilcoxon rank-sum test. The comparison of categorical values between groups was analyzed using Fisher’s exact test and reported with an odds ratio (OR). The survival analysis was performed using the log-rank test and visualized by Kaplan-Meier methods. Hazard ratio (HR) and 95% confidence interval (CI) was calculated using a Cox proportional hazard model. A multivariate Cox proportional hazard model was performed on variables with a factor of p< 0.05 in the univariate Cox proportional hazard model. A P-value< 0.05 was considered statistically significant. All the statistical analyses other than described, were performed with R 4.0.0 (https://www.r-project.org/).




Results


Patient demographics

A total of 276 patients were eligible for the training cohort. After the quality of the CT image and H&E-stained samples were evaluated, 220 ROIs from 218 patients were included in the training cohort. Two patients had two ROIs because they were associated with two different time points where CT images and matching H&E slides were acquired within 1 month. The other 216 patients had single ROIs. Among the samples of training cohort, 62 specimens came from patients who previously received systemic treatment and 158 specimens came from patients without any previous systemic treatment. For the validation cohort, 430 patients were eligible. After a quality check of the CT images, 294 ROIs from 294 patients were finally included in the validation cohort. A summary of the patients’ demographics is available in Table 1.


Table 1 | Demographic characteristics of samples included in the study.







Significant radiomic features associated with TILes

The 88 radiomic features from the 220 ROIs were extracted (Supplementary Table 2). After filtering, the radiomic features and modeling process were applied as described in Methods (Supplementary Table 3), we found significant features potentially associated with the TILes (Figure 2A, Table 2). Notably, although the size parameters (maximum 2D diameter slice, maximum 2D diameter column) showed that the larger tumors were associated with lower TILes, these parameters showed multicollinearity and were excluded from the model. Eventually, the LASSO model predicting TILes consisted of two features (Supplementary Figure 2), gray level variance (GLV, coefficient 1.71 × 10-3) and large area low gray level emphasis (LALGLE, coefficient -2.48 × 10-5), which were both GLSZM features. The higher GLV and the lower LALGLE feature values were associated with higher TILes (Figures 2B, C). The predicted values by the application of the model in the training cohort significantly correlated with the original values (Supplementary Figure 3). The distribution of demographics according to predicted TILes is available in Figure 2D.




Figure 2 | Features associated with tumor infiltrating lymphocyte enrichment score (TILes). (A) Volcano plot showing the features associated with TILes. Red horizontal dashed line represents a p-value of 0.005. The points representing Gray Level Variance (GLV) and Large Area Low Gray Level Emphasis (LALGLE) are indicated by arrows. (B) CT image and H&E slide example of patient with high GLV and low LALGLE. The blue areas in the H&E slide represent cancer epithelium; the skyblue dots in the H&E slide represent TILs. (C) CT image and H&E slide example of patient with low GLV and high LALGLE. The blue areas in the H&E slide represent cancer epithelium; the skyblue dots in the H&E slide represent TILs. (D) Bar plots and heatmap showing the distribution of predicted TILes and demographics in the training cohort and validation cohort. The patients are arranged by predicted TILes values in decreasing order in each cohort.




Table 2 | The selected significant features associated with TILes.



Using the LASSO models developed by the selected features, we analyzed the outcome of patients who received ICI in the validation cohort to demonstrate that the model represents the immune aspects of the TILes. We found that patients with high predicted TILes (≥median) show significantly prolonged PFS compared to patients with low predicted TILes (median 4.0 months [95% CI 2.2–5.7] versus 2.1 months [95% CI 1.6–3.1], hazard ratio 0.68 [95% CI 0.53–0.87], p = 0.002; Figure 3A). Subgroup analysis generally showed prolonged PFS in the high TILes group compared with that in the low TILes group (Figure 3B). In particular, subgroup analysis by pathologic diagnosis showed that patients with high predicted TILes show significantly prolonged PFS compared with patients with low predicted TILes in both adenocarcinoma and squamous cell carcinoma (p = 0.045 and p = 0.049, respectively; Supplementary Figure 4A). High predicted TILes also showed significantly prolonged OS compared with patients with low predicted TILes (median 18.9 months [95% CI 12.9–30.5] versus 9.1 months [95% CI 7.1–12.0], hazard ratio 0.52 [95% CI 0.39–0.69], p< 0.001; Figure 3A). In addition, patients who experienced a response to ICI or stable disease with ICI had higher predicted TILes compared with the patients who experienced progressive disease as the best response (p = 0.001, p = 0.036, respectively; Figure 3C).




Figure 3 | Outcomes of patients receiving immune checkpoint inhibitors (ICI) according to predicted TILes in the validation cohort (A) The upper table summarizes the survival analyses of the patients. The left Kaplan-Meier curves show progression free survival (PFS) and the right Kaplan-Meier curves show overall survival (OS) according to the predicted tumor infiltrating lymphocyte enrichment score (TILes) group. The red line represents the high TILes and the blue line represents the low TILes groups. The censored data are marked with vertical lines. The numbers at risk are provided below. (B) Forest plot for subgroup analysis of PFS according to predicted TILes in the validation cohort (C) The boxplot showing predicted TILes according to the response to ICI. Each dot represents each patient.



We carried out Cox proportional hazard model analyses to evaluate whether TILes are independent of PD-L1 status, which is well known to be associated with PFS in patients who received ICI as in this cohort (Supplementary Figure 4B) and previous studies. We found that predicted TILes was significantly associated with PFS independent of PD-L1 status (HR 0.01, 95% CI 0.00–0.28, p = 0.007 for TILes as continuous variables and HR 0.67, 95% CI 0.51–0.89, p = 0.006 for the high TILes group; Table 3). In addition, when the patients were divided into 4 groups according to TILes and PD-L1 status, patients with high TILes and PD-L1 showed significantly prolonged PFS compared with the other 3 groups (p = 0.005; Figure 4).


Table 3 | Cox proportional hazards model for PFS of ICI.






Figure 4 | Outcomes of ICI according to predicted tumor infiltrating lymphocyte enrichment score (TILes) and PD-L1 status in the validation cohort. Kaplan-Meier curves showing progression free survival (PFS) according to predicted TILes group and PD-L1 status. Red lines represent the high PD-L1 group and the blue line represents the low PD-L1 group. The solid lines represent the high TILes group and the dashed lines represent the low TILes group. The censored data are marked with vertical lines. The numbers at risk are provided below.






Discussion

In this study, we developed a radiomic model that predicts TIL enrichment of corresponding tumor tissue using two radiomic features: GLV and LALGLE. The predicted TILes by CT radiomics significantly correlated with ICI outcome in the validation cohort independent of PD-L1 status. In addition, high TILes and high PD-L1 patients showed the most superior survival outcome to ICI compared with other groups.

Previous studies have demonstrated the possibility of a radiomics approach in the development of a biomarker for the favorable outcome of ICI (11–13). We developed a more precise radiomics model that focuses specifically on the spatial information within NSCLC and predicts TIL enrichment of corresponding tumor tissue, a potential biomarker for ICI treatment response, in collaboration with AI-powered spatial analysis of TIL by Lunit SCOPE IO (14). This approach enables us to investigate how and where exactly the TIL enrichment is visualized on the CT images and what pathophysiologic mechanism would be potentially associated, which was not discussed intensively in the previous studies.

Both GLV and LALGLE are categorized as GLSZM features, which are second-order statistical texture features. These are computed from the size-zone matrix by measuring the size of neighboring voxels with the same signal intensity (19). By grouping the adjacent same signal intensity voxels in two- or three-dimensions, a more homogeneous texture results in a wider and flatter matrix (20). Therefore, GLSZM features intensify the difference among the group of neighboring voxels with different signal intensity and have high dimensional information (21). These characteristics give GLSZM the strength to reflect intralesional texture heterogeneity which might result from the mixture of both TIL and most tumor cells.

The intralesional texture heterogeneity might have come from the several characteristics that cancer acquires during tumorigenesis, the so-called hallmarks of cancer, such as avoiding immune destruction and inducing angiogenesis (22). Such changes in cancer cells, including immunoediting to escape immunosurveillance, promotes recruitment and infiltration of various lymphocytes, resulting in complex iTME (23, 24). Hypoxia, in consequence of tumor outgrowth and insufficient vascularization, also induces regulatory T cell recruitment to promote angiogenesis and inhibit cytotoxic T cell activity (25, 26). During these processes, the tumor and its TME become more complex and each of the processes can make specific intralesional texture heterogeneity.

GLV represents the variance in gray level intensities based on GLSZM and reflects intralesional texture heterogeneity. Thus, it is reasonable that higher GLV can reflect higher TILes. This result is consistent with previous studies. Gao et al. (27) and Jeon et al. (28) reported radiomics models using GLV with a positive coefficient for predicting tumor-infiltrating regulatory T cells and cytotoxic T cells, respectively, in gastrointestinal tumors.

LALGLE and large area high gray level emphasis (LAHGLE) based on GLSZM describe the preponderance of large areas with low-density and high-density pixels in the tumor, respectively. During tumor progression, not only the necrotic low-density area but also the cellular high-density area will grow at the same time, then the value of both LALGLE and LAHGLE should be increased simultaneously. Similar results were reported by Barabino et al. (29), the tumor enlarges and the values of LAHGLE and LALGLE increase in the progressive disease of NSCLC. However, our result showed that only LALGLE was included in the model while LAHGLE was not. Considering the result, a tumor that was associated with poor TIL enrichment would have a large necrotic area compared to the size of the total tumor. It is reasonable that the proposed tumor could have a small cellular area, which is composed of both tumor and TILs.

Notably, the model used to predict TILes did not have parameters representing size, which is currently the single parameter for physicians to determine the response of tumors (30). However, responding tumors often show no change or even increase in size, so-called pseudo-progression, partly due to the enrichment of TILs after ICI administration (30, 31). Such phenomenon makes it difficult for the physician to make the best decision for the patient, but repeated biopsy is not performed routinely. Therefore, additional information using radiomic features that are associated with TILs but not the size would be helpful. Here, we have demonstrated the radiomic features associated with TILes on the pretreatment images of a single time point, it would be valuable to evaluate the temporal heterogeneity of the predicted TILes throughout the course of ICI treatment in a further study.

There are several limitations in this study. First, this is a retrospective study trained with a limited number of patients and images. This is partly because of the strict inclusion criteria that required the date of the specimen and image acquisition to be within 1 month to ensure that the iTME status of CT images and H&E slides match. The number of patients in the validation cohort was also limited which resulted in a limited significance in the subgroup analyses. However, since significant correlations with clinical findings were demonstrated, this study still showed the possibility that some of the radiomic features represent the pathophysiologic process of iTME. Second, the training and the validation were performed only in primary lung cancer, not in metastatic tumors. We restricted the tissue to the primary lesions because the surrounding attenuations at the metastasis of other organs in the images would affect some of the radiomic features (32). Further studies on the validity of our predicted TILes in the other organs are needed, especially to evaluate spatial heterogeneity. Third, the model predicted TIL with only two radiomic features which could have limited the performance for prediction of exact TILes values and made dependent on the values of two radiomic features. However, the LASSO prediction works well for any degree of correlation (33), and indeed the prediction model with 2 features was enough to predict the association of TILes with clinical outcomes of patients who received immune checkpoint inhibitors in the validation cohort, suggesting that radiomic model reflect TILs in a general way that can be applied to the other clinical cohorts. Even though, our model should be interpreted as a potential emerging biomarker that reflect part of the complex iTME that requires further validation. The further validation would include the validation on the association of the radiomic model with tissue samples and tissue biomarkers, especially in the advanced cancer patients.

In conclusion, we found the radiomic features that predict TILes were significantly associated with the outcomes of ICI. Further study is warranted to develop a model based on the radiomic feature model in this study and apply it to an exploration of the temporal and spatial heterogeneity of the tumors in clinical practices.
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Cuproptosis, a newly identified form of programmed cell death, plays vital roles in tumorigenesis. However, the interconnectivity of cuproptosis and ferroptosis is poorly understood. In our study, we explored genomic alterations in 1162 lung adenocarcinoma (LUAD) samples from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) cohort to comprehensively evaluate the cuproptosis regulators. We systematically performed a pancancer genomic analysis by depicting the molecular correlations between the cuproptosis and ferroptosis regulators in 33 cancer types, indicating cross-talk between cuproptosis and ferroptosis regulators at the multiomic level. We successfully identified three distinct clusters based on cuproptosis and ferroptosis regulators, termed CuFeclusters, as well as the three distinct cuproptosis/ferroptosis gene subsets. The tumor microenvironment cell-infiltrating characteristics of three CuFeclusters were highly consistent with the three immune phenotypes of tumors. Furthermore, a CuFescore was constructed and validated to predict the cuproptosis/ferroptosis pathways in individuals and the response to chemotherapeutic drugs and immunotherapy. The CuFescore was significantly associated with the expression of miRNA and the regulation of post-transcription. Thus, our research established an applied scoring scheme, based on the regulators of cuproptosis/ferroptosis to identify LUAD patients who are candidates for immunotherapy and to predict patient sensitivity to chemotherapeutic drugs.
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Introduction

In 2021, lung cancer accounted for 25% of all cancer deaths on a global scale (1). Lung adenocarcinoma (LUAD) is one of the most predominant histological subtypes of lung cancer. Despite great advancements in the treatment of lung cancer, the 5-year survival rate for LUAD patients between 2010 and 2014 ranged from 10% to 20% in the majority of nations (2). Thus, identifying new biological markers and developing a comprehensive understanding of underlying treatment mechanisms for predicting effective therapies for LUAD are important.

Necroptosis, pyroptosis, and ferroptosis are types of regulated cell death (RCD) that have been discovered in addition to classical apoptosis. Ferroptosis, a form of RCD that is iron-dependent and triggered by an overabundance of lipid peroxides on cell membranes, is involved in the progression and treatment responsiveness in various malignancies (3). Notably, Tsvetkov and colleagues conceived a vital form of cell death termed cuproptosis (4). Excess intracellular copper induces the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which is associated with the mitochondrial tricarboxylic acid (TCA) cycle and results in proteotoxic stress (4). It is important to note that the interconnection of a variety of cell death pathways occurs in many diseases ranging from intracellular infection to cancer. Furthermore, ferroptosis and necroptosis can be triggered by reactive oxygen species (ROS) and are both involved in ischemia–reperfusion-driven pathology. Strikingly, antitumor activity is produced when copper-transporting ATPase 1 (ATP7A) is degraded because this causes an increase in ROS as well as ferroptosis in colorectal cancer cells (5). However, the cross-talk between cuproptosis and ferroptosis and the therapeutic value of their interconnectivity is never explored.

The tumor microenvironment (TME), an important part of the tumor mass, which consists of tumor cells, immune cells, and stromal cells, has been reported to affect tumor prognosis and the tumor response for immunotherapy in LUAD (6–8). However, the immune mechanisms of TME in LUAD is not totally unclear. Thus, studies investigating the role of cuproptosis and its TME features are urgently needed.

In our study, we conducted a comprehensive pancancer genomic analysis by depicting the molecular correlations between cuproptosis and ferroptosis regulators in 33 cancer types, indicating the cross-talk between cuproptosis and ferroptosis regulators at the multiomic level. The CuFescore was established and validated to predict the response to immunotherapy and chemotherapeutic drugs. Thus, our study established an applied scoring scheme based on the regulators of cuproptosis/ferroptosis to identify LUAD patients eligible for immunotherapy and to predict sensitivity to chemotherapeutic drugs.



Materials and methods


Data acquisition

The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were accessed to acquire the LUAD RNA expression profile in addition to the accompanying comprehensive clinical annotations. Supplementary Table S1 detailed the characteristics of 1274 samples belonging to 6 different cohorts (TCGA-LUAD, GSE30219 (9), GSE31210 (10), GSE3141 (11), GSE37735 (12), and GSE81089 (13)). Additionally, our research investigated two immunotherapy cohorts (GSE91061 (14) and GSE100797 (15)). The cuproptosis and ferroptosis regulators analyzed in our study are listed in Supplementary Table S2. FunRich 3.1.3 (accessed on 25 May 2022) was utilized to analyze the miRNAs’ targeted mRNAs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was consulted for the enrichment of the miRNAs’ targeted signaling pathways. The Cancer 3’ UTR Atlas (TC3A, https://tc3a.org) (accessed on 6 July 2022) (16) provided the downloadable alternative polyadenylation (APA) sequence. Changes in the distal poly(A) site usage index (PDUI) may be utilized to quantify the different patterns of APA usage seen in each tumor and to identify 3’UTR shortening (negative index) and lengthening (positive index) (17).



Single-cell RNA-sequencing analysis

ScRNA-seq data was extracted from GSE131907 (18) and processed by Cell Ranger (version 2.0.0, https://software.10xgenomics.com/single-cell/overview/welcome). Cell Ranger was utilized to measure the gene expression levels by processing the raw data from each sample. Following the completion of the quality check, cells that had between 200 and 10, 000 identified genes, and mitochondrial gene content of ≤ 20% were retained for subsequent analyses. Uniform manifold approximation and projections (UMAPs) were constructed utilizing the topmost 8 primary components. The predominant cell types were identified by the following markers: cancer cells (MDK, SOX4, EPCAM), alveolar cells (AGR3, FOLR1, SFTPD), epithelial cells (AGER, SFTPC, LAMP3, SCGB1A1, FOXJ1, RFX2), myeloid cells (C1QB, LYZ, CD68), endothelial cells (CLDN5, FCN3, RAMP2), fibroblasts (C1R, COL1A1, DCN), mast cells (CPA3, TPSAB1, TPSB2), B cells (CD79A, IGHG3, IGKC) and T cells (CD3D, TRAC, TRBC2).



Genomic, transcriptomic, and clinical data analyzed across cancer types

The University of California, santa Cruz (UCSC) Xena browser (https://xena.ucsc.edu/) was accessed to extract the MC3 somatic mutation data and RNA sequencing data. In addition, we identified the interactions among cuproptosis and ferroptosis regulators based on the GeneMANIA interaction database (https://genemania.org) (19).



Cell culture

Human NSCLC cell line A549 and bronchial epithelial cell line (BEAS-2B) were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). Cells were maintained in RPMI-1640 medium containing 10% fetal bovine serum (FBS; Gibco, CA, USA) at 37 °C in a humidified atmosphere containing 5% CO2.



RNA extraction and real-time PCR

Total RNA was extracted from cells with TRIzol reagent (Invitrogen, NY, USA). Chlorophorm isoamylalcohol was added and incubated for centrifugation. The aqueous phase was transferred and precipitated using isopropanol. The RNA pellet was washed with ethanol, air-dried and resuspended in RNase-free water. The concentration of RNA was measured by the spectrophotometer (NanoDrop, #ND-1000). RT-PCR assays were conducted to measure gene expression with a Prime Script RT reagent kit (TIANGEN, Beijing, China). The primers for the genes are listed in Supplementary Table S3. After demonstration that primer sets exert equal and high efciencies, relative expression was analyzed by 2−ΔΔCt method using the transcript levels of hypoxanthine–guanine phosphoribosyl transferase (HPRT) for normalization.



Cell transfection

Cells were seeded in six well plates and the confluency was reached at 30% before the transfection. Non-specific scramble (scr) small-interfering RNA (siRNA) as a control and siRNA were transfected into cells with Lipofectamine 2000 (Invitrogen, CA, USA) according to manufacturer’s instructions. After transfection, cells were cultured for 48 h and treated as indicated. Cells were lysed for RNA isolation using TRIZOL method.



Identification of cuproptosis/ferroptosis regulators based on the topology of the co-expression networks

To identify hub cuproptosis and ferroptosis regulators for each cancer type, we introduced the concept of “module” from the weighted gene coexpression network analysis (WGCNA) algorithm and treated the cuproptosis and ferroptosis regulators as a module (20). The overall expression level of the module was summarized as the module eigengene by the moduleEigengenes function in the R package WGCNA. We further calculated the module membership (i.e., module eigengene-based intramodular connectivity) as the link between the expression value of a given cuproptosis/ferroptosis regulator and the module eigengene. Hub cuproptosis/ferroptosis regulators were then defined as those that achieved a module membership greater than 0.4. The summary expression level of the identified hub cuproptosis/ferroptosis regulators was again calculated as epigenetic module eigengenes (EMEs) for each cancer type.



Gene set enrichment analysis

Pathway studies were conducted for the purpose of assessing and comparing the 50 signature oncogenic pathways (21). The MSigDB database (h.all.v7.5.symbols.gmt) maintained by the Broad Institute served as the source for the acquisition of the signature gene set. After that, we assigned estimates of pathway activities to each sample by utilizing GSEA with the default parameters as defined in the clusterProfiler R package. This was done to keep the false discovery rate (FDR) under control.



Unsupervised clustering for cuproptosis/ferroptosis regulators and principal component analysis

The “limma” R package was applied to normalize the data and detect genes with the prognostic values. The “drivers”, “markers”, “suppressors” from ferroptosis regulators and cuproptosis/ferroptosis regulators was calculated as four EMEs. To categorize LUAD patients into distinct subtypes depending on the findings of the research, an unsupervised clustering analysis was performed on the cuproptosis/ferroptosis regulators with the “ConsensusClusterPlus” package (22). The number of clusters (K) and their stability were determined by the consensus clustering algorithm and the R package “PCA” was conducted to verify the outcomes of the clustering.



Gene set variation analysis

We applied the “GSVA” package in R to perform GSVA and examine the biological activities of the subtypes of cuproptosis/ferroptosis. The gene sets of “c2.cp.kegg.v7.5.symbols” were downloaded from MSigDB database for running GSVA analysis.



Determination of differentially expressed genes between cuproptosis/ferroptosis subtypes

To determine the genes related to cuproptosis/ferroptosis regulators, we categorized the patients into three subtypes depending on the expression of the cuproptosis/ferroptosis-related genes. To discover DEGs between different subtypes, the empirical Bayesian approach of the “limma” R package was utilized.



Establishment of CuFescore

We developed a scoring system to quantify the cuproptosis and ferroptosis regulators in each LUAD patient and the gene signature of cuproptosis and ferroptosis is termed CuFescore. The Cox regression model was used to reveal the genes with prognostic values. An unsupervised clustering analysis was utilized to detect overlapping DEGs and the prognostic DEGs were identified. To define the number of clusters and their stability, the consensus clustering algorithm was employed. The CuFescore was constructed by separating principal components 1 and 2. Collectively, we determined each patient’s CuFescore by applying a methodology that used in the prior research (23):

CuFescore = ∑(PC1i) + ∑(PC2i)

Where i indicates the expression of cuproptosis/ferroptosis-related genes.



Mutation profiles

We extracted the mutation annotation format (MAF) from the TCGA database with the “maftools” R package to investigate the mutational landscape of LUAD patients between the high and low CuFescore groups. Co-occurrences were analyzed to determine the interaction of gene mutations.



Prediction of the responsiveness to chemotherapy agents

To assess the different sensitivities to chemotherapeutic drugs between the low and high CuFescore groups, the pRRophetic algorithm was implemented in predicting the 50% inhibiting concentration (IC50) value of the 138 drugs (24).



Statistical analysis

A Wilcox test was utilized for comparisons in the levels of RNA between tumor and non-tumor tissues. The time-dependent area under the receiver operating characteristic curve (AUC) was applied to evaluate the predictive power of CuFescore to survival of patients. The overall survival (OS) rates of each group were subjected to comparison via the use of a log-rank test in combination with a Kaplan-Meier analysis. Cox regression of OS was performed utilizing univariate data to find molecules linked to prognosis. Analysis of all statistical data was executed with R software (version: 4.0.5). Two-sided t-tests were employed for all of the statistical tests. Statistical significance was determined at p < 0.05.




Results


Genetic and transcriptional alterations of cuproptosis regulators in LUAD

The workflow of this research is shown in Figure 1. Our study analyzed 14 cuproptosis regulators (4). To reveal the genetic alterations of cuproptosis regulators, we provided a brief overview of the incidence of non-silent somatic mutations in malignancies. In the TCGA cohorts of UCEC, BLCA, and CESC, the incidence of mutations of cuproptosis regulators was moderately high but was low in UVM (Figure S1A). Among 561 LUAD samples, 67 (11.94%) carried mutations of cuproptosis regulators (Figure 2A). The highest mutational frequency was observed in ATP7A (4%) and ATP7B (3%), while no mutations of LIAS, LIPT1, GCSH, PDHB, LIPT2, and SLC31A1 were found. A significant mutation co-occurrence was exhibited between GCSH, ATP7B, DBT, ATP7A, and DLST (Figure S1B). However, there was no survival difference between patients with and without mutations in the TCGA-LUAD cohort (Figure S1C). The chromosomal locations of cuproptosis regulators were detected, as shown Figure 2B. In the TCGA-LUAD cohort, the mRNA expression of cuproptosis regulators was analyzed between adjacent non-tumor and LUAD samples (Figure 2C). The expression of cuproptosis regulators was analyzed in NSCLC (A549) and normal lung epithelial cells (BEAS-2B) (Figure 2D). Additionally, the exploration of CNV alteration frequency determined that there was a high incidence of CNV gains in the LIPT2, SLC31A1, and DLD (Figure S1D). To discover the relationship between the genetic variations and the mRNA expression, we found that LIAS with CNV gain shown high mRNA expression (Figure 2C and S1D). Interestingly, DBT and FDX1 exhibiting a greater frequency of CNV loss revealed a high expression.




Figure 1 | Workflow of our study.






Figure 2 | Landscape of genetic and expression variation of cuproptosis regulators in LUAD. (A) Mutation frequency of cuproptosis regulators in 561 LUAD patients from the TCGA cohort. Each column represents individual patients. The upper bar graph showed tumor mutational burden. The number on the right indicates the mutation frequency in the regulators. The right bar graph revealed the proportion of each variant type. The graph below determined clinical features of patients in the cohort. (B) Location of CNV alteration of cuproptosis regulators on 23 chromosomes. (C) Bulk sequencing showed the expression of cuproptosis regulators between adjacent non-tumor and LUAD samples in TCGA-LUAD cohort (n = 585). (D) Expression of cuproptosis regulators in NSCLC (A549) and normal lung epithelial cell line (BEAS-2B) by RT-PCR. (E) UMAP indicated the cell composition in the microenvironment of LUAD according to cell types. (F) Cell distribution originated from tumor and normal lung samples. (G) Bar plot determined the overall cell composition of normal and tumor samples. (H) ScRNA-seq analysis revealed the expression of cuproptosis regulators between adjacent non-tumor and LUAD samples in GSE131907 cohort (n = 22). (I) Forest plot showed the prognosis of cuproptosis regulators for LUAD patients in TCGA (n = 585). UMAP, uniform manifold approximation and projection. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant.



Single-cell profiling of tissues has emerged as an important tool for estimating the clinical relevance of different cell types in malignancies. After quality control, a whole-transcriptome database of 208506 cells from 11 LUAD and 11 non-tumor samples was analyzed. According to the cell-specific markers, we identified 8 cell types, including alveolar cells, B cells, cancer cells, fibroblasts, myeloid cells, T cells, endothelium cells, and mast cells (Figure 2E and Figure S2A). All the tumor cells were derived from the tumor samples (Figures 2F, G and Figure S2B). Notably, T cells accounted for the greatest percentage of all cell subsets in normal as well as cancerous tissue samples (Figure 2G). Based on the analysis of scRNA-seq, the expression of FDX1, DLD and SLC31A1 was much higher in non-tumor tissues than those in tumor tissues, consistent with our findings from a bulk sequencing analysis (Figure 2H). Meanwhile, the expression of cuproptosis regulators in each cell type was shown in Figure S2C. A univariate Cox regression analysis determined the prognostic significance of cuproptosis regulators in LUAD patients (Figure 2I). Low levels of 9 cuproptosis regulators were substantially associated with high OS rates in LUAD patients (Figure S2D). Thus, our results indicated the high heterogeneity of the genetic landscape and expression of cuproptosis regulators between non-tumor and LUAD samples, suggesting that the cuproptosis regulator expression imbalances were crucial in LUAD.



Identification of novel interconnectivity between cuproptosis and ferroptosis regulators

To explore the potential interconnectivity in various cell death pathways, we investigated the cross-talk between the cuproptosis and ferroptosis regulators. Genomewide omics data for 33 cancer types from TCGA were obtained for analysis. We found that most of cuproptosis and ferroptosis regulators exhibited comparable frequencies of mutations across 33 cancer types (Figure 3A). Moreover, our findings indicated strong correlations between cuproptosis and ferroptosis regulators (Figure 3B). Cuproptosis regulators interacted with ferroptosis regulators from the GeneMANIA database (Figure 3C). To determine the hub regulators involved in the interconnectivity, we performed WGCNA to identify hub genes in the cuproptosis and ferroptosis regulators among 33 cancer types (Figure 3D). Interestingly, the number of hub cuproptosis regulators was strongly associated with that of hub ferroptosis regulators in distinct cancers (R = 0.86; Figure 3E), indicating the possible cross-talk between cuproptosis and ferroptosis regulators in distinct cancers. We also investigated the activity of hallmark oncogenic pathways in various cancers (Figure S3). To validate the regulation between cuproptosis and ferroptosis regulators, we analyzed the expression of cuproptosis regulators after the knockdown of several ferroptosis regulators in the previous studies (Figure S2E). In the GSE120472 cohort, knockout of Pten in primary mouse embryonic fibroblasts (MEFs) resulted in the upregulation of 3 cuproptosis regulators including Dbt, Slc31a1 and Atp7a. In the GSE184356 cohort, knockdown of TFAM led to a significant change in PDHA1, PDHB, ATP7A and ATP7B in human dermal fibroblasts. In the GSE145548 cohort, knockdown of ATF2 in breast cancer cells MCF7 resulted in the dramatic change of cuproptosis regulators (DLST, GCSH, PDHA1, LIPT1 and DLD). Moreover, we transfected siRNAs and shRNA into A549 cells to validate the correlation between cuproptosis and ferroptosis regulators. The expression of SL31A1 was upregulated after the knockdown of PTEN, while the levels of ATP7A were increased after the knockdown of TFAM and LIPT1 was inhibited after the knockdown of ATF2 (Figure 3F), suggesting a strong association between cuproptosis and ferroptosis regulators. Thus, our results indicated the cross-talk and biological regulation between cuproptosis and ferroptosis regulators in cancers.




Figure 3 | Cross-talk identified among cuproptosis and ferroptosis regulators in cancers. (A) Mutation frequency of cuproptosis and ferroptosis regulators in 33 cancer types. Green bar, mutation of cuproptosis regulators; Orange bar, mutation of ferroptosis regulators. (B) Co-occurrence of genetic alterations in the cuproptosis and ferroptosis regulators. Cuproptosis regulators are presented in green and ferroptosis regulators are in orange. (C) Protein-protein interactions among cuproptosis and ferroptosis regulators based on the GeneMANIA database. (D) Module membership-based hub cuproptosis and ferroptosis regulators across 33 cancer types. The lower panel shows the number of hub cuproptosis and ferroptosis regulators in each cancer type. (E) Correlations between the number of hub cuproptosis regulators and the number of hub ferroptosis regulators. The Pearson correlation coefficients (R) were analyzed for the correlation. (F) Levels of cuproptosis regulators after knockdown of ferroptosis regulators in A549 cells by RT-PCR. COAD, colon adenocarcinoma; DLBC, diffuse large B cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma; HNSC, head and neck squamous cell cancer; KICH, kidney chromophobe; KIRC, kidney renal clear carcinoma; KIRP, kidney renal papillary carcinoma; LAML, acute myeloid leukemia; LGG, low grade gliomas; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian cancer; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, tenosynovial giant cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; ACC, adenoid cystic carcinoma; BLCA, bladder carcinoma; BRCA, breast cancer; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL; cholangiocarcinoma; UVM, uveal melanoma. * p < 0.05, ** p < 0.01, ns, not significant.





TME cell infiltration characteristics in distinct patterns of cuproptosis and ferroptosis regulators

By conducting unsupervised clustering based on the levels of cuproptosis and ferroptosis regulators, the patients from 6 cohorts (TCGA, GSE30219, GSE31210, GSE3141, GSE37745 and GSE81089; n = 1147) were divided into three subtypes, named CuFecluster A/B/C (Figure S4A, B). PCA illustrated a relatively evident distinction existed in the 3 clusters (Figure 4A). Patients in the CuFecluster B had a more favorable prognosis compared to ones in CuFecluster A and C (p < 0.001, Figure 4B). GSVA enrichment pathways were carried out in 1147 patients from 6 different cohorts to determine the biological functions of 3 CuFeclusters. Compared with CuFecluster A and C, CuFecluster B was associated with immune fully activation including B cell receptor signaling pathway, natural killer cell mediated cytotoxicity, antigen processing and presentation, cytokine-cytokine receptor interaction and chemokine signaling pathway (Figures 4C, D). Moreover, CuFecluster B was rich in the infiltration of various activated immune cells (Figure 4E). Considering a corresponding survival advantage, CuFecluster B was categorized as an immune-inflamed phenotype. This phenotype is distinguished by the presence of adaptive immune cell infiltration as well as immune activation. CuFecluster A was associated with several cell proliferation processes notably, mismatch repair, DNA replication, and cell cycle (Figure 4C), while CuFecluster A was relatively highly correlated with the innate immune cells including MDSC, eosinophil, natural killer, monocyte, mast cell, and macrophage (Figure 4E). Interestingly, CuFecluster A was also highly associated with TGF-β family member and TGF-β family member receptor (Figure 4F). A previous research has suggested that the immune-excluded phenotype is distinguished by the presence of a large number of immune cells and an elevated level of activity in the TGF-β signaling pathway, whereas immune cells were unable to penetrate the parenchyma of the tumors because they were hampered in the stroma that was enclosing the nests of tumor cells. Therefore, it was determined that CuFecluster A represented the immune-excluded subtype. In addition, CuFecluster C was found to obtain a low number of immune cells and a suppressed immunological response (Figures 4D–F), accordant with the main characteristics of the immune-desert phenotype. Thus, there was a remarkable difference between the three CuFeclusters in terms of the cell infiltration characteristics of the TME.




Figure 4 | Tumor microenvironment cell infiltration characteristics and transcriptome traits in distinct CuFeclusters. (A) Principal component (PC) analysis revealed remarkable difference between three CuFeclusters from 6 cohorts (n = 1147). (B) Kaplan-Meier curves of survival for three patterns of three CuFeclusters based on LUAD patients from six cohorts (TCGA-LUAD, GSE30219, GSE31210, GSE3141, GSE37745, and GSE81089). (C, D) GSVA enrichment analysis shown the activation states of biological pathways in distinct CuFeclusters. The heatmap was used to visualize these biological processes, and yellow represented activated pathways and blue represented inhibited pathways. (C) CuFecluster A vs (B, D) CuFecluster B vs (C, E) Characteristics of immune infiltrating cells in different CuFeclusters. (F) Characteristics of immune responses in different CuFeclusters. GSVA, gene set variation analysis. ** p < 0.01, *** p < 0.001, ns, not significant.





Identification of cuproptosis/ferroptosis regulators-related gene subtypes and establishment of CuFescore

To evaluate the possible genetic modifications depending on the distinct cuproptosis/ferroptosis subgroups, we got 108 overlapped DEGs (Figure 5A) and found 105 DEGs with the prognostic significance by a univariate Cox regression analysis (Supplementary Table S4). We carried out an unsupervised cluster analysis and categorized the patients into 3 unique genomic subtypes, which we referred to as genecluster A/B/C (Figures S4C and D). Notably, a significantly improved prognosis was found in genecluster A compared to the other clusters (p < 0.001, Figure 5B). Even though our research showed a cuproptosis/ferroptosis-associated gene alteration in the prognosis, we generated applied scores for predicting cuproptosis and ferroptosis modification in individual patients as per the expression of the cuproptosis/ferroptosis-related DEGs. An alluvial diagram illustrates the steps involved in the establishment process of CuFescore (Figure 5C). We found on the evaluation that patients in CuFecluster B (Figure 5D) and genecluster A (Figure 5E) had low CuFescores. Additionally, we examined the overlap of the 3 distinct subtypes. CuFecluster A accounted for 36.6% of the patients in the high CuFescore group, and in the low CuFescore group, 52.4% of samples overlapped with CuFecluster B (Figure S5A). Meanwhile, in the high CuFescore group, 55% of cases overlapped with genecluster B, whereas in the low CuFescore group, 82% of cases overlapped with genecluster A (Figure S5B). When compared to the survival rate of the cohort with a high CuFescore, the subgroup with a low CuFescore had a much better probability of surviving (70% vs 52%, Figure 5F), comparable to the findings in early- (T1-2) (Figure S5C) and advanced- (T3-4) stage of lung cancer (Figure S5D). Consistent with this finding, the mean CuFescores were much lower in alive cases compared to those in the dead cases (Figure 5G). The Kaplan-Meier analysis showed a better prognosis for patients in the low CuFescore group (p < 0.001, Figure 5H). The stability of the CuFescore model was validated in 4 independent LUAD cohorts to validate the prognostic values (Figure S5E-H). Enriched pathways in the low CuFescore group were DNA replication, mismatch repair and cell cycle (Figure 5I). In addition, it was shown that patients with low CuFescores had a correlation with early clinical and pathological characteristics and stages (Figure 5J), which revealed that these individuals had a survival advantage characterized by the CuFecluster B and immune-inflamed subtype. In addition, time-dependent AUC curves determined that the CuFescore functioned as a predictive biological marker for the OS of LUAD patients in the 4 cohorts (Figure 5K). Therefore, these data showed that the CuFescore was associated with LUAD patients’ prognoses.




Figure 5 | Construction of the CuFescore and the prognostic values of the CuFescore. (A) Overlapped cuproptosis/ferroptosis-related genes shown in Venn diagram. (B) Kaplan-Meier curves of survival in 6 cohorts with three distinct geneclusters. (C) Alluvial diagram showing the changes in CuFeclusters, geneclusters and CuFescores. CuFescore in distinct (D) CuFeclusters and (E) geneclusters. (F) Proportion of survival and death in the high and low CuFescore groups. (G) Comparison of the CuFescore in alive versus dead patients. (H) Kaplan-Meier curves of survival in the high and low CuFescore groups. (I) Functional annotation for DEGs between the low and high low CuFescore groups using GO enrichment analysis. The color depth of the barplots represented the number of genes enriched. (J) Difference in CuFescore among distinct clinical subgroups in LUAD cohort. (K) Time-dependent AUC value in TCGA-LUAD, GSE30219, GSE31210 and GSE37745. AUC, area under curve. * p < 0.05, ** p < 0.01, *** p < 0.001.





Association between the CuFescore and immune checkpoints

Based on the strong correlation with immune-related pathways including immune checkpoints, CD8 T effector and antigen processing machinery (Figure S5I), we hypothesized that the CuFescore is associated with immunotherapy. In this study, we examined immunotherapy-related parameters such as tumor mutational burden (TMB) and immunological checkpoints. Higher TMB was found in the high CuFescore group in contrast with the low CuFescore group (p = 2.8e-16; Figure 6A). Moreover, the CuFescore was also positively correlated with TMB (R = 0.45, p < 2.2e-16, Figure 6B). No difference was found between the low and high TMB subgroups (p = 0.084, Figure 6C). By combining the CuFescore and TMB, we noted that patients with a low CuFescore and high TMB patients exhibited a favorable prognosis (p < 0.001, Figure 6D). The CuFescore was associated with tumor-infiltrating immune cells (TIICs), comprising activated dendritic cells, activated CD4 T and CD8 T cells, as well as activated B cells (Figure S5J). We also evaluated the differences in TME cells between the two CuFescore groups. The findings illustrated that the low CuFescore exhibited an elevated infiltration level by M0 and M1 macrophages, T cells CD4 memory activated, T cells CD8, NK cells resting, Neutrophils, and mast cells activated, whereas the high CuFescores had elevated levels of macrophages, activated CD4 T cells, and activated mast cells (Figures 6E, F), demonstrating that the patients with low CuFescores were immune activation. Overall, our findings presented proof that the CuFescore was related to the immune signature including TMB and infiltrating immune cells.




Figure 6 | Correlation between the CuFescore and immune checkpoints. (A) Comparison of TMB in the high and low CuFescore group. (B) Correlation between CuFescore and TMB. (C) Kaplan-Meier curves of survival in the high and low TMB groups. (D) Survival analyses for patients stratified by both CuFescore and TMB using Kaplan-Meier curves. (E) Difference in the relative abundance of immune cell infiltration in tumor microenvironment between the high and low CuFescore groups. Difference > 0 indicates that the immune cells were enriched in the low CuFescore group, and the column color represents the statistical significance of the difference. (F) Expression of cell types in the five cohorts. Analyses for the expression of (G) HLA family genes and (H) immune checkpoints in the CuFescore groups. (I) Correlation analysis for CuFescore and the expression of HLA family genes and immune checkpoints. TMB, tumor mutational burden; TPM, transcript per million. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant.



The Wilcoxon test indicated that there were substantial variations between the 2 CuFescore groups in terms of the expression of 12 HLA family genes (Figure 6G) and 27 immune checkpoints (Figure 6H). In addition, the CuFescore was significantly correlated with 13 HLA family genes and 29 immune checkpoint expression (Figure 6I). Therefore, the data showed the CuFescore was highly associated with tumor immune checkpoints.



Mutation status in the high and low CuFescore groups

To additionally examine the correlation between the CuFescore and mutations in LUAD, we determined somatic mutations from TCGA cohort between high and low CuFescore groups. The genes frequently mutated are displayed in Figures 7A, B. Remarkably, mutations in 20 genes were found to be more frequent in patients with high CuFescores (Figure 7C). Additionally, significant co-occurrences were discovered between mutations of these genes in both the low (Figure 7D) and high CuFescore groups (Figure 7E).




Figure 7 | Association between the CuFescore and tumor mutation status. Visual summary showing common genetic alterations in the (A) low and (B) high CuFescore groups. (C) Forest plot of gene mutations in the patients. Interaction effect of genes mutating differentially in patients in the (D) low and (E) high CuFescore groups. p < 0.1, * p < 0.05, *** p < 0.001.





The CuFescore predicted chemotherapeutic and immunotherapeutic benefits

To assess the value of the CuFescore for predicting the responsiveness to chemotherapy drugs, the IC50 values of 138 drugs were calculated (Figure 8A, Supplementary Table S5). Patients with low CuFescores had strong sensitivity to axitinib (p = 0.0014, Figure 8B) and erlotinib (p < 0.001, Figure 8C) while those in the high-CuFescore group exhibited strong sensitivity to docetaxel (p < 0.001, Figure 8D) and gemcitabine (p < 0.001, Figure 8E), indicating that the CuFescore might be used as a predictive biological marker for medications against LUAD.




Figure 8 | Role of the CuFescore in the chemotherapy and immunotherapy. (A) Sensitivity of 138 drugs. Efficacy of (B) axitinib; (C) erlotinib; (D) docetaxel and (E) gemcitabine. (F) Kaplan-Meier curves of survival in the patients receiving anti-PD-L1 therapy in GSE91061. (G) Proportion of patients with response to PD-1 blockade immunotherapy in the high and low CuFescore groups. (H) Distribution of CuFescore in distinct anti-PD1 clinical response groups. (I) Kaplan-Meier curves of survival i8n the patients receiving adoptive T cell therapy in GSE10797. (J) Proportion of patients with response to adoptive T cell therapy in the high and low CuFescore groups. (K) Correlation of CuFescore with clinical response to adoptive T cell therapy. IC 50, half maximal inhibitory concentration; FDR, false discovery rate; MEscore, module eigengene score; CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.



To explore the predictive values of the CuFescore regarding the response to immune checkpoint blockade (ICB) treatment, we analyzed 2 immunotherapy cohorts (GSE91061 and GSE100797) with the CuFescore. We calculated the CuFescore in the patients who received the immunotherapy depending on the levels of cuproptosis/ferroptosis regulators-related genes and categorized them into high and low CuFescore groups. In the GSE91061 cohort, patients with low CuFescores had a better prognosis in contrast to those in the high CuFescore group with anti-CTLA4 and anti-PD1 treatment (p = 0.01, Figure 8F). Patients with low CuFescores exhibited remarkable therapeutic benefits and improved immune sensitivity to the PD-1 blockade (responser/nonresponser: 33.3%/17.5%, Figure 8G), even though there was no CuFescore difference between complete response (CR), progressive disease (PD), partial response (PR) and stable disease (SD) patients (Figure 8H). Moreover, this finding was also validated in the GSE100797. Patients with low CuFescores had a prolonged survival (Figure 8I) and significantly better therapeutic outcomes (responser/nonresponser: 85.7%/22.2%, Figure 8J). The significant clinical response to adoptive T cell therapy in patients with low CuFescores in contrast with those with high CuFescores was verified (Figure 8K). Collectively, the CuFescore had a substantial correlation with tumor immune phenotypes and was effective in predicting the responsiveness of patients to ICB therapy.



The CuFescore was correlated with miRNA and post-transcriptional regulation

The CuFescore is an assessment system depending on the cuproptosis and ferroptosis regulators, which are found in the association of post-transcriptional modifications. To evaluate the regulation of the CuFescore in the interpretation of transcriptional and post-transcriptional events, we analyzed APA events. Given that transcripts processed by APA have a short 3’UTR, thus tolerating the regulation of miRNAs, we hypothesized that the CuFescore is strongly associated with the expression miRNAs as potential mechanisms under the action of APA events. In the TCGA-LUAD cohort, we detected 79 differentially expressed miRNA between high and low CuFescore groups. There was an enrichment of miRNA-targeted genes involved in the autophagy, ROS signaling pathway, MAPK signaling pathway, and other pathways (Figure 9A). The expression levels of 29 out of 56 miRNA-targeted genes involved in autophagy were found to be elevated. Additionally, the cGMP-PKG signaling pathway (11/22) and the cAMP signaling pathway (11/23) were enriched among the miRNAs targeted genes that had lowered expression levels in the high CuFescore group. As per the obtained findings, the CuFescore had a very strong link to the expression of miRNA as well as the modulation of signaling pathways.




Figure 9 | Associated between the CuFescore and the post-transcriptional characteristics. (A) Differences in miRNA-targeted signaling pathways in the TCGA-LUAD cohort between the high and low CuFescore groups. (B) Differences in the distal poly (A) site usage index (PDUI) of each gene between the high and low CuFescore groups. Red, PDUI lengthening; blue, PDUI shortening; Grey, no significant change in PDUI. (C) Kaplan-Meier curves indicated overall survival between PDUI lengthening (red) and PDUI shortening (blue) of TM9SF3 and ATP2A2. (D) Bar graphs showed the difference in the distal poly (A) site usage index (PDUI), and the forest plots showed univariate Cox regression analyses for PDUI differential genes between the high and low CuFescore groups. APA, alternative polyadenylation. HR, hazard ratio. CI, confidence interval. ** p < 0.01, *** p < 0.001.



We examined the APA events to discover the connection between the CuFescore and the post-transcriptional features. We found the genes with the APA differences between high and low CuFescore groups and examined the prognostic significance to show whether the survival of LUAD patients is affected by the length of 3’UTR (Figure 9B). Genes with lengthening APA events were in the low CuFescore group, consistent with prolonged survival (Figure 9C). TM9SF3 and ATP2A2 were considered as proto-oncogenes in leukemia (25), triple-negative breast cancer (26) and diffuse astrocytic tumor (27). There was a correlation between the short transcripts of 2 genes and the worse prognosis of individuals (Figure 9D). Additionally, TM9SF3 was targeted directly by miR-1193 on 3’UTR (25). We were under the impression that since the 3’-UTR of genes had been shortened, miRNA may not bind to the genes, thereby removing the inhibitory effects on proto-oncogenes and enhancing the advancement of LUAD.




Discussion

A recent study illustrated that intracellular copper (Cu) generates a unique type of RCD that is distinct from oxidative stress-associated cell death, termed cuproptosis. Some research advances have highlighted the importance of cuproptosis in the progression of clear cell renal cell carcinoma (ccRCC) (28) and hepatocellular carcinoma (HCC) (29). To further understand the integrated roles of cuproptosis regulators, we explored global alterations in cuproptosis regulators at the genetic and transcriptional levels and their mutual association in LUAD. One pioneering study reported that the flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection (30). Our study was the first one to focus on the interconnectivity between cuproptosis and ferroptosis in the pancancer analysis using a multiomics approach. The comparable frequencies between cuproptosis and ferroptosis regulators provided evidence of interconnectivity. The strong expression correlation between some cuproptosis and ferroptosis regulators supports this finding. Moreover, among 33 cancers the number of cuproptosis regulators was highly associated with that of ferroptosis regulators. Meanwhile, it provided the evidence that the strong interaction between cuproptosis and ferroptosis regulators existed not only in LUAD but also in other cancers. Notably, after the knockout/knockdown of several ferroptosis regulators, cuproptosis regulators were significantly regulated, indicating their biological interconnectivity. Interestingly, exploring the potential interconnectivity between cuproptosis and ferroptosis will offer deeper insights into the TME antitumor immune response, and guide the establishment of effective immunotherapeutic strategies. It was reported that the combined application of the copper chelator elesclomol and copper leads to copper blocking in mitochondria due to the loss of the cuproptosis regulator ATP7A, further enhancing oxidative stress and consequent ferroptosis in colorectal cancer cells (5). The mechanisms of the interconnectivity deserve further analysis.

We then identified 3 distinct cuproptosis/ferroptosis regulator clusters, named CuFecluster A/B/C. The three CuFeclusters presented significantly different TME cell infiltration characteristics. CuFecluster B was associated with immune activation and a better prognosis and was considered an immune-inflamed phenotype. CuFecluster A was distinguished from other clusters by having a large number of innate immune cells as well as activation of the TGF-β signaling pathway, both of which correlate with an immune-excluded subtype. Rather than penetrating the parenchyma of these tumors, the immunocytes remain in the stroma surrounding the nests of tumor cells, and as a result, the patient’s survival does not improve. Immune suppression was observed in CuFecluster C, which is consistent with an immune-desert subtype. Therefore, the features of TME cell infiltration found in the three different CuFeclusters were extremely congruent with 3 different immune phenotypes.

Patients were classified into 3 geneclusters to explore the possible genetic modifications associated with the different CuFeclusters. CuFescore is a comprehensive and robust scoring system that takes into account the heterogeneity and complexity of individuals. It was utilized to quantify the cuproptosis/ferroptosis-related patterns of each patient based on the expression of DEGs. Importantly, patients with low CuFescores were found to have a favorable prognosis. Furthermore, the significantly prolonged OS of the patients with low CuFescores and high TMB enhanced the advantage of low CuFescores. TMB and the expression of immune checkpoints are well recognized to influence immunotherapy effectiveness. Several key members of the HLA family and critical genes, such as B7-H3, TIM3, PD-L1, and B7-H4, were differentially expressed in the low and high CuFescore groups. In addition, a remarkable correlation was validated between the CuFescore and immune checkpoints. Collectively, the findings suggested that the CuFescore plays a role in immunotherapy for LUAD patients.

Mutation is an unavoidable factor in the therapeutic effect of immunotherapy. Patients with low CuFescores exhibited a longer prognosis and contained more mutations in 15 novel genes. Previous studies reported that TP53 mutations decrease the antitumor immune response as well as the responsiveness of tumors to immunotherapy, similar to our findings. In addition, PD-1 inhibitors revealed significant therapeutic benefits when combined with co-occurring mutations in patients. Fewer co-mutations occurred in the low CuFescore group with the positive effect of immunotherapy, consistent with our previous results.

To explore the predictive values of the CuFescore for chemotherapy and immunotherapy, we found that patients with low CuFescores were more sensitive to axitinib and erlotinib, while patients with high CuFescores were more sensitive to docetaxel and gemcitabine. In recent years, immunotherapy has emerged as a promising new therapeutic option for a variety of malignancies, particularly LUAD. To test our hypothesis that the CuFescore is a reliable scoring system to assess LUAD patient eligibility for immunotherapy, we applied the CuFescore in two independent immunotherapy cohorts. Within the cohorts, a favorable prognosis of LUAD patients was correlated with high CuFescores. Patients with low CuFescores were shown to benefit more from PD-L1 inhibition, both in terms of its therapeutic effects and immune responses. A combination of the results from the two immunotherapy cohorts highly supported the supposition that the CuFescore is a predictor of LUAD patient immunotherapeutic response. Overall, we consider the CuFescore as a predictor for evaluating drug sensitivity and clinical responsiveness to immunotherapy in LUAD patients. To explore the possible mechanism of CuFescore, we discovered that the CuFescore was associated with the expression of miRNA and that miRNA might target the 3’UTR of genes, regulating gene expression and participating in cancer progression.

However, several limitations should be considered in our study. First, our study was mainly based on integrative bioinformatics, and a selection bias is inherent to the design. Second, even though some key findings were supported by experimental validation, further experiments are required to explore the potential mechanisms including the interaction between cuproptosis and ferroptosis. Finally, the patients in this study were from two immunotherapeutic cohorts (GSE91061 and GSE10797); GSE91061 focused on the patients with advanced melanoma while GSE10797 focused on the patients diagnosed with breast cancer. Clinical studies with LUAD patients are needed to verify our findings in the immunotherapy.



Conclusion

In conclusion, we established a CuFescore model to predict the prognosis of LUAD patients, which was strongly correlated with immune checkpoints and mutations. The CuFescore is an applied scoring system for evaluating the sensitivity to chemotherapeutic drugs and identifying LUAD patients eligible for immunotherapy.
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LASTR: reverse
LINCO01711: forward
LINCO1711: reverse
LINC01094: forward
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LINCO01614: forward
LINCO01614: reverse
GAPDH: forward
GAPDH: reverse

primer sequences (5°-3°)

AGTGGGTGAAGTCCTGGTT
GGCTGAAGGGTTTAGATG
AGGTCAGGCCATACCCA
CCAGCCATCAGGTTCTGT
TGTAAAACGACGGCCAGT
CAGGAAACAGCTATGACC
CAACCAAGAGCGAAGCCAAG
CGCCCCAAAACAACTGAGTC
GGAGCGAGATCCCTCCAAAAT
GGCTGTTGTCATACTTCTCATGG
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0.011
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0.005

0.011
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Characteristics Total (N) Odds Ratio (OR) p-value

T stage (T3 & T4 vs. T1 & T2) 539 0.609 (0.425-0.868) 0.006
N stage (N1 vs. N0) 257 0429 (0.132-1.217) 0.127
M stage (M1 vs. MO) 506 0.635 (0.386-1.034) 0.071
Pathologic stage (Stage III & Stage IV vs. Stage I & Stagell) 536 0.573 (0.402-0.814) 0.002
Age (> 60 vs. <= 60) 539 0.964 (0.687-1.351) 0.829
Primary therapy outcome (SD & PR & CR vs. PD) 147 4.444 (1.224-20.991) 0.033
Histologic grade (G3 & G4 vs. G1 & G2) 531 0.639 (0.453-0.900) 0.011

Bold values are used to highlight statistical significance, and P values are less than 0.05.
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Patients, n
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Median
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Male
ECOG
0-1
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Primary tumor site
Left colon
Right colon
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Metastatic site
Lymph node
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Peritoneum
Lung
Others
Number of metastatic sites
1-2
23
Treatment line
3
24
MSI status
PMMR or MSS
dMMR or MSI-H
KRAS
Wide type
Mutant
Unknown
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Wide type
Mutant
Unknown
BRAF
Wide type
Mutant
Unknown
Previous treatment agents
5-Fluorouracil
Oxaliplatin
Irinotecan
Bevacizumab
Cetuximab
Regorafenib

Fruquintinib

Totaln (%)

72

57
32-78

6 (50.0)
6 (50.0)

58 (80.6)
4 (19.4)

54 (75.0)
6(22.2)
2(28)

47
44 (61.1
0 (27.8,

45 (62.5

N )

3 (31.9;

3 (45.8)
9 (54.2)

9 (54.2)
3 (45.8)

72 (100)
0(0)

32 (444)
32 (44.4)
8 (1L1)

2 (86.1)
1(1.4)
9 (12.5)

2 (86.1)
1(1.4)
9 (12.5)

68 (94.4
70 (97.2
66
60

21
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)
91.7)
)
29.2)

)

(
(
(
(83.3
(
10 (13.9
0 (0)

RP group, n (%)

42

59
35-74

19 (45.2)
23 (54.8)

33 (78.6)
9 (21.4)

32 (762)
10 (23.8)
0 (0)

30 (71.4)
24 (57.1)
9 (21.4)
26 (61.9)
16 (38.1)

19 (45.2)
23 (54.8)

22 (524)
20 (47.6)

42 (100)
0 (0)

19 (45.2)
18 (42.9)
5(119)

36 (85.7)
1(24)
5(11.9)

36 (85.7)
1(24)
5(11.9)

38 (90.5)
40 (95.2)
38 (90.5)
35 (83.3)
14 (333)
8(19.0)
0 (0)

FP group, n (%)

30

56
32-78

17 (56.7)
13 (433)

25 (83.3)
5(16.7)

22 (73.3)
6 (20.0)
2(67)

17 (56.7)
20 (66.7)
11 (36.7)
19 (63.3)
7(233)

14 (46.7)
16 (53.3)

17 (56.7)
13 (433)

30 (100)
0(0)

13 (433)
14 (46.7)
3(100)

26 (86.7)
0(0)
4(13.3)

26 (86.7)
0(0)
4(13.3)

30 (100)
30 (100)
28 (93.3)
25 (83.3)
7 (23.3)
2(6.7)
0(0)

0.339

0.615

0.231

0.477

0.905

0.719

0.938

0.689

0.689

0.647

ECOG, Eastern Cooperative Oncology Group performance status; pMMR, mismatch repair proficient; dMMR, mismatch repair deficiency; MSI-H, high microsatellite instability; MSS,

microsatellite stable.
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Parameter Best response ORR P DCR P Median PFS (95%CI) P Median OS (95%CI) P

CR PR SD PD

Total 0 10 41 21 10/72 (139) 51/72 (70.8) 42 (2.9-5.5) 10.5 (8.6-12.4)
Treatment programs 0.565 0.012 0.434 0.486
RS 0 5 20 17 5/42(119) 25/42 (59.5) 3.5 (2.2-4.8) 11.0 (7.0-15.0)
FS 0 5 21 4 5/30 (16.7) 26/30 (86.7) 5.5(3.5-7.5) 10.5 (3.8-17.2)
Tumor site 0.561 0.264 0.289 0.646
Left colon 0 7 29 18 7/54 (13.0) 36/54 (66.7) 3.6 (2.5-4.7) 11.0 (8.9-13.1)
Right colon 0 3 10 3 3/16 (18.8) 13/16 (81.3) 7.0 (1.1-12.9) 10.0 (4.7-15.3)
KRAS status 0.281 0.777 0.784 0.665
Wide type 0 6 18 8 6/32 (18.8) 24/32 (75.0) 4.5 (3.2-54) 11.0 (8.0-14.0)
Mutant 0 3 20 9 3/32 (94) 23/32 (71.9) 5.0 (2.9-7.1) 105 (7.4-13.6)
Metastatic site 0.140 0.658 0.075 0.016
Liver 0 4 28 12 4/44 (9.0) 32/44 (72.7) 3.5 (2.4-4.6) 10.0 (7.4-12.6)
Without liver 0 6 13 9 6/28 (21.4) 19/28 (67.9) 4.5 (1.5-7.5) 26.0 (8.8-43.2)
Prior R therapy 0.338 0.713 0.483 0.213
Yes 0 0 8 2 0 8/10 (80.0) 3.6 (2.5-47) 10.0 (5.9-14.1)
No 0 10 33 19 10/62 (16.1) 43/62 (69.4) 4.3 (2.6-6.0) 11.3 (7.9-14.7)

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ORR, overall response rate; DCR, disease control rate; PES, progression free survival;
08, overall survival.
Bold values: P<0.05.
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Samples raw_count clean_count Percentage(%)

HCCO1T 3368 3297 97.89
HCCO02T 4101 3817 93.07
HCCO3N 2601 2601 100
HCCO3T 4825 4822 99.94
HCCO04N 3396 3380 99.53
HCC04T 3501 2812 80.32
HCCO5N 4656 4654 99.96
HCCO5T 3353 3250 96.93
HCCO6N 4465 4459 99.87
HCCO06T 4308 4273 99.19
HCCO7N 3740 3739 99.97
HCCO7P 1829 1817 99.34
HCCO7T 510 507 99.41
HCCO8N 4795 4792 99.94
HCCO08P 4142 3100 74.84
HCCO8T 4833 4657 96.36
HCCO9N 1962 1961 99.95
HCCO09T 2816 2726 96.8
HCC10L 2843 2742 96.45
HCC10N 3072 3070 99.93

HCC10T 2799 2669 95.36





OPS/images/fimmu.2022.998653/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2022.998653/fimmu-13-998653-g001.jpg
Pan-cancer analysis of CNV, SNV, mRNA

expression, prognostic values, and immune-related Transcriptome profiling and clinical data Transcriptome profiling and clinical data

pathway regulation of ICD-related genes of melanoma patients from TCGA of melanoma patients from GEO
Melanoma samples from TCGA : 435

Melanoma samples from GEO: 210
20188 intersecting genes

534 DEGs

Cluster 1
Cluster 2

NMF clustering
(TCGA melanoma samples)

Samples from TCGA : 435
Samples from GEO: 210
534 DEGs

Test2 cohort
(TCGA: 435)

Train cohort Testl cohort Test3 cohort
(TCGA: 218) (TCGA: 217) (GEO: 210)

Univariate cox regression
DEGs with prognostic values
Lasso regression analysis

Multivariate cox regression

High-risk subgroup
Low-risk subgroup

PCA and t-SNE analysis Tumor-infiltrating immune cells Immunotherapy response prediction

Survival analysis Immune checkpoint genes Potential drugs for melanoma treatment
Tumor microenvironment ICD-related genes
ROC curves Immune-related pathways






OPS/images/fimmu.2022.998653/fimmu-13-998653-g002.jpg
-lg(p Value) ERisky [IProtective [Ip>0.05
'50.00
140.00 [T 1 —
n
130.00 — T1 - Cll)ih
120.00
y Forrs
":%k 10.00 CDRA
A oo Sers
R, NG
MR PRI
\ ot =
e | =
O 3
ol L= fimo
i e
= N, BAX
Zt,y HkSCA
= %,, s PRXT
%, 1o
= % % e
= >, INT
2% 2, ife
et 2N
o 53ges % TENBI
o §8 ¢ I
&
s a3
- W BLCA KIRP EIF2AK3
s RCA [ LG
* I Jl ESC LUAD
a iy GroL | Lusc
] ‘ i COAD | PAAD
3 1 L 1 a i L sca m rrao B 010 20 304050
1 ‘ 1 = cam READ Mutation Frequency (%) R ]
8 1 i HNSC [l STAD DR O DS S\ AN D P B DD B S SR
& L KioH i THoA P OER0S0 SO SO0 S A0 CEDOSEONOAN 5
| ! FEELELELELELEE EELLERE L L ELLLEL EEE
° 1 KIRC &S :})\W\Q;‘,\ SRR &8 qe‘:y\ S Q\é\o\'\“\"\a@ &
7 S RIT S TEELENE VR FIF R e
¥ 3 - TNF 3 [} 1 10 [ ke LE SAIE 2 1 31]2 0 i3
CeiE00s83s88k0 25898 2EX83s0%540 TLR4 {3 7 17 3 926216 2 1136434 6012326328 1 301
i izl 338050 C:5252552320253038%¢¢8 s
BEEBEEAEBEEE COERR R0 0000z REE B i O e R LI (s RE IR - e
STETR £782° 935 SzE*8 “gE°fg PIK3CA | 1 9088284 288 17992 © 3 451328562 8 5 0 11227 22713 4 [
2 PoAs| 511 9 D20 o 01153 11 13186 2 0
® Altered in 2817 (85.6%) o 3291 samples. PRT 0442 7 131 1011164 10 3242 0
w0652 61 12 01158 31 11 w23 1
"E’ NLRP3-{ 2 1313 3 0 22 311151 2 2 0 2 8 6539 14 2 4 5186119 1 49 1
MDBs | 201 200 11 Oz 12 31411 01 66 9 1
0 Noofsmmpee®® L] 102 5 022 4 1 132 214 10 14 10
0 - 42%; o of samples. (X3 520 Sil1i1]a [ 1/2°2(3 01 12040 10
PIKacA W42 — WRI| 152 8 23411 2514 1 o112 1 w11
NP ! e el so . s 121 11124 21 01 w4 R
I I Py ) W7RA| 433 12 028 12 1161021 §141750012
T | 5% WA{1z01 3 o 3 0 o 1105 1 IR L o
HSPO0AAT W 2z 1 2 200 11 1132 2 12042 T
PR WNGRI| 238 5 124 111 278 02 2088 1 1
IL17RA IFNG 331 4 1i8[1 3 272 1]1ms 119
CASP1 IFNB1 132 3 1740 alzia 1 1 8 2 1 12
<o M 112 1 010 2 FYE TETME ] M MR SE TR 5
e | HPSOAA {12166 81235 ©3 0477 41122211 2 1
ENTPDT | HMGB1 3 41 |24 1 011311 2 000012 1
oxerz FoxPs (0250 4 151 i 14 21 223201 1
NTSE. | ENTPD1 130 5 124 001325852 2 101196 200
PDIAZ [ EIF2AK3. 953 17 016 112211 &1 4221621 1 47
e i o (1393 5 111 o 1433 s 192 1=
1B | Missense_Mutation CDBB |0 0 0 3 4 11 265 22 200141 s
L Nemoomataton DA | 232 21023 o 04z 1 12035 o
LY96 I} CD4. 36 2 6 012 [AEREAEREN: N ] 11 130138 1 [ 1
o N amion oS00 S8 E oS ig 1) AiEe s iiimse SEs
CALR ‘,p " Start sch.st 14 2 CAE IESLIENERERE) 2078 20 g1 12 2 1 32
LA ||| mensiston St ste"cye ] 312 so1o2 1122423 10 520 1
IFNBT In_Frame_Del BAX 141 5 101 1/¥[1]68]32 8 0 10
MYD8S I 1% Frame_SHR_Ins; mes{ 423 3 21 1 FAET AR M 21264 010
o Frame_sni_bel
L6 o_Frame_a
o Vit_Hit
- 0.0 025050 @75 e |
L H 1og10(FDR) 025050 @75 Ngs i
fars
AT | P0_1_SIGNALING|® @ @ © @ © © © EEEEEEK]
oo [ [ B HH B NN () A e s
INTERLEUKIN_6_SIGNALING | & & & R . . .
— INTERLEUKIN 2 SIGNALING | & & & o0 o o o i
o INTERLEUKIN_10_SIGNALING o0 o0 0 ® ° Y
g INTERLEUKIN_1_SIGNALING
CTLAG_INHIBITORY SIGNALING & ce e IEER] .
CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATION| &  + IR SRR i
Methylati ANTIGEN_PROCESSING_CROSS_PRESENTATION: [} cs000 [ 3 [ X ] .
2 TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY ° o0 0 ° o0 °
134 g TGF_BETA_SIGNALING_PATHWAY e + s 8 s s+ @ . . .
g £ T_CELL_RECEPTOR_SIGNALING_PATHWAY - 0000000 ° o0 °
g2 g SYSTEMIC_LUPUS_ERYTHEMATOSUS .
SPLICEOSOME{ = = - o e @ o . o0 .
RNALDEGRADATION - At L EER L :
PrOTEASOME | o - RETLLIERE L B
PROGESTERONE_MEDIATED_OOCYTE_MATURATION| - - TR LT RN .
PRIMARY_IMMUNODEFICIENCY | @ @ 000000000 L4
P53 SIGNALING_PATHWAY ] + = Reieah- -0 -F -0 :
o0CYTE MEoSIS] < - B en mitl 68w .
NUCLEOTIDE_EXCISION REPAR| -+ :

NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY

.

NATURALKILLER,CELL_MEDIATED. CYTOTOXCTY | @ © @ © @ © © © © © °
WISHATCH REPAR

INTESTINAL_IMMUNE_NETWORK_FOR.1GA PROLCTION| @ ® © © ® © ® © ® ® °

HoMOLGBOUS. RECoMBINATION] & © @ S S 9 9% e® . .

ONAREPLICATION] = - o - = @ o & o o .

CYTOKINE_CYTOKNE_RECEPTOR INTERACTION| @ @ @ © @ ® ® ® ® @ °

CHENOKINE_SIGNALING.PATIVAY | @ @ © © © © © & © & ° °

clove|T ¢ T S eer e o :

sase ExcisoNREPR] < o - o0 o © . o B .

B_CELL_RECEPTOR_SIGNAUINGPATHWAY | @ ® © ® © © © © ® © °

ANTIGEN_PROGESSING_AND_FRESENTATION | @ © @ © © © © © © ® ° o

> 6 o SO S O PF o

TEL I SIS EEE LL T s






OPS/images/fonc.2022.1010023/fonc-12-1010023-g005.jpg
A pvalue Hazard ratio : B pvalue Hazard ratio !
1
Gender 0061 0.756(0.564-1.013) ™) Gender  0.036 0.717(0.526-0.979) o
1 1
Age <0.001 1.023(1.011-1.036) | | Age <0.001 1.038(1.025-1.052) ]
1 1
Stage <0001 2004(1635-2458) | HH Stage 0264 0.764(0.476-1226) o
1 1
T <0.001 1.791(1.365-2351) 'HEH T 0005 1.524(1.133-2.050) -
1 1
N <0.001 1.485(1.247-1.767) H N 0,008 1.499(1.114-2017) =
1 |
M <0.001 5.204(3.616-7.420) 1 —a— M <0.001 6.026(3.012-12.056) 1 —_—
1 1
riskScore <0.001 1.732(1.477-2.032) ! riskScore  <0.001 1.648(1.347-2.017) !
01 2 3 45 6 7 0 2 4 6 8 10 12
Hazard ratio Hazard ratio
GSE39582 cohort - Training set
C D
pvalue Hazard ratio '
' pvalue Hazard ratio .
1
Gender 0611 0.901(0.603-1.345) -
i Gender 0318 1.254(0.804-1.958) —
Age 0030 1.018(1.002-1.035) [ f
g Age <0.001 1.037(1.017-1.057) | |
Stage <0001 2200(1.731-2726) T HH .
) Stage 0386 1.411(0.647-3.076) p——t
T <0.001 2728(1824-4.082) ' —— 1
' T 0.003 2.226(1.309-3 783) 1 el
N <0.001 2.088(1.648-2.646) | HH .
K N 0154 1.399(0.881-2222) —m—
M <0.001 4631(2.924-7.336) ' [ E— '
' M 0.408 1548(0 550-4 360) [ ——
riskScore  <0.001 1.916(1.310-2.803) ' - :
1 T T T 11 riskScore  0.003 1.829(1.191-2.624) [ —
01 2 3 4 5 6 7
. 0 1 2 3 4
Hazard ratio
Hazard ratio
TCGA cohort - Testing set
E F o
o |
Points o
0 g
- 1l 2 3
! 3
= = ) iz GSE39582
I} [\ ©
o
) d S — 1
risk _— }x::
o | ~—— S-year
e e e LS m o
- 00 02 0.4 06 0.
Total points high &0
G Nomogram-predicted OS (%)
2 T Ty
/\ /\ A - #
EY £ =0 ~m 20 20 . &
e 7 /
0.842 g }/f
Pr{ futime > 5 d 2 @
4 o 08 o7 6 0504 e I~ TCGA
[ 1
§ o
Pr futime > 3 [
. o
s — 1-year
—— 3-year
o | — S5-year
3

L S B —
00 02 04 05 08 10

‘Nomogram-predicted OS (%)





OPS/images/fonc.2022.1010023/fonc-12-1010023-g001.jpg
RNA_sensor == High score == Low score

RNA_sensor

075

Overall survival

0.50:
“* p<0,001
NOD_like_receptor ** p<0.01 025
* p<0.05 p=0.337
Correlation
0.00:
lo.ns 0 123 456 78 0101 12
e Time(years)

-0.05 D
DNA_sensor I -0.10
015

NOD_lke_recepior = High score == Low score

1.00:

0.75:

0.

0% p=0.134
0.00:

All_pattern_recognition_receptors

Overall survival
g

B

01 2 3 4 5 6 7 8 9 1011 12
Time(years)

Type Typo
High score
DusP27 Low socre
2
1GKV2D-40
0
JCHAN
16LV3-19 -2

1GLV1-47

IGHV5-51

1GHV3-15 v

16211 GPCR downj wr d
wzs1 ’

16LV2-23

1GHVi-18

G alpha (i) signalling event
IGHV3-23

16KVA-1 Signal Transduction

ccute

CSF2RB

TYROBP

HLA-DMB

usD.

oas2

RSAD2

Class A/ (Rhodopsin-iike receptors)

DNA_sensor == High score == Low score.

100

Overall survival
° °
8 3

°
b

p<0.001

012 3 456 7 8 91011 12
Time(years)

AlLpatter_recogniton_receptors == High score == Low score

1.00

075

Overall survival
°
g

%1 5=0.009

0.00

01 2 3 45 6 7 8 9 1011 12
Time(years)

Adaptive Inmune

Immune System

Innate Immfne System

Neutrophil
degranulation

Cytokine Signaling
in Inmune system

Interferon Signaling





OPS/images/fonc.2022.1010023/fonc-12-1010023-g002.jpg
Survival probability
g

0.251

0.00

consensus matrix k=4

oEmOo
W

p<0.001

'
01 23 456 7 8 9 1011 1213 1415 16
Time(years)

relative change in area under CDF curve

Delta area

O

Cluster
° A
* B
e C
e D






OPS/images/fonc.2022.1010023/fonc-12-1010023-g003.jpg
1.00

0.75

0.50

0.25

Immune infiltration

0.00

N W cluster
(S T Project

[0 W Cluster Cluster
& W)

Cluster BR AE3 8 BB C BE D

2 Cluster
A
B
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
1 Project
0

KEGG_TYPE_|_DIABETES_MELLITUS GSE39582

KEGG_ALLOGRAFT_REJECTION TCGA
KEGG_GRAFT_VERSUS_HOST_DISEASE
KEGG_CHEMOKIE_SIGNALING PATHWAY —
KEGG_LEISHMANIA_NFECTION
KEGG_ToLL_LIKE_RECEPToR _sionaLne_parrway [l 2
KEGG_SYSTEMIC LUPUS. ERYTHEMATOSUS
KEGG_VRAL_MYOCARDITIS

KEGG_CELL_ADHESION_MOLECULES_CAMS

B
2 lc

Project

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY
Project

" I esesese2
TcGA
0

4

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY
KEGG_PRIMARY_IMMUNODEFICENCY
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION -2
KEGG_AUTOMMUNE_THYROID_DISEASE

KEGG_ALLOGRAFT_REJECTION

KEGG_GRAFT_VERSUS_HOST_DISEASE

KEGG_TYPE_| DIABETES_MELLITUS

HcCluster 3 Cluster
I Project B
2 o
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE
Project

:

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS

KEGG_CELL_ADHESION_MOLECULES_CAMS

1 ) Gseavse2
TCGA
0

-1

KEGG_VIRAL_MYOCARDITIS

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION

2

KEGG_CHEMOKINE_SIGNALING_PATHWAY
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY =3
KEGG_NATURAL KILLER_CELL_MEDIATED_CYTOTOXICITY
KEGG_LEISHMANIA_INFECTION

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY

B Cluster Cluster
I Project > A
c

4 Project

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM
KEGG_DILATED_CARDIOMYOPATHY
KEGG_ECM_RECEPTOR_INTERACTION

KEGG_FOCAL ADHESION
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROTN_SULFATE
KEGG_CELL ADHESION_MOLECULES_CAMS
KEGG_LEUKOCYTE_TRANSENDOTHELIAL MIGRATION
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS
KEGG_LEISHMANIA_INFECTION

B E Cluster
W 1 Project

Al

GSE39582
TCGA
0

KEGG_CHEMOKINE_SIGNALING_PATHWAY
KEGG_LEISHMANIA_INFECTION
3 TCGA
KEGG_TOLL _LIKE_RECEPTOR_SIGNALING_PATHWAY
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
“4
KEGG_ALLOGRAFT_RELECTION

KEGG_GRAFT_VERSUS_HOST_DISEASE o

Custer
N D
D
4 Project
Iessseﬁaz
0
KEGG_TYPE_I_DIABETES_MELLITUS I
KEGG_VIRAL_MYOCARDITIS
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_ PRODUCTION

B cluster Cluster
T Project 2 [
D
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION
Project

Lo o

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY AR}

KEGG_DILATED_CARDIOMYOPATHY

KEGG_AXON_GUIDANCE

GSE39582
TCGA
0

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM

L |

KEGG_GAP_JUNCTION

KEGG_ECM_RECEPTOR_INTERACTION
KEGG_FOCAL_ADHESION
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE

KEGG_BASAL_CELL_CARCINOMA





OPS/images/fonc.2022.1010023/fonc-12-1010023-g004.jpg
Hazard ratio

886868868777 777777776652

1] T B
- |
8 | 1] |
s - |
i T 1
§ 24 i
g . I
£ A
] 4
3 ST e sttt I
2
g g
€7 1 | cxcL1o =556) (782 oy ——— 0.081
g — T
Y s - B
Loa2)
s 7 7 s
8
8
© | 0.89 ] . _|
Ll (0.81-0.989
g 54
H
g |
s
R
T T T T # Events: 187, Global p-value (Log-Rank): 8.1416e-07 :
. b R 2 AIC: 2138.52; Concordance Index: 0.62 i ! -
Log Lambea 08 09 1 11 12 13 141516
sk e Hgn risk = Low risk D E
°
z .
z >
8 ° 2
2
5 . o
T g3 #
2 2
3 33 2
o -4
© —— AUC at 1 years: 0.645
—— AUC at 3 years: 0.659
° — AUC at5 years: 0.642
» S
P A E
Time(years) 1-Specificity
GSE39582 cohort - Training set
ik = High risk =k Low risk
G H
<
£ ©
H ]
3 S
2
S @
3 z 3
H {4
S
2] & 3
o
° — AUCat1years: 0.659
& —— AUC at 3 years: 0.649
o P —— AUC at 5 years: 0.594
3
3 High risk{226 174 100 55
2 '-""””42_212‘ 8112 00 02 04 06 08 10

1-Specificit

TCGA cohort - Testing set






OPS/images/fimmu.2022.998653/fimmu-13-998653-g010.jpg
risk =high = low risk = high = low
VICNI| Rt * VICNI n;
enchitts| wxe PDCDILG2 B
KIR2DS4 *rx KIR2DS **
D274 iy CD274 o
TNFSFI§ x TNFSFI§ was
KIR3DL3 x KIR3DL3 ns
BINL3 * BINL3 wxe
TNERSFI8 ax TNFRSFIR wrn
BINLY ¥ BINLY| s
KIR3DLL o KIR3DLI b
KIR3DL2 rx KIR3DL2 [
D226 *rx €236 wxr
KIR2DLI *xx KIR2DLI wxs
PDCDL ok PDCDI [
CDAOLG *ak CDAOLG wrn
CDIG0 x CDI60 wxs
CDRO *xx CDR0|
ICOSL x ICOSLG|
CD28 wxs CDag
ns ADORAZA|
ax TIGIT
by KIR2DL3
* TNESF9
P KIR2DL4
*rx CD70)
¥ BTN2A2
P
e
e
*xx
ey
ns
ax
*rx
xk
s
wx
*rx
*xx
e
nx
o
*xx
oy
i
nx
*rx
*xk D86
ns Cb276
ns BTN2AI
rx TNFSF14
*xx HLA-G]
* CEACAMI
wre Cha7
i HLA-DQBI
*xk HLA-DRBS
by HAVCR2
HLA-DRBI oy HLA-DRBI
HLA*IX%\! S —— wxx HLA-DQAIT
HLA-DMA | " HLA-D!
SIRPA 2 SIRPA
TNFRSF14 TNFRSF 14
HLA-DMB HLA-DMB
HLA-E HLA-E .
HLA-B HLA B <
HLA-DPAT HLA-DPAI sy
HLA-DRA HLA-DRA -
HLA-A HLA-A Pil—=—
5 10 5 10
Gene expression Gene expression
BIN2A2 — F CD70 —_
KIR2DLI — KIR3DLL —
D160 — CTLA4 —
CD20Y — D309 y-GHm)
ICOSLG — CDI60 ——
TNFRSFA — CDAOLG —
KIR3DLI " KIR2DL3 —
R = g =
P—
CDIOLG [— KIR3pL2 W)
L . —
TNESF4 — ] N
BTLA —
CD226 — BIN2A2 o
BTN3AI — €D226 [ —
KIR3DL2 — D40 [ S ——;
CD70 —_— HLA-DOB -
HLA-DOB — BILA ——
[ R — I HA DN  e——— I
— A-] ———  puale
criag  e——— P ol e——— P
HLADRES  e———— 0.025 D% e———— 0020
NF1 S— HLA-DOBI ~ e———
Lo - —) 0.020 TNFRSFI8 ~ &——
HLAZA ~ e—— LGALSY e—— 0.015
PDCDILGE  e—— 0015 mihET e——
b HLA-DPAl e&——— 0010
AR e 0.010 Icos  e——— .
HLA-DOA ~o—— - Cose e
ST 0005 KIRODL4 —o————— 0.005
XA " HLA-DQAl ~ e————
HLA-DRA o—08——
HLA-DPA] o——— HLA-DPBI ~ e—
HLA-DQA] e—— HCA-DMB ~e———
HLA-DQBI  e—— D0l  ————
KIR2DL4 o—— HLA-DRBI ~e————
HLA-DRB] o——— HAVCR2 | o————
HIA-DMB o—— BTNJAl  e———
HLA-DPBI e—— HLA-DRA ~&————
(D274 ——— HLA-DMA e———
e [ 5 A S—
oo~ ———— 165757 S S—
HLA-DMA o——— T e
JDO] ———— HLACA e
HLAE e—————
PDCD] o—— PDCD] -8
D ——— [AG —————
A e———— HLAE e————
WAfe— HLA-B e—————
HLA ¢ e—— HIA-F e————
HLAB o———— HLA-C o——————
—04 -02 00 05 -03 -0.10.0
correlation correlation

C

VTCNI
PDCDILG2.
KIR2DS4.
CD274
TNFSFIS.
KIR3DL3'
BTNL3
TNFRSFI
BTNLY
KIR3DLI
KIR3DL2!
D226
KIR2DLI
PDCDI
CDAOLG
CDI60
CDS0

PDCDILG2
LGALSY
D96

CD86
HLA-DPAI
HLA-DQBI
HEA-T

risk = high = low

D

risk = high = low

* VICNL{ i * s
ok PDCDILG2 Ve R
o KIR2DS4 ns
P CD274; . s
L TINFSF18 -
I KIR3DL3 ns
ok BINL3 ns
ok TNERSFI8 >
ns BINL) B
e KIRIDL] i
e e
wwx .
oo in
o el
o i
ek boo
ok oo
ok e
4 P
o P
o o
o ns
* Faa
Lo as
o 54
i "
e e
wr boos
o s
oo g
*x
x5,
ek ing
ek ns
o e
wkx by
e °
boid . wxx
ok ol
o bt
Uk bl
o . o
ok ne
Hok HLA-DOA| s —— bt
Hk HLA—C| i
ok HLA-F b
e &l e i
BINJAI — s
TNFSFI4) =t L
HLA=G v 33k
CEACAMI ns
S o pe
HLA-DQBI| il
HLA-DRBS } ok
HAVCR2| =+ ae
HLA-DRBI ___opl———
HLA-DQAT| * —* == e
HLA-DMA R — ok
SIRPA .oons
TNFRSF14| .00 *
HLA-DMB| e+ rae
. HLA- i L
. i Sy HLA-B] ;! il
e e HLA-DPAI| + = o *xx
HLA-DRA Ty xrx
HLA-A - as
25 50 75 10 b
Gene expression
— H KIR2DLI —
BTN2A2 —
) ICOSLG —
o TNFRSFI§ —
| CD70 —
- cD274 —
pe CD28 —
o KIRIDL2 —
P TNFSFA —
P CDAOLG T
— KIR3DLT —
— CD47 —
— PDCDILG2 —
[ — TDO2 ——
— TNFRSFA ——
— LGALS9 —
— CDI6D —
— L i ——
P — pvalue
HAVCR2? ~ e———
- 0.03 fss 9V S -— 0.004
R ———— Joosi .
6 ———
0.02 Cho6 S 0.003
 — HIADOR o
-— ] o 0.002
— oo Rk ———
X 5
— PDCDI ~ &——— 0.001
— HLA-DPBI ~ e———
— HLA-C ~ o———
— HLA-DMA ~o———
— HLA-DMB ~ e————
S KIR2DL4 ~ e——
- S e CDEG | e———————
e TIGIT —-e—————
- e KIRDL} —e———
S 1C0S o—-—
P HLA-A o————
b BIN3Al e———
DT B HLA-DQAl &———
B S HLA-DOB] ~ e———
P I B Ch27 e——
f— HIA—G — #—————
P I D01 e——x—
— HLAE e———
e —— LAGY e———
Ce—————— HLA-B &———
— HLA-Fo——M —
03 ‘40.1 0.0 —0.6 0.4 -02 0.0
correlation correlation





OPS/images/fimmu.2022.998653/fimmu-13-998653-g011.jpg
A @ B Train Testl Test2 Test3 risk

Train Test3  risk - e
= high 7D | SIGNAUING | s | e | o
JENBLE = CTLA4 INHIBITORY SIGNALING |, el ¥ e pf
PRIA3|, = ok = low INTERLEUKIN 10 SIGNALING | =& #** 3 Y
IENALH s INTERTECKIN G SIGNALING | g e | G ver | o von | o,
HOXPS = Eiod INTERLEUKIN 2 SIGNALING T e | ok f o wxr e
i i o INTERLEUKIN 1 SIGNALING Fower 4 = F v T
- e g e ] e 3 wax
CASPR ik CLASS_I_MHC MEDIATED ANTIGEN PRESENTATION | % #+* Loun L 39
£ MHC CLASS [T"ANTIGEN PRESENTATION | ¥, *¥* i ; otd liods
TLITRA -4 *k ANTIGEN PROCESSING CROSS PRESENTATION F o Sk
CXCRY da TOLL_LIKE_RECEPTOR_SIGNALING PATHWAY | Sa) s [ ael s n
R4 @7 e ~TGF BETA SIGNALING PATHWAY| ns b
AT T CELL RECEPTOR SIGNALING PATHWAY| _# *+% ex fas ) oW o
D‘Z{ = - SYSTEMIC_LUPUS_ERYTHEMATOSUS| ¥ ##+ | <& i E o
(T SPLICEOSOME ) S s P
EIFZAKS o ns RNA_DEGRADATION % ns * £ ik
IR %- P PROTEASOME o Edea £3aid e
TLIB | EEE PROGESTERONE_MEDIATED OOCYTE MATURATION ; 2% e % wer
ENTPDI| =, *xx PRIMARY IMMUNODEFICIENCY | W #+s e Sor |k 030 - v
MERR L R P33 SIGNALING PATINAY) § e B FES I
A gEL 4 NUCLEOTIDE EXCISION REPAIR| ¥ * ¥ s oxe | DS
PRXT - s NOD LIKE RECEPTOR SIGNALING PATHWAY e el bed
(i iE = NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY b b P
BAX ns MISMATCH REPAIR| ¥ * e v £ as
D i HOMOLOGOUS RECOMBINATION S ns i hodg S by
CASPL| = tdx INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION R PRl Pl b3
FRAR] D, DNA REPLICATION | , *¥ * E E E 3
= S CYTOKINE_CYTOKINE RECEPTOR INTERACTION [ % {afr — wak gl e #* by
T Eer CHEMOKINE_SIGNALING PATHWAY| #%  #r# | & #ex | & sax bt
HMGBI| g DS CELL CYCLE * ns " ns
HSPOOAAIL ", =gns BASE_EXCISION REPAIR| * ¥ hood
369 25 7512525 75 125 B CELL RECEPTOR SIGNALING PATHWAY #: bood - e boed P
2 3 ANTIGEN PROCESSING_AND_PRESENTATION ok -i' kot | g des |_gf _aws
Gene Gene Gene & So& So& DR
expression  expfession  expression  expression Qm NN N
Paibway  Pyihway  Pathway  Pthway
core core core core
(o] pSeg D vseg E psee F
= <0.001 = 0.
=<0.01 _<g gé & zg 8?1
—<0.05 — <0, . = <0 2 02 plicabl
8 i = Not Applicable = £0.03 Not Applicable
Not Applicable = Not App! = ot Applicable
' Pearson's r Pearson's r
Pearson's 1 P
o esrsonis 1.00 1.00
0.75 075 075 0.75
0.50 0.50 0.50 0.50
0.25 025 022 o0
sign sign sign sign
—pos ““pos pos pos.
neg neg neg neg
1Seg 1Seg Seg iSeg
—025 —0.25 —025
- 0.50 —0.50 —0.50
» 073 - 1.00 i =075
= 1.00 = 1.00
T
G H ANTIGEN PROCESSING AND PRESENTATION Lo
B R A 03
#
1.0 CHTQKINE CYTORINE RECEFIOR INTERACTION 06
INLESTINAL IMMUNE NETWORK FOR IGA PROBUCTION
08 04
0.6
ANTIGEN PROCESSING, AND PRESENTATION e SUS sign
0.4 B_CELL_RECEPTOR SIGNALING PATHWAY
CHEMOKINE SIGNALING PATHWAY NN — pos
sign INTESTINAL {MMUNE NEIWORK FOR 10 PRODCCT N - neg
NATURAL KILLER_CELL_ MEDIATED CYTOTOXIC Chass ILANTIGEN. PR
— pos NOD_LIKE R 1Seg
neg - 025
Seg - 0.50
= 0.50 - 1.00
=075 AMH pSeg
00 CLASS I MHC MEDIATED ANTIGEN PRESENTATION >
INTERLEUKIN 1" SIGNALING — <0.001
pSeg INTERTEURIN SIGNALING — <001
— <0001 I ERE R 1 y% — Not Applicable
CTLA4_INHIBITOR

= Not Applicable PD_I-SIGNALING

| J ANTIGEN PROCESSING_AND PRESENTATION
N 5 CEEL RECEFTOR SIGNALING PATHWAY
1.0 SIGNALING PATHWAY
. RN IO ReCEPTOR INTERACTION
08 INTESTINAT, IMMONE NETWORK FOR IGA PRODUCTION
NATURAL KILLER CELL MEDIATED CYTOTOXICT
06 NOD LIKE RECEPTOR STGNALING_PATHWAY
A
ANTIGEN PROCESSING_AND PRESENTATION
04 B CELI, RECEPTOR SIGNAUING PATRNAY SYSTEMIC_LUPUS ERYTHEMATOSUS
CHEMOKINE SIGNATING PATHWAY T CELL RECEFTOR SIGNAIING PATHwAY
CYTOKINE CYIOKINE RECEPTOR INTERACTION [ TOLL_LTKE RECEFTOR SIGNALING PATHWAY,
s R RO IR Kb e i
—pos  NATURR G R R & 'E'fﬂ_ SObon ”" CLASS | MH]%_‘IIVIISE%A'RE%ANTIGEN PRESENTATION
- ne B EFICIE) INT)
g P NOROSEFILIERCY NTERFEDKIN'] SIGNALING
> INTERTEURIN-6-SICNALING
1Seg A INTERLEURIN 10" SIGNALING
— 025 TOLL ALING-PAT] CTLA4 INHIBITORY_SIGNALING
e ANTIGEN PROCESSING, rkoss PRESENTATION PD_1_SIGNALING
=050 MHC CLASS T ANTIGEN PRESENTATION

m 100 CLASS I MHC MEDIATED ANTIGEN PRESENTATION
8 INJERLECKIN 1 NG

Se
B TTFREEDRIN 103K
= <0.001 CTLAY INHIBITORY SIGNALING

— Not Applicable D_I_SIGNALING — Not Applicable






OPS/images/fimmu.2022.998653/fimmu-13-998653-g012.jpg
E-]
g
E
S100] Eé 2
g 75 L5
o 50| 3 257 £
2 = OOOOOOOOOO
125
<
3
5 00
3 -
o L_P=0002 count moa
=3 high  low 11/21 PDGER receptor inhibitor
Cluster 11/25 VEGFR inhibitor
"] I(VII KIT inhibitor_
g 10.0 \TPase inhibitor
510. — 37" BURSABL kohsee inhibitor
> 1/3_ Ephrin inhibitor
275 2/13 SRC inhibitor
] 3/21 Tyrosine kinase inhibitor
2 50 1/42 EGER inhibitor
g = 8/14_ FLT3 inhibitor
4 25 174" FGFR inhibitor
% 00 116 Aurora kinase inhibitor
B LS 9 inhibitor
5 P <0.001 172 Oxidative stress inducer
2 inhibiior
& high _low 15 ABL inhibitor
Cluster 2/2 RET tyrosinc kinasc inhibitor
@ 1/6  PLK inhibitor
8
210.0
3 75 * ?
g
@ 50 5 A
g > % .
525
<
3
7 0.0
5 P <0.001
L _P<0.001
8 high  low
Cluster count moa
=] 11/21 PDGFR receptor inhibitor
g 10.0 11/25 VEGFR inhibitor
y 1M A 10/11 KIT inhibitor
- 3/7  BCR-ABL kinase inhibitor
g 75 173 Eghrin inhibitor
d 5 3 itor
2 50 E 357 Torodne Risase inhibitor
g8 142 EGFR inhibitor
125 /14 FLI3 inhibitor
% 00 U4 EGFR imhibitor
8 0. /16 Aurora kinase inhibitor
5 P <0.001 ° o ° 29 RAR hibiior
1) / inhibitor
-3 high ~ low ) 1/S ABL inhibitor
Cluster Ll ) 22 RElemsmckmasc inhibitor
» (] 1/6  PLK inhibitor
8
8 10.
3 7.
g
| 124
<
3
= 0.0
5, P <0.001
2
o high  low
p Cluster count_moa
8
8 o
100, 374~ FGFR inhibitor
5 75 10/11 KIT inhibitor
QW l;l B RAEk%J:lasc inhibitor
3 rin inhibitor
2 50 > ¥ 215 sﬁc inhibitor
n'l 25 321 rosine kinasc inhibitor
< “ 1/42 E FR inhibitor
g 0.0 FI(“? ]/;LT'! m]l(nbuol‘ hibit
- 6 Aurora kinasc inhibitor
I low i lllOl‘
£ 9 ustor ABL inhibitoi
o> 2 RET %m‘s,mc kinase inhibitor
2 ! inhibitor
< 10.0
I
3 75 G
g8 2
g 50 Ses 8
% ) oS28l 2 0 o
25 282 ZEQCSESEnenER
% o0 EEE ESEXEEIEASZELE
= % oF SEAS g =4
8 TL_P<0001  ume Z355EEEE Fe=ERH PR
=3 high low KIT 0000000000000 O O 0000000
= 9 ATPIA2 ~ O (<} o
Cluster o o
s bR 0
& 100 o %
3 75
g
] - count moa
2 50 B 11721 PDGER receptor inhibtor
= ¥ R inhibitor
< 25 1071 KIT mhibior
S 00 13 BORRBL ohas imivi
/ inasc inhibitor
E‘ P <0.001 37 Ephrin iniotor
inhibitor
2 high low FA3 Tyrosine kinase inhibitor
Cluster 1742 EéFR inhibitor
] §/14 FLI3 inhibitor
10,0 14 EGFR inhibitor
o 1/16  Aurora kinase inhibitor
3 75 29 RAF inhibitor
g 7 11 PKC inhibitor
o 1/s ABL inhibitor
5.0 8 o
8 13 Lipase inhibitor
5,5 X oL 261 Cyclooxygenase inhibitor
< 2 /11 Prostanoid receptor antagonist
2 40 ° 11 Tnacylelycerol ipase nfibior
» / ing inhibitor
Bl | P<0.001_ ® e e V1 REF o [t bitor
2 high  low ° /6 PLK inhibitor

Cluster





OPS/images/fonc.2022.1010023/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2022.998653/fimmu-13-998653-g009.jpg
ns ns ns *Ens WA ng ns ong % ¥ ng VRS * M ong ongons ns s

08]ns ns ms *Fns weeesee ¢ oo ong o

ns wee e

**ns ons ns oms ¥ ons

06 ) :
* risk B8 high £S5 low risk E3high B3 low
. 06 .
i .
50.4 . . s s :
g . g o4 .
=\ = . . =
02 {e o ..
LR ] . 021 o .
[] . : ¢ M
Lt M J 3.8 -ﬁ :
i Q *
0.0 “.n:.l.l —a J!.n d ..n.ual 0.0 2 lﬁd“.ﬂ. ﬁh a.uu
€ o S $ Pgs S & »
y el ;&\3‘%“? @“’ Fots y o0 e @iy E STt % @’ A @vgg;p&
ef SRR L] SN 5 &‘&“ aa& “"% o o @W‘; £ ;’y“ o»‘“‘ e‘%“ {;ﬁf@y&o S @%\
SOSHT L »I\ e & "N& BES e
cogo» fes cd* e N
[t
D
08 {ns ne ns *eng weweRewrr * ngong ns s M RRRRS ¥ ongons onsone ns ns ns ns ***ns * ™ns ns ns msons nsong ** *** * nsoosons ns oo
risk BRhigh B3 low 06 : , risk Bhigh E3low
06
.
) <
§ - S04
. B .
Al I ! £ .
B .
. .
024 ¢ 5 @ . *
ey HY A oeflle . .
I * e 4 ' : ﬂ o
[} 1
ooialY JTHL b T, Tt
S PSS 6 W st s
SR
ya &so ¢ vc\‘fg» \ﬁ,eq e S G5
dn* <3 Q%v&p v\"“@‘
c.v\"&*
s
3
F
R=03 =-0.22 R=035 R=0.35 R=056
o 00037 g =0.021 = 00016 g =5.9e-07 =22e-11
S0 a S oot 3, %O r b . g el
8 8 i g . 809 8 04
EO -%n s’bo E 0 .%no 504
. £ .
3 | E |5 | 893 ] s
g, & 8o g0 go. 802
g 2 g i| S0 s g :
7 4 6 o 5 1o %3 10 Tz 34 O° 0 5 10 0 5 10 T2 3 4
RiskScore RiskScore RiskScore RiskScore RiskScore RiskScore RiskScore RiskScore
H
- R=-038 R=03 R=029 R=0.36 R=03 R=0.26 R=0.24 R=0.25
2 p=0.00018 f p=00014 £ p=4de05 £ p=46e:05  w $=0.0029 w PO0ME p=000082 p=0.0049
£ H = g
Fo2 I Fog g £ 03 g g% fo2
gﬂ] Eo‘i\ 501 E goz goz § !
0.0[{% e -l S0 s 1R §o.1
0.0 N . s
L Ly . 8. g0 £o0
g0 5] 8 8 8o 8 oolZ. Boo A
= 2 4 62 0 5 1 = 0 5 10 2 T 2 3 42 2 4 6 =z 0 5 10 = T 2 3 4
3 RiskScore 8 RiskScore & RiskScore RiskScore & RiskScore E RiskScore 8 RiskScore
(3 = e 1] 2] = =






OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g009.jpg





OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g008.jpg





OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g007.jpg
||||||||||
|||||||||

I‘IIIMII

|||






OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g006.jpg





OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g005.jpg





OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g004.jpg
LTI

oo

e

h4pe






OPS/images/fimmu.2022.1054305/fimmu-13-1054305-g003.jpg
LIPT1

z

MTF1

- 1
—-;i—- -

PDHB






OPS/images/fimmu.2022.1054305/table1.jpg
Characteristics

Age (<=60 vs >60)

Pathologic stage (I+ IT vs I+ IV)
T stage (T1+T2 vs T3+T4)

N stage (NO vs N1+N2+N3)

M stage (MO vs M1)

LIPT1: High vs Low

PDHAI: High vs Low

Univariate analysis

Hazard ratio (95% CI)

2.020 (1.465-2.784)
2391 (1.703-3.355)
1.608 (1.110-2.329)
2.239 (1.567-3.199)
4.254 (2.468-7.334)
0.839 (0.609-1.155)
1.444 (1.046-1.993)

The value in bold indicate that p is less than 0.05, which is meaningful.

p value

<0.001
<0.001
0.012
<0.001
<0.001
0.282
0.025

Multivariate analysis

Hazard ratio (95% CI)

2077 (1.440-2.997)
1913 (1.112-3.291)
0.853 (0.507-1.437)
1.776 (1.143-2.760)
2.024 (1.004-4.082)

1.575 (1.097-2.261)

p value

<0.001
0.019
0.551
0.011
0.049

0.014
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Sipuleucel-T immunotherapy for castration-resistant prostate cancer

Improved survival with ipilimumab in patients with metastatic melanoma.

Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate
cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised,
double-blind, phase 3 trial

Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted
immunotherapy in metastatic castration-resistant prostate cancer

Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer

Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with
metastatic, asymptomatic hormone refractory prostate cancer

Safety, activity, and immune correlates of anti-PD-1 antibody in cancer

Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells

Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular
immunotherapy with sipuleucel-T in advanced prostate cancer

Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer
progressing after docetaxel treatment: A randomised open-label trial

First
author

Philip W
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Hodi
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Kwon
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Eric J.
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Journal of
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Title

Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
Sipuleucel-T immunotherapy for castration-resistant prostate cancer

Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors:
safety, clinical activity, pharmacodynamics, and immunologic correlates

Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy

Immune checkpoint targeting in cancer therapy: toward combination strategies with curative
potential

[pilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant
prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre,
randomised, double-blind, phase 3 trial

Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in
patients with metastatic, asymptomatic hormone refractory prostate cancer

A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer

Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously
vaccinated metastatic melanoma and ovarian carcinoma patients

CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in
tumor immunotherapy

Journals

New England Journal of Medicine
New England Journal of Medicine
Journal of Clinical Oncology

Oncogene

Cell

Lancet Oncology

Journal of Clinical Oncology
Clinical Cancer Research

Proceedings of the National
Academy of Sciences of the United
States of America

Annual Review of Immunology

First
author
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Rank Author Country Counts Total Citations Co-Cited Author Country Total Citations TLS Centrality

1 Gulley, James L. USA 80 3,732 Small, Eric J. USA 1,176 85,963 0.24
2 Madan, Ravi A. USA 61 1,687 Fong, Lawrence USA 520 41,178 0.21
3 Drake, Charles G. USA 58 5,377 Hodi, F. Stephen USA 645 59,820 0.16
4 Mcneel, Douglas G. USA 50 1,629 Scher, Howard 1. USA 705 52,437 0.16
5 Fong, Lawrence UsA 45 2,892 Slovin, Susan F. UsA 495 42,379 0.16
6 Small, Eric J. USA 44 4,160 Rosenberg, Steven A. ~ USA 738 78,555 0.15
7 Itoh, Kyogo Japan 2 984 Tjoa, Benjiamin A. USA 223 16,566 0.15
8 Schlom, Jeffrey USA 40 2,573 Sanda, Martin G. USA 227 16,230 0.12
9 Antonarakis, Emmanuel ~ USA 38 1,369 Nestle, Frank O. USA 185 14,582 0.11
S.
10 Noguchi, Masanori Japan 34 838 Kwon, Eugene D. USA 546 43,767 0.10

TLS, total link strength.
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Rank Country Counts Percentage H- Total Cita- TLS Institutions Documents Citations TLS

index tions
1 USA 1,954 54.54% 145 107,849 817 NCI 185 10,978 318
2 China 448 12.50% 50 9,624 177 Memorial Sloan Kettering Cancer Center 137 18,581 424
3 Germany 268 7.48% 59 13,554 267  University of California San Francisco 102 10,955 343
4 Italy 260 7.26% 49 9,925 323 University of Texas MD Anderson 94 5,146 316
Cancer Center
5 England 247 6.89% 56 10,485 335  Johns Hopkins University 93 16,166 298
6 Japan 196 5.47% 36 5,047 76  University of Washington 81 9,328 381
7 Canada 146 4.08% 42 6,299 172 University of California, Los Angeles 72 3,601 144
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10 Netherlands 94 2.62% 38 6,139 218  Dana-Farber Cancer Institute 62 12,064 306

TLS, total link strength.
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WPA541: Hippo-Merlin signaling dysregulation

G0:0009314: response to radiation

G0:0048608: reproductive structure development

G0:0000902: cell morphogenesis

G0:0006325: chromatin organization

G0:0060341: regulation of cellular localization

WP4239: Epithelial to mesenchymal transition in colorectal cancer
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Characteristics

RiskScore

Age

Gender

Male

Female
Metastasis Status
Non-metastatic

Metastatic

Univariate analysis

HR (95% CI)

4725 (2451-9.109)
0.988 (0.910-1.072)

1.468 (0.706-3.052)

4.770 (2.285-9.954)

P value

<0.001
0.770

0.304

<0.001

Multivariate analysis

HR (95% CI)

3.475 (1.783-6.773)
1.032 (0.943-1.129)

1.603 (0.733-3.506)

3.625 (1.601-8.209)

P value

<0.001
0.497

0.237

0.002
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Symptom
Laboratory
test

EBV

Film

degree
exam

Pathology

Diagnosis

Therapy

Clinical
status

First hospitalization

low fever, limb muscle
soreness, weakness, slowly
progressive weight loss

CRP 9.6mg/L; GPT: 60U/L,
GOT: 48U/L,CK: 847U/L,
LDH: 386U/L

peripheral blood EBV-IgG,
IgA: +; EBV DNA
7.43x103copies/ml

MRI indicated myositis

1. Polymyositis, 2. EB virus
infection

glucocorticoids, tacrolimus,
ganciclovir

Temperature returned to
normal, but muscle pain
persisted

Second hospitalization

fever again, generalized muscle pain, and new skin erythema of

the lower extremities

CRP 62.4mg/L, CK 444U/L, LDH 402U/L

EBV DNA 3.13x10%copies/mL

PET-CT showed systemic myositis with inflammatory

hyperplasia of lymph nodes in the right neck, bilateral axilla, and

bilateral inguinal areas

Muscle biopsy showed that the patient had striated muscle tissue

with chronic inflammatory cell infiltration,
immunohistochemistry confirmed inflammatory myopathy.

Skin biopsy confirmed that the patient’s lesions were consistent

with EBV(+) lymphoproliferative disease.
CAEBV infection involving skin expression (A2-A3).

Glucocorticoid, thalidomide

Symptoms were relieved

1:gemcitabine 1.1 d1, oxaliplatin 130mg d1, peaspargase 3750U d2.

Third hospitalization

general weakness and multiple subcutaneous painful
nodules of different sizes developed all over the body

CRP: 19.1mg/L, CK: 125 U/L, LDH 471U/L

peripheral blood EBV DNA 5.88x10°copies/mL; EBV-T
DNA 1.20x10°copies/mL; EBV-B DNA 4.66x10"copies/
mL; EBV-NK DNA 1.73x10°copies/mL

subcutaneous nodule pathological biopsy confirmed as
extranodal NK/T cell lymphoma (nasal type).

CAEBV infection-related generalized myositis, combined
with extranodal NK/T cell lymphoma (nasal type)

P-GEMOX', PD-1

Dead
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Characteristic

Age

Gender

IDH status

Type

WHO grade

Levels

>60
Female
Male
Wildtype
Mutant
AA, AG, and AGG
AOA, A, DA, and OG
GBM
MG
PA, PPXA, and PMA
G3
G4
G5

TP53113

Low expression of TP53113

74
51 (40.8%)
23 (39.7%)
33 (40.7%)
41 (40.2%)
8 (26.7%)
66 (43.1%)
6 (54.5%)
39 (40.2%)
14 (33.3%)
10 (40.0%)
5 (62.5%)
24 (51.1%)
29 (31.2%)
21 (48.8%)

High expression of TP53113

109
74 (59.2%)
35 (60.3%)
48 (59.3%)
61 (59.8%)
22 (73.3%)
87 (56.9%)
5 (45.5%)
58 (59.8%)
28 (66.7%)
15 (60.0%)
3 (37.5%)
23 (48.9%)
64 (68.8%)
22 (51.2%)

Total

125
58
81
102
30
153
11
97
42
25

47
93
43

XZ

0.022

0.006

2.825

341

6.77

0.883

0.941

0.093

0.492

0.034





OPS/images/fimmu.2022.1046044/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2022.974346/table2.jpg
Therapy Molecule Target Impact on Combinatorial Mechanism of therapeutic eftect Cancer type Reference

cellular regimen
metabolism
Targeting Bezafibrate PGC-lo.  Increased FAO  anti PD-L1 mAb Sensitized PD-1 blockade, Tem cells formation MC38 (33-35)
mitochondria Oltipraz colorectal
carcinoma and
B16-Ova
melanoma
models
GW501516 PPARe.  Increased ACT Enhanced transferred therapeutic CD8" T cells B16 melanoma (32)
and CPTla- persistence model
PPARS/ mediated FAO
B
MPC MPC Increased FAO anti-CD19 CAR T Increased H3K27ac modification of pro-memory Nalm6 cells (36)
inhibitors and OXPHOS  cell genes induced human
leukemia model
Targeting fatty anti CD36  CD36 Restriction of  anti PD-1 mAb Decreased CD8" TILs ferroptosis and lipid B16 melanoma (10, 37-39)
acid translocase mAb, extracellular peroxidation, impaired intratumoral CD4" Treg, and YUMM1.7
FAG.152 FAs uptake inhibition of other immunosuppressive cells like melanoma
and JC63.1 MDSCs and TAMs, suppression of metastatic tumor models
cells
Targeting Avasimibe  ACAT1  Decreased anti PD-1 mAb Increased effector cytokines, proliferation, TCR B16 melanoma (39)
Cholesterol Cholesterol clustering and immune synapse formation by CD8*  model
metabolism esterification TILs
Kras peptide cancer Improved CD8" Teff/CD4+ Treg ratio in tumor KrasLA1 (40)
vaccine murine lung
cancer model
Simvastatin - HMGCR  Inhibition of Cancer vaccine and/ Reduced small-GTPase geranylgeranylation, B16-Ova (41)
mevalonate oranti PD-1 mAb  enhanced antigen presentation for T cell activation melanoma
biosynthesis
Targeting AKT AKT Increased FAO  ACT Increased memory-like CD8" T cells formation B16 melanoma (25)
immunological  inhibitors and model
signal mitochondrial
transduction SRC
Inhibited anti-CD19 CART  Prolonged anti-CD36 CAR T cells persistence after =~ NALM6 acute (42)
glycolysis cell adoptive transfer lymphoblastic
leukemia (ALL)
model
MEK MEK Increased FAO ACT Increased CD8" TSCM formation B16 melanoma (26)
inhibitors and and TC-1 cell
mitochondrial tumor models

SRC
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Variable

Pre-WBC
Post-NK cells (%)
Location

Lower

Upper

Middle

Multivariate analysis

Odds ratio (95% CI)

0.778 (0.590-1.028)
1.058 (1.012-1.107)

Reference
0.719 (0.142-3.632)
0.252 (0.078-0.810)

P value

0.077
0.013

Reference
0.698
0.021
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Intracellular
biosynthesis
Intracellular
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Microbiota

TME
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Reduced cholesterol

esterification

“store and burn” mode
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Cholesterol overload

Cholesterol oxidation

FAO

Effect on T cell

Fuels for quiescent metabolic needs
Celluar building blocks for rapid
proliferation
Enhanced tumor-killing cytotoxicity
Increased mitochondrial reserve prepared
for rapid energy needs
Induction of memory differentiation

Fuels for long-term survival

Impaired tumor-killing cytotoxicity

Induction of exhaustion

Induction of Tc9 cell exhaustion

Fuels for long-term survival

Mechanism Reference

Tonic TCR signaling and (14, 15)
inhibition by Treg cells?
PI3K/Akt/mTOR signaling (16)
Immunological synapse formation a17)
IL-7/AQPY/TAG axis (7,18)
H3K27ac modification of pro- (19)
memory genes
GPR41 and GPR43 mediated (20)
SCFAs sensing
Lipotoxicity )
Lipid peroxidation and (10, 11)
ferroptosis
XBP1-mediated transcription of (12)
PD-1 and 2B4
LXR sumoylation (21)
FABP4/FABP5 mediated FAs (22)

uptake





OPS/images/fimmu.2022.1041126/table4.jpg
Variable Multivariate analysis

Odds ratio (95% CI) P value
Length 0.526 (0.304-0.910) 0.022
Var-haemoglobin 1.166 (1.060-1.281) 0.001

Pre-NLR 0.564 (0.295-1.078) 0.083
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Lymphocyte subset

Lymphocytes (10°/L)

B lymphocytes (%)

B lymphocytes (cells/uL)
T lymphocytes (%)

T lymphocytes (cells/uL)
Th lymphocytes (%)

Th lymphocytes (cells/uL)
Ts lymphocytes (%)

Ts lymphocytes (cells/uL)
CD4/CD8

NK cells (%)

NK cells (cells/uL)

WBCs (10°/L)

Neutrophile granulocytes (10°/L)

Haemoglobin (10°/L)
Blood platelets (10°/L)

Before nCRT

147
8.00
118.45
66.30
944.25
37.90
532.95
23.05
346.70
1.665
20.75
324.65
6.195
3.975
138.00
231.00

Value (median)

After nCRT

0.435
2.05
8.60

77.40

304.75

37.05

143.20

29.45

110.40
1.230
16.85

62.45

3.525

2.505

119.50

147.50

P value

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0.3990
<0.0001
<0.0001
<0.0001
0.3571
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
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Characteristic

Age
<70

>70

Gender

Male

Female

T stage

T1-2

T3-4

N stage

NO

N1-2

Location
Upper

Middle

Lower

Length of the lesion
<6.75 cm
>6.75 cm
Chemotherapy
Triweekly
Weekly
Tegafur

pCR

(n=32)

28

26

29

30

20

25

31
41

nPCR

(n=42)

33

34

40

40

P value

0.489

1.000

0.424

0.809

0.182

1.000

0.332

Univariate

Odds ratio (95% CI)

Reference

0.52 (0.146-1.886)

Reference

1.15 (0.347-3.841)

Reference

0.24 (0.024-2.442)

Reference

0.38 (0.032-4.331)

Reference
053 (0.111-2.487)
1.39 (0.322-5.986)

Reference

1.03 (0.336-3.134)

Reference
1.000
1.000

P value

0.322

0.816

0.229

0.432

0.418
0.659

0.963

0.180
0.993
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Characteristic Operation Inoperable P value Univariate

(n=74) (n=10) Odds ratio (95% CI) P value

Age 0.001

<70 61 3 Reference

>70 13 7 10.95 (2.495-48.054) 0.002
Gender 0.292

Male 61 10 Reference

Female 13 0 1.000 0.993
T stage 1.000

T1-2 4 0 Reference

T3-4 69 10 1.000 0.994
N stage 1.000

NO 3 0 Reference

N1-2 70 10 1.000 0.995
Location 0.540

Upper 9 2 Reference

Middle 27 2 0.333 (0.041-2.722) 0.305

Lower 38 6 0.711 (0.123-4.120) 0.703
Length of the lesion 0.027

<6.75 cm 58 4 Reference

>6.75 cm 16 6 5.438 (1.391-23.570) 0.016
Chemotherapy 0.323

Triweekly 31 2 Reference

Weekly 41 8 1.000 0.180

Tegafur 2 0 1.000 0.999
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Univariate cox regression analysis

Age (255years vs <55 years)
Gender (Male vs Female)
Smoke (Yes vs No)

Drink (Yes vs No)

CEA (= 5 ng/ml vs < 5 ng/ml)
Tumor size (= 5 cm vs < 5 ¢cm)
Tumor location (right vs left)
TNM stage (III + IV vs I + II)
Family history (Yes vs No)
Lymph node metastasis (Positive vs Negative)
CUL?7 expression (High vs Low)

Multivariate cox regression analysis

CEA (= 5 ng/ml vs < 5 ng/ml)

TNM stage (IIT + IV vs I + II)

Lymph node metastasis (Positive vs Negative)
CUL?7 expression (High vs Low)

Opverall survival

Hazard Ratio 95% CI
1.004 0.638-1.581
1137 0.723-1.786
1.257 0.803-1.968
0910 0.579-1.430
7.208 3.833-13.555
0.826 0.529-1.289
0.872 0.557-1.365
4558 2.638-7.876
1.554 0.855-2.824
8.150 4.035-16.462
9.020 4347-18.716

Overall survival

Hazard Ratio 95% CI
1.150 0.320-4.126
2.649 1.330-5.277
1.333 0.329-5.403
5.302 1.946-14.450

P-value

0.985

0.578

0317

0.683
< 0.001
0.400

0.549

< 0.001
0.148

< 0.001
< 0.001

P-value
0.831
0.006
0.687
0.001
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Types ncRNA Sample Expression Patients enrolled Associated factors and clinicopathological ~ References
characteristics
miRNA  miR-484 serum 1 / 0OS, PFS (149, 188,
189)
miRNA  miR-34a serum i 60 HCC, 60 HC 08, differentiation degrees, TNM stage, tumor invasion depth, (189, 190)
lymph node metastasis, and vascular invasion
miRNA  miR-21 serum i OS, PFS, TNM stage, T stage and portal vein thrombosis (149, 188)
miRNA  miR-122 whole 54 HCC, 28 LC, 12 HC PFS (191)
blood
miRNA  miR-497 serum 50 HCC, 50 HC differentiation degrees, TNM stage, and metastasis (192)
miRNA  miR-1246 serum 50 HCC, 50 HC differentiation degrees, TNM stage, and metastasis (192)
miRNA  miR-92a-3p plasma 42 HCC 0OS, DFS (107)
miRNA  miR-4454 serum 86 HCC (40 curative 0S, DFS (193)
treatment, 46 TACE)
miRNA  miR-4530 serum 1 86 HCC (40 curative 0S, DFS (193)
treatment, 46 TACE)
miRNA  miR-122 plasma 112 HCC tumor number, tumor size, TFS (194)
miRNA  miR-122 plasma 120 HCC OS, DFS, TNM stage (195)
miRNA  miR-122 serum 122 HCC oS (191, 196)
miRNA  miR-139 plasma ) 31 HCC, 31 HC (oY (193, 197)
IncRNA  IncRNA serum 1 182 HCC, 105 BLD, 149 HC  tumor size, differentiation degrees, TNM stage, vascular (167, 190)
SCARNAL10 invasion, and metastasis
IncRNA IncRNA CRNDE  serum 1 166 HCC, 100 HC tumor size, tumor differentiation, and TNM stage (192, 198)
IncRNA  LINC00853 serum 90 HCC, 35 LC, 28 CHB, OS in mUICC stage 1T (170, 192)
29 HC
IncRNA  IncRNA-ATB serum 79 HCC OS, PES, TNM stage, tumor size, CRP, T stage, (107, 149)
portal vein thrombosis
IncRNA  IncRNA-D16366  serum 107 HCC, 28 HBV, 18 ALD,  tumor size, HbsAg, portal vein tumor thrombus, (172, 197)
12 fatty liver disease, 85 HC ~ Child-Pugh score
IncRNA  IncRNA X91348  serum 107 HCC, 82 HC OS, tumor size, HBsAg, and Child-Pugh (199)
IncRNA  IncRNA LRB1 serum 326 HCC, 73 HC OS, AFP expression, tumor size, tumor stage, and venous (175)
invasion
IncRNA  LINC00635 serum 60 HCC, 85 LC, 96 CHB, 08, lymph node metastasis, and TNM stage (200, 201)
HC 60
IncRNA  IncRNA RP11-  serum 83 HCC tumor size, cirrhosis, and histological grade (199, 202)
46611.1
IncRNA  IncRNA UCA1 serum 70 HCC RFS, median follow up period (170, 203)
IncRNA  IncRNA c-JUN serum 70 HCC RFS, median follow up period (203, 204)
IncRNA  IncRNA MVIH serum 215 HCC OS, RFS (149, 200)
circRNA  circ_0000437 serum 100 HCC, 100 HC TNM stage, differentiation degree, tumor size, (175, 205)
and BCLC stage
circRNA  hsa_cic_0005397  plasma 89 HCC, 40 benign liver OS, tumor size, and TNM stage (178, 198)
diseases, 79 HC
circRNA  circETFA plasma 56 HCC 08, cell cycle arrest (201, 206)
circRNA  circUHRF1 plasma / tumor size, microvascular invasion (69, 167)
circRNA  circ-FOXP1 serum 30 HCC, 16 HC TNM stage, and microvascular invasion (202, 207)
circRNA  hsa_circ_0003998 plasma 100 HCC, 50 CHB, 50 HC OS, tumor size, vascular invasion, differentiation degree, (185, 203)
circRNA  hsa_circ_0064428 plasma 120 HCC OS, tumor size (203, 208)
circRNA  circ-ZEB1.33 serum 64 HCC, 30 HC OS, tumor size, TNM stage (69, 209)

CHB, chronic hepatitis B; LC, liver cirrhosis; HC, healthy control; HBV, hepatitis B virus; ALD, alcoholic liver disease; BLD, benign liver disease; TACE, transcatheter arterial
chemoembolization; OS, overall survival; PFS, progression-free survival; TNM stage, tumor, node, and metastasis stage; DFS, disease-free survival; TFS, transplantation-free survival;
mUICC, modified Union for International Cancer Control; CRP, C-reactive protein; HBsAg, Hepatitis B surface antigen; RFS, relapse-free survival; BCLC stage, Barcelona Clinic Liver
Cancer stage. 1 represents the expression are upregulated in samples; | represents the expression are upregulated in samples; / represents cannot find data in references.
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miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA

miRNA
miRNA
miRNA

miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
miRNA
IncRNA
IncRNA
IncRNA
IncRNA
IncRNA

IncRNA

IncRNA
IncRNA
IncRNA
IncRNA
IncRNA
IncRNA

IncRNA
IncRNA

IncRNA
IncRNA

IncRNA
IncRNA

IncRNA

IncRNA

IncRNA
circRNA
circRNA
circRNA

circRNA
circRNA
circRNA
circRNA
circRNA
circRNA

circRNA
circRNA
circRNA

circRNA

ncRNA

miR-93-5p

miR-93-5p

miR-155

miR-21+miR-122+

miR-96

miR-10b-5p

miR-221-3p

miR-21-5p

miR-223-3p

miR-484

miR-224

miR-148a

miR-409-3p

miR-125a-3p

miR-221

miR-221+AFP

miR-125b

miR-122

miR-224

miR-338-5p

miR-764

miR-15b-5p

miR-21

SCARNAI10

SCARNA10+AFP

HULC,

MALAT1

LINC00152

PTENP1

PTTG3P

SPRY4-IT1

UBE2CP3

UCA1

Linc00152+AFP

Linc00152+UCA1+AFP

SENP3-EIF41
LINCO00853

Inc85

IncRNA-D16366

IncRNA SNHG1
GAS5-AS1

IncRNA LRB1

LncRNA UCA1
+IncRNA WRAP53
+AFP

IncRNA PVT1
+uc002mbe.2+ and AFP

hsa_circ_0005397

circRNA 0006602

Circ-CDYL+HDGF
+HIFIAN

circTMEM45A
hsa_circ_0051443
hsa_circ_0000976
hsa_circ_0007750
hsa_circ_0139897
circRNA SMARCA5

circRNA SMARCAS
+AFP
hsa_circ_0003998

hsa_circ_0001445

circ_104075

Sample Expression

urine

plasma

serum

plasma

plasma

plasma

plasma

plasma

plasma
serum

plasma

serum

serum

serum

serum

plasma

plasma

plasma

plasma

plasma

plasma

plasma

serum

serum

serum

serum

serum

serum

serum

serum

serum

serum

serum

serum

plasma

serum

serum

serum

plasma

plasma

serum

serum

serum

plasma

plasma

serum
plasma
plasma
plasma
plasma

plasma

plasma

plasma

plasma

serum

D

Patients enrolled

64 HCC, 65 HC

64 HCC, 65 HC

80 HCC, 80 CHB, 40 HC

50 HCC, 50 LC, 50 HC

38 HCC

38 HCC

38 HCC

38 HCC

41 HCC, 47 HF, 40 LC, 40 HC
89 HCC, 50 HC
155 HCC, 95 LC, 95 HC

20 HCC,

12 HCC

45 HCC, 45 HC

45 HCC, 45 HC

64 HCC, 59 LC, 63 CHB, 56 HC

80 HCC, 20 HC

80 HCC, 20 HC

47 HCC, 29 LG, 31 HC

47 HCC, 29 LG, 31 HC

47 HCC, 29 LC, 31 HC

126 HCC, 50 HC

182 HCC, 105 BLD, 149 HC

182 HCC, 105 BLD, 149 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

129 HCC, 49 LC, 27 CHB, 93 HC

3 HCC, 3 HC
90 HCC, 35 LC, 28 CHB, 29 HC

112 HCC, 43 LC, 52 HC
107 HCC, 28 HBV, 18 ALD, 12
fatty liver disease, 85 HC

72 HCC, 50 LC, 50 HC
156 HCC, 58 HC

326 HCC, 73 HC

82 HCC, 34 CHC, 44 HC

71 HCC, 64 HC

89 HCC, 40 BLD, HC 79

87 HCC, 30 HC

30 HCC, 30 HC

3 HCC, 3 HC

158 HCC, 52 CHB, 50 LC, 53 HC
152 HCC, 54 CHB, 50 LC, 50 HC
290 HCC, 80 CHB, 80 LC, 76 HC
133 HCC, 31 LC, 33 HC

133 HCC, 31 LC, 33 HC

100 HCC, 50 CHB, 50 HC

104 HCC, 57 LC, 44 CHB, 52 HC

10 HCC, 60 HC

Diagnostic accuracy
(PC vs. non-PC)

AUC 0.906, sensitivity 87.9%,
specificity 93.8%

AUC 0.905, sensitivity 86.2%,
specificity 95.4%

AUC 0.743, sensitivity 80%,
specificity 62.5%

AUC 0.924, sensitivity 82%,
specificity 92%

AUC 0.65, sensitivity 76%,
specificity 55%

AUC 0.69, sensitivity 87%,
specificity 52%

AUC 0.78, sensitivity 74%,
specificity 77%

AUC 0.63, sensitivity 61%,
specificity 70%

AUC 0.67

AUC 0910

AUC 0.949, sensitivity 90.6%,
specificity 92.6%

AUC 0.80, sensitivity 85%,
specificity 70%

AUC 0.98, sensitivity 80%,
specificity 100%

AUC 0.945, sensitivity
93.33%, specificity 77.78%
sensitivity 96.49%, specificity
88.00%

AUC 0.891, sensitivity 85.9%,
specificity 78.6%

AUC 0.98, sensitivity 87.5%,
specificity 95%

AUC 0.93, sensitivity 92.5%,
specificity 90%

AUC 0.909, sensitivity 72.3%,
specificity 99.68%

AUC 0.791, sensitivity 74.5%,
specificity 77%

AUC 0.765, sensitivity 68.1%,
specificity 80%

AUC 0.953, sensitivity 87.3%,
specificity 92.0%

AUC 0.82, sensitivity 70%,
specificity 77%

AUC 0.92, sensitivity 88%,
specificity 80%

AUC 0.796, sensitivity 86.0%,
specificity 62.4%

AUC 0.768, sensitivity 59.7%,
specificity 80.6%

AUC 0.895, sensitivity 78.3%,
specificity 89.2%

AUC 0.602, sensitivity 89.1%,
specificity 29.0%

AUC 0.785, sensitivity 82.9%,
specificity 61.3%

AUC 0.808, sensitivity 76.7%,
specificity 71.0%

AUC 0.812, sensitivity 88.4%,
specificity 62.4%

AUC 0.858, sensitivity 81.4%,
specificity 75.3%

AUC 0.906 sensitivity 85.3%,
specificity 83.4%

AUC 0912, sensitivity 82.9%,
specificity 88.2%

AUC 0.8028

AUC 0934, sensitivity
93.75%, specificity 89.77%
AUC 0.869, sensitivity 80.0%,
specificity 76.5%

AUC 0.752, sensitivity 65.5%,
specificity 84.6%

AUC 0.92,

AUC 0.824, sensitivity 89.5%,
specificity 89.5%

AUC 0.892, sensitivity
92.43%, specificity 71.85%
100% sensitivity

AUC 0.764, sensitivity
60.56%, specificity 90.62%

AUC 0.737, sensitivity
75.36%, specificity 66.67%

AUC 0.907, sensitivity 77.0%,
specificity 93.3%

AUC 0.73, sensitivity 75.36%,
specificity 66.67%

AUC 0.888
AUC 0.8089
AUC 0.863
AUC 0.843
AUC 0.769

AUC 0.938, sensitivity
86.67%, specificity 89.32%
AUC 0.992, sensitivity 100%,
specificity 100%

AUC 0.894, sensitivity 84.0%,
specificity 80%

AUC 0.862, sensitivity 94.2%,
specificity 71.2%

AUC 0.973, sensitivity 96%,
specificity 98.3%

Confidence
Interval (CI)

0.54-0.77
0.58-0.80
0.69-0.87
0.51-0.75

0.5067-0.8307
0.84-0.98
0.916-0.981

0.66-0.95

0.655-0.894

0.835-0.947

0.734-0.858
0.706-0.830
0.854-0.936

0.526-0.678

0.723-0.847
0.750-0.866
0.754-0.870
0.810-0.907
0.870-0.942
0.878-0.945

/
0.887-0.966

0.828-0.918

0.86-0.96
0.741-0.906

0.843-0.922

0.684-0.833

0.671-0.795

0.65-0.80

0.823-0.954
/
0.819-0.907
0.796-0.890
0.728-0.810
0.910-0.966

0.983-1.002
0.86-0.922

0.710-0.845

References

(153, 154)

(154)

(155)

(153)

(156)

(156)

(156)

(156)

(157)
(158, 159)
(160, 161)

(162)

(158, 163)

(154, 164)

(164)

(156, 165)

(161)

(161)

(166)

(166)

(166)

(159, 164)

(167)

(167)

(168)

(168)

(168)

(168)

(168)

(168)

(168)

(168)

(168)

(168)

(169)
(170)

(171)

(172)

(173)
(174)

(175)

(176)

(177)

(178)

(179)

(180)

(181)
(182)
(183)
(183)
(183)
(184)

(184)

(185)

(186)

(187)

CHB, chronic hepatitis B; LC, liver cirthosis; HC, healthy control. 1 represents the expression are upregulated in samples; | represents the expression are upregulated in samples; / represents
cannot find data in references.
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